COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #1
Scribe: Rob Schapire February 4, 2014

1 What is Machine Learning?

Machine learning studies computer algorithms for learning to do stuff. We might, for
instance, be interested in learning to complete a task, or to make accurate predictions,
or to behave intelligently. The learning that is being done is always based on some sort
of observations or data, such as examples (the most common case in this course), direct
experience, or instruction. So in general, machine learning is about learning to do better in
the future based on what was experienced in the past.

The emphasis of machine learning is on automatic methods. In other words, the goal is
to devise learning algorithms that do the learning automatically without human intervention
or assistance. The machine learning paradigm can be viewed as “programming by example.”
Often we have a specific task in mind, such as spam filtering. But rather than program
the computer to solve the task directly, in machine learning, we seek methods by which the
computer will come up with its own program based on examples that we provide.

Machine learning is a core subarea of artificial intelligence. It is very unlikely that we
will be able to build any kind of intelligent system capable of any of the facilities that we
associate with intelligence, such as language or vision, without using learning to get there.
These tasks are otherwise simply too difficult to solve. Further, we would not consider a
system to be truly intelligent if it were incapable of learning since learning is at the core of
intelligence.

Although a subarea of Al, machine learning also intersects broadly with other fields,
especially statistics, but also mathematics, physics, theoretical computer science and more.

2 Examples of Machine Learning Problems

There are many examples of machine learning problems. Much of this course will focus on
classification problems in which the goal is to categorize objects into a fixed set of categories.
Here are several examples:

e optical character recognition: categorize images of handwritten characters by the
letters represented

e face detection: find faces in images (or indicate if a face is present)
e spam filtering: identify email messages as spam or non-spam

e spoken language understanding: within the context of a limited domain, determine
the meaning of something uttered by a speaker to the extent that it can be classified
into one of a fixed set of categories

e medical diagnosis: diagnose a patient as a sufferer or non-sufferer of some disease

e classifying or predicting customer/user behavior: predict, for instance, which cus-
tomers will respond to a particular promotion, or which users will click on a particular
ad

e weather prediction: predict, for instance, whether or not it will rain tomorrow.

(In this last case, we most likely would actually be more interested in estimating the prob-
ability of rain tomorrow.)

Although much of what we will talk about will be about classification problems, there
are other important learning problems. In classification, we want to categorize objects into
fixed categories. In regression, on the other hand, we are trying to predict a real value. For
instance, we may wish to predict how much it will rain tomorrow. Or, we might want to
predict how much a house will sell for.

A richer learning scenario is one in which the goal is actually to behave intelligently, or
to make intelligent decisions. For instance, a robot needs to learn to navigate through its
environment without colliding with anything. To use machine learning to make money on
the stock market, we might treat investment as a classification problem (will the stock go
up or down) or a regression problem (how much will the stock go up), or, dispensing with
these intermediate goals, we might want the computer to learn directly how to decide to
make investments so as to maximize wealth. A final example is game playing where the
goal is for the computer to learn to play well through experience.

3 Goals of Machine Learning Research

The primary goal of machine learning research is to develop general purpose algorithms of
practical value. Such algorithms should be efficient. As usual, as computer scientists, we
care about time and space efficiency. But in the context of learning, we also care a great
deal about another precious resource, namely, the amount of data that is required by the
learning algorithm.

Learning algorithms should also be as general purpose as possible. We are looking for
algorithms that can be easily applied to a broad class of learning problems, such as those
listed above.

Of primary importance, we want the result of learning to be a prediction rule that is as
accurate as possible in the predictions that it makes.

Occasionally, we may also be interested in the interpretability of the prediction rules
produced by learning. In other words, in some contexts (such as medical diagnosis), we want
the computer to find prediction rules that are easily understandable by human experts.

As mentioned above, machine learning can be thought of as “programming by example.”
What is the advantage of machine learning over direct programming? First, the results of
using machine learning are often more accurate than what can be created through direct
programming. The reason is that machine learning algorithms are data driven, and are able
to examine large amounts of data. On the other hand, a human expert is likely to be guided
by imprecise impressions or perhaps an examination of only a relatively small number of
examples.

Also, humans often have trouble expressing what they know, but have no difficulty
labeling items. For instance, it is easy for all of us to label images of letters by the character
represented, but we would have a great deal of trouble explaining how we do it in precise
terms.

new

exi;\mple
labeled _ | machinelearning prlediction
training algorithm rule
examples
predicted
classification

Figure 1: Diagram of a typical learning problem.

Another reason to study machine learning is the hope that it will provide insights into
the general phenomenon of learning. Some of the questions that might be answered include:

e What are the intrinsic properties of a given learning problem that make it hard or
easy to solve?

e How much do you need to know ahead of time about what is being learned in order
to be able to learn it effectively?

e Why are “simpler” hypotheses better?

This course is focused on theoretical aspects of machine learning. Theoretical machine
learning has much the same goals. We still are interested in designing machine learning
algorithms, but we hope to analyze them mathematically to understand their efficiency. It
is hoped that theoretical study will provide insights and intuitions, if not concrete algo-
rithms, that will be helpful in designing practical algorithms. Through theory, we hope
to understand the intrinsic difficulty of a given learning problem. And we also attempt to
explain phenomena observed in actual experiments with learning algorithms.

This course emphasizes the study of mathematical models of machine learning, as well
as the design and analysis of machine learning algorithms. Topics include:

e the number of random examples needed to learn;

e the theoretical understanding of practical algorithms, including boosting and support-
vector machines;

e online learning from non-random examples (including portfolio selection);
e estimating a probability distribution from samples;

e game theory and its connection to learning.

The two most closely related computer science courses at Princeton are 402 (focusing
on core areas of artificial intelligence) and 424 (focusing on techniques for the effective use
of data, including machine learning, statistics and data mining). In comparison to 511
which focuses only on the theoretical side of machine learning, both of these offer a broader
and more general introduction to machine learning — broader both in terms of the topics
covered, and in terms of the balance between theory and applications.

example | label
train
ant —
bat +
dolphin —
leopard +
sea lion —
zebra +
shark —
mouse +
chicken —

test
tiger
tuna
platypus

Figure 2: A tiny learning problem.

4 A Typical Learning Problem

In a typical learning problem, such as optical character recognition, our goal is to create
a system that can read handwritten characters. But rather than attacking the problem
directly, we start by gathering a large collection of examples of images of characters which
are labeled as to the letter or digit that they represent. We then feed these examples to
a general purpose learning algorithm which in turn produces a prediction rule capable (we
hope) of classifying new images. The entire process is depicted in Figure 1.

To get a feeling for learning, we looked first at the learning problem shown in Figure 2.
Here, examples are labeled positive (“4”) or negative (“—"). In this case, the pattern is
that “land mammals” are positive, and others negative, although many other suggestions
were made in class. Actually, the pattern is kind of hazy, since it might be, for instance,
that the positive examples are animals that don’t live in the ocean and don’t lay eggs. Thus,
test examples “tiger” and “tuna” are positive and negative, respectively, but we can only
guess the correct label of “platypus” (an egg-laying mammal that spends much of its life in
streams and rivers).

The second example is shown in Figure 3. Initially, examples were presented as animal
names, and the problem seemed difficult. When the animal names are rewritten in terms of
the position in the alphabet of each letter of each name, the pattern becomes more evident,
namely, that an example is positive if and only if the third letter has an odd position in the
alphabet (for instance, the third letter of “elephant” is “e” which is the fifth letter of the
alphabet, so “elephant” is a positive example).

There are some things to notice about this experiment. First of all, more data is better.
For instance, we were unsure whether platypus should be a positive or negative example.
However, if we had more training data, including, for instance, live-bearing non-mammalian
animals (like a scorpion), or other mammals that live in rivers rather than the ocean, we
might have been able to better define what the unknown pattern is. Also, many of the other
competing suggestions for the first example problem could have been quickly eliminated with
more data.

example label
train
aardvark — 1 1 18 4 22 1 18 11| —
COW - 3 15 23 +
giraffe - 7 9 18 1 6 6 5 —
termite — 20 5 18 13 9 20 5 —
oyster — 15 25 19 20 5 18 +
dove — 4 15 22 5 —
spider —- 19 16 9 4 5 18 +
dog — 4 15 7 +
elephant — 5 12 5 16 & 1 14 20| +
test
rabbit - 18 1 2 2 9 20
frog — 6 18 15 7
kangaroo — 11 1 14 7 1 18 15 15

Figure 3: A second toy learning problem. Examples were intially presented as animal names
as in the left column, but later rewritten with the corresponding number of each letter of
each animal name, as shown to the right of each name.

Second, it seems very natural to try to find a pattern that is consistent with the data,
i.e., a rule that “explains” all of the observed training data. In practice, of course, it might
not be possible to find a rule that is perfectly consistent with all of the data, but we still
might find it desirable to find a rule that makes as few mistakes as possible.

Thirdly, it seems natural to seek a rule that is not only consistent, but also as simple as
possible. For instance, no one was satisfied with a rule that says, on the first problem, that
an animal is positive if and only if it begins with a “b” or an “I” or a “z” or an “m” (which
was not far from one of the suggestions for this problem). The notion of “simplicity” is tied
up with our prior beliefs about what kind of rule we are expecting. When the point of view
on the second problem was changed by altering the representation, the kind of rules that
seemed simple and natural also changed.

So in sum, there are three conditions that must be met for learning to succeed. First,
we need enough data. Second, we need to find a rule that makes a low number of mistakes
on the training data. And third, we need that rule to be as simple as possible. Note
that the last two requirements are typically in conflict with one another: we sometimes
can only find a rule that makes a low number of mistakes by choosing a rule that is more
complex, and conversely, choosing a simple rule can sometimes come at the cost of allowing
more mistakes on the training data. Finding the right balance is perhaps the most central
problem of machine learning.

The notion that simple rules should be preferred is often referred to as “Occam’s razor.”

5 Learning Models

To study machine learning mathematically, we need to formally define the learning problem.
This precise definition is called a learning model. A learning model should be rich enough
to capture important aspects of real learning problems, but simple enough to study the

problem mathematically. As with any mathematical model, simplifying assumptions are
unavoidable.
A learning model should answer several questions:

e What is being learned?

How is the data being generated? In other words, where does it come from?

How is the data presented to the learner? For instance, does the learner see all the
data at once, or only one example at a time?

e What is the goal of learning in this model?

6 Definitions

Before getting to our first learning model, we will need some definitions. An ezample
(sometimes also called an instance) is the object that is being classified. For instance, in
OCR, the images are the examples.

Usually, an example is described by a set of attributes, also known as features or variables
or dimensions. For instance, in medical diagnosis, a patient might be described by attributes
such as gender, age, weight, blood pressure, body temperature, etc.

The label or class is the category that we are trying to predict. For instance, in OCR,
the labels are the possible letters or digits being represented. During training, the learning
algorithm is supplied with labeled examples, while during testing, only unlabeled examples
are provided.

To make things as simple as possible, we will often assume that only two labels are
possible that we might as well call 0 and 1. We also will make the simplifying assumption
that there is a mapping from examples to labels. This mapping is called a concept. Thus,
a concept is a function of the form ¢ : X — {0,1} where X is the space of all possible
examples called the domain or instance space. A collection of concepts is called a concept
class. We will often assume that the examples have been labeled by an unknown concept
from a known concept class.

7 The Consistency Model

Our first learning model, called the consistency model, is rather unrealistic, but it is intu-
itive, and it is a good place to start. Many of the ideas that come up will also be of value
later. The model captures the intuitive idea that the prediction rule that is derived from a
set of examples should be consistent with their observed labelings.

We say that a concept class C is learnable in the consistency model if there is an algorithm
A which, when given any set of labeled examples (x1,91), ..., (Tm,Ym), where x; € X and
y; € {0,1}, finds a concept ¢ € C that is consistent with the examples (so that c(z;) = y;
for all i), or says (correctly) that there is no such concept. Moreover, we are especially
interested in finding efficient algorithms in this model.

Next time, we will look at examples of concept classes that are or are not learnable in
this model.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #2
Scribe: Scott Yak February 6, 2014

1 Review of definitions

We are now mostly concerned with classification problems. For a particular classification
problem, we have each example /instance coming from X, a much larger space of all possible
examples called the domain space or instance space. Each example is associated with a label,
which we denote as y. For simplicity, we assume there are only two possible labels.

1.1 The Concept and Concept class

A concept, which is what we are trying to learn, is an unknown function that assigns labels
to examples. It takes the form c¢: X — {0,1}.

A collection of concepts is called a concept class. We will often assume that the examples
have been labeled by an unknown concept from a known concept class.

1.2 The Consistency Model

We say that a concept class C is learnable in the consistency model if there is an algorithm®
A which, when given any set of labeled examples (z1,y1), ..., (Zm,Ym), where z; € X and
y; € {0,1}, finds a concept ¢ € C that is consistent with the examples (so that c(z;) = y;
for all 7), or says (correctly) that there is no such concept.

In the following sections, we’ll look at some concept classes, and see if they are learnable.

2 Examples from Boolean Logic
For this section, we consider the instance space of n-bit vectors:
X ={0,1}", x=(z1,...,2n)

Each n-bit vector represents the values of n boolean variables. Examples of boolean variables
could be the following:

r1 = “is a bird”

To9 = “is a mamimal”

z3 = “lives on land”
etc.

1One caveat is that this algorithm should be reasonably “efficient”, and by “efficient” we mean something
like having a polynomial runtime bound. This caveat is important, because if we do not require the algorithm
to be efficient, then we can always come up with an algorithm that tries every possible concept in the concept
class, and we would be able to make the uninteresting claim that all finite concept classes are learnable,
making this learning model uninteresting. In any case, we are mostly interested in learning algorithms that
are efficient enough to be practical.

2.1 Monotone conjunctions

Suppose our concept class is the set of all monotone conjunctions. A monotone conjunction
is the AND of some of our boolean variables, where we do not allow the boolean variables
to be negated. One possible concept in C would be ¢(x) = x9 A x5 A z7, which is a function
that takes in an n-bit vector and outputs either 0 (or —) or 1 (or +).

example | label
01101 +
11011 +
00101 —
11001 +
11000 -

Given the labelled examples above, what is the monotone conjunction consistent with
it? In this small example, the answer is xo A x5. But is there a general algorithm for finding
a consistent monotone conjunction?

Consider this algorithm: We start off by only considering the positive examples, and we
keep only the columns where all the entries are ‘1’. For example, only the second column
and the fifth column are all ones, so our monotone conjunction is xs A 5.

example | label
01101 +
11011 +
11001 +
01001

We then take this monotone conjunction and evaluate it with our negative examples.
For example, z2 A x5 evaluated on 00101, one of our negative examples, is 0 A1 = 0. If our
monotone conjunction evaluates to 0 on all negative examples, then the algorithm outputs
that as the concept; otherwise the algorithm says that no consistent concept exists.

Is this algorithm correct? We know that any concept the algorithm outputs must be
consistent because it has already been checked against the examples, but when the algorithm
says that there is no consistent concept, how can we be sure that it is really the case?

We note that any monotone conjunction that is consistent with all positive examples
can only contain the boolean variables output by the algorithm. This is because all other
boolean variables were rejected for taking the value of 0 for at least one positive example, so
if we included any of those boolean variables, the concept would wrongly label that positive
example as a negative example. In the above example, we could not have included z; into
the conjunction, since including x; would cause the concept to mislabel the positive example
“01101” as negative. For similar reasons, we could not have included x3 or x4 either. This
means that only subsets of the boolean variables that the algorithm selects have monotone
conjunctions that are consistent with all positive examples, in this case, {}, {z2}, {z5}, and
{$2, 375}.

Now that we have all possible concepts that are consistent with all positive examples, we
would like to choose one that is also consistent with all the negative examples, if possible.
Note that if any negative example were consistent with the monotone conjunction of any
subset of the selected boolean variables, it would also be consistent with the monotone
conjunction of all the selected boolean variables. For instance, any bit-vector that gets

evaluated to ‘0’ with x2 must also get evaluated to ‘0’ with xo A 5. This implies that if the
monotone conjunction of all the selected boolean variables is not consistent with any of the
negative examples, then none of the monotone conjunctions that are consistent with all the
positive examples would be consistent with that negative example either, so no consistent
concept exists. In other words, if a consistent concept exists, the algorithm would have
considered it, so it would only state that there are no consistent concepts if there really
aren’t any.

Since we have a learning algorithm for the concept class of monotone conjunctions, we
can conclude that the concept class of monotone conjunctions is learnable.

2.2 Monotone disjunctions

Now let’s consider the concept class of monotone disjunctions. A monotone disjunction is
the OR of some of our boolean variables, where we do not allow the boolean variables to
be negated. One possible concept in C would be ¢(x) = z2 V 5 V x99. Is this concept class
learnable?

Consider the same set of examples again. Using De Morgan’s rule, x1 Vo = T1 A T2,
we can convert the examples into the monotone conjunction form by negating both the
example bit-vector and the labels:

example | label example | label
01101 + 10010 —
11011 + — 00100 —
00101 — 11010 +
11001 + 00110 —
11000 - 00111 +

Now we just need to find the consistent monotone conjunction for the converted exam-
ples, and flip the conjunctions to disjunctions to obtain the consistent monotone disjunction
for the original examples. This means that we have reduced the problem of learning from
the monotone disjunction concept class to the already solved problem of learning from
the monotone conjunction concept class, so the monotone disjunction concept class is also
learnable.

2.3 Conjunctions

Now let the concept class be the set of conjunctions, not necessarily monotone. This means
that we allow the boolean variables to be negated. For example, one possible conjunction
would be x3 A T7 A 219, where z7 is the negated variable. Is this concept class learnable?

Once again, we observe that this problem can also be reduced to the monotone con-
junction problem. For each variable z; in the bit-vector, we add a new variable z; = T;,
and we tack it on to the examples’ bit-vectors, so (z1,...,Tm) = (T1,. .., Tm, 215+ s Zm)-
We obtain the consistent monotone conjunction for this converted set of examples. Now
suppose we obtain the monotone conjunction z3 A 27 A z19; we would be able to convert it
back to a general conjunction, x3 AT7 A x19. Thus, the concept class of conjunctions is also
learnable.

3 Examples from Geometry

3.1 Axis-aligned rectangles

Now let’s consider points on a 2-D plane, X = R?. Each point is assigned a label + or
—. We consider the concept class of axis-aligned rectangles — each concept is a boolean
function where the points in the rectangle are labelled ‘+’, and the points outside of the
rectangle are labelled ‘—’. So the learning problem is this: Given a set of labelled points
on a plane, find an axis-aligned rectangle such that all the points inside are ‘+’ and all the
points outside are ‘—’ (such as the dotted-line box in the following diagram).

One algorithm would be to scan through all the positive examples, and use the topmost,
bottommost, leftmost, and rightmost coordinates to define the smallest enclosing rectangle
for the positive examples. Then we check if any of the negative examples are contained in
this rectangle — if there is, we state there are no consistent concepts; otherwise we output
that rectangle as the consistent concept 2. So the concept class of axis-aligned rectangles is
learnable.

3.2 Half-spaces

Let’s consider points in an n-dimensional space, X = R"™. Again, each point is assigned a
label + or —. We consider the concept class of half-spaces or linear threshold functions —
each concept is a boolean function where the points on one side of a linear hyperplane are
labelled ‘+’, and the points on the other side are labelled ‘—’. The concept we want to find
is a linear hyperplane that separates the positive from the negative examples (such as the
dotted-line in the diagram on the next page).

2Notice the general trick of finding the concept that includes as little of the domain space as possible
while still remaining consistent. This trick was previously used for the monotone conjunctions

We can define a hyperplane as
w-x=2>

where w and b are fixed values that determine the hyperplane. We denote x; as the it
example, and y; as the corresponding label. Algebraically, what we are trying to do is:

find
weR"beER
such that V i,
w-x; >bify; =1
w-x; <bify; =0

This turns out to be a linear programming problem, which is known to be efficiently
solvable (there are math packages that can solve such linear programs well). This shows
that the concept class of half-spaces is learnable.

4 More examples from Boolean logic

Once again, our domain space is the set of n-bit vectors.

4.1 k-CNF

A formula in the conjunctive normal form(CNF) is the conjunction of disjunctions, or the
AND of ORs. For example, the following formula is a CNF:

(r1 Vas) A (xgVT2) A (x2 VI3V as) A (x7)

It contains literals, which are boolean variables either in their negated or unnegated form,
and consists of clauses (literals ORed together) which are ANDed together. For a k-CNF,
each clause can contain at most & literals, and there are no restrictions on the number of
clauses in the formula. k is considered a constant. The example above would be a 3-CNF,
because the longest clause contains 3 literals.

Now consider the concept class of k-CNF's. Is there an algorithm that can come up with
a consistent concept? 3

For simplicity, let’s first consider 2-CNFs. One way to find a consistent concept would
be to list all the possible pairs of literals (which include both the negated and unnegated
forms of the boolean variables), name the OR of that as new variables, and tack them to
the examples’ bit-vectors (similar to what we did before with non-monotone conjunctions).
This converts the CNF into a monotone conjunction?, which we know how to solve, and
once we get the solution, we can convert it back to a 2-CNF by substituting back the pairs
that were named as variables. For the more general k-CNF, our new variables would include
the disjunction of all subsets of the set of literals up to size k. Thus, the concept class of
k-CNF is also learnable.

4.2 2-term DNF

A formula in the disjunctive normal form(DNF) is a disjunction of conjunctions, or an OR
of ANDs. It is made up of a conjunction of terms, which is a conjunction of an unrestricted
number of literals - the size of each term can be as large as desired. Note the difference
from CNF — here, it’s the number of ”parentheses”, and not the number of things in the
parentheses, that is restricted. A k-term DNF, as the name suggests, can only contain up
to k-terms. For instance, (x1 A g A 24) V (T2 A T3 A xg A z7) is a 2-term DNF.

Now we consider the concept class of 2-term DNF's. Is this class learnable?

We note the distributive property of conjunction over disjunction — we can ”expand”
the 2-term DNF in a way analogous to how we might multiply two polynomials, but we
treat the ORs like multiplication signs, and the ANDs like additions. So,

(1 ANxa Axg)V (TaAxy) = (21 VT2) A (1 Vag) A(22VT2) A (2 Vg) A (3 VT2) A (23 V 24)

This means that we can convert any 2-term DNF to a 2-CNF. Great! Does it mean that we
can reduce 2-term DNF problem to 2-CNF? We could use the 2-CNF algorithm to produce
a consistent 2-CNF, but there is no guarantee that it would yield a 2-CNF that can to
factorized into a 2-term DNF! The fact that we can convert any 2-term DNF to a 2-CNF
only shows that the 2-term DNF's form a concept class that is a subset of the concept class
of 2-CNFs. Even if we find a consistent 2-CNF, it doesn’t mean that we get a consistent
2-term DNF.

In fact, the 2-term DNF learning problem is NP-hard, so an efficient learning algorithm
is unlikely to exist. This is an example of a concept class that is not learnable.

4.3 General DNF

Now we consider the concept class of general DNFs, where there are no restrictions on the
number of terms in the DNF. Is this learnable?

Consider the following algorithm: For each positive example, we take the negated form
of the boolean variable if the value is zero, or taking the unnegated form of the boolean
variable if the value is 1, and AND all these literals to form a term. For example:

3Note that this is different from the CNF satisfaction problem. In the CNF satisfaction problem, we
start with a known CNF and try to come up with a positive example. In the learning problem here, we
start off with a bunch of examples, and we are trying to find the unknown CNF that is consistent with all
the examples.

“We might get unnecessary terms such as 1 V Z1, but it doesn’t matter because we can just set it to 0.

example ‘ label ‘ DNF term
01101 + T1 NT2 Nx3 NTy N\ x5
11011 + X1 Nxog NTg Nxg N5
00101 — -

Once we obtain the terms for all the positive examples, we OR them together to form a
DNF'. This DNF is automatically consistent with all the positive examples by construction.
We then take this DNF and check if it is consistent with the negative examples, and if it
is, the algorithm outputs the DNF; otherwise it outputs "no consistent DNF”. Since this
algorithm works, the general DNF concept class is learnable.

However, this algorithm seems to be performing a somewhat unsatisfactory kind of
“learning”. For one, the DNF that this algorithm outputs is going to label any instance
it has not seen before as negative! Also, the DNF that the algorithm outputs is of a size
comparable to the size of the training data. So in effect, this “learning” algorithm is really
nothing more than a lookup table.

5 Problems with the Consistency model

One problem we saw with the DNF example is that the consistency model doesn’t say
anything about how the concept that the algorithm learns generalizes to new data. Even
though the concept class is apparently learnable under the consistency model, it does so in an
unsatisfactory way that seems unrelated to what we typically mean when we say “learning”.
It seems, then, that the consistency model doesn’t really say much about learning at all!
This suggests that we need a new model.

6 Quick review of probability concepts

event — Something that either happens or not. A probabilistic outcome.
random variable — Variable that takes values probabilistically.
Has a distribution.
distribution — Pr[X=x2],and) Pr(X =z]=1
expected value — EX]=),PriX=x]-x
E[f(X)| =%, PriX =a] - f(x)
linearity of expectations — E[X +Y]= E[X]|+ E[Y].
E[cX] = cE[X]. Always.
conditional probability =~ — Prlalb] = P;[Ta[;\]b}
independence — a, b are independent if

Prla ANb] = Prla] - Pr[b]
Vr.v.A, B,Ya,b: PrfA=aA B =0 = Pr[A=a]- Pr[B =10
(shorthand : Pr[A A B] = Pr[A] - Pr[B])

If X,Y independent, = E[XY]|=FE[X]-E[Y]

union bound — Pr[aVb] < Prla] + Pr[b]

7 Introduction to the PAC learning model

We aim to capture some notion of learning in this new model. This means that this model
should be able to say something about generalizing from a smaller set of data to a larger

set of instances.

new
exilmple
labeled | machine learning prediction
training : rule
algorithm
examples
predicted
classification

Our goal now is to develop a hypothesis that is as accurate as possible — we are not
as concerned about discovering the underlying truth. An important question we need to
consider is — where do the examples come from? We need to assume that the examples are
in some way related — otherwise we cannot learn anything. In this model, we would make
the assumption that the examples are generated randomly from the same distribution (not
necessarily uniform).

Since our goal is to obtain an accurate hypothesis, we need to be precise about what we
mean by “accurate”. We define the generalization/true error as follows:

Pry.plh(z) # c(z)] = errp(h)

where z is some example that comes from an unknown target distribution D that generates
each example, and h is a hypothesis. We typically assume that the different examples are
independent of each other (even though that is not always realistic, for instance, in the
case of an email spam filter). We also assume that the training examples and test examples
come from the same source — i.e., they are drawn from the same distribution D.

As for the labels, we assume for simplicity that there are only two possible values. The
labels are applied in accordance to some unknown concept, ¢ : X — {0, 1}, that comes from
a known concept class C.

As an overview:

Labelled test example x
training x~D
examples 4

(z1,c(x1))

: Learning algorithm Hypothesis
(T, (X)) — A — H
i}

x;~ D label h(x)

We reiterate that in this learning model, we aim to formulate a hypothesis that has
errp(h) that is as small as possible. We no longer view the goal of the learning algorithm
as that of obtaining a hypothesis that is consistent on the training set. Rather, the goal now
is to obtain a hypothesis that does well on test data, and that is at least “approximately
correct”. But since the training examples are considered to be drawn randomly from an

unknown distribution, there is always a chance that the training set that is drawn is very
unrepresentative of the source distribution. For instance, there is a non-zero probability
that an OCR program never sees the letter ‘t’ up till a time we test it on a normal piece of
text. Unlikely, but possible. For us to be able to say anything useful about the hypothesis,
then, we would need to disregard extremely unlikely events that can completely mess up
the machine learning algorithm. Thus, the accurate guarantees are “probabilistic”. This
sets us up for the “Probably Approximately Correct” (PAC) learning model.
Next time, we will elaborate more on the PAC learning model.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #3
Scribe: Kevin Lai February 11, 2014

1 The Probably Approximately Correct (PAC) Model

A target concept class C is PAC-learnable by a hypothesis space H if there exists an
algorithm A such that for all ¢ € C, any target distribution D, and any positive € and
J, A uses a training set S = ((z1,c(z1)), (x2,c(x2)), ..., (Tm, c(Tm))) consisting of m =
poly(%, %, ...) examples taken i.i.d. from D and produces h € H such that Prlerrp(h) <
el >1-4.

