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Preface
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...In nature, where chance also seems to reign, we have
long ago demonstrated in each particular field the
inherent necessity and regularity that asserts itself in
this chance. "

F. Engels

1\ vust concourse of events and phenomena occur in the world around
1111, The events are interrelated: some are effects or outcomes of others
wIII1'h are, in turn, the causes of still others.' Gazing into this gigantic
whirlpool of interrelated phenomena, we can come to two significant
Iuuclusions. One is that there are both completely determined (uniquely
dl'lincd) outcomes and ambiguous outcomes. While the former can be
1'II'I'iscly predicted, the latter can only be treated probabilistically. The
wl'IInd, no less essential conclusion is that ambiguous outcomes occur
11I111'h more frequently than completely determined ones. Suppose you
I'll'so; 11 button and the lamp on your desk lights up. The second event
II hi' lump lights up) is the completely determined result of the first event
II hi' button is pressed). Such an event is called a completely determined
lilli' Takc another example: a die is tossed. Each face of the die has
II .hlfcrcnt number of dots. The die falls and the face with four dots ends
III' III thc top. The second event in this case (four dots face-up) is not the
I «mplctcly determined outcome of the first event (the die is tossed). The
IIII' fucc may have contained one, two, three, five, or six dots. The event
III nppcarance of the number of dots on the top face after a die is tossed
j~ 1111 example of a random event. These examples clearly indicate the
"Inl'rl~nce between random and completely determined events.

WI' encounter random events (and randomness of various kinds) very
11111'1\, much more frequently than is commonly thought. The choice of
till' winning numbers in a lottery is random. The final score of a football
III!ltch is random. The number of sunny days at a given geographical
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6 Preface

postulated. Little by little they discover that there are patterns hiding
behind the seeming chaos of the random world, and these patterns can
be used to get their bearings in reality." There are three distinct stages
here: lack of understanding of the random at first, then mere confusion,
and finally a correct viewpoint. Let us forget small children for a time
and try to apply this to ourselves. We shall have to recognize that fre­
quently we stop at the first stage in a simple-minded belief that any
outcome can be precisely predicted. The misconception that randomness
is simply equal to chaos, or the absence of causality, has lasted a long
time. And even now not everybody clearly appreciates that the abun­
dance of random events around us conceal definite (probabilistic)
patterns.

These ideas prompted me to write this book. I want to help the
reader discover for himself the probabilistic nature of the world around
us, to introduce random phenomena and processes, and to show that it
is possible to orient oneself in this random world and to operate
effectively within it.

This book begins with a talk between myself and an imaginary reader
about the role of chance, and ends with another talk about the
relationship between randomness and symmetry. The text is divided into
two major parts. The first is on the concept of probability and considers
the various applications of probability in practice, namely, making
decisions in complicated situations, organizing queues, participating in
games, optimizing the control of various processes, and doing random
searches. The basic notions of cybernetics, information theory, and such
comparatively new fields as operations research and the theory of games
are given. The aim of the first part is to convince the reader that the
random world begins directly in his own living room because, in fact, all
modern life is based on probabilistic methods. The second part shows
how fundamental chance is in Nature using the probabilistic laws of
modern physics and biology as examples. Elements of quantum
mechanics are also involved, and this allows me to demonstrate how
probabilistic laws are basic to microscopic phenomena. The idea was
that by passing from the first part of the book to the second one, the
reader would see that probability is not only around us but is at the
basis of everything.

In conclusion I would like to express my gratitude to everyone who
helped me when writing this book. I. I. Gurevich, Corresponding
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Introduction

And chance, inventor God ...

A. S. Pushkin

A Discussion on the Role of Chance
READER: "You wrote some nice words about chance in the Preface. In

spite of them, I still think chance plays a negative role on the whole.
Naturally, there is good luck, but everybody knows it is better not to
count on it. Chance interferes with our plans, so it's better not hang
on it, we should rather ward it ofT as much as possible."

AUTHOR: "That is exactly the traditional attitude towards the random.
. However, it is an attitude we must clearly review. First of all, is it

really possible to get by without the random?"
READER: "I don't say that it's possible. I said we should try."
AUTHOR: "Suppose you work at an ambulance centre. Obviously, you

cannot foresee when an ambulance will be needed, where it will be
necessary to send it to, and how much time the patient will require.
But a practical decision depends on all of these points. How many
doctors should be on duty at anyone time? On the one hand, they
should not be idle waiting for calls for long periods of time, yet on the
other hand, patients should not have to remain without aid for too
long. You cannot avoid chance. What I am trying to say is: we
cannot eliminate chance, and so we must take it into account."

READER: "True, we have to make peace with chance in this example.
However, it still is a negative factor."

AUTHOR: "Thus, we see that sometimes we have to take chance into
consideration rather than control it. But we can go further. We can
discover situations in which chance becomes a positive factor rather
than a negative one, so that it is desirable to raise the level of the
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10 Introduction

possibilities. An American writer has written an interesting science
fiction story. A group of scientists with various disciplines is officially
informed that a sensational discovery has been made, but unfor­
tunately the discoverer died in an explosion during a demonstration
of the phenomenon and thus the secret was lost. In reality neither the
invention nor the inventor ever existed. The scientists were presented
with the evidence of a tragedy: indistinct fragments of records,
a library, and an equipped laboratory. In other words, the scientists
were given a vast quantity of unconnected information with chance
data from various fields of science and technology. The evidence could
be called informational noise. The scientists were certain a discovery
had been made, and therefore the target was achievable. They
utilized all the information at their disposal and 'revealed' the secret
of the non-existing invention. We might say that they succeeded in
sifting information from the noise."