A few comments on notation. e is called the accuracy parameter, and we call h “e-good”
if errp(h) < €, where errp(h) is called the true error or the generalization error. ¢ is
the confidence parameter. € and ¢ are user-specified parameters (eg. 5% and 1%). The
name “Probably Approximately Correct” comes from the fact that we want a hypothesis
that is approximately correct (e-good) with high probability (namely 1—0). The probability
is taken over the choice of S, which will determine which h the algorithm chooses. This
is a reasonable goal because there is always a small chance that the test data will be very
unrepresentative of D.

We assume that the training set and the test data are drawn from the same distribution
D. In general ‘H will not necessarily be the same as C. Finally, we may also want m to be
polynomial in the size of each example or in the size of the target concept c.

2 Learning positive half-lines

We will now look at a series of examples of PAC-learnable concept classes, starting with
the class of positive half-lines. In this example, the domain X is the real line, and C =
‘H = {positive half lines}. A positive half-line is defined by a threshold (a real number): all
points to the left of the threshold are labeled negative, while all points to the right of the
threshold are labeled positive.

Figure 1: The target concept c is a half-line

To find a hypothesis, we will simply pick some h that is consistent with the test data.
We can do this by scanning the test data in ascending sorted order until we find the greatest
negatively labeled point and the smallest positively labeled point. We then set the threshold
of our half-line anywhere in this interval. Note that we can always find a consistent h because
H=C.

As shown in Figure 3, the generalization error of h will be the probability mass that
falls between the target concept ¢ and our hypothesis h. Points in this region will be labeled

+ o+ + ++ O+

v

h

Figure 2: Half-line h outputted by our algorithm based on test data
differently by h and ¢. Any points that are either to the right or to the left of both A and
c will be labeled the same by h and c.

Error Region

r—

- - - - - + + + ++ o+

A~
v

=]
=

Figure 3: The generalization error of h is the probability mass between h and ¢

We need to show that the generalization error is low with high probability. Equivalently,
we can show that Prlerrp(h) > €] < 4. There are two cases where errp(h) > e. Let By be
the event that h is more than e probability mass to the right of ¢, and let B_ be the event
that h is more than e probability mass to the left of c.

To determine the probability that B4 or B_ occur, we define two points on the number
line, as shown in Figure 4. Let r4 be a point to the right of ¢ such that the interval [c, 4]
has e probability mass. Likewise, let 7_ be a point to the left of ¢ such that the interval
[r_, c] has € probability mass.

F.
L 4

-
]
-1

Figure 4: r4 and r_ are both e probability mass away from ¢

L3
v

(]
1

Figure 5: R4 has probability mass €

We will first calculate the probability of By. Let R4 be the interval [c, r,], which has
probability mass e. Now note that B4 can only occur if h is to the right of r4, which only
occurs if all z; ¢ Ry. If any of the training points were in R, h would be to the left of r

(since the training point would have a positive label). Observe now that Pr[z; € Ry] < 1—e¢
because R4 has probability mass €. Then:

PI'[BJF] = PI‘[l‘l Q R+ A T2 g RJr A Im € R+] S (1 — E)m (1)

where the last inequality follows by independence of the x;’s. Note also that while the z;’s are
random, R is fixed because it depends on a fixed c¢. Also, by symmetry, Pr[B_] < (1—¢)™.
Now we can bound the probability that errp(h) > e:

Prlerrp(h) > €] < Pr[B; V B_] (2)
< Pr[B4] + Pr[B_] (union bound) (3)
<2(1—¢)™ (4)
< 2e” M (Vz,1—z<e™) (5)

We want Prlerrp(h) > €] < 4, so we set (5) < & and solve for m to get m > 21n 2. This
shows that C is PAC-learnable by H.

If we set 6 = (5), we can write this equivalent statement: with probability at least
1—d,errp(h) < ln%.

1
m

3 Learning intervals

Our next concept class C is the set of intervals on the real line. This will also be our
hypothesis space H. Each ¢ € C specifies an interval on the real line that will be labeled
positive. All points outside of the interval are labeled negative.

hc

R | SN) M

LL J]

Figure 6: Test data generated by a target concept interval c. h is a consistent hypothesis
interval

Our algorithm will simply pick a consistent h € H. We can then prove that the gener-
alization error of h is low with high probability by an analogous argument to the half-line
case. That is, C is PAC-learnable by H.

We will briefly summarize the argument. Let ¢; be the left boundary of ¢. We make an
interval of probability mass § on both sides of ¢;. Then the analysis will be the same as
in the half-line case, except with a constant factor difference. We repeat this argument for
the right boundary of ¢. At the end, we will have a union bound over four bad events, each

with probability e~ 2, som > %ln %.

4 Learning axis-aligned rectangles

Our last example will be learning the concept class C of axis-aligned rectangles. We will use
the algorithm we had in the previous lecture, which finds the smallest axis-aligned rectangle
consistent with the data.

Figure 7: Test data generated by a target concept rectangle c. h is the smallest consistent
rectangle

To bound the probability that the generalization error is greater than e, we create four
“bad” regions, each created by growing a rectangle from the interior of one wall of ¢ until
the region has probability mass i.l It does not matter that these rectangles overlap. Call
these regions Ry, ..., R4. Next, we use an argument that is analogous to the half-line case
to bound the probability that no points land in each region individually. Let Bi, ..., B4 be

the events that no points land in regions Ry, ..., R4 respectively. Then:

Prlerrp(h) > €] < Pr[B1 V B2V B3 V By] (6)
< Pr[B;] + Pr[Bs] + Pr[B3] + Pr[B4] (union bound) (7)
<4(1—¢/4)™ (8)
<4e” T (9)

Then we get m > %ln%. As a final note, observe that we can extend this argument to
axis-aligned hyperrectangles in an arbitrary number of dimensions.

° /

| g/4 probability mass each \

Figure 8: Regions analogous to R4 in the half-line case. We bound the probability that
no points fall in each of these regions. Each region has probability mass § and the regions
overlap

Tf the region hits the opposite wall of ¢ before the region reaches probability mass 7, then we simply
stop growing the region. Thus, each region has probability mass at most £.

5 Proving PAC results in general

We just saw several examples of proving concept classes are PAC-learnable using proofs
tailored to each problem. However, it would be more convenient if we had some way to
prove PAC results in general. Fortunately, such a way exists for finite hypothesis spaces

(i.e. |H| < 00).

Theorem 1. Suppose an algorithm A always finds a hypothesis hy € H consistent with m
examples where m > (In|#| + In }). Then Prlerrp(ha) > € < 6.

The proof of Theorem 1 also will lead to this similar statement: with probability at least
1 — 4, if hy is consistent, then errp(hg) < %(ln |H| + ln%). This statement is essentially
saying that if an algorithm finds a consistent hypothesis and uses enough data relative to
the complexity of the hypothesis space and 9, the generalization error will be low.

6 Complexity and |H|

The In |H| term in Theorem 1 is a measure of complexity of the hypothesis space. Intu-
itively, we can understand the logarithmic term as essentially the number of bits required
to uniquely label each h € H, which would be the base two logarithm of |#].

We did an exercise in class to demonstrate the relevance of |#H|. Everyone wrote down
20 bits of their choosing, corresponding to the output of a hypothesis on the domain
{1,2,...,20}. Professor Schapire then revealed the “training” data, which was a set of
10 bits, corresponding to the output of the target concept for {1,2,...,10}. We selected the
hypothesis with the lowest training error in the class. Then we evaluated that hypothesis’s
performance against the 10 bits output by the target concept for {11,12,...,20}. In our ex-
ample, the best hypothesis had a training error of 10% and a test error of 10%. However, as
Professor Schapire determined his bits using random coin tosses, in general the hypothesis
with the best training error will have an expected test error of 50%. In a large class, it
is likely to find a hypothesis with low training error, but that hypothesis will still have an
expected test error of 50%.

The purpose of the exercise was to demonstrate that with a bigger hypothesis space,
there is a greater chance for a poor hypothesis to match the training set well, despite having
poor generalization error. Thus, complexity in the hypothesis space will tend to increase
the probability of choosing a hypothesis that fits the training set well, simply by chance,
but which actually performs poorly on test data.

Example 1. Suppose C is the set of monotone conjunctions in n-dimensions. This will
also be our hypothesis space. |H| = 2" because each variable can either be included or
not included in our hypothesis. Since our algorithm from last lecture finds a consistent
hypothesis, Theorem 1 implies that if m > %(n In2 + ln%), then Prlerrp(ha) > € < 4.
Since m only needs to be at most polynomial in the size of %, %, and n, we have shown that
the class of monotone conjunctions is PAC-learnable.

Example 2. Now suppose that C is the set of all DNFs, and let this be our hypothesis
space as well. Now since we can think of every DNF as a boolean formula (given values
for n variables, the DNF outputs one of two answers), and every boolean formula can be
represented by a DNF, |H| is just the number of boolean formulas on n variables, which

is 22". Using Theorem 1, we get that m > 1(In2%" +1In3) = 1(2"In2 + In§), which is
exponential in the number of variables. This is consistent with our conclusions from last
lecture that DNFs likely can’t be learned efficiently with a small amount of data.

An informal way to see that the class of DNF's likely can’t be learned efficiently is to
look at our algorithm from last lecture for learning DNF's. In that algorithm, we included a
clause for each of the positive examples in our training set. In the worst case, this could give

us a hypothesis of size O(mn). If we approximate In |H| with the size of each hypothesis,

O +1
then the error is € > M > cn, where c is some constant. This is too large, as we

would like our error to be less than 1. So our previous algorithm does not efficiently learn
DNFss.

In general, we see that if our hypothesis space is not too complex, finding a consistent
hypothesis will allow us to achieve low generalization error with a reasonably small amount
of data. However, this conclusion does not say anything about computational efficiency.
Even if only a small amount of data is required, it may be difficult to design efficient
learning algorithms.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #4
Scribe: Akshay Mittal February 13, 2013

1 Proof of learning bounds

For intuition of the following theorem, suppose there exists a hypothesis A which is e-bad
and makes at least one mistake with a few 100 examples. Therefore, since h is e-bad, then
with high probability, it is going to be eliminated and will not be picked up by the algorithm.
By the union bound, we will then show that all of the e-bad hypotheses are inconsistent
with that training set.

Theorem. Say algorithm A always finds hypothesis ha € H consistent with m examples

where))
m> - (ln]H| —i—ln)
€)
then

Prierrp(ha) > € <6

The underlying assumption is that the hypothesis space is finite, i.e. |H| < oo and that the
m examples are i.i.d. with respect to the distribution D. The theorem provides a upper
bound on the amount of training data m needed to achieve a low error € with a confidence
of at least 1 — 4.

Proof. We aim to bound the probability that h, is both consistent and e-bad, i.e. the
generalization error of h, is greater than e. Let B = {h € H : h e-bad} be the set of all
e-bad hypotheses in H. (Here B is a fixed set and not a random variable. The concept ¢
and distribution D are fixed, thus, the hypotheses h having error on D are fixed. The only
random variable is h4 which depends on the sample. The consistency of h 4 is also random.)

Pr[hy is consistent and e-bad]
< Pr[3h € H : h cons. & e-bad] (.if A= B, then Pr[A] < Pr[B])
= Pr[{3h € B: h cons.]

= Pr \/(h cons.)

heB
< ZPr[h cons.| (by union bound)
heB
= ZPr[h(xl) =c(z1) N ... Nh(zm) = c(Tm)] (by defn. of consistency)
heB

= ZHPr[h(xi) = c(x;)] (by independence)

heB i=1

< Z(l - (" h € B= Pr[h(z;) # c(x;)] > ¢€)

heB
— |BI(1— "
< |H|(1—€e)™ (-BCH)
< |Hle™™ (Vr,(1+2) <€)
<4 (follows by choice of m)
O

The negation of Pr[dh € H : h cons. & e-bad] leads us to conclude that with probability
> (1 —0) and Vh € H, if h is consistent, then

In|H| +1ni
errp(h) <e= 711‘ [+1n3 (1)
m

Equation 1 captures the bound on the generalization error in terms of the learning perfor-
mance 0, the size of the hypothesis space |H| and the number of training sample m.

An Alternate Proof

We can attempt to get rid of the dependence of the generalization error on the number of
hypotheses |H| as follows

Prlerrp(ha) > €| ha cons.]

_ Prlha cons. | err(ha) > €| Prlerr(ha) > €] (by Bayes rule)

Pr[h4 cons.]
= Prlha cons. | err(ha) > €| Prlerr(ha) > € (. Prlha cons.] = 1)
< Prlha cons. | err(ha) > € (. Prlerr(ha) > € <1)
= Prlha(xz1) = c(z1) A ... Aha(xm) = c(xn) | err(ha) > €| (by defn. of consistency)
= HPr[hA(:ci) = c(x;) | err(ha) > € (by conditional independence)
i=1
<(d-9" (. Prih(z:) # c(z:)] = €)
<e M (oVz,(14+2) <e¥)
<4 (if m > —%)

The argument above seems plausible, but it is actually incorrect. In the first proof, h is
not a random variable, since we had picked it before the sample S was picked, hence use
of independence is valid in that case. However in this alternate proof, the hypothesis h4
is generated from the sample S, and therefore is a random variable that depends on the
sample §. Since h4 depends on the sample S, given h4 is e-bad, the samples from S are
no longer i.i.d. Thus, use of conditional independence in the above proof is incorrect, i.e.

Prlha cons. | err(ha) > €| # HPr[hA(xi) = c(z;) | err(ha) > €
i=1

2

Moreover, Pr[h4 cons. | err(ha) > €] should be 1, because we assume that h 4 is always con-
sistent. Therefore, care must be taken to pick the hypothesis (for which the generalization
error is being analysed) before the sample space S is selected.

2 Consistency via PAC

In the previous section, we have seen that if we can learn in the consistency model, then
we can learn in the PAC-model, provided |H| is not too huge. A concept class C is said to
be properly PAC learnable by H if the hypotheses space H is the same as the concept class
C. We will now take the situation considering the case vice-versa.

Proposition. Given

e algorithm A that properly PAC-learns C, i.e. given a set of random examples, A finds
a hypothesis h € C, such that with high probability, the hypothesis has generalization
error at most €.

o asample S = ((x1,41), -, (Tm: Ym))

we can use A as a subroutine to find ¢ € C consistent with S (if one exists).

Intuitively, since a PAC learning algorithm must have examples from a random distribution
and S is not a random set, we construct a distribution for it and sample the examples (for
feeding to algorithm A) from it. We then use algorithm A to get a hypothesis h such that
errp(h) < e and use it to show that h is consistent.

Proof. Given m examples S, we construct a distribution D that is uniform over the m
examples in §. We choose € = ﬁ and any desired value of 4 > 0. We then run algorithm
Aonm = poly(%, %) examples chosen from the distribution D. Here m’ is the number of
examples required by A to attain the desired accuracy (1 — €) with high probability 1 — 4.
If A outputs the algorithm h, we check whether h is consistent with S. If h is consistent
with S, then we output the hypothesis h (thus proving the proposition), else (or if A failed
to generate a hypothesis), then we say “nothing consistent”. Mathematically, if there exists
¢ € C consistent with S, then with probability at least (1 —) (since A is PAC-learning

algorithm), we have

errp(h) <e

<

(2)

Since D is uniform, the probability assigned to each example is % and therefore the gen-
eralization error is an integer multiple of % By Equation 2, this leads to the conclusion
that errp(h) = 0 and h is consistent. If, however, there does not exist a ¢ € C which is
consistent, then algorithm A would fail somehow i.e. either give a hypothesis h which is
inconsistent or terminate by saying that “nothing consistent”. O

Consistency and PAC-learnability are closely related concepts.

3 Learnability of Infinite Hypothesis Space

The result shown above holds only for the finite hypothesis spaces. There are still various
examples, such as positive half-lines, rectangles, etc. that allow us to learn even though they
have infinite hypothesis spaces. We will now discuss the characteristics of these hypothesis
spaces to determine what makes a concept class C PAC-learnable.

Example 3.1. Positive Half-lines

s d 2

h
[.
L

h

[—
Given any unlabeled dataset of points on the z-axis, h; and ho behave exactly the same
on the dataset. Although there are infinitely many hypotheses possible for this example,
using the similarity of multiple hypotheses, we can divide the hypothesis into finite distinct
equivalence classes. For instance, below are the 5 possible labelings/dichotomies/behaviors
for a set of 4 unlabeled examples.

i

]

=

> T T
w
1

[

Therefore, in general, for m unlabeled examples we have (m + 1) possible equivalence
classes compared to the 2™ possible labelings (there are infinitely many hypotheses but
only finitely many labelings) for the unlabeled dataset [m 4+ 1 < 2™]|. The fact that the
number of equivalence classes/labellings/dichotomies is so small, makes this concept class
of positive half-lines PAC-learnable. Even though the hypothesis space is infinitely large,
the effective hypothesis space is small O(m).

Example 3.2. Positive/Negative Half-lines
- - I' + + +
. . .
+ + + 'I
1

L]

This case is similar to Example 3.1 except that the half-line can label the examples positive
or negative on either side of the marker point. To compute the effective hypothesis space,
we double the result of Example 3.1 and subtract 2 (to account for the double counting of all
positive labels and all negative labels). Thus, the effective hypothesis space = 2(m+1)—2 =
2m = O(m).

Example 3.3. Intervals
The concept class C consists of concepts which classify points, on the real axis, inside an
interval (specific to every concept) as positive and those outside the interval as negative.

With m points, there are (m+ 1) ways to place a marker for an interval boundary, thus the
number of ways to select an interval, of this format, is (m; 1). To account for the empty
interval (which can be placed between any two points), one extra value needs to be added,
thus totaling the effective hypothesis cardinality to be (m;r 1) +1 = O(m?). Alternatively,
one could first pick pair of points (73), then singleton points m and lastly the empty case

1, once again totaling to (75‘) + m + 1 which computes to be the same result.

Generalizing the characteristics of the aforementioned examples, we have a hypothesis space
H and a set of unlabeled examples § = (z1,x2,...,Zmy). We can thus define the set of all
possible behaviors/dichotomies/labelings of H on S as

[(S) = {(h(z1), ..., h(zm)) : h € H}

Thus, for Example 3.1 we get |IIx(S)| = 5. We can now define a growth function over m
samples to capture how complex the hypothesis space grows as we see more samples

I3 (m) = max 1Ly (S)|

Intuitively, we would like to use IIx(S) as an effective hypothesis space and thus replace
In |H| in the error bound with In |II3;(m)|. The error bound depends on the growth function,
which means that if the growth function grows as 2™, i.e. Ym, Il (m) = 2™, then we reduce

the bound as m > mtln%, which is not useful. In this case, learning is impossible because
we are working with something like all possible functions. However, we will see that the
only other possible case for all hypothesis spaces is that the growth function grows as a
polynomial in m, i.e. Iy (m) = O(m?). Here d is called the VC-dimension and the error
bound does not blow up

dlnm + In 1
im ————9 40
m—o0o m

Thus we observe that for any H, either Iy (m) = 2™ for all m, or Il (m) = O(m?) for
some constant d.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 5
Scribe: Yi-Hsien (Stephen) Lin February 18, 2014
Recap

Last lecture, we proved Occam’s Razor, which is that with probability at least 1—4, Vh € H,

if h is consistent with all m examples that are sampled independently from distribution D,

. l In i . . .
then the generalization error errp(h) < % However, this equation only applies to

finite hypothesis spaces since we are using the cardinality of . This led us to briefly discuss
about the generalization of Occam’s Razor to infinite hypothesis spaces at the end of last
week’s lecture.

Sample Complexity for Infinite Hypothesis Space

In order to generalize Occam’s Razor to infinite hypothesis spaces, we have to somewhat
replace the |H|. Here we first introduce some new concepts and notations which would
simplify the later proof and discussion.

S=(x1, ,Tm) (sample set)
Iy (S) = {{(h(z1), - ,h(zm)) : h € H} (set of all possible dichotomies of H on S)
Iy (m) = SI\%?X T3 (S)] (growth function)

The growth function denotes the maximum number of distinct ways in which m points can
be classified using hypotheses in H, which provides another measure of the complexity of
the hypothesis set H. We will prove later that VH either:

o [I3(m) =2™ (impossible for PAC, can’t get enough data)
or
o II3(m) = O(m?) (possible for PAC)

Recall that our goal is to replace the cardinality of |H| in Occam’s Razor. It is now clear
that a growth function with a form similar to Il (m) is a good candidate. Therefore, our
goal is to modify Occam’s Razor to the following generalized version:

Theorem:
with probability at least 1—39, Vh € H, if h is consistent with all m examples that are sampled

1
independently from distribution D, then the generalization error errp(h) < O(%)

Before the proof, we first introduce some definitions. Let D denote our target distribu-
tion, and S = (z1,--- ,x,,) denote a sample of m > 8/¢ points chosen independently from
D. We also introduce a “ghost sample” S’ (2, - ,z},) that consists of m points drawn i.i.d.

from D. By creating this “ghost sample”, we are using the “double-sample trick” to take
the mistakes on S’ as a proxy for a hypothesis’s generalization error. More importantly,
doing so helps us avoid dealing with the potentially infinite space of instances, yet being
able to make claims about a hypothesis. S’ is called the “ghost sample” because it never
actually exists and is not provided to the learning algorithm. We also define:

e M(h,S) = number mistakes h makes on S

e B=[3h € H: (his consistent on S) A (errp(h) > ¢€)]
me

e B'=[3h € H : (h is consistent on S) A (M(h,S’) > 7)]

Proof

Our goal is to prove that Pr[B] < ¢

Step 1: Pr|(B'|B] > 1/2

In order to show this, suppose B holds, which is that there exists h consistent on S and
errp(h) > e. Since errp(h) > €, the expectation value of M(h,S"), which is simply the
number of examples times the probability of making an error would be at least me. By
Chernoff bounds (to be discussed later in the course) we can show that Pr[M(h,S’) <
me] < L. Therefore, we can conclude that Pr[B'|B] > 1/2.

Step 2: Pr|(B] < 2Pr[B’|
From A A B = A, we can show that:

Pr|B'] > Pr[B A B

= Pr|B]Pr[B'|B] (by product rule)
1
> §PT[B] (by step 1)

Now we have reduced the original problem to finding an upper bound for Pr[B’].

Now, consisder two experiments to generate S and S’

Experiment 1: Choose S, S’ as usual (i.i.d. from D)

Experiment 2: First choose S, S’ as usual (i.i.d. from D), but for i € {1,2,--- ,m} swap
the example z; in S with 2} in S” with 0.5 probability and call the resulting samples as T'
and T".

Notice that T, 7" have the exact same distribution as S, S’ since they are drawn from
i.i.d., so experiment 1 and experiment 2 are actually identical. Also, we define:

)]

e B”"=[3h € H: (his consistent on T') A (M (h,T") > %

=3BheH: (Mh,T)=0)A(MMhT) > %)]

Step 3: Pr[B"| = Pr|B’|
Becuase the distributions for 7', T” are exactly the same as those for S, S’, Pr[B"] = Pr[B’].

Define b(h) = [h is consistent with T" and M (h,T") > €]

Step 4: Pr[b(h)|S,S'] < 27m</?

Let us identify each example z in S and S’ with a bit which is 0 if h(z) = ¢(z) and 1 if
h(x) # c¢(x). In this step, we want to bound the probability of constructing a set T that is
consist of only example 0’s and 7" that is consist of only example 1’s given S and S’ that
is selected from the standard procedure (drawing i.i.d. from D). We denote this as b(h):

me

b(h) = (M(h,T) = 0) A (M(R,T') >)

Let r denote the number of pairs of points from S and S’ that has exactly one 1 labeled.
Pr[b(h)|S,S"] <27™¢/2 can then be shown by the following three cases:

Case 1: dxz;, 2, with both of them labeled as 1

In this case, no matter how the examples in S and S’ are swapped by experiment 2, there
will always be an error in 7. Therefore, Pr[M(h,T) = 0] = 0 = Pr[b(h)|S,S’] =0

S[11001
$'101010

We can see from the above example that, no matter how the example in S are swapped
with the example in S’ below it, the minimum number of 1 labeled in S will be 1 since there
are two 1’s in colum 2.

S101000
S'111011

Case 2: r < %

In this case Pr[b(h)|S,S'] is also 0. This is because in order for b(h) to be true, all r errors
have to occur in 77 and the total number of errors labeled in 7" have to exceed %€, which
is impossible since there is only one error in each pair in r and r < 5°.

Case 3: r > ¢

Now, the total number of errors exceeds 3¢ so there is a probability that b(h) is true. As

mentioned above, experiment 2 would swap examples in S and S’ with probability 0.5.
Since these events are independent, Pr[b(h)|S,S'] = (3)" < 27™m/2.
Now, we can derive the bound of Pr[b(h)|S,S’] as follows:

Pr[b(h)|S, 8] < 27m/?

Step 5: Pr[B"|S,S'] < Iy (2m)27m¢/?

Let H' denote the space of “representative” hypotheses for each labeling of S, S’, which is
finite. We can see that |H'| = |IIx/(S,S")| < IIy(2m).

We can now prove Pr[B"|S, '] < IIx(2m)272" as follows:

Pr[B"|S,S'] = Pr[3h € H : b(h)|S, 5]
= Pr3h € #' : b(h)|S, S|

< Z Pr[b(h)|S, S (by union bound)
heH’
< [H/|27me/? (from step4)

< Ty (2m)27me/?

Notice that the second step above is true because if b(h) holds for some h € H, it will also
hold for some h € H' since they behave the same on S and S’ (b(h) only depends on S and
S.

Step 6: Pr[B"] < Il (2m)2-m/?
By marginalization (Pr[a] = Ex[Pr[a|X]]) we can show that:

Pr|B"] = Egs[Pr[B"|S,S"]]
< Ty (2m)2~™m</? (by marginalization)

By the above six steps, we can finally show that:

Pr[B"] < 2Pr|B'] = 2Pr[B"]
< 200y (2m)27m¢/?
<4

Now, by solving the above inequality for €, we can see that the inequality above holds when
InTI Int
e < Z(lgTly(2m) +1g 1 +1) = o(lmting

m
to prove for the generalized Occam’s Razor.

, which is the error bound we are trying

By replacing |H| with the growth function Ily(2m), we have now proved a bound on
generalization in terms of the growth function. When the growth function has the form
of O(m?), we have a useful bound. We will later see when this form of growth function
happens.