READER: "But that's only a science fiction story."
AUTHOR: "True. However, the idea behind the story is far from being

fiction. Any discovery is related to the use of random factors."
READER: "I don't think anyone can discover anything important

unless he or she has a professional grasp of the subject."
AUTHOR: "I think so too. Moreover, a discovery requires both

expertise on the part of the researcher and a certain level of the
development within the science as a whole. And yet..., random factors
play a fundamental role in that."

READER: "As I understand, the word 'fundamental' means something
primary, something at the basis. Can you apply the term
'fundamental' to something random? I admit that randomness may be
useful. But can it be fundamental? In the last analysis, we deal with
random variables when there is something we do not know and
cannot take into account."

AUTHOR: "By believing that randomness is related to inadequate
knowledge, you make it subjective. It follows that you believe that
randomness appears, as it were, on the surface and that there is
nothing random at the basis of phenomena. Is it correct?"

READER: "Precisely. That is why we cannot assert randomness is
fundamentality. As science develops, our ability to take different
factors into account increases, and the result is that the domain of
random variables will gradually recede. There is sense in saying that
with the evidence of a tragedy: indistinct fragments of records,
a library, and an equipped laboratory. In other words, the scientists
were given a vast quantity of unconnected information with chance
data from various fields of science and technology. The evidence could
be called informational noise. The scientists were certain a discovery
had been made, and therefore the target was achievable. They
utilized all the information at their disposal and 'revealed' the secret
of the non-existing invention. We might say that they succeeded in
sifting information from the noise."

READER: "But that's only a science fiction story."
AUTHOR: "True. However, the idea behind the story is far from being

fiction. Any discovery is related to the use of random factors."
READER: "I don't think anyone can discover anything important
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Introduction 11

the degree of our knowledge. Randomness reveals itsfundamentality at
the level of the microcosm."

READER: "This is the first time I've heard someone say that. Please tell
- me more."

AUTHOR: "Let me say at once that this topic has had a long history.
It was first formalized in Ancient Greece with two approaches to the
random being stated. The two views are associated with the names of
Democritus and Epicurus. Democritus identified the random with the
unknown, believing that Nature is completely deterministic. He said:
'People have created an idol out of the random as a cover for their
inability to think things out.' Epicurus considered that the random is
inherent in various phenomena, and that it is, therefore. objective.
Democritus's point of view was preferred for a long time, but in the
20th century, the progress of science showed that Epicurus was right.
In his doctoral thesis Difference Between the Democritian and
Epicurian Philosophy on Nature (1841), Karl Marx positively evaluated
Epicurus's view of the random and pointed out the deep philosophical
significance of the teachings of Epicurus on the spontaneous
'displacement of atoms'. Of course, we should not exaggerate the
contribution of Epicurus to our understanding of the random because
he could only guess."

READER: "It turns out that I presented Demoeritus's views on the
random without knowing it. But I would like to have some concrete
examples showing the fundamentality of the random."

AUTHOR: "Consider, for instance, a nuclear-powered submarine. How
is the engine started?"

READER: "As far as I understand it, special neutron-absorbing rods are
drawn from the core of the reactor. Then a controlled chain reaction
involving the fission of uranium nuclei begins....'·

AUTHOR (interrupting): "Let us try and see how everything begins."
READER: "After entering a uranium nucleus, a neutron triggers its

disintegration into two fragments and another neutron is released.
The neutrons split two more uranium nuclei; four neutrons are then
set free, which in turn split four more nuclei. The process develops
like an avalanche."

AUTHOR: "All right. But where does the first neutron come from?"
I~ EADER: "Who knows? Say, they come from cosmic rays."
AUTHOR: "The submarine is deep under water. The thick layer of
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12 Introduction

Many attempts have been made to find the 'hidden parameters' which
govern the processes in the microcosm. It has been concluded that
there are no such parameters, and therefore randomness in the
microcosm is fundamental. This cornerstone problem is thoroughly
treated in quantum mechanics, a theory which appeared in the early
20th century in connection with research on atomic processes."

READER: "The only thing I know about quantum mechanics is that it
describes the laws governing the behaviour of elementary particles."

AUTHOR: "We shall talk about quantum mechanics in more detail
later. Let me only note here that it demonstrates the fundamental role
of spontaneous processes and, therefore, demonstrates the
fundamentality of the random. The operation of any radiation
generator, from a vacuum tube to a laser, would be impossible
without spontaneous processes. They are fundamental as the 'trigger'
without which the radiation generation would not start."

READER: "And yet, it is difficult for me to believe that randomness is
fundamental. You mentioned a nuclear-powered submarine. When the
captain orders that the engines be turned on, he does not rely on
a lucky chance. An appropriate button is pressed, and the engines
start (if they are in good condition). The same can be said when
a vacuum tube is turned on. Where is the randomness here?"

AUTHOR: "Nevertheless, when we consider phenomena in the
microcosm, the processes are triggered by random factors."