VC-Dimension

At the end of the class, we also briefly discussed the VC-dimension (Vapnik-Chervonenkis
dimension). In order to define the VC-dimension of a hypothesis set H, we first need to
introduce the concept of “shattering”. A set S of size m is shattered by H if all labelings
of S can be realized by hypotheses in H, that is when |II3(S)| = Iy (m) = 2™. And the
VC-dimension of a hypothesis set ‘H is the cardinality of the largest set that can be fully
shattered by H:

VCdim(H) = max{m : IIy(m) = 2™}
We now look at an example of H = {intervals} :

+

]

)

Figure 1: H contains hypotheses that produce evey possible labeling of the 1 point in S.
Therefore, H shatters S, VCdim > 1

|
o

Figure 2: H contains hypotheses that produce evey possible labeling of the 2 points in S.
Therefore, H shatters S, VCdim > 2

(oo

Figure 3: When S is a set of 3 points, H does not contain a hypothesis that can label this
situation. Therefore, H does not shatter S, VCdim < 3

We can see from the example that H shatters S when .S contains a single point and two
points, but not three. Therefore, VCdim(H) = 2

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #6
Scribe: Zeyu Jin February 20, 2014

1 VC Dimension

Last time we proved the theorem that with high probability 1 — §, the generalization error
is given by

err(h) < O <IDHH(2m) +1n1/5>

m

(1)

where II3(m) is the growth function. We also defined the concept of shattering where
S is shattered by H if [IIx(S)] = 2!°I. Finally, we defined VC-dimension, or Vapnik-
Chervonenkis dimension, as the cardinality of the largest shattered set. In this lecture, we
are going to derive the bounds of the growth function, which is either O(m?) or 2.

1.1 Examples of VC-dimension

Here are some general results:

VC-dim(intervals) = 2

VC-dim(Axis-aligned rectangles) = 4

(
(
(
(

VC-dim(Hyper-rectangles in R™) = 2n

VC-dim(LTF in R") = n + 1

Note that LTF means linear threshold function (or perceptron), which is defined as a
half space with parameters w where every points in this space is defined as “+”. Formally,

1 ifw-x>0b
Cw(x):{() ifw-x<b 2)
The dot sign means inner product. If b is forced to be 0, the VC-dimension reduces to
n. It is often the case that the VC-dimension is equal to the number of free parameters of a
concept (for example, a rectangle’s parameters are its topmost, bottommost, leftmost and
rightmost bounds, and its VC-dimension is 4). However, it is not always true; there exists
concepts with 1 parameter but an infinite VC-dimension.
There is also an inequality relationship between VC-dimension and the cardinality of
‘H. If the VC-dimension is d, then there exists a shattered set of size d on which H realizes
all possible labelings. Because for every labeling there must be a corresponding hypothesis,
we have |H| > 24 which gives us:

VC-dim(H) < lg |H| (3)

1.2 Determining VC-dimension

In the last section, we claimed VC-dim(Axis-aligned rectangles) = 4. Now we show how
to prove it. The proof involves two steps: first, we show the VC-dimension is at least 4
by showing that there exists a 4-point set shattered by the concept set (it’s worth noting
that not every 4-point configuration can be shattered, but we only need one to make the
statement). Then, we show that there is no 5-point set that can be shattered.

Proof (1) An example 4-point set is shown in Figure 1 with all typical labelings and the
corresponding realization. So we have VC-dim> 4.

(2) For any 5-point set, we can construct a data assignment in this way: pick the
topmost, bottommost, leftmost and rightmost points and give them the label “+”. Because
there are 5 points, there must be at least one point left to which we assign “—”. Any
rectangle that contains all the “+” points must contains the “—” point, which is a case
where shattering is not possible. This proves that VC-dim< 5.

In sum, VC-dim(axis aligned rectangle)= 4.

o ® ®
o o)
(0]
O|:| (0] ® D
O 0 2 @ 3
(0] 0O ®
0] o) ®
o
o 1| g 2|P ® 4

Figure 1: Proving that rectangle concept space shatters at least 4 points

2 Sauer’s Lemma

Sauer’s Lemma provides an upper bound for II3(m) parameterized by d, the VC-dimension
of H. It also leads to the proof that the growth function is either O(m?) or 2™. In this
section, we are going to use these definition and facts in binomial coefficients:

<2>—Oifk<00rk>m (4)

()= ()= (") 2
(a+b)™ = Emj (’Z) aFpmk (6)

k=0

Lemma 2.1 (Sauer’s Lemma) Let H be a hypothesis set with VC-dim(H) = d. Then, for
all m € N, the following inequality holds

=0

Proof The proof is by induction on m + d. The base cases are as follows:

e When d = 0, for any m points, there is only a single label possible for every point in

the space. So in this case Il (m) =1 = () = ®o(m).

e When m = 0, for any d, there is only one labeling. So Il (0) =1 = Z?:o (?) = d,4(0)

When m > 1 and d > 1, assume the lemma holds for any m/ and d’' if m' +d’ < m + d.
Suppose S = {z1, ..., T }; we now prove Il (S) < ®4(m). We start by creating two other
hypothesis spaces: first, we construct H; by restricting the set of concepts in H to the
set S = {z1,...,xm-1}. Figure 2 shows an example of the construction: suppose there
is a concept in ‘H maps (z1, 2,3, x4, 25) to (0,1,1,0,1), by restricting this concept on
the domain (x1,x2,x3,x4), we create a new concept in H; that maps (z1,z2,x3,24) to
(0,1,1,0).

In this construction, some pairs of concepts may collapse into single concepts in Hj.
The second hypothesis space Ha is obtained by including all these collapsed concepts in
constructing Hp. As illustrated in Figure 2, when concept (0,1,1,0,1) and (0,1,1,0,0)
both collapse into a concept (0,1, 1,0) in H1, we add another copy of (0,1,1,0) to Ha. Note
that both H; and Hy are both defined on the domain (z1, ..., Tpm—1).

We now derive bounds on the size of these two new hypothesis spaces.

e Any subset 7' C S shattered by H; is also shattered by H. So VC-dim(H;) < VC-dim
(H) = d. By inductive hypothesis, |H| = [Ty, (S7)| < ®4(m — 1)

e Also notice that VC-dim(Hz) < d—1 since for any T' C S’ shattered by Ha, T U {2y}
is shattered by H;. So |Ha| = [Ty, (S7)| < ®4-1(m — 1)

H H, H,
X1 Xy X3 Xg4 Xg X1 Xy X3 X4 X1 Xy X3 X4
0 1. 1 0 0 »0 1 1 0
0 1 1 0 1 »0 1 1 0
0 1 1 1 OZ:O 1 1 1
1 0 0 1 0 1 0 0 1
1 0 0 1 1 »1 0 0 1
11 0 0 1—— 1 1 0 O

Figure 2: Constructing H; and Hs from H: each table represents the content of hypoth-
esis space; each row corresponds to a hypothesis and each row corresponds to a point z;.
The values are the labeling of a point given the row hypothesis. The arrow shows which
hypothesis in H is used to construct a new hypothesis in H; and Hs.

In summary,

I (S)| = |H1| + [Ha| < @g(m — 1) + ®y_1(m — 1)
d B a1,

L") 50

,Zd; sz_ 1) " (T—_ 11>] (Equation 4)
d m

; (Z) (Equation 5)

which completes the proof. [

Now we show an upper bound of ®4(m): if m > d > 1, then

em
By(m) < (U = O(m)

Proof According to the definition, ®4(m) = Zf‘l:o (""). We multiply (%)d on both sides

and thus,

() wam <3 (7) ()
< Z; (") (i) (/m<1)
-2 () <ii>}“
<3 (7) () (< m)
— (10 f ji) T(n <>ed (Binomial theorem, Equation 6)

Corollary 2.2 Let H be a hypothesis space with VC-dim(H) = d. Then for allm >d > 1

(m) < ()" = O(m")

The proof directly follows from Sauer’s lemma where IIx(m) < ®4(m) and the fact
we just proved. With this corollary, we can show that the growth function only exhibits
two types of behavior: either VC-dim(H) = d < oo, in which case Iy (m) = O(m?), or
VC-dim(H) = oo, in which case IIy(m) = 2™ for all m > 1

Finally, we are able to express the generalization bound using VC-dimension:

Theorem 2.3 Let H be a hypothesis space with VC-dim(H) = d. With probability at
least 1 — &, for all h € H, if h is consistent with all m examples (m > d > 1) sampled
independently from a distribution D, then the generalization error is

2 2 1
errp(h) < — <dlg3n +lg s+ 1)

It directly follows from Corollary 2.2 and our earlier bound.

3 The lower bound?

VC-dimension also provides necessary conditions for learnability. In this sense, it is also
possible to prove lower bounds on the number of examples needed to learn in the PAC
model to a given accuracy. The difference is that instead of looking at the hypothesis space
‘H, we evaluate the VC dimension over the concept class C.

Let’s suppose we are working with concept class C and VC-dim(C) = d, which means
there exists a set of size d, {z1, ..., z4}, shattered by concept class C. A natural lower bound
is d. The intuition is that even if we are given z1,...,24_1, we still lack the information
conveyed by the last point; both labelings of the last point are still possible. To prove it
rigorously, we need to go back to the definition of PAC learnable.

Claim 3.1 For any algorithm A that PAC-learns the concept class C, if given d/2 exam-
ples,then err(h4) has large generalization error with high probability.

An incorrect proof is given below:

In the PAC learning setting, there is a target distribution D. To make things as bad
as possible, we can choose whatever distribution we want. So we define D as a uniform
distribution over the shattered set z1,...,24. Then we run some candidate algorithm A on
d/2 samples chosen randomly from D. This algorithm will output hypothesis hy. Pick
¢ € C which is consistent with the labels on the training set S. Let the remaining samples
be labelled incorrectly, that is choose ¢(x) so that c¢(z) # ha(x) for all z ¢ S. Then err(h,)
is 1/2 since h4 misclassifies at least half the points in the shattered set.

This is wrong because the proof cheats by choosing the concept ¢ after the training
samples are selected (we can do that for A but not for ¢). We will show a correct proof next
time.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #7
Scribe: Huiwen Chang February 25, 2014

1 A Lower Bound on Sample Complexity

In the last lecture, we proved an upper bound about how many examples are needed for
PAC learning involving the VC dimension. Then we started talking about that the VC
dimension also provides a lower bound for learning. While the upper bound gives the
sufficient condition for PAC learning, the lower bound gives the necessary condition which
says if the examples is too small, then the concept is not PAC learnable.

Last time, we gave a false proof of the lower bound. We generate a random training
set, and then choose a concept from C which labels exactly the opposite to the prediction
given by our hypothesis. This is cheating because the concept has to be chosen before the
training set is generated. In the following, we give a correct proof of the lower bound:

Theorem 1. Let d = VC-dim(C). For any algorithm A, there exists distribution D and a
concept ¢ € C, such that if A is given sample S of m < d/2 examples, then

1 1

P ha) > <] > <

rlerr(ha) 8] 23

*An alternative(rougher) statement: if e < 1/8 and 6 < 1/8 then we need more than
d/2 examples for PAC learning.

Proof. According to the definition of the VC dimension, we know that there exist d points
21, ..., 24 shattered by C. Let D be uniform over z1, ..., zg. Let C' C C have one representative
for every labeling of the shattered points z1, ..., zg. Then we know |C’| = 2¢. Then we choose
c uniformly at random from C’.

Let’s think about two experiments about how to generate variables:

e Experiment 1:
¢ is chosen uniformly at random from C’.
S is chosen at random (according to D) and labeled by c.
h 4 is computed from S.
The test point z is chosen (from D).
We try to measure: Prlha(z) # c(x)].

e Experiment 2:
Unlabeled part of S is chosen.
Random labels ¢(x;) are chosen for z; € S.
h 4 is computed from labeled S.
The test point z is chosen.
If x ¢ S then label ¢(x) is chosen uniformly at random.
We try to measure: Prlha(x) # c(z)].

Though the order is flipped in the two experiments above, we claim that they produce
the same distribution of random variables and same probability measure. This is because
the unlabeled sample S is generated independently of the choice of the labels, and the
label for z is also chosen independently of the samples .S, labels of other points, and the
prediction of hypotheses. So in both experiments, the probability is given over random
variables concept ¢, sample S, and the test point . We denote it as Pr¢ gz [ha(z) # c(z)].
Let’s work on experiment 2, and we have

Prosalha(@) # c())
> Prosale ¢ S Aha(e) # o(a)

Presqz ¢ S| - Pregolha(z) # c(z)|z ¢ S]
—_—
>1/2 because m<d/2 and z is uniform chosen =1/2 because ¢ is a random guess
1
> —
- 4

According to marginalization Prla] = Ex[Pr[a|X]]], we have

Presalha(c) # c(@)] = Ec[Prsg[ha(z) # c(z)]]

By the fact that if E[X]| > b, then there exists x € X such that z > b, we can know
there exists ¢ € C' C C such that

Pro.fha(e) # e(x)] >
Using marginalization again, we can get
1S Prsalhae) # c(e)) = BslPralha(a) # c(z)]
= Eglerr(ha)]
< Prglerr(ha) < %] . é Prglerr(ha) > %] (1)
< é—i— Prglerr(ha) > é]

The inequality (1) comes as follows: for X € [0, 1],

EX] = Y Pr(a)-=

reX

Z Pr(z)- z + Z Pr(z) - =z

z:x<1/8 <1/8 wz>1/8 <1
—_———

Prix<1/8] PriX>1/8]

1. 1 1
PriX<-]-—+PrlX>-
X < g5+ Prix >

IN

2 Inconsistent Model Hypotheses

So far we have only dealt with the situation in which the hypotheses is consistent, and we
focused on the samples needed for learning in that space, but what to do if you cannot find
a consistent hypotheses? There are several reasons it may not be consistent as follows:

e The concept ¢ ¢ H;(H is not powerful enough to represent the truth.)
e c € H, but it’s just a too hard computational problem to find it;

e ¢ may not exist. (We always assume that there’s a target concept c that is a functional
mapping that maps each instance to a label, but the reality is not that case. Con-
sider weather prediction—the forecaster only estimates and reports the probability of
snowing tomorrow. We believe there is an intrinsic randomness, or say it’s too hard
to model in a deterministic form by requiring so much knowledge.)

So now we work with a more realistic model where there might not exist the functional
relationship. We can generalize our usual model: We assume we have examples (z,y) where
z € X,y € {0,1}. Now we let (x,y) be random according to distribution D on X x {0,1}.
(Unlike our earlier model, the label y here is random). It follows from the chain rule that:

Prpl(z,y)] = Prplz] - Prply|z]

We can think the process as x being first generated by Prp x| and then y being generated
according to its conditional distribution Prp[y|z]. In the PAC model where the label is
deterministic, Prly|z| is either 0 or 1, while in this new model, it’s between 0 and 1. We
also need to modify the generalization error from errp(h) = Pry.p[h(z) # c(x)] to

errp(h) = Pry~plh(z) # 9]

Now, the first question is that, " With complete knowledge of distribution D, how small
can the generalization error be?” Let’s start with a simpler problem — tossing a coin with
a known bias. The coin comes up heads with probability p. In this case, to minimize the
probability of an incorrect prediction, our strategy is

Head, p > %;
Tail, p < %;
arbitrary, p= %

Consider each x has a coin to flip, so the optimal decision rule is similar with before:

[1, Prply=1jz] > %;
fropt () = { 0, Prply=1|z] < 3;

The optimal prediction rule is called the “Bayes Optimal Classifier” or “Bayes optimal
decision rule”, and the optimal possible error errp(hey) = mingerrp(h) is called the
“Bayes error”. It provides a lower bound on the error over all hypotheses regardless of
computational power.

Now, our goal is to minimize errp(h) over h € H. We then introduce a natural approach:
Given examples (21,¥1), ..., (Tm,Ym) chosen independently at random from D, we try to
minimize the training error with indicator variables(1 if h(z;) # y;):

m

() = 3" 1{h() £ i) @)

i=1

So suppose you could find h = argminpepy err(h). We also suppose you could show
that, with probability 1 — §, for any h € H,

lerr(h) —errp(h)| <€ (3)

Then for all h € H:

err(h) + €
err(h) + €

errp(h) + 2e

errp(h)

ININ TN

Therefore, the hypotheses h will have a generalization error close to the lower bound of
the error for all hypotheses in H:

~

errp(h) < minerrp(h) + 2¢
heH

But, this approach has two things to deal with:
e The computational problem about how to minimize the training error in (2);

e The statistical problem in (3) which implies the training error is a good approximation
of true error for all hypotheses in H.

The bound in (3) is also called a “uniform convergence bound”. We also name err(h) as
true/generalization error or true risk, err(h) as training/empirical error or empirical risk,
and the approach of minimizing the training error as empirical risk minimization.

In order to prove a uniform convergence bound, we first move to a more abstract setting.
Define random variables X1, ...X,,, i.i.d X; € [0,1] for all ¢ = 1,...,m. Let p = E[X]],
D= % o, X;. In fact, if we denote X; to be 1{h(x;) # yi}, we can see p is the training
error and p is the generalization error. We want to show how close p is with respect to the
mean p.

p—¢ p pte
Figure 1: Tllustration of concentration inequality or tail bound on p

Let’s look at the distribution of p in Figure 1, next time, we will show the tail Pr[p >
p + €] and Pr[p < p — ¢] are really small, which is called “tail bounds” or “concentration
inequalities”. In the next lecture, we will provide a proof of a general bound — the Chernoff
bound.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #8
Scribe: Ugne Klibaite February 27, 2013

1 Review From Last Time:

Last class, we discussed the relationship between training and generalization error, and how
we could relate the two.

(z,y) ~ D
errp(h) = Pry~plh(z) #]
err(h) = %Z Wh(x:) # yi}
i=1

Here, errp is our true or generalization error, which is the error over all samples in
the distribution D. err(h), on the other hand, is the training error and is calculated by
finding the number of incorrectly labeled examples in the training data. We are interested
in relating the two in order to see how a given hypotheses will perform on unseen data after
traning on a sample set.

If we specify that the training set is (z1,41), -.(Tm, ym) and if we can show that with
probability > 1 — §:

Vh e (H) : |lerr(h) —err(h)| <e

~

and if we can find h = argmin err(h)
heH

then: err(h) < min err(h) + 2¢
heH
If our assumptions hold then this means that if we can find the hypothesis in H that
minimizes the training error, we can bound the true or generalization error of this hypoth-
esis to the minimum true error over all hypotheses in ‘H plus 2¢. In order to prove this we
will use a special case of Chernoff bound, Hoeffding’s inequality.

For now we are focusing on the statistical problem of showing that the training error is
close to the generalization error without worrying about computation.

As mentioned at the end of last class, let’s define the random variables X7, ..., X,,, i.i.d.
X;e[0,1] foralli=1,..,m:

2 Hoeffding’s Inequality

Hoeffding’s Inequality states that:

P
P

v

672627’)’14 (1)

6—262m (2)

[
[

Combining these two inequalities using the union bound:

+ €|

IN

r p
r p

IN
IN

—6]

Prilp—p| > ¢ <2e2m =6 (3)

Another way to say this is:
with probability > 1 — 6,

ln(%)
2m

b —pl = lerr(h) —err(h)| <

which means that the difference between training and generalization error decays by some
constant over y/m as a function of the number of samples.

3 Chernoff Bounds

We will now prove a stronger form of Chernoff bounds, and Hoeffding’s Inequality will follow
as a corollary of this proof. This better bound says:

+ 6] < efRE(erer)m < 672627’)’1, (4)

—] < e~ BE@=cllp)m < o 267m (5)

3.1 Relative Entropy

In order to understand Chernoff bounds we have to take a detour and first define the con-
cept of relative entropy, also known as the Kullback-Leibler divergence.

The notion of KL divergence comes from information theory and can be illustrated using
a simple example from class. Imagine that person A is trying to send a message to person
B. Can we calculate the number of bits necessary to send this message? The obvious initial
approach is to say that there are 26 letters in the alphabet and since k bits can describe 2%
different messages, we simply use log,(26) bits. Rounding this up to 5, we can encode the
alphabet with 5 bits where each letter takes exactly 5 bits (A =00000,B=0000 1,
C=00010,..).

However, not all letters are equally likely and we can come up with a more efficient
encoding system where more likely letters take fewer bits and unlikely letters take more (A
=00,Q=0110101,...). This system would use less bits on average to send a message.

If letters are drawn from a probability distribution P, and P(x) is the probability of
sending a letter z, the optimal way of coding messages from P is to use logs(P(x)) bits for
2. Then:

E[message length| = ZP x)logy —— P @

This value is called the entropy of the distribution P and it is possible to show that this
is maximized when P is a uniform distribution.

Now suppose that person A makes a mistake and uses the distribution @ to send the

message where logZ(%) bits are used. Now

E[message length] = Z P(x)log, Q(lx)

expected — optimal = Zx: P(zx)log,y Q(laz) zx: P(x)logy —— P @
- P oz (g)
= RE(P[|Q)

Note: we will be using natural log base instead of base 2.
RE between two numbers will be written with the shorthand:

p 1-p
E@M)me§+%1—pﬂﬂf—*)

3.2 Markov’s Inequality

Markov’s inequality is a simple inequality used to compare the expected value of a random
variable to the probability of that variable being very large in relation to the expected value.

Say X > 0, Markov’s Inequality states:

PriX] >t < E[t]
Proof:
E[X] = Pr[X > 1] - E[X|X >] + PriX <] E[X|X <1
> Pr(X >t -t
3.3 Proof

We are now ready to prove equation 4. As a first attempt, we let ¢ = p + €, where p and
e, and therefore ¢ are fixed. We are trying to upper bound Pr[p > ¢]. Using Markov’s
inequality we show:

Prip>q< BB P _ P (6)

q q p+te
This is equal to less than one but is very weak and doesn’t have the dependence on m we
are looking for. Next, we try a clever trick to make this happen and pass both sides of our
original inequality through a monotonically increasing function to get an equivalent inequal-

ity to work with. This is possible because if f is strictly increasing then p > g < f(p) > f(q).

We will use the form f(x) = e*™* where A\ > 0. Our new inequality becomes:

Prlp > q] = Pre*™? > ™

E[erm?]

9
S Markov’s Ineq.

m

= e Bleap(\ Y Xy)
=1

m
— e—)\mq . HE[B)\Xi]
=1

m
< e Mma. HE[(l - X;) + 6’\Xz'] bound e** by a line
i=1
m
= e M. H[l —p+ep)
i=1

= L= p]
— (L= p+)"
_ fNm

We set ¢(\) =Infe ™ - (1 — p + e*p)] to get our final result.

Minimizing over A we find:
A —In (q(l —p)>
(1-q)p
@Z)()‘mm) = _RE(QHP)

This is true for all A, true for A,;n, and gives the earlier bound.
4 McDiarmid’s Inequality
Hoeffding’s inequality shows that the average of a set of random variables is connected to

the expected value of individual random variables. Hoeffding’s Inequality as a corollary of
the bound involving relative entropy can be proven using Taylor’s theorem.

1 & 1
- le'z — E[% Z;xi]AVG(:Ul, vy T) — E[AVG (21, ...y X)) (7)

This tells us the rate at which the average converges to the expected value. What other
functions could the average be replaced with and still give these results? Whenever f has
the property that changing one argument does not change f by a lot, that is:

V(T ooy Tiny 1) 2 | F(ELy oy Ty oy Tn) — F (X1 ooy Ty ooy)| < i

Let X1, ..., X, be independent, but not necessarily identical. Then:

62
Prif(X1, o, Xo) > ELf (X1, o0, Xo)] + €] < exp (‘E’Q"c?>
1=1"1

= % for AVG, and we get Hoeffding’s inequality for this special case.
4.1 Putting it Together
1
Theorem: Given m = O(%) examples, then with probability > 1 — 4,
Vh e H: |err(h) —err(h)| <e

Proof: for any particular h € H, we have already argued that

Prllerr(h) — efr(h)| > €] < 2¢~2me’
Pr[3h € H: |err(h) — efr(h)] > € < 2|H|e_2m62 <4 for given m

We can take these bounds and rewrite them by solving for €, where:

1 In §
err(h) = err(n)] < O | /SRS (8)

This combines the number of training examples, complexity of hypotheses, and how well
the hypothesis fits the training samples.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #9
Scribe: Bebe Shi March 4, 2013

1 Techniques that Handle Overfitting

e Cross Validation:
Hold out part of the training data and use it as a proxy for the generalization error
Disadvatages: 1. Wastes data. 2. Time-consuming because a lot of the variants of
cross validation involve doing multiple splits on data for training and validation and
running the algorithm multiple times.

e Structural Risk Minimization:
Earlier, we found an upper bound on the generalization error in the following form.
Under usual assumptions, with probability at least 1 - §, VA € ‘H and |H| < oo,
1
err(h) <err(h)+ O 7ln|Hl7—:n(5)
This technique tries to minimize the entire right-hand side of the inequality.

e Regularization
This general family of techniques is closely related to structural risk minimization.
It minimizes expressions of the form err 4+ constant x “complexity”

e Algorithms that tend to resist overfitting

2 Rademacher Complexity

We have already learned about using the growth function and VC-dimesion as complexity
measures for infinite hypothesis spaces. Today, we are going to introduce a more modern and
elegant complexity measure called the Rademacher complexity. This technique subsumes
the previous techniques in the sense that the previous bounds we found using |H|, the
growth function or the VC-dimesion would fall out as special cases of the new measure.

2.1

We start by laying down the setups of Rademacher complexity.

Sample S = ((z1,y1),s -, (Tm, Ym)), ¥vi € {—1,1}. We are using {—1,1} here instead of
{0, 1}, in order to make the math come out nicer.

hypothesis h : X — {—1,1}
Here, we're providing an alternative definition for training error.

m

err(h) = - 3 1{h(z:) # i) 1)

i=1

ef’r(h):;Zl_y;h(l =35~ 212 (2)

i=1

Equation (2) is reached because y;h(x;) equals 1 when y; = h(x;) and y;h(z;) equals —1
when y; # h(x;).

% Z yih(z;) =1 — 2err(h) (3)
=1

Training error is a reasonable measure of how well a single hypothesis fits the data set.
From equation (3), we can see that in order to minimize the training error, we can simply
m

maximize = Y y;h(z;).
i=1

2.2

Now, let us introduce a random label for data i, which we name o; and which is also known
as a Rademacher random variable.

(4)

—1, with probability 1/2.
o; =
* | +1, with probability 1/2.

We can use this random label to form a complexity measure for H that is independent
of the real labels of S.

max— ZO’Z .’BZ (5)

“YheH m

Equation (5) intuitively measures the complexity of H. Notice that we can find the range
of this measure using two extreme cases.

e H = {ho}: because there is only one hypothesis, max is not used. We then arrive at
the expectation of 0.

e S is shattered by H: In this case, we can always find a hypothesis that matches all
o;. Thus, the expected value is 1.

We now know that this measure ranges from 0 to 1.

2.3

We now replace H with F, a family of functions f: Z — R. This generalizes our hypotheses
to real-valued functions.

Sample S = (21, ..., 2m), 2 € Z.

The definition for the empirical Rademacher complexity is

A~

Re(F) = Bofsup — 3 01 f ()] (6)

m
feFr =1

Notice we replaced max by sup (supremum) because max might not exist when taken over
an infinite number of functions. Supremum takes the least upper bound. For example,
sup{.9,.99,.999, ...} = 1.

In order to find a measure with respect to the distribution D over Z, we take the ex-
pected value of the empirical Rademacher complexity and arrive at the definition for the
expected Rademacher complexity, i.e., Rademacher complexity — equation (7).