READER: "However, we generally deal with processes occurring in the
macrocosm."

AUTHOR: "Firstly, while studying the world around us and trying to
comprehend its cause and effect relations, we must address the atomic
level, i. e., the level of microcosm phenomena. Secondly, the
randomness in microcosmic phenomena is essentially reflected in the
processes observed at the macrocosmic scale."

READER: "Can you give me an example when the fundamentality of
randomness reveals itself at the macrocosmic scale?"

AUTHOR: "Evolution, which is a continuous process in both the plant
and animal kingdoms, may serve as an example. Evolution relies on
mutation, i. e., random changes in the structure of genes. A random
mutation may be rapidly spread by the reproduction of the organisms
themselves. It is essential that selection occurs simultaneously with
mutation. The organisms which contain the random gene are then
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READER: "And yet, it is difficult for me to believe that randomness is
fundamental. You mentioned a nuclear-powered submarine. When the
captain orders that the engines be turned on, he does not rely on
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1 1 (' .. _ "



Introduction 13

new generation. It may be said that selection rejected the mutation
which changed the outward appearance of the flower. There was
a species of orchid which became a selfpollinator, the flowers of this

- species rapidly acquired diverse shape and colour owing to the
mutation."

READER: "As far as I know, evolution progresses in the direction of
the differentiation of species. Doesn't this show that the mutations
underlying evolution are not, in fact, so random?"

AUTHOR: "That argument doesn't stand to reason. Evolution selects
the fittest organisms rather than the more complex. Sometimes a
higher degree of organization is preferable, but sometimes this is not the
case. This is why human beings, jelly-fish, and the influenza virus can
coexist in today's world. It is essential that evolution leads to the
appearance of new species that are unpredictable in principle. It may
be said that any species is unique because it occurred fundamentally by
chance."

READER: "I have to admit that the randomness does look to be
a fundamental factor indeed."

AUTHOR: "Since we are discussing the fundamentality of randomness
in the picture of evolution, let me draw your attention to one more
important point. Modern science demonstrates that chance and
selection are the 'creator'."

READER: "Just as Pushkin said, 'And chance, inventor God...'"
AUTHOR: "Precisely. This line is strikingly accurate."
READER: "It appears that when speaking about chance and selection,

we should imply the selection of information from noise, shouldn't we?
The same selection that we discussed in connection with the
science-fiction story."

AUTHOR: "Absolutely."
READER: "I have to agree that we should consciously recognize the

existence of randomness rather than try and control it."
AUTHOR: "We could say more. Naturally, the randomness which is

due to the incompleteness of our knowledge is undesirable. While
studying the world, man has fought, is fighting, and will continue to
light it. It should be noted at the same time that there is an objective
randomness underlying every phenomena along with the subjective
randomness which is due to lack of data on a phenomenon. We
should also take into account the positive, creative role of the
the differentiation of species. Doesn't this show that the mutations
underlying evolution are not, in fact, so random?"

AUTHOR: "That argument doesn't stand to reason. Evolution selects
the fittest organisms rather than the more complex. Sometimes a
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case. This is why human beings, jelly-fish, and the influenza virus can
coexist in today's world. It is essential that evolution leads to the
appearance of new species that are unpredictable in principle. It may
be said that any species is unique because it occurred fundamentally by
chance."

READER: "I have to admit that the randomness does look to be
a fundamental factor indeed."
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important point. Modern science demonstrates that chance and
selection are the 'creator'."



14 Introduction

calculation methods have been developed that depend on randomness.
Special theories have been produced, such as queueing theory, the
theory of games, and the theory of random search, to deal with it."

READER: "It is hard for me to imagine a scientific theory built on
randomness."

AUTHOR: "Let me emphasize right away that randomness does not
preclude scientific prediction. The fundamentality of randomness does
not mean that the world around us is chaotic and devoid of order.
Randomness does not imply there. are no causal relations. But we
shall deal with all that later. It is interesting to try and imagine
a world in which randomness as an objective factor is completely
absent."

READER: "This would be an ideally ordered world."
AUTHOR: "In such a world, the state of any object at a given time

would be unambiguously determined by its past states and, in its turn,
would determine the future states just as definitely. The past would be
strictly connected with the present, as would the present with the
future."

READER: "Anything occurring in such a world would be
predetermined."

AUTHOR: "Pierre Laplace, a great French scientist of the 17th century,
suggested in this connection that we imagine a 'superbeing' who knew
the past and the future of such a world in every detail. Laplace wrote:
The intellect who could know, at a given moment, every force that
animates the nature and the relative positions of its every component,
and would, in addition, be vast enough to. analyse these data, would
describe by a single formula the motions of the greatest bodies in the
universe and the motions of the lightest atoms. There would be
nothing uncertain for this being, and the future, like the past, would
be open to his gaze.'"

READER: "An ideally ordered world is therefore unreal."
AUTHOR: "As you see, it isn't hard to feel that the real world should

admit the existence of objective randomness. Now let us return to the
problem of causal relations. These relations are probabilistic in the
real world. It is only in particular cases (for example, when solving
maths problems at school) that we deal with unambiguous, strictly
determined relations. Here we approach one of the most essential
notions of the modern science, the notion of probability."
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one tenth. of them will have number-plates with the same first two
digits, would they? Say, about thirty cars out of 300 will have such
plates. Maybe, 27 or 32, but not 10 or tOO."

READER: "I think so."
AUTHOR: "But then there would be no need to stand at the roadside.

The result could be predicted. This is an example of probabilistic
prediction. Look at how many random factors are involved in this
situation. A car could turn ofT the road before reaching the observer,
or another car could stop or even turn back. And nonetheless, both
today and tomorrow, about 30 cars out of 300 would have plates with
the same first two digits."

READER: "So, in spite of numerous random factors, the situation has
a certain constancy."

AUTHOR: "This constancy is commonly called statistical stability. It is
essential that statistical stability is observed because of random factors
rather than despite them."

IH~ADER: "I hadn't thought that we deal with probabilistic predictions
everywhere. They include, for instance, sports predictions and weather
I'llrecasts."

AUTHOR: "You're absolutely right. An important point is that
probabilistic (statistical) causal relations are common, while those
leading to unambiguous predictions are just a special case. While
definite predictions only presuppose the necessity of a phenomenon,
probabilistic predictions are related simultaneously both with
necessity and randomness. Thus, mutations are random, but the
process of selection is governed by laws, that is, it is a necessary
prerequisite."

I( FADER: "I see. The individual acts of the spontaneous fission of ura­
nium nuclei are random, but the development of the chain reaction is
unavoidable."

AlITHOR: "Taken separately, any discovery is random. However,
a situation which is favourable for the appearance of such a chance
should exist. This chance is determined by the advance of science, the
expertise of the researchers, and the level of measurement technology.
A discovery is random, but the logic of the progress leading to the
discovery in the long run is regular, unavoidable, and necessary."

I( FADER: "Now I see why the fundamentality of randomness does not
result in the disorder of our world. Randomness and necessity are
prediction. Look at how many random factors are involved in this
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Aurelius and accidentally opened the page where he wrote about two
possibilities: the world is either in vast chaos or, otherwise, order and
regularity reign supreme. And although I had read these lines many
times, it was the first time that I thought over why Marcus Aurelius
believed that the world should be dominated by either chance or
order. Why did he believe that these two possibilities are
contradictory? The world is dominated by randomness, but order and
regularity operate at the same time, being shaped out of the mass of
random events according to the laws of the random.'"

READER: "As far as I understand, order and regularity are produced
from a mass of random events, and this leads to the concept of
probability."

AUTHOR: "You're absolutely right. Individual factors vary from case to
case. At the same time, the picture as a whole remains stable. This
stability is expressed in terms of probability. This is why our world
proves to be flexible, dynamic, and capable of advancing."

READER: "It follows that the world around us may justly be said to be
a world of probability."

AUTHOR: "It is better to speak of the world as being built on
probability. When we examine this world, we shall concentrate on two
groups of questions. Firstly, I shall show how man, owing to his use
of probability in science and technology, was able to 'tame'
randomness and thus turn it from being his enemy into an ally and
friend. Secondly, using the achievements of modern physics and
biology, I shall demonstrate the probabilistic features of the laws of
nature. In consequence, I shall show that the world around us
(including both the natural and artificial world) is really built on
probability."
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hapter 1
Mathematics

of Randomness
This doctrine. combining the accuracy of mathematical
proofs and the uncertainty of chance occasions and
making peace between these seemingly contradictory
elements. has a full right to contend for the title of the
mathematics of the random.

Blaise Pascal

Probability

Cia sical definition of probability. When we toss a coin, we do not know
which will land face up, heads or tails. However, there is something we
do know. We know that the chances of both heads and tails are equal.
We also know that the chances of any of the faces of a die landing face.
up are equal. That the chances are equal in both examples is due to
symmetry. Both the coin and the die are symmetrical. When two or
more events have equal chances of occurring, we call them equally
possible outcomes. Heads or tails are equally possible outcomes.
Suppose we are interested in a certain result while throwing a die, for
instance, a face with a number of dots exactly divisible by three. Let us
call outcomes satisfying such a requirement favourable. There are two
favourable outcomes in our example, namely, a three or a six. Now let
us call outcomes exclusive if the appearance of one in single trial makes
it impossible for the others to appear at the same trial. A die cannot
land with several faces up, so they are exclusive outcomes.

We can now formulate the classical definition of probability. The

probabilitv of an event is the ratio orthi~rathematlCs

of Randomness
This doctrine. combining the accuracy of mathematical
proofs and the uncertainty of chance occasions and
making peace between these seemingly contradictory
elements. has a full right to contend for the title of the
mathematics of the random.

Blaise Pascal

Probability

CJ~ sicaldefinition of probability. Whenwe toss a coin, ~e do n?~ know
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impossible event (it never occurs). The probability of a random event lies
between 0 and 1.