Run(F) = Es[Ry(F)] (7)

S = (z1,.y2m), 2i ~ D

3 Generalization Bounds Based on Rademacher Complexity

Theorem

Let F be a family of functions f : 2 — [0,1]. Assume § = (21,..., 2, 1.i.d and z; ~ D.
Define Es[f] = 2 3 f(2), E[f] = E.wplf(2)]. (Es[f] is similar to the idea of the training

(3
error and E[f] is similar to the idea of the generalization error)

With probability at least 1 — 4, Vf € F,

1
BIf) < Bslf] + 2R, (F) + 0y 2 ®
1
BLf) < Eslf) + 2Ro(F) + 01 3)
Proof
We want to bound the following random variable:
®(S) = sup(E[f] — Es[f]) (10)

ferF

Step 1
Using the definitions, we get:

8(S) = sup(E[f] — Eslf)) = sup(Elf] - = 3 7(z1) (1)

fer ferF

Since f(z;) € [0,1], changing any z; value to z, can only change % > f(z:)) by at most %,
i
and therefore ®(S) by at most 2. This means that ®(S) satisfies the condition for McDi-

armid’s inequality, in that |®(z1, ..., 2i, ..., 2m) — ®(21, ..., 2}, ..o, 2m)| < ¢, where ¢; = %

McDiarmid’s inequality states that with probability at least 1 — 4§
_9¢2
Prlf (1, o m) = E[f (X1, Xin)] 2 €] < exp(5522)

Applying McDiarmid’s inequality, we get:
With probability at least 1 — 9

In(3)

o(S) < Bs[(S)] + |5 2

Step 2

Let us define a ghost sample §" = (21, ..., z;,), z; ~ D. We aim to show that E[®(S)] <
Es.s/[sup(Es [f] = Es[f])].
feF

Es|Es/|f]] = E[f] (13)

Equation (13) is true because the expected value of the random variable Eg/[f] over all
samples S’ is E[f].
Es[Es[f]] = Es|f] (14)

Equation (14) is true because the random variable Es[f] is independent of &

Therefore,

~

E[®(S)] = ES[?EE(EM — Es[f])]
= Es[sup(Es/[Es[f] — Es[f]])]
feF
< Ess/[sup(Es|[f] — Es[f])]
feF

The last inequality is true because the expected value of the max of some function is
at least the max of the expected value of the function.

Step 3

Continuing the ghost sampling technique, we now try to obtain two new samples 7 and 7’
by running through the following mechanism on S and §.

fori=1,....m
with probability 1/2: swap z;, z.
else: leave alone

7T, T’ = resulting samples

. . 1 (f(z) — f(#)), with probability 1/2
Erlf] = Brlf] = m Z {(f(z;) — f(z)), with probability 1/2. (15)

Erlf] - Brlf) = = Yol (D) - 7 () (16)

We know that 7, 7' ~ S, &’ (equally distributed) because S, S’ are i.i.d samples from the
distribution D.

Therefore, Sup(ng [f] — Es[f]) ~ SUP(% ZUz(f(ZD — f(z1)))-
feF feF 7

Then, if we take the expected values of the two expressions over S, S’ and o;, the values
should equal to each other.

Equation (17) shows the conclusion for step 3.

Es slsup(Fslf] ~ Bolf)) = Bssrolp(L STofG — SN ()

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #10
Scribe: José Simoes Ferreira March 06, 2013

In the last lecture the concept of Rademacher complexity was introduced, with the goal
of showing that for all f in a family of functions F we have Eg [f] = E [f]. Let us summarize
the definitions of interest:

F family of functions f: Z — [0, 1]

S=(z1,...,%m)

RS(}") =E, [sup 1 Z al-f(zi)]

ferm i
Ro(F) = Es [Rs(F)]
We also began proving the following theorem:

Theorem. With probability at least 1 — 6 and Vf € F:

Blf] < B [f] + 2R (F) + O < 1H;L/5>

E[f] < Es [f]+2RS(f)+O< ln1/5> .

m

Which we now prove in full.

Proof. Let us define:

fer
B1f] = Eeup (2]
B[l = > f(=)

m

Step 1 @(S) < B [2(5)] + O (11/6)

This was proven last lecture and follows from McDiarmid’s inequality.

Step 2 Egs[®(S)] < Eg.g [supfef (ES/ [f] - Bg [f])}

This was also shown last lecture. We also considered generating new samples T, 7T by
flipping a coin, i.e. running through ¢ = 1,...,m we flip a coin, swapping z; with z| if
heads, and doing nothing otherwise. We then claimed that the distributions thus generated
are distributed the same as S and S’, and we noted

B [f] - Bs [f] = = 3" (F(z)) — £(=))

which means we can write
ET’ [f] - Zaz i Zz))

which is written in terms of Rademacher random variables, o;. We now proceed with the
proof.

Step 3 We first claim

ES,S’ = ES,S’,U

sup (Es' [f] —Es[f])

feF

sup <; Z (f(z) = f(=z)) Uz)] :

fer

To see this, note that the right hand side is effectively the same expectation as the left
hand side, but with respect to 7" and 7", which are identically distributed to S and S’. Now
we can write

Ess' o [SUP (; Z (f(z0) = f(z1)) 0i>

ferF

1 /
<Ess0 [;gg - XZ: oif (Zi)]
B [sup L Z(—anf(zi)]
ferm =
where we are just maximizing over the sums separately. We now note two points:
1. The random variable —o; has the same distribution as o;;

2. The expectation over S is irrelevant in the first term, since the term inside the expec-
tation does not depend on S. Similarly, the expectation over S’ is irrelevant in the
second term.

Therefore
1
E ! h— — E / —_— ; ,
5,50 [;1612 — Z oif S |SUD 21: sz(zz)]
=Eg |E, sup — oif
= R (F)

and, similarly

Step 4 We have thus shown

< 2R (F).
feF

Ess [sup (Bs 171 - Bs (1)

Chaining our results together, we obtain

o(8) = sup (E[f] - Bs [f]) < 2Rn(F) + O (1/ 5) -

feF m

We conclude that with probability at least 1 — 6 and Vf € F

m

E[f] - Bs[f] < ®(S) < 2Rm(F) + O (ln1/5> :

Therefore, with probability at least 1 —d and Vf € F

m

E[f] < Bg [fJ+2Rm<f)+o< 1“1/‘5> .

This is one of the results we were seeking. Proving the result for RS(}") is just a matter
of applying McDiarmid’s inequality to obtain, with probability at least 1 — §

Rs(F) < Rn(F) + O (h””) -

m

1 Motivation

The original motivation behind the theorem above was to obtain a relationship between
generalization error and training error. We want to be able to say that, with probability at
least 1 — 0, Vh e H

err(h) < err(h) + small term.

We note that err(h) is evocative of E [f] and efr(h) is evocative of Eg [f], which appear
in our theorem. Let us write

GTT(h) = Pr(z,y)wD [h(ZE) 75 y] = E(w,y)ND [1{h(l‘) 7é y}]

ebr(h) = - 3" 1{h(w) # yi} = Bs [1{h(x) # v}

)

as per our definitions. We see that, to fit our definition, we must work with functions f
which are indicator functions. Let us define

Z =X x{-1,+1}

and for h € H:
fu(z,y) = 1{h(z) # y}.

Now we can write:

Ezy~p [H{h(z) # y}] = E [f3]
Es [1{h(z) # y}] = Es [fa]

Fu={fn:heH.

This allows us to use our theorem to state that:

With probability > 1—§
Vh e H

m

err(h) <err(h) 4+ 2Ry (Fy) + O (I 1/5>

m

err(h) < err(h) + 2Rs(Fy) + O (In 1/5> :

We want to write the above in terms of the Rademacher complexity of H, which we can
do by looking at the definition of Rademacher complexity. We have

sup *Zoth xzvyz)] .

fheFu ™M

RS(]:H) =Es

Now, our functions f;, are just indicator functions and can be written fy(x;,y;) =
l_y’fh(m Further, we are indexing each function by a function h € H. Therefore, we can

just index the supremum with h € H instead of fj, € Fg. Writing this out gives

Rs(Fn) = Eo lsup L Za <1_y2h(x)>]

heH T

[Z i+ sup — Z(—ymz‘)h(%)] :

he#H ™

Because o; is a Rademacher random variable, its expectation is just 0. For the second
term, we note that because the sample S is fixed, the y;’s are fixed, and therefore the term
—y;0; is distributed the same as ;. Hence, we conclude

sup—g oih(x;)

R (]:H)—O—i- E
heH M

_ %RS(’H).

We have therefore shown

err(h) < err(h) + Ryn(H) + O ln;/5>

m

err(h) < eir(h) + Rg(H) + O (1“1/5> .

2 Obtaining other bounds

It was alluded to in class that obtaining the above bounds in terms of Rademacher complex-
ity subsumes other bounds previously shown, which can be demonstrated with an example.
We first state a simple theorem (a slightly weaker version of this theorem will be proved in
a later homework assignment).

Theorem. For |H| < oco:
- 2In |H
Rs(r) < /2

m
Now consider again the definition of empirical Rademacher complexity:

RS(H) =E, [sup 1 Z O‘ih(l‘i)] .

m
her M

We see that it only depends on how the hypothesis behaves on the fixed set S. We
therefore have a finite set of behaviors on the set.

Define H' C H, where H’ is composed of one representative from H for each possible
labeling of the sample set S by H. Therefore

[H'| = [Ty ()] < Ty (m).

Since the complexity only depends on the behaviors on S, we claim

= Rg(H).

heH! M

R 1 &
Rs(H) = E, [sup — Zaih(:vi)
i=1

We can now use the theorem stated above to write

- 21In |IT

m

Finally, we recall that after proving Sauer’s lemma, we showed Ily(m) < (%)d, for
m > d > 1. Therefore
. 2d1n (£2
Rs() < 20 CE),

We have thus used the Rademacher complexity results to get an upper bound for the
case of infinite |H| in terms of VC-dimension.

m

3 Boosting

Up until this point, the PAC learning model we have been considering requires that we be
able to learn to arbitrary accuracy. Thus, the problem we have been dealing with is:

Strong learning C is strongly PAC-learnable if
3 algorithm A
V distributions D
VeeC
Ve > 0
Vo > 0
A, given m = poly (1/€,1/4,...) examples, computes h such that

Prlerr(h) <€ >1-04.

But what if we can only find an algorithm that gives slightly better than an even chance
of error (e.g. 40%)? Could we use it to develop a better algorithm, iteratively improving
our solution to arbitrary accuracy? We want to consider the following problem:

Weak learning C is weakly PAC-learnable if
Iy >0
J algorithm A
V distributions D
VeeC
Vo >0
A, given m = poly (1/¢€,1/6,...) examples, computes h such that

Pr [ew(h) < % —*y] >1-0.

We note that in this problem we no longer require arbitrary accuracy, but only that the
algorithm picked be able to do slightly better than random guessing, with high probability.
The natural question that arises is whether weak learning is equivalent to strong learning.

Consider first the simpler case of a fixed distribution D. In this case, the answer to our
question is no, which we can illustrate through a simple example.

Ezxample: For fixed D, define
X ={0,1}"U{z}
D picks z with probability 1/4 and with probability 3/4 picks uniformly from {0, 1}"
C = { all concepts over X }.

In a training sample, we expect to see z with high probability, and therefore z will be
correctly learned by the algorithm. However, the remaining points are exponential in m,
so that with only poly(1/e,1/9,...) number of examples, we are unlikely to do much better
than even chance on the rest of the domain. We therefore expect the error to be given

roughly by L3 L3
err(h)%i-z—i-o-izg

in which case C is weakly learnable, but not strongly learnable.

We wish to prove that in the general case of an arbitrary distribution the following
theorem holds:

Theorem. Strong and weak learning are equivalent under the PAC learning model.

The way we will reach this result is by developing a boosting algorithm which constructs
a strong learning algorithm from a weak learning algorithm.

3.1 The boosting problem

The challenge faced by the boosting algorithm can be defined by the following problem.

Boosting problem Given:
(:L‘la yl)v T (l‘m, ym) with yi € {_17 +1}
access to a weak learner A:
V distributions D
given examples from D
computes h such that

1
Pr eer(h)gif'y >1-94

Goal: find H such that with high probability errp(H) < € for any fixed e.

Figure 1: Schematic representation of boosting algorithm.

The main idea behind the boosting algorithm is to produce a number of different dis-
tributions D from D, using the sample provided. This is necessary because running A on
the same sample alone will not, in general, be enough to produce an arbitrarily accurate
hypothesis (certainly so if A is deterministic). A boosting algorithm will therefore run as
follows:

Boosting algorithm
fort=1,...,T
run A on Dy to get weak hypothesis h; : X — {—1,+1}
e = errp,(hy) = % — v, where v >~
end
output H, where H is a combination of the weak hypotheses hi, ..., hr.

In the above, the distributions D; are distributions on the indices 1,...,m, and may
vary from round to round. It is by adjusting these distributions that the boosting algorithm
will be able to achieve high accuracy. Intuitively, we want to pick the distributions D; such
that, on each round, they provide us with more information about the points in the sample

that are “hard” to learn. The boosting algorithm can be seen schematically in Figure 1

Let us define: Dy(i) = D¢(x;,y;). We pick the distribution as follows:

1

_ Dt(l) ‘ et if ht($z> 7é Ui
e~ if hy(x;) =y

where oz > 0.

Intuitively, all our examples are considered equally in the first round of boosting. Going
forward, if an example is misclassified, its weight in the next round will increase, while the
weights of the correctly classified examples will decrease, so that the classifier will focus on
the examples which have proven harder to classify correctly.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #11
Scribe: Eric Denovitzer March 11, 2014
1 AdaBoost

Algorithm 1 AdaBoost

Vi:Dy(i) = L1
fort=1..T do

hi <— Run A on Dy
e = errp,(h) = % — Y

1 1—¢
oy = 511’1(ett)

In this algorithm, Z; represents a normalizing factor since Dy is a probability distribution.

1.1 Bounding the training error.

In the previous class, we gave the basic intuition behind the AdaBoost algorithm. Now,
having defined the value for oz, we tracked the three rounds of the algorithm in a toy
example (see slides on the course website).

Theorem 1.1. The training error is bounded by the following expression:

T
err(H) < HQ\/et(l — &)
t=1

1
= exp (— Z RE(§ I et)> (By definition of RE)
t
/ 1
:H 1—4’7152 <€t:_'7t>
; 2
< exp (—2273) (I1+x <€)
t

Consdering the weak learning assumption: ~ > v > 0

2

Step 1: Dr1(i) = 76@7[;13/—}1;&%)]7 F(z) =" arhy(z)
; t

N = D) o p—anyih(z; \ ewiatht (@)
Dy1(i) = P2 x emamwihi(@) = p, (7)< L000

Then, we can find this expression for ¢ = T, and solve recursively:

5 Dili e—viorhi(zi) e—viarhr(z;)
= i
T+1 1(4) 7 7
1 exp <_yi Zatht(wi)>
¢
N m H Zt
t
)
m H Zt
t
Step 2: err(H) <[] Z
t
Proof.
. RS
efr(H) = — > Uy # H(xi)}
i=1

=) <0)
< ;;e_yiF(“)

- ;ZDTH(i)mft[Zt
A 0rato

_ HZ |

(3) follows since e ¥ (@) > 0 if —y; F(x;) > 0 and e ¥F'@) > 1if —y; F(z;) < 0. (4) follows
from Step 1. (6) follows from the fact that we are adding all values over distribution Dpy;

so we are getting 1.
Step 3: Z; =2\/e:(1 —)

Proof.

o . et lf ht(l‘l) 75 Yi
Zt = ZDt(Z) X { et if ht<xz) =

= > D)+ > Difi)e ™

iy Fhe () iy =he(z;)
= e 4 (1 —¢)e”

O

(2) follows from just decomposing the sum for the two cases. (3) follows from the fact that

e or e~ can be taken outside of the sum, and Y. Dy(i) =¢ and > Du(i) =
iyiFh (z) iryi=hs(z;)

1-— €t.

We choose a; to minimize the empirical error, so we get:

11 1—6t
oy = —In
t 2 €t

*This is how we choose a; in the algorithm. O

1.2 Bounding the generalization error.

Of the many tools we have used over the past classes, we choose the growth function to
bound the generalization error.

H(z) = sign <Z atht(:p)> (1)

= g(h(z),....hr(z)) (2)
We defined g(z1, 22, . . ., 2t) = sign(d_ ayz) = sign(w - z), with w = (a1, ag, ..., ar), which
¢

represents linear threshold functions in R”. Let us define now the following spaces:

J = {LTFs in RT}
‘H = weak hypothesis space
F = all functions f (as above), where g € 7, hy,ho,...,hp € H

As proved in problem 2 of Homework 2, we can set the following bound:

T

ILr(m) < Iz(m)]] Ms(m) 3)
t=1

= Iz (m) [y (m)]" (4)

We have that VC-dim(J) = T since we are considering linear threshold functions going
through the origin in R”, and we define VC-dim(H) = d. Then, using Sauer’s Lemma:

o = (2

My (m) < <@>d

Plugging the above inequalities in equation (4):

tr(m) < ()" ()™)

Using “soft-oh” notation (not only hides constant but also log factors), given m examples,
with probability at least 1 — §,VH € F:

err(H) < eir(H) + O («/W)

1.3 Margin

Contrary to what we would expect based on the previous equation, as we increase T' (the
complexity) we do not always get a worse generalization error even when the training error
is already 0. The following image is the one in the slides from class that represents this
behavior:

best

E :]'L train
10 _ 100 1000
of rounds ()

Graph I : Error versus # of rounds of boosting

The reason behind this behavior is that, as we keep increasing the number of rounds, the
classifier becomes more “confident”. This confidence translates into a lower generalization
error. We have:

T
H(x) = sign (Z atht(l’)> , Where a; = i
=1 Z (7%
t'=1

In this way, we are normalizing the weights for each hypothesis, having a; > 0,> " a; = 1.
We define the margin as the difference between the weighted fraction of h;’s voting correctly
and the fraction corresponding to those voting incorrectly. Then for an example x with
correct label y, the margin is:

margin = E ar — E at

t:he(z)=y t:hi(x)#y
= Z aryhi ()
t
=y ah(z)
t
=yf(z) where f(z) = Z athy(x)

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #12
Scribe: Jun Wei Ho March 13, 2014

1 Margin Theory for Boosting

Recall from the earlier lecture that we may write our hypothesis H(x) = sign (Zthl atht(x)> ,

where a; = ay/) a5 (so that >, a; = 1) and hq, ..., hy are the weak hypotheses that we
obtained over T iterations of AdaBoost.

Writing f(z) = ZtT:1 athi(x), we define marg(z,y) = yf(z) to be the margin of f for
a training example (x,y). In the last lecture, we have seen that this quantity represents
the weighted fraction of h;’s that voted correctly, minus the weighted fraction of h;’s that
voted incorrectly, for the class y when given the data .

A few remarks about the margin:

— yf(z) takes values in the interval [—1, 1]
— yf(z) > 0if and only if H(z) =y

— The magnitude |y f(z)| represents the degree of ‘confidence’ for the classification H (z).
A number substantially far from zero implies high confidence, whereas a number close
to zero implies low confidence.

It is therefore desirable for the margin yf(x) to be ‘large’, since this represents a correct
classification with high confidence. We will see that under the usual assumptions, AdaBoost
is able to increase the margins on the training set and achieve a positive lower bound for
these margins. In particular, this means that the training error will be zero, and we will
see that larger margins help to achieve a smaller generalization error.

In this lecture, we aim to show that:

1. Boosting tends to increase the margins of training examples. Moreover, a bigger edge
will result in larger margins after boosting.

2. Large margins on our training set leads to better performance on our test data (and
this is independent of 7', the number of rounds of boosting)

Notation
S Training set <($17y1)7"'a($maym)>
H Weak hypothesis space
d VCdim(H)

co(H) Convex hull of H, the set of functions given by
{f(x) = Zthlatht(x) cal,...,ar >0, Y a4, =1, hy,...,hp € H, T > 1}
Prp Probability with respect to the true distribution D
Ep Expectation with respect to the true distribution D
Prgs Empirical probability with respect to &
FEs Empirical expectation with respect to S

1.1 Boosting Increases Margins of Training Examples

We will show that given sufficient rounds of boosting, we can guarantee that y; f (z;) > v V 4,
where v > 0 is the edge in our weak learning assumption. In particular, this means that
H(x) will classify each training example correctly, and do so with confidence at least .

The main result we will use is the following.

Theorem 1. For 6 € [—1,1], we have

:’ﬂ

Prg[yf { 1—6)1+9]
t=1

Moreover, if €; < % —v fort=1,...,T, then

T
ﬁ%nmmose]g[¢a_zwhw1+zwwﬂ

Proof. Recall from the last lecture that

m T T T
%Zexp <_yi Zatht($i>> = H Zy = H 2y Et(l - Gt)
i=1 t=1 t=1 t=1

where we had set oy = %ln lz—t“ to obtain the last equality.

Using a similar argument as before,

Prs[yf(z) < 0]

;; Wy f(w;) <0}
18 d S
==Y My Y aphe(xi) <0 o
— 3 Uy arhi(a) <0 ar)
i= =1 =1
1 ml t . t .
p. ; exp <_yi tz athi (i) + 0 ; at)

IA

I

o}

W

ko)
N
S

i
~
3=
IMs -
o}

=

ko)
N
<

8

&

&
~

Il
=
a
g
N

—X

where the inequality follows from 1{z < 0} < e

setting oy = %ln 1;“.

, and the final equality is achieved by

The second result uses the fact that if ¢, < % — 7, then

el 7, — efou (eteo“ +(1- et)e_o‘t)

1 1
o [(1-) = ()]

= (1= 201+ 29)10

1
by setting a; = +1n (QJW

2 1
2

details. O

). The reader should verify the inequality and work out the

Remark. By setting 8 = 0 in the above result, we recover the bound on training error
proven in the previous lecture. Moreover, it is possible to show that for any 0 < 6 < ~, the
term (1 —2y)179(1+29)'*% < 1, hence as T — oo the RHS of (2) goes to zero. As an easy
consequence, we have the following:

Corollary. If the weak learning assumption holds, then given sufficiently large T, we have

yif(wi) >y Vi.

1.2 Large Margins on Training Set Reduce Generalization Error

Previously, we have shown that with probability at least 1 — 9,

err(H) < érr(H) + O (Td+In{1/9) 1n(1/5)>

m

We can rewrite this equivalently as

Prolyf(z) 0] < Prslyf(2) go1+é< .

Td+ ln(1/5)>

We will now prove a variant of this result where the upper bound does not depend on T,
but instead on a parameter # that we can relate to the margin.

Theorem. For 0 < 0 <1, with probability at least 1 — ¢,

Prplyf(z) <0] < Prs[yf(x) <0]+0 <\/d/92+1n<1/5>> ‘

m

Before we prove the theorem, we will first introduce two lemmas.

Recall that for S = (z1,...,2m,) and F = {f : Z — R}, the empirical Rademacher
complexity of F is given by

~

Rs(F)=E,

sup E Z O'if(zi)]

m
feFr i1

In the last lecture, we've seen that Rs(H) = O (\ / T‘i) The following lemma tells us how
Rs(co(H)) relates to Rs(H).

Lemma 1. The Rademacher complexity of H is equal to the Rademacher complexity of its
convez hull. In other words, Rs(co(H)) = Rs(H).

~

Proof. Since H C co(H), it is clear that Rs(H) < Rs(co(H)). Moreover,

Rs (co(H)) = Es sup Z 0; Z athy(z]

| f€co(H

=FE, sup Z a; Z oihy(z]
cho

< E, sup as sup oih(x;)
o S e

=FE, | sup —supZUz]

| feco(H) M heH

=F, —supZaz a:Z]

m heH 5

= ﬁs(H)

To obtain the fourth line we had used the fact that >, a; = 1, and for the fifth line we note
that the expression in sup f() does not depend on f, so we could omit the sup; function.

We therefore conclude that Rs(co(H)) = Rs(H). O

Next, for any function ¢ : R — R, and f : Z — R, we define the composition
pof:Z — Rby ¢o f(z) = ¢(f(z)). We also define the space of composite functions

poF={sof:feF}

Lemma 2. Suppose ¢ is Lipschitz-continuous, that is, 3 Ly > 0 such that V u,v € R,
|p(u) — ¢(v)| < Lg|lu — v|. Then Rs(¢ o F) < LyRs(F).

Proof. See Mohri et al. O

Equipped with the two lemmas, we are now ready to prove the main theorem. We will
state the result once more:

Theorem 2. For 0 < 6 < 1, with probability at least 1 — 9,

d/6% +In(1 /5))

m

Prolyf(z) <0] < Prs[yf(a ><91+0<¢

Proof. Write margg(x,y) = yf(x). Define M = {margy : f € co(H)}. Then

1 m
sup — (Uiyz’)f(xi)]
Feco(H) ™ ;

s(H) (by Lemma 1)

Next, we define the function ¢ : R — [0, 1] by

1 ifu<0
plu)=<1—u/f f0<u<b
0 ifu>6

A plot of ¢(u) is shown in the diagram below:

Note that for all © € R, we have
Hu <0} < ¢(u) < 1{u < 6}

Moreover, ¢ is clearly Lipschitz-continuous with Ly = %. Therefore, Lemma 2 gives us

Rs(oo M) < GRs(M) = gRs(0) < O (W)

Using the result from a previous lecture! and the results above, we have

Prplyf(z) <0] = Ep[l{yf(z) < 0}]
< Eplpo (yf)(z)]

)

< Es[p o (uf)(x)] + 2Rs(d o M) + O (ln(1/5)>
< Es[1{yf(z) <6}]+ O (dif) +0 (ln(l/é))

= Prsluf(2) <0]+0 Wd/mmuw))

m

)

as desired.

O]

Remark. The larger the value of 8 we use, the smaller the O() term on the RHS. With
larger margins on the training set, we are able to choose larger values of 0 while keeping the
ﬁg[yf(x) < 0] term zero (or close to zero), and this will give us a sharper upper bound
on the generalization error. This suggests that by increasing the margin on the training set,

we may expect to see a smaller generalization error.

In an earlier lecture, we had proved that with probability at least 1 — 6,V f € F,

Eplf] < Es[f] + 2Rs(F) + O (hl(1m/5)>

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #13
Scribe: Charles Marsh March 25, 2014

1 Introduction to SVMs

1.1 Motivation

As we saw, the boosting technique wasn’t defined so as to maximize margins, but we did
end up using margins to analyze its performance. This begs the question: What if we derive
an algorithm whose goal is, in fact, to maximize margins?

1.2 Assumptions

With boosting, we required the weak learning assumption. In this setting, we instead require
that all features can be converted to real numbers, regardless of whether they’re categorical,
discrete, continuous, etc. This allows us to deal with feature vectors as if they’re represented
by points in Euclidean space, which we will assume for the remainder of the notes.

1.3 Intuition

To start, consider m labeled points (x1,91), ..., (Xm, Ym) points in the plane, with x; € R”
and y; € {—1,+1}, as seen in Figure 1.

To classify these points, the tendency is to draw some line between them and consider
“above the line” to be labeled +1 and “below the line”, —1. But there are an infinite
number of such lines that cleanly divide the data, two of which are seen in Figure 1. Which
do we prefer?

Some of these lines are intuitively “better” than others. For example, while both the
green and orange lines cleanly separate the data, the green line appears to be “better” than
the orange because it provides wider margins. For example, if we receive a new data point
located at the black dot, the orange line will classify it as a negative example when in fact
it’s quite close to a positive example. In other words, the orange line just barely separates
the data consistently, while the green line leaves some margin for error.

Intuitively, if we consider a ball of radius ¢ around every example, we’d hope that all
points in this §-ball are classified with the same label as the given example. Thus, we want
a hyperplane that not only classifies the training data correctly, but is also as far away as
possible from all of the training points.

2 The Support Vector Machines Algorithm

The goal is to maximize the margin 0 between the linear separator and the training data
(note that in this setting, margins are not exactly the same as in boosting, although the two
concepts are connected). There will always be examples that are exactly away from the
separator, and these are known as the support vectors. In Figure 2, the support vectors
are bolded with respect to the dotted linear separator.

Figure 1: Labeled examples in the plane

+ +

o+

Figure 2: Support vectors with an LTF

+

2.1 VC-Dimension

Why is this a good approach? Can we find a more formal justification for maximizing the
margin?