Let an event A be throwing a die and getting a number exactly
- divisible by three. Here rnA = 2 and so the probability of the event is 1/3,

because n = 6. Consider one more example. We have a bag with 15
identical but differently coloured balls (seven white, two green, and six
red). You draw a ball at random. What is the probability of drawing
a white (red or green) ball? Drawing a white ball can be regarded as an
event A, drawing a red ball is an event B, and drawing a green ball is an
event C. The number of favourable outcomes of drawing a ball of
a certain colour equals the number of balls of this colour, i. e., rnA = 7,
mB = 6, and mc = 2. Using (1.1) and given n = 15, we can find the
probabilities:

PA = mA =~
n 15 '

me 2Pc=-=-·
n 15

Addition and multiplication of probabilities. What is the probability
that a randomly drawn ball will be either red or green? The number of
fuvourable outcomes is ms+ mc = 6 + 2 = 8, and therefore the
probability will be PB+C = (mB + mC)ln = 8115. We see that PB+C =
I'll + Pr . The probability of drawing either a red or a green ball is the
sum of two probabilities: the probability of drawing a red ball and that
of drawing a green ball. The probability of drawing a ball which is
either red or green or white is the sum of three probabilities, PA + PB +
Pr. It is equal to unity (7/15 + 215 + 2/15 = 1). This stands to reason
because the event in question will always occur.

The rule for adding probabilities can be formulated as follows: the
probability oj one event oj several exclusive events occurring is the sum oj
I he probabilities oj each separate event.

Suppose that two dice are thrown. What is the probability of getting
two fours at the same time? The total number of equally possible
exclusive outcomes is n = 6 x 6 = 36. Each one is listed in Fig. 1.1,
where the left figure in the parentheses is the number on one die, and
I he right figure is the number on the other. There is only one favourable
outcome, and it is indicated in Fig. 1.1 as (4,4). Hence, the probability of
the event is 1/36. This probability is the product of two probabilities:
(he probability of a four appearing on one die and that of a four on the
\I!br-r .Le _._ .. _ -_•. _••_.._- ........-. -- ... - r·---- ..-.J -- ---""-0
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(1,1) (2,1) (3,1) (4 ,1) (5,1) (6,1)

(1 ,2) (2,2) (3,2) (4,2) (5 ,2) (6 ,2)

(1,3) (2,3) (3,3) (4,3) (5,3) (6.3 )

(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

(1 ,5) (2,5 ) (3,5) (4,5) (5 ,5) (6,5)

\1,6) (2,6) (3,6) (4,6) (5 ,6) (6,6)

Figure 1.1

Mk /100

4
0.22 -4

U
0.20 - 4

4~
~

4 4~

0.18 -
~ I ~A A-I' I

~
-

0.16

~
I

I I I I
1 1 I

0.14 - I 1 I 4 I
I I I I

4 I 4 II I
lUI 4 I

0.12f- I I I I'-
I CD

(1,3) (2,3) -(3-:3)- I ~4,3) (5,3) (6.3 )

(1,4) (2,4) (3,4) (4,4) (5,4) (6,4)

(1 ,5) (2,5 ) (3,5) (4,5) (5 ,5) (6,5)

\1,6) (2,6) (3,6) (4,6) (5 ,6) (6,6)

Figure 1.1



Ch. 1. Mathematics of Randomness 21

Instead of throwing two dice at" the same time, we could throw a single
die twice. The probability of getting two fours at the same time when
tW9 dice are thrown is the same as the probability of getting two fours
when one die is thrown twice.

In many cases both rules (addition and multiplication of probabilities)
are used jointly to calculate the probability of an event. Suppose we are
interested in the probability P of the same number coming up on two
dice. Since it is only essential that the numbers be equal, we can apply
the rule for adding probabilities,

/' = P ll + P 2 2 + PH + P4 4 + P ss + P6 6 ·

Each of the probabilities Pii is, in turn, a product Pi x Pi' Hence

P = (P 1 x P 1 ) + (P 2 x P 2 ) + ... + (P 6 x P 6 ) = 6(~ x ~) =~.
6 6 6

This result can be obtained right away from Fig. 1.1, where the fa­
vourable outcomes are shown in the red, (1,1), (2,2), (3,3), (4,4), (5,5), and
(6,6). The total number of such outcomes is six. Consequently, P =
6/36 = 1/6.

Fre uency and probability. The classical definition of probability and
the ru es for addition and multiplication of probabilities can be used to
calculate the probability of a random event. However, what is the
practical value of such calculations? For instance, what does it mean in
practice that the probability of getting a four when a die is thrown
equals 1/6? Naturally, the assertion does not imply that a four will
appear once and only once in any six trials. It is possible that it will
appear once, but it is also possible that it will appear two (or more)
times, or that it will not appear at all. In order to discover the
probability of an event in practice we should perform a large number of
trials and calculate how frequently a four appears.

Let us perform several sets of trials, for instance, throwing the die 100
times in each set. Let us designate M 1 to be the number of times a four
appears in the 1st set, M 2 to be the number of fours in the second set,
etc. The ratios M 1/100, M 2/100, M 3/100, ... are the frequencies with
which a four appeared in each set. Having performed several sets of
trials, we can see that the frequency of the appearance of a four varies
from set to set in a random fashion in the vicinity of the probability of the
interested in the probability P of the same number coming up on two
dice. Since it is only essential that the numbers be equal, we can apply
the rule for adding probabilities,

/' = P ll + P 2 2 + PH + P4 4 + P ss + P6 6 ·

Each of the probabilities Pii is, in turn, a product Pi x Pi' Hence

P = (P 1 x P 1 ) + (P 2 x P 2 ) + ... + (P 6 x P 6 ) = 6(~ x ~) =~.
6 6 6

This result can be obtained right away from Fig. 1.1, where the fa­
vourable outcomes are shown in the red, (1,1), (2,2), (3,3), (4,4), (5,5), and
(6,6). The total number of such outcomes is six. Consequently, P =
6/36 = 1/6.

Fre uency and probability. The classical definition of probability and
the ru es for addition and multiplication of probabilities can be used to
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the amplitudes of the deviations will vary from set to set, they will not
tend to grow or decrease. This is a consequence of the equivalence of
each set of trials. The number of trials in each set is the same, and the
results obtained in a given set do not depend on the results in any other
set.

Let us make an important change in that we gradually. increase the
number of trials in each set. Using the results of our previous
experiment, as presented in Fig. 1.2, let us obtain a new result by adding
the value of a set of trials to the result of the preceding sets. In other
words, we calculate the number of fours in the first 100 trials (in our
case, M 1 = 22), then the number of fours in the first 200 trials (M 1 +
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II random event tends to its robability. with increasing number of trials.
Is it possible to give a de inition of probability based on frequency?

Since the frequency of the occurrence of a random event tends to its
probability as the number of trials increases, we might well ask whether
we can define the probability of an event as the limit of the ratio of the
number of its occurrence to the number of trials as the number of trials
lends to infinity. Suppose N is the number of trials and M A (N) is the
number of occurrence of an event A. We want to know whether we can
define the probability PA of the event A as

I'll = lim [MA (N)/N]. (1.2)
N-co

Richard von Mises (1883-1953), a German mathematician of the early
20th century, believed that (1.2) could be considered a definition of the
probability of a random event, and he called it the frequency definition
of probability. Von Mises pointed out that the classical definition of
probability (1.1) only "works" when there is a finite number of equally
possible outcomes. For instance, situations involving the throwing of
coins or dice.

However, we often encounter situations without the symmetry that
determines whether the outcomes are equally possible. These are the
cases when we cannot apply the classical definition of probability. Von
M ises assumed that then the frequency definition can be used because it
docs not require a finite number of equally possible outcomes and,
moreover, does not require any calculation of probability at all.
1\ probability using the frequency approach is determined by experiment
rather than being calculated.

However, is it possible to determine the probability of a random event
in practice using (1.2)? The relationship presupposes an infinite number
of Identical trials. In practice, we must stop at a finite number of trials,
and it is debatable what number to stop at. Should we stop after
a hundred trials, or is it necessary for there to be a thousand, a million,
or a hundred million? And what is the accuracy of the probability
determined in such a way? There are no answers to these questions.
Bcsides, it is not practicable to provide the same conditions while
performing a very large number of trials, to say nothing of the fact that
I hc trials may be impossible to repeat.

Consequently, relationship (1.2) is practically useless, moreover it is
lends to infinity. Suppose N is the number of trials and MA(N) is the
number of occurrence of an event A. We want to know whether we can
define the probability PA of the event A as

I'll = lim [MA (N)/N]. (1.2)
N-co

Richard von Mises (1883-1953), a German mathematician of the early
20th century, believed that (1.2) could be considered a definition of the
probability of a random event, and he called it the frequency definition
of probability. Von Mises pointed out that the classical definition of
probability (1.1) only "works" when there is a finite number of equally
possible outcomes. For instance, situations involving the throwing of
coins or dice.

However, we often encounter situations without the symmetry that
determines whether the outcomes are equally possible. These are the
cases when we cannot apply the classical definition of probability. Von
.. • • 1 .1 . • , .1 t" 1 e- ••• , 1 1 ...
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to infinity from the correct observation that the frequency of the
occurrence of a random event approaches its probability as the number
of trials increases.

Geometrical defmition of probability. Suppose that two people have
agreed to meet at a certain place between nine and ten o'clock. They
also agreed that each would wait for a quarter of an hour and, if the
other didn't arrive, would leave. What is the probability that they meet?
Suppose x is the moment one person arrives at the appointed place, and
y is the moment the other arrives. Let us consider a point with
coordinates (x, y) on a plane as an outcome of the rendezvous. Every
possible outcome is within the area of a square each side of which
corresponds to one hour (Fig. 1.4). The outcome is favourable (the two
meet) for all points (x, y) such that Ix - y I:::;; 1/4. These points are
within the hatched part of the square in the figure. All the outcomes are
exclusive and equally possible, and therefore the probability of the
rendezvous equals the ratio of the hatched area to the area of the
square. This is reminiscent of the ratio of favourable outcomes to the
total number of equally possible outcomes in the classical defmition of
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to infinity from the correct observation that the frequency of the
occurrence of a random event approaches its probability as the number
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i.e. 1 - (3/4)2 = 7/16 h '. Dividing 7/16 h2 by 1 h 2, we find the
probability of the rendezvous to be 7/16.

This example illustrates the geometrical defmition of probability: the
probability of a random event is the ratio of the area favourable for an
event to the total area of events. The geometrical definition of probability
is a generalization of the classical definition for the case when the
number of equally possible outcomes is infinite.