Recall that the VC-Dimension of an n-dimensional linear threshold function (LTF)
through the origin is n. This may lead to acceptable generalization error bounds in low
dimensions, but with SVMs, we’ll often be working in spaces with hundreds of thousands
of dimensions, so we’d like to do a lot better.

Assuming that all of our examples are contained within the unit ball (Vi : ||x;|| < 1),
we have the following nice result:

1

VC-Dim(LTF with margin §) < 52

Note that if all our examples are contained with a ball of size R, we can normalize the

data and the bound above becomes (£)2.

Why is this a nice result?

e [t proves to us that larger margins leads to a smaller VC-Dimension, which in turn
leads to better bounds on the generalization error.

e It’s independent of the number of dimensions.

The proof of the bound on VC-Dimension will be given in a later lecture. An alternative
bound on the generalization error can be achieved using Rademacher Complexity, the proof
of which is very similar to that which was given for boosting.

3 How do we find these hyperplanes?

We start by formalizing the problem. Given that we’re assuming our hyperplanes go through
the origin, they can be defined by a single unit normal v. That is, the hyperplane will be
defined as all points orthogonal to this vector v, with the additional constraint that ||v|| = 1.
For any given point x, we’ll also be interested in solving for the distance from the
hyperplane to x, which is simply:
VX

The scenario is laid out in Figure 3.
Next, note that this is a signed distance, such that:

v -x > 0 if x is above the plane
< 0 if x is below the plane

= 0 if x is on the plane
As a result, we can classify a new point x simply by returning the sign of v-x. Formally:
h(x) = sign(v - x)

So under this setting, what problem are we trying to solve?

Figure 3: The unit normal

2V

3.1 Formalizing the Problem

The problem statement is as follows:
Given (x1,Y1), s (Xm, Ym) with x; € R™ and y; € {—1,+1}, maximize § such that:

vl =1
Vi:v-x; >0 ify; =41
vex; < —=d0ify; =—1

We'll re-write this optimization problem several times.

3.1.1 Rewrite #1

First, we can combine the two primary constraints and rewrite the problem as follows:
Maximize ¢ such that:

Viiyi(veox;) >4
vl =1
3.1.2 Rewrite #2

Next, define w = ¥. This implies that ||w|| = 3 and, subsequently, § = m Maximizing

d is now akin to minimizing ||w||. Thus, the optimization problem can now be written as:
Minimize ||w|| such that:
Vi yi(

yi(w - x;) >

This is ideal because the constraint on v can now be ignored. Further, the problem is
defined solely in terms of a single vector w and has no dependence on 4.
To avoid dealing with square roots, we redefine the objective to be:

1
Minimize inﬂz

Such that Vi : y;(w-x;) > 1

3.2 The Lagrangian

As this problem is defined on a convex function subject to convex constraints, it is known as
a “Convex Program”. We’ll proceed using standard techniques for solving such programs.
First, we rewrite our constraints as:

Next, we define the Lagrangian function L(w,) such that:
1 m
L(w,a) = §||WH2 - Z;aibi(w)
1=

Claim. The previous formulation is identical to solving:

Inin [max[L(w, a)]
Proof. Consider the optimization problem to be a game between two players Mindy and
Max. Mindy’s goal is to minimize the above function L(w, at), and she gets to pick w. Max,
knowing Mindy’s choice of w, aims to maximize the above function by picking a subject
to the constraint that all a; > 0.

Say Mindy picks w such that b;(w) < 0 for some i. Then, Max will pick a; = oo, as
he wants to maximize the function and —b;(w)oo = oo in this case. But this would be
a terrible result for Mindy, who wants to minimize the function. As such, she will never
choose b;(w) < 0, lest she allow Max the opportunity to earn a payoff of oco.

Consider the two remaining cases:

e bj(w) =0 = q; is irrelevant as it contributes nothing to the Lagrangian function.

e bi(w) >0 = «; = 0. Recall that o; > 0 by definition. Max’s only choices are
to play a; = 0 or o; > 0. If he chooses «; > 0, he’ll be decreasing the value of the
function. Thus, the best he can do is play «a; = 0.

In either case, it holds that a;b;(w) = 0. Thus, the sum on the right will disappear
and the optimization problem will resolve to minimizing 3||w|[?, just as in the previous
formulation. O

3.3 The Convex Dual

For any function on two parameters, it can be shown that:

min[max|L(w, a)]] > max[min[L(w, &)]]
w @ (6% w
Under certain conditions, we can go further and show that the two expressions are in
fact equal. The most important of these conditions is that the function L is convex in «
and concave in w. As it turns out, our choice of L indeed satisfies this along with other
necessary conditions, giving us equality:
min[max|L(w, a)]] = max[min[L(w, a)]]
w e [0 w
The RHS of this equation is known as the convex dual. It too is a convex optimization
problem. The dual is often easier to solve, but more importantly, it can reveal important

facts about the structure of the problem itself.
Define:

o = arg mozlzx[m“i,n[L(W, a)ll

wt = arg H‘ll‘i/n[métX[L(Wa a)H

Then, we have the following series of equations:

L(w",a") <max L(Ww",)
«

= minmax L(w, a)
w (o7

= max min L(w, «)
(a7 w

min L(w, a™)

L(w*, a¥)

IN

3.4 Saddle Points

Examining two of the equations above, we have:
min L(w,a*) = L(w*, a™)
w

In other words, w* minimizes L when the choice of ax is fixed. Similarly, o™ maximizes
L when the choice of w is fixed. This implies that the pair of solutions (w*, a*) form a
saddle point, as seen in Figure 4.

3.5 KKT Conditions
We already saw that:

Figure 4: Saddle point

In addition, if w* is in fact the minimizer, then the partial derivatives of the Lagrangian
with respect to each component w; should also be zero. This imposes an extra condition:

OL(w*, ™)
8’11)]‘

Together, these are known as the Karush-Kuhn-Tucker (KKT) conditions.
We can solve this expression as follows:

vy =0

OL(w*, a*)

=0
ij

m
=wj — E QiYi L
i=1

m
—— W = E oYX,
=1

The w derived above is the weight vector that minimizes L for firzed . The simple
formula implies that for any a, we can find the appropriate weight vector. In particular, if
we can find o*, we can find w*.

As a next step, we can plug w back into L, which gives us the following:

Liw,a) = L(Z i YiXi,)
i=1

1 m m
= Z i =5 Z Z iy (Xi - Xj)
i i

This represents the minimum over w. To finish solving, we need to take the maximum
over ¢ of the above expression subject to a; > 0. In effect, this represents the dual of the
previous problem.

To find a*, we can use iterative methods along the lines of the above until we reach
the desired saddle point. And, as previously demonstrated, finding w* given a* is merely
a matter of plugging a* into the equation w* = Y | afy;x;.

3.6 Support Vectors & Generalization Error

All the conditions outlined above will still hold at our solution (w*, a*). In particular:

)

ajbi(w*) =0
a;lyi(w" -x;) = 1] =0

Therefore, if of # 0, it follows that y;(w* - x;) = 1. This implies that example (x;,y;)
is a support vector, as we can substitute w = ¥ to get:

Yi(v-x;) =6

This satisfies exactly the definition of a support vector in that example (x;, y;) is exactly
0 away from the hyperplane.

Further, if (x;,y;) is not a support vector, then working backwards, you can see that
bi(w*) # 0, which implies that «; = 0. As a result, the solution w will be a linear
combination of the support vectors! Therefore, our output hypothesis can be defined just
in terms of these support vectors, a subset of the overall training data.

Say there are k such support vectors and our algorithm outputs hypothesis h. As our
output hypothesis is a function of a subset of the training data, we can use the result of
Homework 2, Problem 4 to bound the generalization error:

~ k+In(3)

err(h) < O()

This result is particularly appealing as it is independent of the number of dimensions.

m

4 Linear Inseparability: Soft Margins

Until now, we’ve assumed that our data is linearly separable. That is, we’ve assumed that
there exists a valid half plane that can divide the data consistently. Often, however, this
assumption does not hold.

It might be the case, instead, that we have a few examples that are incorrectly classified
by our LTF, as in Figure 5. We’d like to somehow move the bad examples to the other side
of the hyperplane. But for this, we’d have to pay a price.

In the previous setting, our goal was to minimize %HWH2 subject to the constraint:

Vi yi(wex;) > 1

However, in this new setting (in which we're allowed to nudge our examples around
slightly), we pay a different price. The problem setting is as follows:

o] S
Minimize 2HW||2+CZ;§¢
1=
Such that Vi: y;(w-x;) >1-¢;
& >0

Figure 5: An Inconsistent LTF

+ +

Essentially, &; is the amount which we move example ¢, and C' is some positive constant.
This approach to linear inseparability is known as the “Soft Margins” technique.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #14
Scribe: Li-Fang (Fanny) Cheng March 27, 2014
1 SVM

1.1 A brief review

Figure 1: An illustration of the key idea of SVM for linearly separable data.

As discussed in the previous lecture, the key idea of support vector machine (SVM) is
to find a hyperplane that can separate the given data. Figure 1 illustrates this idea when
the data is linearly separable. The hyperplane is defined by a unit normal vector v, and if
we suppose the hyperplane passes through the origin, we can formulate the prediction of a
data point x as

y = sign (v - x)

The distance from a data point to the hyperplane in the “right” direction is called the

margin:
margin(x,y) =y (v - x)

For a given labeled data set (x;,;), ¢ = 1,---m, we define the smallest margin ¢ as
d = miny; (v-x;)
7

Our objective is to find a hyperplane with maximized § by solving convex optimization
problems. Figure 2 gives a summary of both the primal convex optimization problem and
its dual form.

The next question we would like to ask is what kinds of operations do we need for each
sample when solving the optimization problems. According to Equation 1, we can tell that
the dot product, (x;-x;), is the only computation we need for each sample when solving

the dual SVM problem.

Goal of SVM problem: find v to maximize §

define W:X:>V:l
s [[w]

Primal Form (Linearly Separable):

1
min —HWH2
2

st. Viry(w-x;)>1

Dual Form (Linearly Separable):

W = Z QG YiXg
i
max Z o — % Z Z Oéz'Oéjyz'yj(Xz‘ 'Xj) (1)

i g
s.t. Vi:o; >0

Primal Form (Soft Margin):

min %wa +C-Y g 2)
st Vity(wex)>1-¢ (3)
§& >0 (4)

Figure 2: The primal and dual SVM problems.

Sometimes there is a case that the data is linearly inseparable. If the data is “almost”
linearly separable, we can use the soft margin SVM. In this case, we allow the hyperplane to
make a few mistakes in classification by moving some data points slightly. The optimization
problem is then reformulated in Equation 2 to 4, as discussed in the previous lecture.

1.2 More on Linearly Inseparable Data

What can we do if the data is just too far from linearly separable as is the case in Figure
47 In this situation, we have to look for another solution. We map the data to a higher
dimensional space where the data can be linearly separable. Here follows an example.

Suppose the original data is in 2-dimensional space; we can use the following method to
map it into 6 dimensional space:

X= (.%'1,.%'2) — w(x) = (17'7;171.271'11'27'7;%7'%%) (5)

Figure 3: An illustration of the soft margin SVM for nearly linearly separable data.

The new hyperplane consists of the points that v - ¢(x) = 0, which is written as:
a+bxy + cry + dryze +ext + fri =0 (6)

where v = (a,b,c,d,e, f). Equation 6 defines a hyperplane in the 6-dimensional space,
while in the original 2-dimensional space, it is the general equation for a conic section, that
is, a line, circle, ellipse, parabola or hyperbola. Therefore, by this mapping, we are able
to separate the 2-dimensional data in the 6-dimensional space. Figure 5 shows a possible
6-dimensional hyperplane that has the form of an ellipse in the 2-dimensional space for
classification.

The method described above can be generalized. If we start with n dimensional space,
by adding up all terms of degree at most k, we can have O(n*) dimensional space.

Next, we have to notice possible problems when adopting this approach. There are a
statistical problem and a computational problem:

e Statistical Problem: According to the results above, if we start from 100 dimensions,
it is possible that we reach more than a trillion dimensions. That is, we will have
more parameters to train and the complexity of the hypothesis will be higher. In this
case, we generally need more samples to achieve better fitting results. If we have too
few samples, the algorithm overfits easily.

e Computational Problem: The storage space of the data is in proportion to the number
of dimensions. It would take too much time to even read the data if the dimension
after mapping is too high.

However, SVM can overcome both kinds of problems. First, for the statistical problem,
we use the result that

R\ 2
VC-dimension < <§> , (7)

where R is the radius of the sphere that contains all the data, and ¢ is the margin. We
should notice that VC-dimension does not depend on the number of dimensions of the data.
Therefore, although increasing the dimension of data might increase R, generally § also gets
larger. That is, we can expect that VC-dimension is not growing so fast.

_ _|_—|——|—
+ ++ —
+ 4+ -

-+

Figure 5: Finding an ellipse to separate the data by mapping from R? to RS.

For the computational problem, recall the previous observation that for each sample, we
only need to compute the inner products. Therefore after the mapping, the computation
for two samples x and z is:

() - 1(2)
However, based on the numbers we gave above (mapping from 100 dimensions to a trillion
dimensions), the computation could become really slow if the dimension gets too high. We
will talk about how to relieve this problem in SVM.
1.3 The kernel trick

We first revisit the mapping function described in Equation 5. Suppose now we modify the
mapping function 1(x) as:

x = (r1,22) — ¥(x) = (1, V21,V 224, \/§x1x2,x%,x§) (8)

Since we only change the constant for some terms, this does not affect the hyperplane we
can represent after mapping. However, the inner product for ¢(x) and 1(z) becomes:

Y(x)-P(z) =1+ 2x121 + 22229 + 221217229 + (:clzl)Q + (:c222)2

= (1 +x121 + $222)2 (9)
=(1+x-2)?
That is, if original dimension is n, by adding all terms of degree at most k, we have
b(x) - (z) = (1+x-2)" = K(x,2) (10)

The computation complexity is now O(n) instead of O(n*), and the computational
problem can be relieved.

The result shown above indicates that it is possible to calculate the inner product in
higher dimensional space using only the inner product in lower dimensional space under
some specific mapping. Generally, we define a kernel function K(x,z) = ¥ (x) - ¥(z) for
the mapping ¢ with this property. By replacing the inner product (x; - x;) in Equation
1 with K(x;,x;), we can obtain the higher dimensional hyperplane as the solution. This
method is called the kernel trick. There are different kinds of kernels in practice. The
kernel function shown in Equation 10 is called the polynomial kernel. Another popular
kernel is Gaussian radial basis function (RBF) kernel K (x,z) = exp (—c- [|x — z||?), whose
dimension is infinite. Another thing we should notice is that the input to the kernel function
x and z are not necessarily vectors. For instance, x and z can be entirely different kinds
of objects, such as strings or trees, as long as the kernel function provides the mapping of
inner product for them.

In summary, our objective for solving SVM problem is to maximize the margin 6. When
the data is linearly inseparable, we can deal with it by combining the kernel trick and the
soft margin approach.

1.4 Comparison of SVM and boosting

We can now compare SVM with boosting. In SVM, we treat the input data as points in
Euclidean space: x € R”. As discussed in the previous lecture, it is natural to assume
|Ix|l2 < 1. In boosting, we never really touch the data. Instead, what we manipulate are the
weak hypotheses. To make things simple, suppose we use a finite weak hypothesis space H =
{g1(x), -+, gn(z)} and the input can be viewed as the vector h(z) = (g1(x), -, gn(x)).
Recall that the infinity norm for a vector z is defined as ||z|« = max; |z;|. Therefore, we
have ||h(z)||c = max; |gj(z)| = 1 since gj(z) € {—1,+1}.

Next, we compare the coefficients to compute and the predictions. In SVM, the algo-
rithm computes the unit normal vector v for the hyperplane, and the prediction is sign(v-x).
In boosting, the algorithm computes the coefficient ay > 0 for the weak hypothesis h; € H.
Zzzlatht(x)) is

PO

a convex combination of hs. Since each hy € H = {g1(z),---,gn(x)}, we can rewrite the
prediction into another convex combination of g;(z) by finding the corresponding weight

aj:
Z?wmtw) S ai05(e) = & h(a
< Zz—‘at]:Zl Jgj() ()7

where a = (aj,---,an). It should be noted that Z;VZI laj| = |lalli = 1, where a; > 0.
Therefore, the goal of boosting can be viewed as finding a; for each g;, and the prediction
for sample z is sign (a - h(z)).

Suppose we run the boosting algorithm for 7" times, the prediction sign

SVM AdaBoost
input x e R, |x]2 <1 h(z), [|h(z)|lec =1
finds lvl2 =1 llalli =1, a= (a1, --,an)
prediction sign(v - x) sign (a - h(x)) = sign (zyzl ajgj(:v)>
margin y(v-x) y(a-h(z))

Figure 6: Comparison of SVM and Boosting.

Finally, we compare the margin of both SVM and boosting algorithms. The margin of
SVM is y (v - x), while in boosting it is y (a - h(x)). The goal of both SVM and AdaBoost is
to maximize the margin, but the norms that are used here are different: in SVM’s, ||v]]s =1
and ||z||2 = 1, while in boosting, ||a|l; =1 and ||h(z)]|s = 1.

The summary of the comparisons described above are listed in Figure 6.

2 Online Learning

2.1 Introduction

So far we have focused on the PAC learning model. We assume there is a fixed distribution
for both the training and testing data, and the training samples are selected randomly.
The algorithms we have discussed are batch learning algorithms, which means that after
training, the hypothesis is fixed and then used for all future testing samples. Now we move
on to online learning. The following are some properties of online learning. First, both
training and testing happen at the same time in online learning. The learner gets one
training sample at a time, makes the prediction, and then gets the true result as feedback.
An example is to predict the stock market. In the morning the online learner makes a
prediction about whether the price will go up or down, and then after one day it can receive
the true situation and adjust future prediction. Second, the online learning algorithms tend
to be simple. Third, online learning model makes no assumption about the distribution of
the data, and can even completely drop the assumption that the data is generated randomly.
In the following and future lectures, we will show that even without these assumptions, we
can still analyze online learning algorithms in a meaningful way.

2.2 Learning with expert advice

We start from looking at an example of the stock market. Figure 7 gives the setting of
the example. Suppose there are four experts who will make predictions for the price every
morning, and the learner makes the prediction based on the four predictions. The goal of
the learner is to provide the performance as good as, or at least not too much worse, than
the best expert after a certain amount of time. This general setting is called “learning with
expert advice” and is formulated as below:

N = # of experts
fort=1,---,T
each expert i predicts & € {0,1},
learner predicts ¢ € {0,1},
observe outcome y € {0, 1} (mistake if g # y).

Experts Learner (Master) Outcome
1 2 3 4
Tyl |1 1 1 1 7 7
day 2 N i T
of mistakes | 37 12 67 50 18

Figure 7: The stock market example.

We would like to relate the number of mistakes of the learner to the number of mistakes
of the best expert. However, the learner does not know which expert is the best. In the
case assuming at least one expert is perfect, we can adopt a simple algorithm described as
below:

7 = majority vote of experts with no mistakes so far

This method is called the “Halving algorithm”. To give a more concrete idea about how
it works, we revisit the stock market example in Figure 7. In the first day, expert 3 made a
mistake, so the learner does not take the prediction of expert 3 into account starting from
the second day.

Now we can calculate the mistake bound of the Halving algorithm as follows. Let W be
the number of experts that make no mistake so far, or we say the number of active experts.
Initially we have W = N. After the learner made one mistake, we have W < %N because
there are at least half of the active experts that made this mistake. Similarly, after the
learner made the second mistake, W < %N , and so on. After the learner made m mistakes,
we have W < Q%N . Due to the assumption that at least one expert is perfect, we have
W > 1. That is,

1
L<W < ool = m < lg(N).

Finally, we can consider a special case in which we view each expert as one hypothesis.
Suppose we have a hypothesis space H = {hy,---,hn}, and the target concept ¢ € H.
By adopting the Halving algorithm, each round the learner gets one sample x, makes the
prediction ¢ € {0, 1}, and then observes the true result y = ¢(x). We then have the following
mistake bound:

of mistakes <lg(N) = lg(|H]).

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 15
Scribe: Jieming Mao April 1, 2013

1 Brief review

1.1 Learning with expert advice

Last time, we started to talk about “learning with expert advice”. This model is very
different from models we saw earlier in the semester. In this model, the learner can see only
one example at a time, and has to make predictions based on the advice of “experts” and
the history. Formally, the model can be written as

e N = # of experts
e fort=1,---,T

— each expert 7 predicts & € {0,1}
— learner predicts § € {0,1}

learner observes y € {0,1}
(mistake if y #)

In the previous lecture, we gave a “Halving algorithm” which works when there exists a
“perfect” expert. In this case, the number of mistakes that the “Halving algorithm” makes
is at most Ig(V).

1.2 Connection with PAC learning

Now we consider an “analogue of the PAC learning model”:

e hypothesis space H = {h1, -+ ,hn}
e target concept c € H
e on each round

— get x
— predict g

— observe c¢(z)

This problem is a very natural online learning problem. However, we can relate this problem
to “learning with expert advice” by considering each hypothesis h; as an expert. Since the
target concept is chosen inside the hypothesis space, we always have a “perfect” expert.
Therefore, we can apply the “Halving algorithm” to solving this problem and the “Halving
algorithm” will make at most lg(N) = lg(|H|) mistakes.

2 Bounding the number of mistakes

In the previous section, it is natural to ask whether the “Halving algorithm” is the best
possible. In order to answer this problem, we have to define what is “best”. Let A be any
deterministic algorithm, define

My (H) = max(# mistakes made by A)

c,x

M 4(H) is the number of mistakes A will make on hypothesis space H in the worst case. An
algorithm is considered good if its M4(#) is small. Now define

opt(H) = mjn Ma(H).

We are going to lower bound opt(#H) by VCdim(H) as the following theorem:
Theorem 1. VCdim(H) < opt(H)

Proof: Let A be any deterministic algorithm. Let d = VCdim(#H). Let z1,...,xq be
shattered by H. Now we can construct an adversarial strategy that forces A to make d
mistakes as following:

e fort=1,---,d
- present z; to A
- g = A’s prediction
- choose y; # ;.

Since x1, ..., x4 is shattered by H, we know there exists a concept ¢ € H, such that c(xy) = y;
for all ¢. In addition, since A is deterministic, we can simulate it ahead of time. Therefore
such adversarial construction is possible. Thus there exists an adversarial strategy to force
A to make d mistakes. O

To sum up this section, we have the following result,

VOdim(H) < opt(H) < Muaiwing(H) < lg(|H]).

3 Weighted majority algorithm

Now we are going back to “learning with expert advice” and we want to devise algorithms
when there is no “perfect” expert. In this setting, we will compare the number of mistakes of
our algorithm and the number of mistakes of the best expert. Here we modify the “Halving
algorithm” to get an algorithm when there is no “perfect” expert. Instead of discarding
experts, we will keep a weight for each expert and lower it when this expert makes a mistake.
We call this algorithm weighted majority algorithm:

e w; = weight on expert i
e Parameter 0 < g < 1

o N = # of experts

o Initially Vi,w; =1

e fort=1,---.,T

each expert i predicts & € {0,1}

- q0 = Zizgizo Wi, 1 = Zi;gi:1 Wi.
learner predicts ¢ € {0,1}

1 ifg >
- = = (weighted majority vote)
0 else

learner observes y € {0,1}
(mistake if y # 3)
- for each i, if & # y, then w; < w;

Now we are going to analyze weighted majority algorithm(WMA) by proving the fol-
lowing theorem:

Theorem 2. (# of mistakes of WMA) < ag(# of mistakes of the best expert) +cglg(N),
lg(1/8) 1

lg(35) lg(135)

where ag = and cg =

Before proving this theorem, let’s first try to understand what this theorem implies.
The following table gives a good understanding of the parameter:

If we divide both sides of the inequality by T', we get

(# of mistakes of WMA) < ag(# of mistakes of the best expert) Lo Ig(N)
T - T T

When T — 400, %T(N) — 0. Then this theorem means that the rate that WMA makes
mistakes is bounded by a constant times the rate that the best expert makes mistakes.
Proof: Define W as the sum of the weights of all the experts: W = ZZ]L w;. Initially, we
have W = N. Now we consider how W changes in some round. On some round, without
loss of generality, we assume that y = 0. Then

N
Whew = E w;’bew
1

= > wh+) w

i€i=1 i6:=0
= aBf+a

= qf+W-q)
= W-(1-08)a

Now suppose WMA makes a mistake. Then

1y = 9=1=q>q

w
= (I1Z?

= Wnew<W_(1_6)

w
2

So if WMA makes a mistake, the sum of weights W will decrease by multiplying #

Therefore, after m mistakes, we get an upper bound of the sum of weights as

W< N-(

1+58,,
2)‘

Define L; to be the number of mistakes that expert ¢ makes. Then we have

1+5

Vi,w; = L < W < N - ().

Solving this inequality, and noting that it holds for all experts ¢, we get

o (min; L;) 1g(1/5) +1g(N)'
- lg(25)

4 Randomized weighted majority algorithm

The previous proof has shown that, at best, the number of mistakes of WMA is at most twice
the number of mistakes of the best expert. This is a weak result if the best expert actually
makes a substantial number of mistakes. In order to get a better algorithm, we have to
introduce randomness. The next algorithm we are going to introduce is called randomized
weighted majority algorithm. This algorithm is very similar to weighted majority algorithm.
The only difference is that rather than making prediction by weighted majority vote, in each
round, the algorithm picks an expert with some probability according to its weight, and
uses that randomly chosen expert to make its prediction. The algorithm is as following;:

e w; = weight on expert i

e Parameter 0 < 5 < 1

N = # of experts

Initially Vi, w; = 1

fort=1,---,T
- each expert 7 predicts & € {0,1}

- 40 = Zi:fiZO Wi, q1 = Zi:gizl Wy
- learner predicts ¢ € {0,1}

e 1 Wy
1 “dﬂlprobabﬂﬁy'EjL%;ll::Q1

- = w
: - Zi-g-:o Wi Qo
0 with probability ZT =

learner observes y € {0, 1}
(mistake if y #)
for each i, if & # y, then w; < w;

Now let’s analyze randomized weight majority algorithm(RWMA) by proving the following
theorem:

Theorem 3. E(# of mistakes of RWMA) < ag(# of mistakes of the best expert) +-cgIn(N),

1n(1/5) 1

where ag = and cg = T

Notice here we are considering the expectation of number of mistakes RMWA makes
because RMWA is a randomized algorithm. When 8 — 1, ag — 1. This means RMWA
can do really close to the optimal.

Proof: Similar to the proof of the previous theorem, we prove this theorem by considering
the sum of weights W. On some round, define [as the probability that RWMA makes a

mistake:
Ziifﬁéy Wi

L=Prlg#yl ==

Then the weight in this round is changed as

Whew = Z w;f + Z wW;

& 7Y i:§i=y
= W+ (1-0)W
W1 —1(1-75)

Then we can write the sum of weights at the end as
Wiinat = N-(1—=4(1=8))-(1—-1L(1-2))

T
< N[[ew(-k(1-5)
t=1

T
= N -exp(— Z

Then we have

T
ﬁLi <w; < sznal <N- exp Z
Define L4 = Zle l; as the expected number of mistakes RWMA makes. We have

InN.

n(1 1
Ly= Z I < /ﬁ (#of mistakes of the best expert) + -

5 Variant of RWMA

Let’s first discuss how to choose the parameter 8 for RWMA. Suppose we have an upper
on the number of mistakes that the best expert makes as min; L; < K, then we can choose
8 as —A~——. Then we have

1

n /21%1\7)'
Ly <minL;++/2KIn(N) + In(N).
(2

It is natural to ask whether we can do better than RWMA. The answer is yes. The high
level idea is to work in the middle of WMA and RWMA. The following figure shows how
this algorithm works. The y-axis is the probability of predicting § as 1. And the z-axis is
the weighted fraction of experts predicting 1. The red line is WMA, the blue line is RWMA,,
and the green line is the new algorithm.

1 T T T T

nal
e
0.7t
N
Z 06
£
& g5l
04| 4
0 4
nzf 4
0t 4
0 1 1 1 1 1 1 1 1 1
0 o1 02 03 04 05 06 07 08 08 1
QW
The new algorithm can reach ag = M and cg = —1 . These are exactly half of
2In(175) 2In(175)
those of WMA. And if we make the assumption that min; L; < K again, the new algorithm
has (N
La < minL; + /K n(N) + g(2).
(2
If we set K = 0 which means there exists a “perfect” expert, we have
lg(N
pas Y

Thus we know this algorithm is better than the “Halving algorithm”.
We usually can assume that K = % by adding two experts: one always predicts 1 and
the other always predicts 0. Then we have

TI(N) lg(N)
2 + 2

Ly <minL; +
T

If we divide both sides by T', we get

Ly min; L; N In(N) = 1g(N)

T T 2T 2T

. In(N)
When T gets large, the right hand side of the inequality is dominated by the term y/ —+*.

6 Lower bound

Finally we are going to give a lower bound for “learning with expert advice”. This lower

bound matches the upper bound we get from the previous section even for constant factors.

So this lower bound is tight and we cannot improve the algorithm in the previous section.
To prove the lower bound, we consider the following scenario:

e On each round, the adversary chooses the prediction of each expert randomly, & =

{1 w.p. 1/2

0 w.p. 1/2

1 wp. 1/2

e On each round, the adversary chooses the feedback randomly, y =
0 w.p. 1/2

For any learning algorithm A,
Ey,§ [LA] = EE [Ey [LA|€H = T/2-

For any expert ¢, we have

E[L;]=T/2.
However, we can prove that
T TIn(N
Emin L;] = — — 1/ ﬁ
i 2 2
Thus,
TIn(N
B[Ly] - Elmin L] > /7).
(2

The term %(N) meets the dominating term in the previous section. Also, in the proof of

the lower bound, the adversary only uses entirely random expert predictions and outcomes.
So we would not gain anything by assuming that the data is random rather than adversarial.
The bounds we proved in an adversarial setting are just as good as could possibly be obtained
even if we assumed that the data are entirely random.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #16
Scribe: Yannan Wang April 3, 2014

1 Introduction

The goal of our online learning scenario from last class is C comparing with best expert and
do as well as the best expert.

An alternative scenario is there is no single good expert. But we could form a committee
of experts and they might be much better.

We'll formalize this as follows:

e We have N experts.

e Fort=1,..,T we get x; € {1, -1}V
Note: x;: a set of predictions
N: dimension
i¢n, component: prediction of expert 4

e In each round, learner predicts g; € {1,—1}
e In each round, we observe the outcome y; € {1,—1}

e The above is the same; what we changed is the assumption of data. We assume that
there is a perfect committee, i.e. a weighted sum of experts that are always right.
Formally, this means that u € RY,

N

Yty = sign(z wity;) = sign(x; - u)
=1

<~ yt(u . Xt) >0
Geometrically, the perfect committee means that there is a linear threshold that sep-
arates the 1 points and —1 points, generated by the appropriate weighted sum of the
experts.

2 How to do updates

We are focusing on wy, the prediction of u. It is sort of a “guess” of the correct weighting
of the experts. We will update the weighting on each round. Today we are looking at two
algorithms. For each algorithm, we only need to focus on

(1)initialize

(2)update

Figure 1: Perceptron geometric intuition: tiping the hyperplane

2.1 Perceptron

The first way to update weights will give us an algorithm called Perceptron. The update
rules are as follows:

o Initialize: w1 =0
e Update: If mistake(<= y; # 11 <= ye(wy¢ - x¢) <0),

Wipl = Wi + U Xy

else,

Wil = Wi

Not adjusting the weights when there are no mistakes makes the algorithm conserva-
tive; the algorithm ignores the correctly classifying samples.

The intuition is that in case of a wrong answer we “shift” the weights on all the experts in
the direction of the correct answer. Figure 1 gives a geometrical intuition of the Perceptron
algorithm. Here y; = +1, when (x,y;) is classified incorrectly, then we add x;y; to wy to
such a direction that is more likely to correctly classify (x¢,y:) next time; we are shifting
the hyperplane defined by w; in such a direction that we are more likely to correctly classify
Xt.

Now let’s state a theorem to formally analyze the performance of the Perceptron algo-
rithm. However, first we will make a a few assumptions:

e Mistakes happens in every round. This is because no algorithmic change happens
during other rounds. So: T' = # of rounds = # of mistakes.

e We normalize the vector of predictions x;, so that ||x:||2 < 1.

e We normalize the vector of weights for the perfect committee, so that|ju|l2 = 1. (This
is fine because the value of the sign function will not be affected by this normalization.)

o We make the assumption that the points are linearly separable with margin at least §:
35, u € RN, Vt : yi(u-x¢) > & > 0. Note that this assumption is with loss of generality.

Theorem 2.1 Under the assumptions above, T = # mistakes, we have

Proof : In order to prove this, we will find some quantity that depends on the state of the
algorithm at time ¢, upper bound and lower bound it, and derive a bound from there. The
quantity here is ®;, which is cosine of the angle © between w; and u. More formally,

W -

¢ = =cos® <1
[[well2
Now for the lower bound, we will prove that
iy > VTS
We will do this in two parts — by lower bounding the numerator of ®; and by upper

bounding the denominator.

e step 1: wp g -u>7T6:

Wit -u= (W +yx) u=w,-u+y(u-x)>w-u+0

The inequality is by the 4th assumption above. Initially we have set wy - u = 0, thus
the above bound implies that wriq1 - u > T9.

e step 2: |[wr 1| < T
[Wir1]? = Wit - Wi = (We 4 yexe) - (We + yexe) = [Well3 + 20(xe - W) + ||)2

Since we have made the assumption that we get a mistake at each round, y;(x;-wy) < 0,
and from the normalization assumption, ||x¢[|3 < 1, so that we get ||[we1]|? < [|wel3 + 1.
Initially we have set ||w1]|3 = 0, so we get ||wr1||3 < T

Now we put step 1 and step 2 together, 1 > &7 > %, le. T'< 6%' O

Let H be the hypothesis space and Mperceptron(H) be the number of mistakes made by
the Perceptron algorithm. As a simple consequence of the above, since the VC dimension
of the hypothesis space is upper bounded by the number of mistakes the algorithm makes,
we get the VC dimension of threshold functions with margin at least J is at most 5%:

1
52

Now consider a scenario where the target u consists of Os and 1s, and the number of 1s
in the vector is k.

VC—dzm('H) < Opt(H) < Mperceptron(H) <

u=

© 100 1 ..)

Sl

Note that here ik is for normalization. Think of k£ as being small compared to N, the
number of experts, i.e. it could be a very sparse vector. This is also one example of the
problems we earlier examined — the k& experts are the “perfect” committee. We have,

Xt (+1, -1, =1, 41, ..)

_ b
VN

yr = sign(u - xq)

1
ye(u-xg) > JiN

Note that here LN is for normalization. So using ﬁ as 0, by Theorem 2.1, the
Perceptron algorithm would make at most kN mistakes. However this is not good —
consider interpreting the experts as features, and we have millions of irrelevant features,
and the committee is the important (maybe a dozen) features. We get a linear dependencies
on N, which is usually large.

Motivated by this example, we present another update algorithm, called the Winnow
algorithm, which will get a better bound.

2.2 Winnow Algorithm

e Initialize: 1
Vi, W15 = N

we start with a uniform distribution over all experts.

e Update: If we make a mistake,

wt,i . enytxt
Zy

Here 7 is a parameter we will define later, and Z; is a normalization factor. Else,

Vi : W41, =

Wiyl = Wy

This update rule is like exponential punishment for the experts that are wrong. If we
ignore the normalization factors, the above update is equivalent to wiy1; = wsze”, if ¢
predicts correctly, and w;y1; = we;e” " otherwise. Ignoring the normalization factor, we
could see it as w1, = wyy, if ¢ predicts correctly, and wi41,; = wt,ie_% otherwise. This is
the same as the weighted majority vote.

Before stating the formal theorem for the Winnow algorithm, we make a few assumptions
without loss of generality:

e We make mistake at every round.
o Vi:|x¢oo < 1.

o d6, u:Vt:y(u-x¢)>3d>0.

e |[ulj=1and Vi: u; > 0.

Notice here we used L and Lo, norm here instead of the Lo norm that we used in
Perceptron algorithm.

Theorem 2.2 Under the assumptions above, We have the following upper bound on the

number of mistakes:
In N

~ 06+ In(52=)
If we choose an optimal 7 to minimize the bound , we get when 1 = %ln(%g),
2In N
52
Proof The approach is similar to the previous one. We use a quantity ®;, which we both

upper and lower-bound. The quantity we use here is &; = RE(u || w;). Immediately we
have, ®; > 0 for all ¢.

T<

Dy — Z u; In(
= Z u; In(——— le l
B Z u; In @nytxt i (1)
= w;nZ, = uilnemn
i i

=1InZ; — nyi(u - xy)
< In Zt — 7](5

Uz
E u; In(
P wt z

wt+1 1

The last inequality follows from the margin property we assumed. Now let’s approximate
Z¢. We know that Z is the normalization factor and can be computed as:

Z = Z wienyxi (2)
2

Note that here we are dropping the subscript ¢ for simplicity; Z and w; are same as Z;
and w ;. We will bound the exponential term by a linear function, as illustrated in figure

2:
1+zx 1—=x
e + (2

e™ < (e, for—1<xz<1.

Using this bound, we have:
7 = Zwieny“
i
14 yz; 1 —yx;, _
Szi:wi(2y Z)e"—kzi:wi(2y e

:Tzwi—FTwaixi 3)
1 (2

n -n n -n
:e —f—26 +e —|—2€ y(w-x)
e+ e

- 2

erl Yxl

= = =linear bound

Figure 2: Using linear function to bound exponential function

The last inequality comes from the assumption that the expert makes a wrong prediction
every time, so the second term is less than 0. So we have,

Gy —® <InZ; —nd

E— (4)
<n(C +2€) =S = —C

Note that here ln(%) —nd is a constant and let’s make it equals —C. So for each
round ®; is decreasing by at least C' = ln(emr%) + nd.

In the next class, we will finish the proof of Theorem 2.2 and we will study a modi-
fied version of Winnow Algorithm called Balanced Winnow Algorithm that gets rid of the
assumption that Vi : u; > 0.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire
Scribe: Madhuvanthi Jayakumar

Lecture # 17
April 08, 2013

1 Review of Winnow Algorithm

Algorithm 1 Winnow.

procedure WINNOW

W:wl,i:%
fort=1,...,7T do
GetxtE]RN

Predict g, = sign(wy - x¢)
Get yp € {—1,+1}

Update, if mistake: wi41,; = Ugtl e,

Comments about algorithm:

e w; is the weight vector. We can view it as a probability distribution (non-negative

values, and sums up to 1). Initially it is uniformly distributed.

e x; can be thought of as a point in space or as an N-dimensional vector

e If there is no mistake, the weight is carried over to the next iteration: w11 = wy

2 Upperbounding Number of Mistakes for Winnow

Assumptions:

1. A mistake is made on every round.

2.Vt |xefl, <1

3. I, u,Vt:y(u-x4) >6>0

4.9t uf, =1

5. Vi:u; >0

Theorem 2.1. Under the assumptions made above, we can bound the maximum number of

mistakes that can be made by the algorithm to 21512]\7 ifn= %ln %
In N
mistakes < 1 5
775 +In (emre—n)
2In N
<
1 146
. _ 1
if n=g5(;—)
(1)
Proof. Last time, we showed:
®; = RE(u|lw)>0 (2)
(I)t—i-l — (I)t S —C (3)
_ 2
Where CcC = 775 =+ ln W

Today, we will bound the number of mistakes by bounding the total change in potential.
We first upperbound ®4, the potential on the first round.

d, RE(ul|w)
= Z u; In(u; V)
< Z u; In(V)
= InN
(4)
At this point we have upper bounded the potential for the first round. We also know the
following two things:

1. The minimum change in each potential is ¢, and since there are 7' rounds

e This imiplies that the minimum total change in potential has to be at least ¢T'.
2. The potential can never be negative (and ®; < In V).

e This implies that the maximum total change in potential can be at most In V.

Hence, we can upperbound the maximum number of iterations of the algorithm in terms of
N and c in the following way.

cI' < total change < In N
cI' <InN
In N
T < bN

Since our first assumption is that there is a mistake on every round, the number of mistakes
is also bounded by this value. We have thus proved Theorem 2.1 to bound the number of
mistakes in the algorithm which does not depend on probability assumptions.

Minimizing bound: We would like to set the value of ¢ such that the bound is minimized.
To do this, we get the value of n that will result in the minimum bound by taking the
derivative and setting it equal to 0. Solving for n we get:

11, 148
n=5ln{

Plugging this back into our equation for ¢, we get that:
1_ 61
c=RE(5 - 5l3)
Since we are taking the Relative Entropy between two bernoulli items, we can reduce it (to
2 times the difference between the two bernoulli items) to get:

2
cz2: (3 =%

We have thus proved the bound in the theorem:

T S IIICN S 21512]\/

3 Balanced Winnow

Now we would like to remove the fifth assumption that Vi : u; > 0

The quick and dirty way of doing this is to modify the two vectors, x and u. Say we have
vectors x and u as given below. We modify x to get x’ by creating two copies of x and
modifying the second copy such that their signs are negated. We modify u to get u’ by cre-
ating two copies of u and modifying the second copy such that all the negative components
are zero.

x=(1 07 —-04) — xX'=(01 7 —4 | -1 —-.7 4

u=(05 —-02 03) —- u=(050 3]0 .20

We’ve doubled the number of components but the other three previously made assumptions
still hold, as shown:

Assumptions:
1. A mistake is made on every round: yes.

2.Vt Xyl <1

e ||x'4]|, is also unchanged since we haven’t changed the maximum absolute value.
3. 30,0\ Vt iy (0 -x'¢) >0 >0

e Inner product is unchanged: x’'-u’ = x-u. The dot product on non-negative
portion stays the same. The dot product of the negative portion cancels out
because it is positive but taking the inner product with negative of x;.

4.Vt ||l =1

e |lu'[]; is also unchanged since we take the absolute value of each component
exactly once.

4 Compare Perceptron and Winnow/WMA

Perceptron ‘ Winnow/WMA
Additive Update | Multiplicative update
el < 1 ey < 1
fufl, = 1 Jul; <1
SVM Adaboost

5 Regression

Until now, we have been learning to classify objects as labels 0/1 or -1/1. Our goal was
to minimize the number of mistakes made by the algorithm or minimze the probability of
making mistakes. We talked about how PAC outputs a hypothesis whose probability of
making a mistake we wanted to be low. With online learning algorithms, we wanted the
number of mistakes made by the algorithm to be low. We were able to evaluate these by
looking at the labels. Now we want to switch focus and have a different goal which is not
just to get the correct label.

5.1 Example

We will introduce this topic with an example. Say we are looking to hire Alice or Bob to
predict the weather. We ask each of them to predict the probability that it rains. Alice says
the probability of it raining is 70% and Bob says it is 80%. We see the outcome (that it
rains) but we don’t know the underlying probability, so we can’t say whether Alice or Bob
was closer to the actual probability. In the following sections, we explore how to come up
with a percentage that is close to the true probabilities even though we can never observe
true probabilities.

First we will formally state the problem. We will then create a model for scoring the
prediction and state and prove a theorem that shows why the model works.

5.2 Formal Statement of Problem

We are given the weather conditions x, and we would like to predict the value of y, which
is 1 if it rains, and 0 otherwise. We obtain both x and y from distribution D, (x,y) ~ D.

Our goal is to estimate Pr|y = 1|x]. We never get to observe this, we only get the outcome
y. We define p(x) = Prly = 1|x] = E[y|x]. We use expectation to have a more general
problem statement, that allows y to be any real number and not necessarily restrict it to
0 or 1. This problem is called regression. We may define hy(x) as Alice’s estimate of the
porbability of rain given x, and hp(x) as Bob’s estimate of the probability of rain given x.

5.3 Model

We define square/quadratic loss as (h(z) — y)? and we use this to score how good the
prediction is. Taking the difference of the hypothesis and outcome is a natural way to
characterize this and squaring gives nicer mathematical properties (differentiable, etc). We
define risk to be the expected loss, E[(h(x) —y)?], and choose h that minimizes the expected
value over x,y. We define the risk with respect to the true distribution D as the true risk.
We will show how to estimate this from samples, by looking at a set of predictions and
outcomes and taking the average loss. Theorem 5.1 and its associated proof shows why

minimizing this expectation leads to a good prediction.

First we fix x and define the following:

h = h(x) and p = p(x) = Prly = 1]x]
Then we have that:

E[(h —y)?] = p(h — 1)> + (1 — p)h*.

This comes from the definition of expectation: Pr[y=1] - resulting loss + P[y=0] - resulting
loss.
To minimize the expectation, we take the derivative with respect to h and set it equal to 0.

2 = 2(h — p) = 0, resulting in h = p.

This implies that the loss is minimized when we set h = p. We cannot directly observe p,
but this result shows that minimizing the loss will lead us to choose h which is equal to p.
Now we will state a theorem that is more general and stronger that applies to any value of
X.

Theorem 5.1. E,[(h(x) — p(x))?] = Exy[(h(z) — y)?] — Euy[(p(x) —)?]
Note:

e The first term is the loss/risk we can measure to estimate from data.

e The second term measures the intrinsic noise of y.

e Our goal is to minimize E[(h(x) — p(x))?].

— Since the variance of y does not depend on h, we have that E[(h(x) — p(x))?] =
E[(h(x) — y)?]—constant
— Therefore minimizing E[(h(x) — y)?] also minimizes E[(h(x) — p(x))?] and this
justifies the use of square loss to get the best prediciton.
Proof. We will prove Theorem 5.1 for fixed x. Then we can use linearity of expectations to
show that it holds for any expectation of x. We define h = h(x), and p = p(x) = E[y|x] =

E[y]. We will modify the LHS and RHS of the equations to show that they are both equal
to each other.

LHS = (h — p).

Explanation: we can remove the expectation because x is fixed.
RHS = E[(h—y)*] —E[(p - y)’]

E[(h* — 2hy +y*) — (0* — 2py + ¥°)]
h? — 2hE[y] — p* + 2pE[y]

= h%®—2hp+p?
= (h—p)°
= LHS

6 Linear Regression

We can estimate the smallest value of E[(h(x) — y)?] by looking at the empirical average of
the given sample. Given m samples, (z1,y1)...(Tm, Ym) ~ D:

A

E[(h(z) — y)*] = = > bz — y:)? = E[Ly).

s

1

1

This is the empirical risk that can be measured using training data. We define
Li(z,y) = (h(z) —y)°
Now we do the following two things:

1. Prove/argue w.h.p. Vh € H, E[L;] ~ E[L]. This is a uniform convergence problem.

2. Minimize E[Ly]. This is a computational problem.

6.1 Example

Suppose we are given m examples, (21, y1)...(Tm, Ym) With z; € R™ and labels y; € R
Our hypothesis is of the form, h(x) = w - x, which is linear for some fixed vector w
We then have:

E[Ly] =

= Y Wiy ()

i=1
We would like to find the w that minimizes this quantity. This is called linear regression.
We will work with this in matrix form, defining M to be the matrix of vectors x.

— X{ — w1 Y1
< Xg — w2 _ Y2
— xL - w
m n Yn
Mw —Db

W-X1—U
TERTEN — Mw - bl

W Xm — Yml||,

m
The Euclidean length squared will give us the sum of squared errors, > (W - x; — y;)?

i=1
Now we find w that minimizes this. To do this, we compute the gradient and set it equal
to 0 and solve for w.

VO =2MT(Mw —b) =0
w=(MTM)"1MTb

(MT M)~'M7is known as the pseudo inverse of M7,

7 Combining Regression with Online Learning

Now we take a look at what regression looks like in an online learning setting.

Algorithm 2 Regression with Online Learning
procedure REGRESSION
Initialize wy
fort=1,...,7 do

get x, € RV

predict gy = wy -x; € R

get yp € R

loss = (¢ — yt)”

update wy
T

Our goal is to minimize loss, L4 = > (¢ — y¢)?

=1

We are interested in updating the weight w; and using it in a linear way to make predic-
tions without making any randomness assumptions. We analyze the loss suffered using one
particular weight vector u € RY:

e Predict: u-x;

e Loss: (u-x; — yy)?
T

e Cumulative loss > (u-x; — ;)?
t=1

We would like to achieve the result:
L < minLy,4+small amount: ”regret”
T
where L, = > (u-x; — ;)2
t=0

L, is the loss of a linear predictor u. The above inequality for L 4 says that if there exists any
predictor that gives good predictions, then our algorithm performs close to that predictor.

8 Widrow-Hoff (WH) Algorithm

Towards the end of class, we introduced the Widrow Hoff Algorithm, which is a particular
kind of online regression algorithm. This algorithm uses the weight vector in the following
way:

e intialize: wi =0
e update: w1 = w; — T](Wt c Xt — yt)l‘t

There are two main motivations for this algorithm. We discuss the first one here and will
continue the rest during the next lecture.
We define our loss function as:

L(w,x,y) = (w-x —y)?
The gradient descent of this is:
Vwl =2(w-x—y)-x

We have w¢ and we use x¢ and y; to improve w;, 1 so that loss will be slightly smaller on
the example that we just observed. The equation below moves w in the direction of the
gradient, which minimizes the loss function.

Wil = Wi — $0VwL (Wi, X¢, y)

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 18
Scribe: Shaoqging Yang April 10, 2014

1 Widrow-Hoff Algorithm

First let’s review the Widrow-Hoff algorithm that was covered from last lecture:

Algorithm 1: Widrow-Hoff Algorithm
Initialize parameter n > 0, w; =0
fort=1...T

get x; € R™

predict g = w; - x; € R

observe y; € R

update Wiy = Wi — (Wt - X¢ — Yt) - Xe

And we define the loss functions as La = S.r (§: — y)?. And Ly = Y1 (w-x; — 4t).
What we want is
L4 <min L, + small
u

There are 2 goals in choosing the update function to be wy11 = wy—n(wy - - x¢— 1) - x4: (1)
Want loss of wy11 on x¢, y; to be small. This means we want to minimize (Wyq - x; — y,g)2
(2) Want wy1; close to w; so that we do not forget everything we learnt so far. And this
means we want to minimize ||[wy1 — wy|?.

Therefore to sum up, we want to minimize

(Wit X —) + [[wipr — we||?

If we take the derivative of the above equation and set it to zero, we have

Wil = Wi — ?7(Wt+1 “ Xt — yt) © Xt

Instead of solving w1, we approximate the term w; inside the parenthesis and change it
to w;. The reason we can do this is because wy41 does not change much from w;. Therefore
we have

Wipl = Wi — TI(Wt Xt — yt) * Xt

which is the update function stated in the algorithm.
Now let’s state a theorem:

Theorem 1.1 If we assume on every round ¢, ||x¢||2 < 1, then:

H LEIelRH}‘[l —n n]

From this theorem, we have Vu:

1 ul|2
LWHSi'Lu"FH Iz
1—n

If we divide T on both side, we have:

Lww _ 1 Lu [ul}
T " 1—-n T nT

2
The term % goes to 0 when T gets large. And we can choose 1 small enough to make

fln to be close to 1. Therefore we have the rate that the algorithm is suffering loss is close
to rate that L, is suffering loss.

Now let’s prove the theorem:

Proof: Pick any u € R". First let’s define some terms:

;= ||w; — ull3 (measure of progess)
=W Xt — Yy =Gt — Yt (notice I? is the loss of WH on round t)
gr=u-X;— Y (g2 is the loss of u on round t)

Ap = (Wt X — yt) - Xt = NliXy
Wil = Wy — Ay
Our main claim is that the change of potential is:

Dy — Dy < —lf + % g7 (1)

This shows that lt2 tends to drive potential down while gt2 tends to drive potential up.

Now assume (1) holds. Notice that total change in potential should be non-negative. And
also we initialize w; = 0. So we have the following inequality:

—[uf3 = @1 < &7y — P
=P =P+ P - -+ P2 — Py

Now we solve for Ly p, we get

And since this inequality holds for all u, we have:

1 2
LWH < min[Lu + ||11||2
ueR 1 -7 n

]

which is the theorem.

Now let’s go back to prove (1):

Dyy1 — Dy = Wi —ul* — |wy —ull?
= lwi —u— A|* = [|wy —ul?
= [|A* = 2(w; —u) - Ay + [[wy —u|* = [[wy —ulf?
= [AP = 2(we —u) - A
= ||AH2 —2(w —u) - A (dropping subscript ¢ since it doesn’t affect the proof)
= n*l?|x||* = 2nix - (W — u)
= 77212||XH2 —l(w-x—u-x—y+y)
=0 Px|* = 2nl[(w-x —y) — (u-x —)]
= n?*P||x|* — 2nl[l — g]
= n?*PP||x|* — 2nl* + 2nlg
< n’l? = 29l° + 2nlg (x> < 1)
2
2[5, + (1 —n)]
2

< (n* =20 + (ab < 252%)

2
=(n* —2n)* + n[lg_in + 121 —)]

U

=0l + g
—1)

2 Families of Online Algorithm

The two goals of the learning algorithm are minimizing the loss of w1 on x; and y;, and
minimizing the distance between w1 and w;. So to generalize, we are trying to minimize

nL(Wt—‘rla Xt, yt) + d(wt—‘rla Wt)

So if we use the Euclidean norm as our distance measurement, then the above function
becomes:

NL(Wii1,Xe, yt) + ||[Wy — Wt+1”2

So if we try to optimize the above function, we have the update equation:

Wiyl = Wi — UVWL(Wt+17Xt7 yt)
~ Wy — UVWL(Wt, Xt, yt)

Notice that we use w; to approximate w¢y; when we calculate w¢y1. This is called the
Gradient Descent Algorithm.

Alternatively, we can use relative entropy as a measure of distance. So d(w¢, Wyy1) =
RE(w¢||w¢y1). Now we can have the update function as

oL
wy,g - exp(n2EMLELxLU))

Z

Wt1,5 =

This is called the Exponentiated Gradient Algorithm, or “EG” algorithm. We need to
change the norm: ||x¢|cc < 1 and |[ul|; = 1. It’s also possible to prove a bound on this
update equation, but we skip it in this class.

3 Online Algorithm in a Batch Setting

We can modify the online algorithms slightly so that we can use them in the batch learning
settings. Let’s take a look at one example in a linear regression setting. In a linear regression
setting, training and test samples are drawn i.i.d from a fixed distribution D. So we have
S = ((x1,y1) - - - (Xm, Ym)) where (z;,y;) ~ D. Our goal is to find v with low risk, where
risk is defined to be

Ry = E(x,y)ND[(v "X y)Q]

We want to find v such that Ry is small compared to miny Ry.

Now we can apply WH algorithm to the data as follows:
(1) run WH on (x1,%1),- -, (Xm, Ym), and calculate wi, wa, ..., Wy,.

(2) Combine the vectors:

and output v. We choose to output the average of all the w;’s because we can prove some-
thing theoretically good about it, which is not necessarily the case for the last vector w,,.