The development of the concept of probability Although probabilistic
notions were used by ancient Greek philosophers (such as Democritus,
lpicurus, and Carus Lucretius), the theory of probability as a science
began in the mid- 17th century, with the work of the French scientists
Blaise Pascal and Pierre Fermat and the Dutch scientist Christian
IIuygens. The classical definition for the probability of a random event
was formulated by the Swiss mathematician Jacob Bernoulli in Ars
conjcctandi (The Art of Conjectures). The definition was given its final
shape later by Pierre Laplace. The geometrical definition of probability
was first applied in the 18th century. Important contributions to
probability theory were made by the Russian mathematical school in the
19\h century (P. L. Chebyshev, A.A. Markov, and A. M. Lyapunov). The
extensive employment of probabilistic concepts in physics and
technology demonstrated, by the early 20th century, that there was
II need for a more refined definition of probability. It was necessary, in
particular, in order to eliminate the reliance of probability on "common
xcnse". An unsuccessful attempt to give a general definition for the
probability of a random event on the basis of the limit of its frequency
Ill' occurrence was made, as we have seen, by Richard von Mises.
Ilowcver, an axiomatic approach rather than a frequency one resulted in
more refined definition of probability. The new approach was based on
II set of certain assumptions (axioms) from which all the other
propositions are deduced using clearly formulated rules.

The axiomatic definition of probability now generally accepted was
cluborated by the Soviet mathematician A. N. Kolmogorov, Member of
(he USSR Academy of Sciences, in The Basic Notions of the Probability
lheory (1936, in Russian). I shall not discuss the axiomatic definition of
probability because it would require set theory. Let me only remark that
Kolmogorov's axioms gave a strict mathematical substantiation to the
voncept of probability and made probability theory a fully fledged
11\a Ihcmatical discipline.
number of equally possible outcomes is infinite.

The development of the concept of probability Although probabilistic
notions were used by ancient Greek philosophers (such as Democritus,
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conjcctandi (The Art of Conjectures). The definition was given its final
shape later by Pierre Laplace. The geometrical definition of probability
was first applied in the 18th century. Important contributions to
probability theory were made by the Russian mathematical school in the
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notion. This includes the notion of probability." Let me add that new
definitions for a notion appear as our understanding of it becomes
deeper and its properties are made clearer.

Random Numbers
Random number generators. Let us put ten identical balls numbered
from 0 to 9 into a box. We take out a ball at random and write down
its number. Suppose it is five. Then we put the ball back into the box,
stir the balls well, and take out a ball at random. Suppose this time we
get a one. We write it down, put the ball back into the box, stir the
balls, and take out a ball at random again. This time we get a two.
Repeating this procedure many times, we obtain a disordered set of
numbers, for instance: 5, 1, 2, 7, 2, 3, 0, 2, 1, 3, 9, 2, 4, 4, 1, 3, .... This
sequence is disordered because each number appeared at random, since
each time a ball was taken out at random from a well-stirred set of
identical balls.

Having' obtained a set of random digits, we can compile a set of
random numbers. Let us consider, for instance, four-digit numbers. We
need only separate our series of random numbers into groups of four
digits and consider each group to be a random number: 5127, 2302,
1392, 4413, ....

Any device that yields random numbers is called a random number
generator. There are three types of generators: urns, dice, and roulettes.
Our box with balls is an urn.

Dice are the simplest random number generators. An example of such
a generator is a cube each of whose faces is marked with a different
number. Another example is a coin (or a token). Suppose five of the
faces of a cube are marked with the numbers 0, 1, 2, 3, 4, while the sixth
face is unmarked. Now suppose we have a token one side of which is
labelled with 0 and the other with 5. Let us throw the cube and token
simultaneously and add together the numbers that appear face up, the
trial being discounted when the unmarked face lands face up. This
generator allows us to obtain a disordered set of numbers from 0 to 9,
which can then be easily used to produce sets of random numbers.

A roulette is a circle marked in sectors, each of which is marked with
a different number. A roulette has a rotating arrow or rolling ball.
A trial involves spinning the arrow and recording the number
Random number generators. Let us put ten identical balls numbered
from 0 to 9 into a box. We take out a ball at random and write down
its number. Suppose it is five. Then we put the ball back into the box,
stir the balls well, and take out a ball at random. Suppose this time we
get a one. We write it down, put the ball back into the box, stir the
balls, and take out a ball at random again. This time we get a two.
Repeating this procedure many times, we obtain a disordered set of
numbers, for instance: 5, 1, 2, 7, 2, 3, 0, 2, 1, 3, 9, 2, 4, 4, 1, 3, .... This
sequence is disordered because each number appeared at random, since
each time a ball was taken out at random from a well-stirred set of
identical balls.

Having' obtained a set of random digits, we can compile a set of
random numbers. Let us consider, for instance, four-digit numbers. We
need only separate our series of random numbers into groups of four
digits and consider each group to be a random number: 5127, 2302,
1392, 4413, ..... ..
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Tables of random numbers. An example of a random number table is
shown in Fig. 1.6. The table consists of three hundred four-digit
numbers. Each digit in the table was chosen randomly, as a result of
a trial, e.g. throwing a die and a token. Therefore, it is understandable
that there is no order in the numbers, and there is no way of predicting
which digit will follow a given one. You could compile many tables after
many trials. Nevertheless, there will not be even the shadow of order in
the sequence of digits.