Now let’s state another theorem:

Theorem 3.1

. Ru | uf?
EsR,| < —_—
S[V]_lirelﬁ%nn[l—n+ nm

]

If we divide T on both side of the equation above and if n is chosen to be small, we can see
that % will be close to % when 7' is large. Proof:

There are three observations needed in the proof:

(1):

Let x,y be a random test example from D. Then we have

Z(Wt -x; — y)?

t=1

1
2

V- X — < —

(X y) - m

Proof for (1):

t=1
S W)
t=1
=Y wex—)
t=1
< %Z(Wt x —y)? (convexity of f(z) = x2)

(2):
El(u-x; — yt)2] = Ef(u-x - 9)2]

The above expectation is with respect to the random choice of (x1,41),..., (Xm,ym) and
(x,y). This is because (x¢,y:)and (x,y) are from the same distribution.

(3):

El(wy - x¢ — yt)2] = Ef(w; - x — y)Q]

This is because w; only depends on the first ¢ — 1 samples but doesn’t depend on (x,).

Now let’s start the proof:

Es [RV] = ES,(x,y) [(V "X = y)Q]

1
< E[E Z(Wt -x —y)? (using observation (1))

= S Bl x)]

= %Z E[(wi - x: — y¢)?] (observation (3))
= %E[Z(Wt "X — ytﬂ
1 > (uexe—y)? | u?
< EE[T + ”] (by WH bound)
cxy —)2 ull?
BED LTS WS
m n n
_ 1 Blax -y ul? :
= E[T]+ o (by observation (2))
_ A I
1—n nm

and we have completed the proof.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #19
Scribe: Bianca M. Dumitrascu April 15, 2014

1 Introduction to Probability Density Estimation

1.1 Summary

In this lecture we consider the framework of Probability Density Estimation. In our
previous approaches to learning (Classification, Regression) we are given m labeled points
{(x1,v1), (z2,92), -, (Tm,Ym)} according to a random distribution P, and, disregarding
this distribution, we want to predict with minimal error the label of a new point z. Such
approaches belong to the class of Discriminative Approaches. The name comes from the
fact that, from a probabilistic perspective, we attempt to find the conditional distribution
Pr(y|x) which helps us discriminate between different label values. An alternative is pro-
vided by Generative Approaches which constitutes the focus of our current discussion.

1.2 Intuition

In the generative approach setting, when presented with m labeled training samples (z1,y1),
(z2,92), - -+ (Tm,Ym), we assume the data points x are generated from an unknown distri-
bution P . We aim to model this distribution using the conditional density estimation of
the quantity Pr(x|y). To illustrate this, consider a dataset where the training samples give
information about the distribution of height in a population. The training samples take
the form (height, gender) where the labels y represent the gender. Given the height of a
person we might want to guess the person’s gender. Previously, we might have modeled this
problem using a discriminative approach by looking for a threshold or for a separating hy-
perplane that would give us a decision rule according to which the height of interest belongs
to a man or to a woman. In the new set-up, we are interested in estimating the distribution
of heights separately for women and men such that we can calculate how likely it is for a
new sample to have been generated from either of these distributions. In general, for the
rest of this lecture we assume there is a probability distribution over the values z (in the
example above, we assume there is a distribution of heights for women that is different from
the height distribution of men), and our goal is to model this distribution for the purpose
of learning and inference.

2 Maximum Likelihood

To formalize the above learning setting, consider we are given m samples x1,2a,...,ZTn
drawn from a probability distribution P over a finite domain X (generalizable to the con-
tinuous setting, the assumption over the domain is merely for making calculations easy).
The goal is to estimate P by finding a model that while not too complex, is able to fit the
data. To this end, let Q be a family of possibly infinitely many density functions ¢. It is
among these functions that we will search for the best model to explain our data.

Definition. Let x1,x9,...x,, be m points sampled iid. from a distribution P and let
q € Q be a density function. The likelihood of x1,xs, ..., xy, under g is the quantity:

m

[T at) (1)

i=1

Notice that this quantity is exactly the probability of generating the m independent
samples given that the underlying model is given by the probability density gq.

Example (Coin Toss) Consider flipping a coin with probability ¢ of landing heads.
Consider random variables x which take the value 1 if the coin lands heads, and 0 otherwise.
Then given m coin flips, let the sequence z1, s, ..., T, record the sequence of tosses and
notice that the number of heads is nothing else but h = > | ;. With this notation the
likelihood of the data under ¢ is equal to ¢"(1 — ¢)™ ",

Naturally, we are interested in the probability function ¢ that performs closest to the
real probability distribution P and which makes the likelihood quantity more likely. As we
want to maximize the probability that the sequence x1,xs,...,x; is generated from ¢ we
notice that:

1
max | [a(w:) = maxlog] [a(w:) = max) log(q(w:) = min 3 [~loga(z:)] (2)
where — log ¢(z) is the log loss of ¢ on x and where 1 3" [—log g(x;)] is the empirical risk,
or the average log loss. We use this empirical risk as a proxy for the real expectation. The
true value of the loss or true risk is given by the quantity E,.p[—logg(z)] which can be

iteratively written as:

Eyp|—logq()]

Z—ZP)log q(x

rzeX

=—Y P(a)logq(z) + Y _ P(x)logP(zx) — Y _ P(x)logP(x)
rzeX rzeX rzeX

=-> Px) @ﬂi—ZP) log P ()
zeX q(x

= RE(P|lq) + H(P)

where RE denotes the relative entropy and H is the Shannon entropy.

Equation (3) justifies the intuition that minimizing (2) would give us the probability density
function closest to the true distribution, where the chosen metric is relative entropy. Going
back to the coin toss example, estimating the bias of the coin from the sequence of tosses
is simply finding the term that maximizes the log likelihood, namely ¢ = %

3 Maximum Entropy Formulation

Consider now the related problem of modeling the distribution of interest given multiple

constraints, or features of the data. As before, we are given the samples x1,z9,...,Zm,
generated from some unknown distribution P over a finite set X of cardinality N, with
N > m. In addition, for each such x we are given a set of n functions f1, fo,..., f,, where

fj + & = R. We call these functions features and we think of them as constraints over the
distribution P. The goal is the same as before: estimating P subject to the constraints
induced by the features.

A natural way to approach the problem is to use the additional information encoded into
the feature. To this end, notice that we can approximate the expectations Ep[f;] over the
true distribution for features f; using the empirical average taken over the given samples:

Bplfl = Bl = 3 fi(a) 3)
j=1

The problem can be recast as the problem of finding ¢ such that for all ¢ from 1 to
n, Eq4fj] = E[f;]. As there could be many probability density functions satisfying this
constraint, we will pick the one that minimizes RE(q||U) where U is the uniform distribution
over X:

q = argmingRE(q||U) = ;@:{ ¢(z)In (i(/g]v\)f

=In N+ > g(z)In(g(x))

reX
=InN — H(q) (4)

With these in mind let P be the set of probability densities constrained by their features:

P = {q| Elf;] = E[f;], ¥} (5)
(6)

The probability of interest is therefore the solution to the following formulation, called
mazimum entropy:

maximize H(q)
subject to ¢ € P (7)

Notice however that we can also think about the problem using the maximum likelihood
framework developed in the previous section. To solve this in practice we need to make
the search tractable by restricting the set of density functions Q over which we maximize
(or minimize if we talk about the log loss). One solution to this is to consider the set of
probability distributions ¢:

g(x) ccexp(D_ A, f(x)) (8)

Jj=1

where \; € R. This family of distribution functions is an example of what is often referred to
as an exponential family. For this particular family we will use the name Gibbs distribution.
The maximum likelihood problem becomes:

maximize Zlog q(z;)
i=1
subject to ¢ € Q 9)

where O is the closure of Q.

The following theorem brings together the two approaches stating that they are, in fact,
equivalent.
Theorem 1. Duality between Maximum Entropy and Maximum Likelihood.
Let ¢* be a probability distribution. Then, the following identities are equivalent:
1. ¢* = arg mazq,epH(q),
2. ¢" = arg mar,co > logq(x;),
3. ¢ ePNQ
Furthermore, any of these properties uniquely determine q*

Without proving this result, let us consider the Lagrangian form of the likelihood func-

tion, obtaining the following identity in which ¢(z) for # € X are primal variables and A;
and ~ are dual variables or Lagrange multipliers:

L= a(@)loga(@) + > (Bl = 3 a@)fi(@) +7(D_al@)=1). (10)

reX zeX reX

Setting 5 (j to zero, that is

0=1+logq(z +Z)\ fi(x) +7, (12)

we obtain a closed form expression for ¢(z) that resembles the form of the optimal solution
given by the Gibbs distribution, namely:

ex N fi(x
g(z) = p@;il h) (13)

By letting Z = 7! and plugging it back into L, we notice that the expression simplifies to
be the log likelihood of g¢:

n n

L=> q@) (> Nfilz) —1ogZ) =Y "N Y a(@)fi(@) + > NE[S]
=1 j

reX 7=1 reX j=1

=—logZ + %ZAjij(xi)
7j=1 =1
= %Z(Z i fi(zi) —log Z)

i=1 j=1

1 m
=—>"1 ;
mizl qu(w)

which suggests that the dual problem is to maximize the log likelihood of ¢ as a function
of the Lagrange multipliers .

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture # 20
Scribe: Elena Sizikova April 17, 2013

Last time, we began discussing how to learn a probability distribution D from samples.
Suppose we are given:

1. a large but finite space X with |X|= N
2. D - an (unknown) distribution over X

3. T1,...,T;m ~ D iid samples

W

. f1,... fn features, where each feature is a function f; : X — R

We would like to estimate the distribution D. Using the example of butterfly observance
patterns from before, we could be estimating the distribution of butterfly positions from
position features such as average temperature, average annual rainfall, altitude etc.

We have discussed two possible approaches. The first is to directly find a distribution
q" that maximizes the relative entropy:

P={q |Vj: E,f;] = E[fj]}

q* = argmax H(q) where H is the entropy function
qeP

Above, E4[f;] and E[fj] are defined as before:

m

Byl = Bowglfi(0)] and B = 3" fi(a)

i=1

Analytically, it is usually difficult to find a maximizer for H directly. The second
approach is to use a parametric form, i.e. find a parameter A = (\1,...,\y,) in order to
minimize:

L) =~) n(aa(a) (1)
=1

form of log loss

Above, gy is defined to be:

exp (3, X))
A

ax(z) =
where Z) is a normalization constant. We can rewrite ¢ as:

exp(ga(z))

() = 7

where we use gx(z) := Z A fi(x)
j=1

The usual approach of setting the derivative of gx with respect to A; to 0 does not yield
an easily solvable system of equations, so instead we will use an iterative method of finding

the minimum:

Choose \q
Fort=1,2,...
compute Apyq from A,

i.e. we are trying to find a sequence of A1, Aa, As, ... such that:
tlgélo LX) = 11}1\fL()\)

Above, we have assumed that the features are arbitrary functions, but in practice, we make
the following assumptions (without loss of generality):

VaVy : fi(xz) >0 (2)
Ve o Zf](x) =1 (3)
j=1
It is straightforward to justify why (2) and (3) come w..o.g. Adding a constant to the

feature function does not affect distribution ¢, so we can assume (2). We can also scale the
features to have range: f; : X — [0, 1], without affecting the distribution:

ij(ﬂf) <1

Finally, we create a dummy feature fy defined by:
folx) =1— Z fj(z) which again doesn’t alter ¢
j=1

we obtain (3) for the set of all features.

Consider the difference of loss functions after each iteration of the algorithm:
AL = L(Ai4+1) — L(A)

We will derive a tractable approximation to AL and minimize it, since minimizing the loss
at each step is equivalent to minimizing the overall loss. Let us focus on a particular round

A= X and X = Xy 1. We have:

AL =L(\) = L(A)

:;Zil [(SR (0]
=2 [9x(7i) — gx(2i)] + In <ZN> (4)

m Z

i

For the first term in (4), write the update to A as A; = A;j + a;. Then this term becomes:
1
— > loa(@i) — g (@i)] = ZZ (N fi(5) = X ()
= H Z Z a; fj(xi)
i
= _Za. (1 Zf(xl)>
— 7 \m &=
J i

Vv
empirical average of f;

= — Z o, E[f;]

Now, rewriting the second term:

Zy Seex o (005()

Z Z

_ Z exp (iji‘]fj(ﬂf)) -exp Zajfj(x)

reX
(@)
= aa(@)exp [> a;fi(=)
x J
Note that for each z, the feature values fi(z), ..., fn(z) form a distribution by our assump-

tions (2) and (3). Also >, a;f;() is a weighted average of the a;s. Using convexity of the
exponential function, we have:

ZA’<qu Zf}
—Z“JZ% (2)

q/\ [f]]

Finally, going back to (4), we have:

AL= 25 loales) = gw(a)] +1n (7))

m & Z
(3

< - Z a;B[f;] +In (Z 6aquA(fj))

= _— Z Oszj +In Z €ajEj (5)
J J

where we define Ej = E[fj] and E; := E,, (f;). Notice that we can now optimize the RHS
of (5) directly, by taking partial derivatives:
0 ~ Eje%i
0= — =-E. 4+ —3J9—
aOéj it Zj Ejeai

Notice that if «; is a solution to the above, then so is «; + ¢ for a constant ¢, and so we
choose ¢ so that the denominator ; Eje% is equal to zero. We thus find a solution where

aj =1In (EJ/E]) It follows that the algorithm’s iterative update on round ¢ is:

EIf
At+1,j = Atj +1n (EqAE{]}j)>

we hope that this process converges to the optimal value of A.

Thus, it remains to prove convergence. Define p; = ¢, .
Definition. A function A : { probability distributions over X} — R is an auxiliary func-
tion if it satisfies the following requirements:

1. A is continuous
2. L(At+1) — L(Ae) < A(pr) < 0. (We want < 0 so that the loss is always decreasing.)

3. If for some distribution p, A(p) = 0, then E, [f;] =]:J[fj] for all j. In other words,
peP.

Theorem. p; — ¢*.
We first prove that if an auxiliary function A exists, then the theorem statement holds.

Suppose A is an auxiliary function. We know that L > 0 by properties of In(x) and
definition of L. By the second property of auxiliary functions, the loss L is decreasing and
bounded below by 0, so L(A¢4+1) — L(A¢) — 0, and thus A(p;) — 0 as t — oo.

Now, we consider what happens at the limit of ¢. Suppose p = lim; o p;. Since for all
t, pr € Q, where @ is the closure of @, we have that p € Q. Also, since A is continuous,

A(p) = A(Jlim p;) = lim A(p;) =0

Thus, p € P. But now we have proved that p € P and p € Q, so p € PN Q. As we have
stated (without proof) a theorem that P N @Q = {q*}, it follows that p = ¢*.

(This assumes that the limit lim; ,o p¢ exists. If it does not exist, applying general re-
sults from real analysis (which are slightly beyond the scope of this class), we know that
{pt|t = 0,1,...} belong to a compact subspace of R", and so there is a convergent subse-
quence of p;’s. By the same proof just given, this subsequence must converge to ¢*. Thus,
the only limit point of this subsequence is ¢*. Therefore, by general results from real anal-
ysis, the entire sequence p; converges to ¢*.)

We now have:

AL < *ZO&jEijhl ZeajEj
J J

N OF . . .
=— ZEj In E—j +1In ZE]- using oj = In (Ej/Ej> (6)
j j

Now ,for any distribution ¢,
D E 1 =Eq Y fi(e)| =Eg1] =1
J J

and therefore Ey[fi],...,Ey[f,] forms a distribution. In particular, this means that Ej and
E; form distributions.
So in (6), we find that the second term simplifies to:

In Z Ej =lnl=0
J
Hence we can rewrite (6) in terms of relative entropy:

AL < =RE ((BIA.- Bl || (Bo (). By ()
Now, define:

Ap) == —RE ((ELf)]) || (By(£,)))
where (BIf;]) == (BLAL ... Elfa]) and (By(f;) == (By(f1), - Epl(fa)):

It remains to verify that A is an auxiliary function. Clearly A satisfies properties 1 and 2
(continuity and non-positivity) of auxiliary functions, by properties of relative entropy.
Now, relative entropy is zero iff two distributions are indentical, so A(p) = 0 implies
E[f;] = E,(f;) for all 5, ie. pe P. O

Observe that we have not addressed over how quickly does the given algorithm converge,
but this is out of scope of the lecture.

Next: The above algorithm applies to the batch setting. The following is an outline of
an analogous algorithm for the online setting, that we will explore next time:

Forround t =1,...,T":
Each expert i chooses distribution p;; over X
Master combines the distribution into its own distribution ¢,
Observe z; € X

Evaluate loss = — In g, ()
We want:
T T
Z —Ing(zs) < min Z —Inpyi(z¢) + small regret
7
t=1 t=1

loss of expert ¢

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #21
Scribe: Amy Tai April 22, 2014

1 Online Learning with Log-Loss

1.1 Problem

Recall the online learning problem from last time:
1 € N experts
fort=1,...,T do
each expert ¢ chooses distribution p;; over X
master combines into distribution ¢; over X

observe x; € X
end for

At the end of this learning procedure, we want the following bound on the log-loss of

the master:
_Zlnqt Ty <m1n< Zlnptzxt>+e (1)

t=1

where € is small, and the minimization term is interpreted as the cumulative loss of the best
expert, in hindsight.

1.2 Universal Compression

Before we develop an algorithm that allows us to arrive at the desired bound in Equation
1, we take an aside to motivate online learning with log-loss.

Here is a problem from coding theory: Suppose we have a sender, Alice, and a receiver,
Bob. Suppose Alice wants to send a message to Bob, and suppose the message is comprised
of letters from alphabet X and p(x) is the probability of choosing = € X. Then for messages
of length 1 letter, the optimal way of coding the message is — lg p(z) bits.

But the more interesting problem is extending this encoding to messages of arbitrary
length, x1, x2,.... We could just assume that the x; are independently drawn from the same
distribution p, in which case the optimal encoding simply has length Z —lgp(ay).

However, independence is a poor assumption. In English, for exainple, knowing that
the message so far is “I am goi”, basically tells us that the next letter is going to be n.
However, using the typical distribution of letters over the English alphabet, the strawman
approach would guess that e has the highest likelihood of being the next letter.

From this example, we learn that ideally, we want p; to be the probability of the next
letter, z¢, given the context = (x1,...,x4—1). Denote this context as :17371. If we have such

p¢, then the length of the optimal encoding will be Z —lg pi(zy) bits.

t
However, it is nearly impossible to learn p;, because of the nearly limitless number of
contexts. Instead, we consider a learning algorithm that takes a bunch of candidate methods

for encoding the messages, and combine them into a master method. For example, a sample

candidate method would only look 1 letter back, and have contexts of length 1 letter.
Formally, suppose the ith method does the following: Given xﬁ_l, encodes x; using

—lg pti(x¢) bits, where py; is method ¢’s estimated distribution of x¢, given mtfl.

Then we combine these into the master method, which encodes z; with —lg ¢;(x) bits.

T
Then the master uses a total of Z —lg g1 (x¢) bits to encode the entire message. We want:
t=1
T T
> —lgq(z) <miny —lgpyi(ze) +e
=1 R

Namely, we want the total number of bits used by the master to be at most the number of
bits used by the best method, plus some small €. This is exactly what the online learning
model that we presented in Section 1.1 does.

2 Bayes Algorithm

Now we go back to describing an algorithm for arriving at Equation 1. To derive such an
algorithm, we pretend that the data is random. However, we will see in the next section
that the proof of the algorithm’s bounds holds for any arbitrary data sequence and does not
depend on the randomness assumption. Then suppose 1, ...,z is random and generated
as follows:

e Expert ¢* chosen at random (assume uniformly across all experts). So Pr[i* =i] = %

e Generate z; according to distribution p; ;. Then Prizy2i™t,i* = i] = p;(w;|z} 1)

We also denote py;(z;) = pi(ze|zt™") and g (x¢) = q(x¢|2i™"). Furthermore, by defini-

tion, q(x¢|2i ™) = Prlz|=!™"]. Then we have:

g2t = Prizat™! By definition
= Z Pr{z;,i* = z']:c'ifl] Marginalizing over all experts

i
= Z Prii* =it - Priai* =i, 247 Product rule

i

= wii - pileai™)
7

where we denote w;; = Pr[i* = i\x'i_l]. Then we seek to specify how wy; is updated from
round to round. First, we observe that wy; = Pr[i* = i[)] = Pr[i* =i] = +.

Now suppose that we have w;; and want w;11,. Then:
wyy1; = Pr[i* = i|zl]
= Prli* = iz, 27
_ Pri* =ilaTY - Pr{mit = 4,207
- Prizai!]
wyi - piae i)

= Consider Pr[z;|z!™'] as a normalization
norm

Bayes’ Rule

Because Pr[z;|z}"!] is independent of i, we can consider it as a normalization factor.
Then we observe that we have a simple update algorithm for w;;. We then modify and fill
in the learning problem from Section 1.1 with the following algorithm:

Bayes’ Algorithm
1 € N experts
Initialize wy; = %
fort=1,....,T7 do
each expert ¢ chooses distribution p;; over X

(CC) = Zwt,ipt,i(CU)

Wi, iPe,i(Tt)
norm

Update wi11,; =
observe z; € X
end for

We also observe that this algorithm is very similar to the weight-update online learning

.. Rloss
algorithms that we saw earlier, in which w41, = w“Zf . In this case, loss is the log-loss,

or —Inpg;(zs). If we let B = e~!, then B85 ig precisely the update factor in Bayes’
algorithm.

Now we prove that this algorithm works on any given data x1,...,z7, and achieves the
log-loss bound presented in Equation 1.

3 Bounding Results of Bayes’ Algorithm

First, we extend the definition of ¢ so it is defined for entire sequences 1, ..., z7r.
Define:
q(z1) = q(@1) - qlxala1) - qaz|za, 1) . ..

Similarly, define:
zf) = Hpi(l’t!xﬁ_l)
= H PrlzT)i* =]
Then:
- Z Ing(xy) = — Z In g(ze|z}™1)
t t
= —lan(act\a:ﬁ_l)
t

= —Ing(z])

Similarly, — Z Inpsi(x¢) = —Inpi(x]). Then:
t

q(zT) = Priz1] ZPT i* =] - PrizT|z* =]

1
=N Zpi(%T)
i
1
= Log-loss of ¢ = —Ing(z?) = — ln(ﬁ sz(:):r{))
i

1

< ~inpi(a]) Soned) > piad)
Because this last inequality is true for all 4, it must be true that the Log-loss of ¢

< min(—Inp;(z7)) + In N = min(— Z Inpti(z¢)) + In N, which is exactly as we desired in
1 1

t
Equation 1.

We note here that Alice could have used an offline algorithm to determine the best
encoding of a message. Namely, Alice runs all i methods on her message, determines the
encoded message with optimal length, which would be min(— Z lg py,i(x¢)) bits, and sends

(2

this across to Bob, along with a specification of the method shet used for the encoding. The
encoding of the message takes lg N bits, if there are N methods. Hence, using an offline
method, Alice achieves the same bounds on the length of her optimal message. However,
using the online method, Alice can encode the message as it comes in a stream, and does
not have to store as much data for her calculations.

We also note that we could have used a different prior probability other than the uniform
distribution. We could use Pr[i* = i] = m;, instead of % Then the only modification we
need to make to the original Bayes’ algorithm is the initialization of the weights, which we
change to wi; = m;. Then the bound becomes

T

—Zlnqt Ty <m1n< Zlnp“wt lnm)

t=1

4 An Example

Suppose X = {0,1}. Expert p predicts 0 with probability 1 — p and 1 with probability p.
We have an expert for all p € [0, 1], hence we have infinite experts.

t—1 .
ifay =1
Hence wy), = ﬁ H {11) _, oth(terwise' Suppose there are h 1’s so far. Then wy, =

ph(l_p)tflfh
norm :

1
h+1
Then ¢q; = E Wy P = W, -pdp = ——————. This is known as Laplace smoothing.
qt t,pp /0 t,ppp (t—1)+2 p g

P
But in this case, N = 0o, so the In N from Bayes’ algorithm is not helpful. In a later
lecture, we will get general bounds that can be applied to this particular case.

5 Switching Experts

Next time, we will cover a new learning model. Hitherto, we have assumed that there is
one single, best expert. But this is not always a reasonable assumption. Instead, this new
model assumes that the best expert switches based on data that the model sees, and this
may change as time goes on. For example in the following diagram, the best expert changes
during each epoch:

Best Expert: Expert 5 41 17 98

0

We will also assume that the number of switches is bounded.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture 22
Scribe: Nicolas Crowell April 24, 2014

1 Bayes’ algorithm review

Last lecture, we derived an on-line algorithm for estimating a probability distribution for
a sequence of elements. We developed the algorithm as a general framework that can
incorporate and choose among distinct individual methods for estimating distributions, so
as to take into account the diversity of problem-specific methods that exist for estimating
probability distributions in particular settings.

To repeat the formal problem setting: we are given a set of methods for estimating a
probability distribution over a space. We often call these methods “experts”. We observe
a sequence of elements from the space (which may be chosen adversarially), and estimate
on-line a probability distribution based on everything we’ve seen so far. Our goal is to
develop an on-line algorithm that estimates a distribution by incorporating the outputs of
the predetermined set of estimation methods. We will want the algorithm to perform almost
as well as the best single expert on the observed sequence of elements, with a corresponding
theoretical bound proving this “almost as good” comparison.

In this setting, we will measure performance by minimizing log loss. Given a probability
distribution and an observed element, we define loss to be the negative of the logarithm of
the probability of the observed element under the probability distribution, i.e. —logp(z).

With these goals in mind, we derived the Bayes algorithm, together with the following
performance comparison bound bound:

—Zlnqt xy) (Zlnplt €Ty) +In N, V experts i (1)

where ¢; is the probability distribution chosen by Bayes’ algorithm at time ¢, p;; is the
probability distribution chosen by expert ¢ at time ¢, and N is the number of experts.
We also showed that the In N term corresponded to the special case of a slightly more
general derivation, where instead of assuming a uniform distribution over the experts at the
beginning of the derivation, we use a different distribution that incorporates prior knowledge
about the different choices of expert, where m; is the new prior probability of expert i. The
more general bound was then the following:

—Zlnqt (x¢) < Zlnpm xy)) —Inm;, V experts 4 (2)

Switching experts

A more general problem

Now we consider a slightly more general problem: what if different methods of estimating
the distribution perform better during different parts of the sequence? For example, for

Figure 1: An observation

sequence generated by 4

experts respectively choos-
Expert5 = Expert17 - Expert 3 - Expert 4 i]gg proba'bility distribu-
- . < > tions at different parts of
' ' ' " the sequence.

the first 83 time steps of the on-line sequence, expert 1 might have the best guesses, while
expert 2 might be more accurate during the next 47 observations.

In the derivation of the bound for Bayes’ algorithm, we pretended that the data was
generated randomly according to some expert’s distribution at every time step, and the
expert whose distribution was followed was chosen randomly at the beginning of the process.
Now we change the model by further pretending that at arbitrary times ¢, the chosen expert
is switched to a different expert. In this new setting, algorithms that do comparably well
to the best single expert are no longer satisfying: we want to do almost as well as the best
switching sequence of experts.

Our original motivating example from coding theory hypothesized that someone wanted
to send a message using as few bits as possible, so they needed to find an encoding that
would take advantage of the implicit probability distribution of the possible elements of the
message to minimize the number of bits used to encode the message. In this new setting, we
can imagine that the content of the message takes several different forms. For example, the
first part of the message might be written in English, and the second part of the message
might be written in Spanish, which presumably have different distributions over characters.
Generalizing the example even further, the rest of the message might switch between sending
pictures, and then maybe music, or even completely random bits. The point is that these
different kinds of message content will likely have very different distributions of elements,
so we will want to switch between different methods of encoding in order to take advantage
of each distribution separately.

A strategy for solving the switching experts problem

So we want to do almost as well as the best switching sequence of experts, and we already
have a way to do almost as well as a single best expert. Our idea for an algorithm to
address this new problem setting will be to instead consider “meta-experts” representing a
switching sequence of base experts. A meta-expert makes predictions based on which base
expert it considers to be the “true” expert at a given time. Specifically, we can have a
meta-expert for every switching sequence with k switches. Then we could just apply Bayes’
algorithm to this huge family of meta-experts built from the N base experts. We can count
these meta experts:

T+k
M £ # of meta experts:Nk“(+ >

k

And if we want to plug this size into our error term in the original bound for Bayes’
algorithm with a uniform prior, we just need to compute In M:

InM=~InN+klnN+kln(T/k)~ InN + [k(In N + InT)] (3)

The inner term (In N + In7"), which is multiplied by the number of switches k, con-
ceptually corresponds to paying a price in loss for every time a meta-expert switches base
experts, in addition to the original cost of Bayes’ algorithm.

Making meta-experts tractable

The problem with this approach is that the number of meta-experts is exponential in N. We
need a computational trick that will allow us to consider the very large space of meta-experts
without computationally interacting with each one directly.

Another inelegant part of our meta-expert idea as stated is that it uses an external
parameter, namely the precise number of times that the base expert switches. To deal with
both this rather arbitrary parameter and the computational problem posed by the large
number of meta-experts, we will take advantage of the flexibility of Bayes’ algorithm, which
works for any prior distribution over the space of experts, along with a clever choice of prior
distribution.

Let’s think of a meta-expert as a vector e of T elements representing which base expert
is predicting at time t.

ee€{l,....,.N} eeM=2{1,... N}¥

Every meta-expert corresponds to a vector in the space M. Notice that we’ve represented
every possible meta expert, including one that switches at every time step! This seems
undesirable, as such a meta-expert represents a very complicated way of generating data.
Reflecting our general preference in machine learning for simpler hypotheses, we will want
to focus on “nice” blocky sequences, where the meta-expert doesn’t switch very often. To
embody this preference, we can weight the prior distribution over meta-experts to give
higher weight to meta-experts with fewer switches.

To find such a prior, we will come up with a random process to generate meta-experts
in such a way as to embody the simplicity preference. The random process will then exactly
define our prior distribution over the meta-experts, and we can write:

Prle* = e] = m(e)

where m(e) is the probability of a meta-expert under the random process, and e* is the
chosen “true” meta-expert.

A prior distribution over meta-experts

The basic heuristic we want to follow is that a higher number of switches should correspond
to a lower probability. Our random process will work by generating one component of a
vector representing a meta-expert at a time. Let the initial component be chosen uniformly
at random.

e] = uniform = Prle] =1i] =1/N

And the key step is how to find component ¢+ 1 in accordance with our heuristic, which
is that we want consecutive components to be the same with relatively high probability:

. e; with probability 1 — «
€ =
i+ some other expert chosen uniformly, with probability «

Figure 2: We randomly generate the
generating meta-expert via a Markov
chain of base experts.

Given this, we can compute the corresponding conditional probability that some base
expert is the true expert at time ¢ + 1 given the identity of the true expert at time t:

l—o ifef, =¢f
Prle;,q | ef] =
letq | ef] {a/(N —1) otherwise

This means that we defined a Markov chain of base experts, which we illustrate in Figure
(2).
So meta-experts are defined by a path in the Markov sequence graph, and their prob-
ability is just the product of the edge probabilities. This defines our prior distribution on
meta-experts, so we can now analyze our original bound.

Analyzing loss of meta-expert algorithm

Say that some meta-expert e has k switches. Then we can compute the prior probability
that it is the generating expert, and thus compute the error term in our original bound on
the error of Bayes’ algorithm compared to any expert, including the best one:

—In(m(e)) = —In

am (5 1)k (- a)T“f]

=InN+kln

F(T—k—1)In(1/(1 - a))

If we “approximately minimize” this with respect to «, we find o = k/(T —1). Then we
have:
—In(m(e)) =InN +k(InN +1nT)

which is (roughly) the same bound as Equation (3), which was for the space of all meta-
experts with exactly k experts. It’s a nice result that in moving from considering only
experts with precisely k switches between base experts to those with any number of switches,
we can still bound the loss in terms of the number of switches made by the generating expert!

Efficient implementation of meta-expert algorithm

The number of meta-experts with any number of switches is much larger than just those
with k& switches for some k, so we need to find a way of dealing with all of them at once
without performing computation directly proportional to the population size.

Recall that at every time step of Bayes’ algorithm, the “master” receives probability
distributions from each expert and combines them into a single distribution before observ-
ing the next data point. The combined distribution is produced by weighting each expert’s
distribution and normalizing. The weights are updated every round by multiplying each ex-
pert’s old weight by the probability of the observed data point under its chosen distribution
for that round.

Before diving into how Bayes’ algorithm will work with meta-experts, we define some
notation and make explicit what is signified in the terms of the problem by a few specific
random events.

2 (21,...,74) the sequence of observations up to time ¢ (4)

t
L1
Prle* = e] = w(e) the prior probabilty that e is the generating meta-expert (5)

*

Pr[z;|zt" !, e* = e] the prediction of e on x4, i.e. the prediction of base expert e; (6)

Prlzgfay ™ ef =i £ pi(aelay™) (7)

(prediction of base expert selected by generating meta-expert at time t)

Also recall that when we derived/analyzed Bayes’ algorithm, we pretended that one of
the experts is chosen at the beginning of the observation sequence by a random process, and
that at every time step the observed data point is generated according to the generating
expert, which was randomly chosen to begin with. We also define the probability distribu-
tion produced by the master to be the probability of the next data point under this pretend
random process given all of the observed data so far, which is implicitly marginalized with
respect to the experts, one of which was randomly chosen to be the “generating” expert.

g(ae| 2y7") = Prlag | 277
N
= Z Prlz;, ef =i|2i7] (marginalization)
i=1

tfl]

=Prle; =i |27l - Przy | ef =i, 2t (defn. of conditional probability)

vt pi(x; | =i

We’ve separated the two quantities above to deal with them separately below. The
probability v ; is the probability of the event that the ¢-th generating expert is base expert
i, given all of the observations through x;_1, which can also be described as the distribution
of base experts at time t given the previous observations. The probability p;(x; | xifl) is
the distribution of observations at time ¢, given all of the previous observations and the
identity of the generating base expert at time .

First, we examine v;;. At the first time step, we have v; ; = Pr[e] = i] = 1/N. For time
step t + 1, we will first explicitly marginalize with respect to the experts at the previous

time step.
N
Vi, vegrs = Prlefy, =i|af] = Prlef,, =i,ef = j|a]

j=1

N

= Prlefyy =i|ef = j, af] - Prlef = j|af] (8)
j=1 (B) (4)
Note that (B) is defined directly by the Markovian process we defined early:

11—« wheni=7j
Prlejy =i|¢f = j,al] = Prlejyy = i| ef = j] = T
a/(N — 1) otherwise

Diving into (A):

-1y _ Prloe | = jiaf™) - Prlej = .7

Prle; = j | x¢,x —
! ! Prlz | 2]

_ vy opyee |yt

q(ze | 27

(Bayes’ rule)

9)

Given these simplifications for the quantities (A) and (B), we can write a computable
expression for viy1

t—1 C
vr i -milxs | x 1—awheni=j
v = 30 pj(ee | 21).{ (10)

r gz | 2t a/(N — 1) otherwise
So we see that vey1,; can be computed using the sum of N terms from Equation (10).

This means we can compute v, for all i € {1,..., N} in O(N?) time. In fact, we can

algebraically simplify to compute this in O(N) time without much more work:

t—1 L
e vy ipi(Te | 1—awheni=)
vij=Prlef =j|af7"] =)]<t|t_11). :
qe(xe | 277) a/(N — 1) otherwise

J

(% «
—N_1+<].—OZ—N_1>Q (11)

where ¢; is the quantity (A), from equations (8) and (9), and is the posterior probability of
the generating expert being base expert ¢ at time ¢. This means we can compute the weight
update for one of the experts at one time step in constant time, so each time step will only
need O(N) computation to update a set weights over the base experts, even though there
are a huge number of meta-experts.

2 Stock investment, game theory

How do you choose to apportion money between different investment instruments? We will
set up some notation and a simple mathematical framework to be expanded upon during
the next lecture.

There are N stocks. Every “day” (pick your favorite unit of time), you need to decide
how to reapportion wealth among the stocks during the morning. At the end of each day
t, we find out the price shift for each stock i:

price at end of day ¢t

i pu—
pi(3) price at beginning of day ¢

For example, if stock i goes up 5% on day t, then p;(i) = 1.05.

Let S; be our total wealth at the start of day ¢, and let S; = 1. Let wy(i) = the fraction
of our wealth which we choose to invest in stock 7 on day ¢t. Then our notation allows us to
write the amount of our wealth at the beginning of day ¢ invested in a particular stock 7 as
Sy - wy(i), and the corresponding amount for the end of day ¢ is Sy - wy(7) - pe(7).

Our total wealth at the end of day t is the following:

N
St+1 = Z Stwt(i)pt(i) =5t (Wt : I)t)
i=1

And at the end of T time steps:

T

T
Sr=S1-[[(wi-pe) = [(wi - po)

t=1 t=1

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #23
Scribe: Kevin Lee April 29, 2014
1 Recap

Last lecture, we briefly introduced the setup for portfolio selection. We assume that every
time period, there are N stocks available to us, and we want to figure out how to best
allocate our money among the stocks at the beginning of every investment period. We

define:))
price of stock i at end of day t

pe(i) =

~ price of stock i at start of day ¢

as the price relative which is how much a stock goes up or down in a single day.

S; denotes the amount of wealth we have at the start of day ¢t and we assume S; = 1. We
denote wy(7) to be the fraction of our wealth that we have in stock i at the beginning of day
t which can be viewed as a probability distribution as Vi, w:(i) > 0 and >, wy(i) = 1. We
can then derive the total wealth in stock i at the start of day ¢ to be Syw¢(7) and the total
wealth in stock i at the end of day ¢ to be Siw(i)pi(7). We can use a simple summation
over the 7 stocks to find our total wealth at the end of day t as:

N
St+1 = Z Stwt(i)]?t(i) = St(wt : pt)
i=1

The total wealth after T time periods is then:

T
Sri1 = [[(we - p)

t=1

2 Portfolio Selection

Our goal is to make as much money as possible. This is done by maximizing HtT:1(Wt “Pt)-
This is the same as maximizing the log of the expression, which is Z?:l In(wy - p¢). This
is also the same as minimizing the negative of the log of the expression, Zthl —In(wy - py).
We thus notice that maximizing wealth is equivalent to minimizing an expression that looks
like log loss, so we can view investing as an online learning problem:

fort=1,...,T:
learner/investor chooses w;
stock market /nature chooses py
loss = — In(wy - py)

In each round, the learner chooses w; which is how he invests money, and the stock market
responds with each stock going up or down that day as represented by p;. Our goal is then
to minimize the cumulative loss.

A natural starting point is to aim to do almost as well as the best individual stock.
We can do this by massaging our problem so that we can apply Bayes algorithm which is
designed around log loss. We define the Bayes algorithm outcome space to be X = {0, 1}
and choose C' > p.(i) Vt,i. For each timestep t of the algorithm, each expert i needs to
come up with a probability distribution over the outcome space X by coming up with
a probability for outcome 1, p;;(1), and trivially p;;(0) = 1 — p;;(1). Let the outcomes

= 1 Vt. We can then let p;;(1) = pt—éf). Applying Bayes algorithm will give us back
a weight vector wy;, and we use these weights for investing by setting w(i) = w;. Now

observe that: (0
B WeiPe\t) — Wi - Pt
() = a(1 E weipri(1) = C =

i

The bound on log loss guaranteed by Bayes algorithm says:

—Zlnqt xt) < mln—Zlnptz) +1In N

_Zln(wtc n—Zl p” +InN

fZln “Pt) <m1n721npt)+InN

This essentially says:
— In(wealth of the algorithm) < — In(wealth of best stock) + In N

We then remove the logs to find:

1
wealth of the algorithm > N(Wealth of best stock)

The algorithm is actually equivalent to the “buy and hold” strategy where on day 1 we
invest % of our wealth into each stock and then just leave it there. Since this means we
will invest % of our wealth into the best stock, the bound on the wealth of the algorithm
naturally says that we will make at least % of the wealth of the best stock, even in the
case that we lose all our money in the other stocks. When we invest our money, ideally
we want the money to grow exponentially at the rate ¢! where c is a constant that is to be
maximized. The bound on the wealth of the algorithm implies that the constant ¢ that we
get from the algorithm will be asymptotically at least as good as that of the best underlying
stock.

3 Constant Rebalanced Portfolio

Instead of comparing with the best individual stock, we now look towards comparing with
constant rebalanced portfolios (CRP). In a CRP, we decide ahead of time on fixed allocations
among the different stocks and, everyday, rebalance the different portfolios so that they
always have those fixed allocations. The simplest kind of CRP is a uniform CRP (UCRP)
where everyday we rebalance equally among the N stocks. CRP is a very common strategy,
as it is natural to constantly rebalance your portfolio so that you have, for example, 60% in

day | stock 1 price | stock 2 price | stock 1 price relative | stock 2 price relative
1 1 1 1 0.5

2 1 0.5 1 2

3 1 1 1 0.5

4 1 0.5 1 2

5 1 1 1 0.5

Figure 1: Stock 1 and 2 behavior

stock, 30% in bonds, and 10% in cash. If stocks go up and bonds go down, then CRP will
have you sell stock to buy more bonds. This thus encourages buying low and selling high.

We present a concrete example where CRP is a good idea. Imagine there is stock 1 and
stock 2 that both start at $1. The price of stock 1 never changes, and the price of stock 2
is $1 on odd days and $0.50 on even days. The behavior of these two stocks is depicted for
5 days in Figure 1.

The buy and hold strategy will never earn money when applied to these two stocks. We
then look at how UCRP performs:

S =1
1 11 3
p— 7'1 —_— — | = Pp—
Sa 51(2 +2 2) S 1
1 1 3 3 3
53—52(5'14—5-2)_5’2-5_51.1.5

More generally, if we have Sy on day t then Sy = S - % . % =5 %. Thus every two days
our wealth grows by 12.5%, so it grows exponentially.

4 Universal Portfolio Algorithm

We now return to making an algorithm to try to do almost as well as the best CRP instead
of the best individual stock. Let us say that each CRP is a vector b = (b1, ..., bx) which
forms a valid distribution over the N stocks, and using the CRP means using w; (i) = b;. We
then would want to reapply Bayes algorithm as we previously did, but instead of splitting
wealth amongst stocks, we split it amongst all possible CRP’s. There are uncountably
infinite possible CRPs, so for each CRP, b, we give it an infinitesimally small piece of our
wealth, du(b). At the start of day ¢:

t—1
wealth in CRP b = [(b - ps)du(b)

s=1

Hts;ll(b - ps) is how much wealth we would have at the start of day t if we had started
with $1 invested in the CRP, and du(b) scales this wealth down as we only in fact invested
an infinitesimally small amount into the CRP. We can simply integrate over the set of all
possible CRP’s b to find the total wealth at the start of day ¢:

t—1
total wealth = S, = /H(b - Pps)du(b)
s=1

3

Figure 2: Simplex

We can use another integral over the set of all possible CRP’s b to find the total wealth
invested in stock ¢ at the start of day ¢, where b; is the fraction of our wealth in i, as:

t—1

total wealth in stock i = /bi H(b - ps)du(b)
s=1

We can then calculate the fraction of our wealth we need to invest in stock ¢, wy(7) as:
_ JuIIZi(b - ps)du(b)
JTLZ1 (b pe)dp(b)

Using this w¢(i) to rebalance our portfolio at each time step is known as the Universal
Portfolio (UP) Algorithm or Cover’s algorithm.

5 Bounds on UP Algorithm

Theorem 1. Wealth of UP algorithm > (W)(Wealth of best CRP)

(

still says the rate of exponential growth of this algorithm will eventually match the rate of
exponential growth of the best CRP.

may appear to be a small fraction, it holds for any stock market and

We will proceed to prove a slightly weaker version of this theorem in two steps. Let
the best CRP be b*. Fortunately in our algorithm, we put part of our money into b*, but
unfortunately we only put in an infinitesimally small amount. We note that the CRP’s are
essentially just probability vectors and so they live in the space of all probability vectors
which is known as the simplex. We illustrate this simplex in the case that we have 3 stocks
in Figure 2. b* is just a point in the simplex and we consider the neighborhood around b*,
which consists of CRPs that are close to b*, as illustrated by the inner shaded triangle in
Figure 2. We then want to argue two points. In step 1, we want to argue that all of the
CRPs in the neighborhood of b* attain wealth close to b*. Then in step 2, we want to show
that the overall size of the neighborhood is large. Let us define

A ={all CRPs} ={b:0; >0,> b =1}

and we define the neighborhood of b* as:
NDb)={1-a)b*"+az:zc A}

where « is a small positive number and we are essentially mixing b* with some other
distribution z.

Proof. Step 1:
Let us say that b is one of the points in the neighborhood of b* and so
b = (1 — a)b* + az. We can derive the amount of wealth that b gains at time ¢ to be:

b'pt: (].*Oé)b*'pt+0éZ'pt
z - p; > 0 as price relatives are never negative. Thus, after T" timesteps:

wealth of b > (1 — a)” (wealth of b*)

Proof. Step 2:

Vol(N(b*)) = Vol({(1 — a)b* + az : z € A})
where Vol() denotes volume. We now note that (1 — «a)b* is a fixed quantity, so the total
volume will be the same if we shift the simplex and remove this quantity:
Vol(N(b*)) = Vol({az : z € A})
= Vol(A) - a1

The last equality holds as the simplex is an N — 1 dimensional object and each dimension
is being scaled by a. d

We can now combine the results of the two steps to show:

wealth of UP algorithm > (fraction of CRPs in N(b*))(minimum wealth of any CRP in N(b*))
o1 — a)T (wealth of b*)

N
e(T +1)N-1

v

A\

(wealth of b*)

where the last inequality holds if we choose & = ~—i—. Thus, we have proved a slightly

TH1
weaker version of the theorem.

6 Game Theory

Game Theory is a field that studies games and is really about interactions between players
of all kinds. There is a natural connection to learning, as in learning there is often an
interaction between a teacher and a student or between a learner and nature. For our
purposes, a game is defined by a matrix. The game matrix for rock, paper, scissors is
shown in Figure 3. The rows of the matrix are actions that the row player Mindy can take,
and the columns are actions that the column player Max can take. Mindy chooses one of
the rows, and Max chooses one of the columns. The entry that is defined by these choices

Figure 3: Rock, Paper, Scissors Game Matrix

in the matrix is the loss suffered by Mindy. Max tries to maximize this loss while Mindy
tries to minimize it. In general we will always have a game matrix M. To play, Mindy
chooses row i, and Max chooses column j. Individual rows ¢ and columns j are called pure
strategies. The corresponding entry in the matrix M (i, j) is the loss suffered by Mindy. In
principle, any two-person zero-sum game can be put into this form.

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture #24
Scribe: Jordan Ash May 1, 2014

1 Review of Game Theory:

Let M be a matrix with all elements in [0, 1]. Mindy (called the row player) chooses row i
while Max (called the column player) chooses column j. In this case, from Mindy’s expected
loss is:

Loss = M(i, j)

Alternatively, Mindy could select a move randomly from a distribution P over the rows
and Max could select a move randomly from a distribution @ over the columns. Here, the
expected loss for Mindy is:

Loss =Y P(i)M(i,j)Q(j) = P"MQ = M(P,Q)
i7j
P and @ are called “mixed strategies,” while ¢ and j are called “pure strategies.”

2 Minimax Theorem:

In some games, such as Rock, Paper, Scissors, players move at exactly the same time. In
this way, both players have the same information available to them at the time of moving.
Now we suppose that Mindy plays first, followed by Max. Max knows the P that Mindy
chose, and further knows M (P, Q) for any) he chooses. Consequently, he chooses a @) that
maximizes M (P, Q). Because Mindy knows that Max will choose) = argmaxg M (P, Q)
for any P she chooses, she selects a P that minimizes maxg M (P, Q). Thus, if Mindy goes
first, she could expect to suffer a loss of minp maxg M (P, Q). Overall, it may initially seem
like the player to go second has an advantage because she has more information available
to her. From Mindy’s perspective again, this leads to:

in M (P < mi M(P.
max min (,Q)_m};nmgx (P,Q)

So Mindy playing after Max seems to be better than if the two play in reverse order.
However, John von Neumann showed that the expected outcome of a game is always the
same, regardless of the order in which players move.

v = maxmin M(P,Q) = min max M(P,Q)

Here, v denotes the value of the game. This may seem counterintuitive, because the
player that goes second has more information available to her at the time of choosing a
move. We will prove the above statement using an online learning algorithm. Let:

P* = arg mlgn mgx M(P,Q)

Q" = arg mgx min M(P,Q)

Then,

VQ : M(P*,Q)
VP : M(P,Q")

(1)
(2)

In other words, for some optimal P*, the maximum loss that Max could cause is bounded
by v and Mindy’s loss is at least v, regardless of the particular strategies they choose.

<w
>

If we had knowledge of M, we might be able to find P* by employing techniques from
linear programming. However, we don’t necessarily have this knowledge, and even if we did,
M could be massively large. Further, P* applies here only for opponents that are perfectly
adversarial, so it doesn’t account for an opponent that might make mistakes. Thus, it makes
sense to try to learn M and @ iteratively.

We do this with the following formulation:

fort=1,...,T
Mindy chooses P;
Max chooses @Q; (with knowledge of P)
Mindy observes M (i, Q¢)Vi
Loss = M (P, Q¢)
end

Clearly, the total loss of this algorithm is simply Zthl M (P, Q). We want to be able
to compare this loss to the best possible loss that could have been achieved by fixing any
single strategy for all T" iterations. In other words, we want to show:

ST M(Py, Qr) <minp Y21 M(P,Q;) + [Small Regret Term]

2.1 Multiplicative Updates

Suppose we use a multiplicative weight algorithm that updates weights in the following way,
where n is the number of rows in matrix M:

pelo1) (3)
Pi(i) = Vi (4)
Pi)8M62)

P,
b (i) = Normalizing Constant
Our algorithm is similar to the weighted majority algorithm. The idea is decrease the
probability of choosing a particular row proportionally to the loss suffered by selecting that
row. After making an argument using potentials, we could use this algorithm to obtain the
following bound:

T T

> M(P, Q) < ag m;nZM(P, Qq) + cgln(n) (6)
t=1 t=1
in(%) !
where ag = 4~ ﬁ and cg = 5

2.2 Corollary

We can choose (8 such that:

’ﬂ \

T T
Z (Pr,Qr) <m TZ (P,Q¢) + Ar (7)

where A = O(ln}n)), which goes to zero for large T. In other words, the loss suffered
by Mindy per round approaches the optimal average loss per round. We’ll use this result
to prove the Minimax theorem.

2.3 Proof

Suppose that Mindy uses the above algorithm to choose P, and that Max chooses Q; such
that Q; = arg maxg M (Pr,)), maximizing Mindy’s loss. Also, let:

(8)

'ﬂ \

Xi: (9)

’ﬂ \

We also know intuitively, as mentioned before, that maxg minp M (P, Q) < minp maxg M (P, Q),
because as stated earlier, the player that goes second has more information available to her.

To show equality, which would prove the Minimax theorem stated earlier, it’s enough to
show that maxg minp M (P, Q) > minp maxg M (P, Q) also.

min max PTMQ < max PT M
sinmax PTAQ < max PTMQ

By definition of P:

T
1
— max — PIM
i T; TMQ

By convexity:

T
1
< — max PI'Mm

By definition of Qy:

1 I
= T ZPtTMQt
t=1

By corollary 2.2:

1 X
<min— Y PTM A
<mpp 13- PTMQ 8

By definition of Q:
= min PTMQ + Ar
< mgx mgn PTMQ + Ay
The proof is finished because Ar goes to zero as T gets large. This proof also shows
that:
mgxPTMQ <v+Ar

where v = maxg minp PTMQ. If we take the average of the P, terms computed at each
round of the algorithm, we get something within Ap of the optimal value. Because Ar goes
to zero for large values of T', we can get closer to the optimal strategy by simply increasing
T. In other words, this strategy becomes more and more optimal as the number of rounds
T increases. For this reason, P is called an approximate min max strategy. A similar
argument could be made to show that @ is an approximate max min strategy.

3 Relation to Online Learning

In order to project our analysis into an online learning framework, consider the following
problem setting:

fort=1,...,T
Observe x; from X
Predict y; € {0, 1}
Observe true label c(z;)
end

Here we consider each hypothesis h as being an expert from the set of all hypotheses
H. We want to show that:

number of mistakes < number of mistakes of best h + [Small Regret Term]

We set up a game matrix M where M (i,j) = M(h,z) = 1 if h(z) # c(z) and 0 other-
wise. Thus, the size of this matrix is |H| - |X|. Given an z;, the algorithm must choose
some FP;, a distribution used to predict x;’s label. h is chosen according to the distribution
P, and then ¢ is chosen as h(z;). @ in this context is the distribution concentrated on z;
(is 1 at x; and 0 at all other z € X). Consequently:

T
ZM(Pt,JUt)
t=1

= E[number of mistakes]

T
< mi
< m}in; M (h, z¢) + [Small Regret Term]

Notice that miny Zle M(h,z) is equal to the number of mistakes made by the best
hypothesis h. If we substitute M (P, x¢) with >, Py(h)-1{h(x;) # c(x¢)} = Pr[h(z) # c(z)]
above, we obtain the same bound as was found in the previous section.

4 Relation to Boosting

We could think of boosting as a game between the boosting algorithm and the weak learner
it calls. Consider the following problem:

fort=1,...,T

The boosting algorithm selects a distribution D; over the training set samples X

The weak learner chooses a hypothesis h;
end

Here we assume that all weak learners h; obey the weak learning assumption, i.e. that
Pr y)~n,[Pt() # y)] < % —~ and v > 0. We could define the game matrix M’ in terms
of the matrix M used in the last section. However, here we want a distribution over the X
samples rather than over the hypotheses, so we need to transpose and normalize M.

M =1-MT

In other words, M'(i,j) = M'(x,h) = 1 if h(x) = ¢(x) and 0 otherwise. Here, P, = Dy, and
Q. is a distribution fully concentrated on the particular h; chosen by the weak learner. We
could apply our same analysis from the multiplicative weights algorithm:

Sy M/ (P hy) < ming £ 30 Mz, hy) + Ar
Also,

M'(Fy, hy) = -, Pr(z) - H{h(z) = c(x)} = Prih(z) = c(x)] = 5 +7

N[

Combining these facts:

1 T
2 ST;)
T
<m
< min Z "(z, hy) + Ap
Rearranging,
LS TM b > 24y = Ap > L
Tt:l) =5 Y T=5

which is again true because A approaches 0 as T gets large. In other words, we have found
that over % of the weak hypotheses correctly classify any x when T gets sufficiently large.
Because the final hypothesis is just a majority vote of these weak learners, we have proven
that the boosting algorithm drives training error to zero when enough weak learners are
employed.

	Lecture #1
	Lecture #2
	Lecture #3
	Lecture #4
	Lecture # 5
	Lecture #6
	Lecture #7
	Lecture #8
	Lecture #9
	Lecture #10
	Lecture #11
	Lecture #12
	Lecture #13
	Lecture #14
	Lecture # 15
	Lecture #16
	Lecture # 17
	Lecture # 18
	Lecture #19
	Lecture # 20
	Lecture #21
	Lecture 22
	Lecture #23
	Lecture #24