This is not amazing. A chance is a chance. But a chance has a reverse
aspect. For instance, try and count how many times each digit occurs in
Fig. 1.6. You will find that digit 0 occurs 118 times (the frequency it
appears is 118/1200= 0.099), digit 1 occurs 110 times (the frequency it
appears is 0.090), digit 2 occurs 114 times (0.095), digit 3 occurs 125
times (0.104), digit 4 occurs 135 times (0.113), digit 5 occurs 135 times
(0.113), digit 6 occurs 132 times (0.110), digit 7 occurs 116 times (0.097),
digit 8 occurs 93 times (0.078), and digit 9 occurs 122 times (0.102). We
can see that the appearance frequency for each digit is about the same,
i. e. close to 0.1. Naturally, the reader has come to a conclusion that 0.1
is the probability that a digit appears. The reader may say that the
appearance frequency of a digit is close to the probability of its
appearance over a long series of trials (there are 1200 trials here).

Although this is natural, we should wonder once again how an
unordered set of random digits can have an inherent stability. This is
a demonstration of the reverse aspect of chance and illustrates the
determinism of probability.

I advise the reader to "work" a little with a random number table (see
Fig. 1.6). For instance, 32 numbers out of the three hundred ones in the
table begin with zero, 20 begin with 1, 33 begin with 2, 33 begin with 3,
38 begin with 4, 34 begin with 5, 34 begin with 6, 24 begin with 7, 20
begin with 8, and 32 begin with 9. The probability that a number begins
with a certain digit equals 0.1. It is easy to see that the results of our
count are in a rather good keeping with this probability (one tenth of
three hundred is thirty). However, the deviations are more noticeable
them in the example considered earlier. But this is natural because the
number of trials above was 1200 while here it is much less, only 300.

It is also interesting to count how many times a digit occurs in the
second place (the number of hundreds), in the third place (tens), and the
fourth place (units). It is easy to see that in every case the frequency
many trials. Nevertheless, there will not be even the shadow of order in
the sequence of digits.

This is not amazing. A chance is a chance. But a chance has a reverse
aspect. For instance, try and count how many times each digit occurs in
Fig. 1.6. You will find that digit 0 occurs 118 times (the frequency it
appears is 118/1200= 0.099), digit 1 occurs 110 times (the frequency it
appears is 0.090), digit 2 occurs 114 times (0.095), digit 3 occurs 125
times (0.104), digit 4 occurs 135 times (0.113), digit 5 occurs 135 times
(0.113), digit 6 occurs 132 times (0.110), digit 7 occurs 116 times (0.097),
digit 8 occurs 93 times (0.078), and digit 9 occurs 122 times (0.102). We
can see that the appearance frequency for each digit is about the same,
i. e. close to 0.1. Naturally, the reader has come to a conclusion that 0.1
is the probability that a digit appears. The reader may say that the
appearance frequency of a digit is close to the probability of its
appearance over a long series of trials (there are 1200 trials here).
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0655 8453 4467 3384 5320 0709 2523 9224 6271 2607
5255 5161 4889 7429 4647 4331 0010 8144 8638 0307
6314 8951 2335 0174 6993 6157 0063 6006 1736 3775
3157 9764 4862 5848 6919 3135 2837 9910 7791 8941
9052 9565 4635 0653 2254 5704 8865 2627 7959 3682

4105 4105 3187 4312 1596 9403 6859 7802 3180 4499
1437 2851 6727 5580 0368 4746 0604 7956 2304 8417
4064 4171 7013 4631 8288 4785 6560 8851 9928 2439
1037 5765 1562 9869 0756 5761 6346 5392 2986 2018
5718 8791 0754 2222 2013 0830 0927 0466 7526 6610

5127 2302 1392 4413 9651 8922 1023 6265 7877 4733
9401 2423 6301 2611 0650 0400 5998 1863 9182 9032
4064 5228 4153 2544 4125 9854 6380 6650 8567 5045
5458 1402 9849 9886 5579 4171 9844 0159 2260 1314
2461 3497 9785 5678 4471 2873 3724 8900 7852 5843

4320 4558 2545 4436 9265 6675 7989 5592 3759 3431
3466 8269 9926 7429 7516 1126 6345 4576 5059 7746
9313 7489 2464 2575 9284 1787 2391 4245 5618 0146
5179 8081 3361 0109 7730 6256 1303 6503 4081 4754
3010 5081 3300 9979 1970 6279 6307 7935 4977 0501

9599 9828 8740 6666 6692 5590 2455 3963 6463 1609
4242 3961 6247 4911 7264 0247 0583 7679 7942 2482
3585 9123 5014 6328 9659 1863 0532 6313 3199 7619
5950 3384 0276 4503 3333 8967 3382 3016 0639 2007
8462 3145 6582 8605 7300 6298 6673 6406 5951 7427

0456 0944 3058 2545 3756 2436 2408 4477 5707 5441
0672 1281 8697 5409 0653 5519 9720 0111 4745 7979
5163 9690 0413 3043 1014 0228 5460 2835 3294 3674
4995 9115 5273 1293 7894 9050 1378 2220 3756 9795
6751 6447 4991 6458 9307 3371 3243 2958 4738 3996

Figure 1.6
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have the same first and last digits. In other words, the frequencies
with which a pair of identical digits appears actually varies around the
probability, i.e. in the neighbourhood of 0.1.

Random Events
When we throw a die or take a ball out of an urn we deal with
a random event. There are several interesting problems where the
probability of a random event is required to be found.

A problem with coloured balls. There are three blue balls and a red
ball in a box. You take two balls out of the box at random. Which is
more probable: that the two balls are blue or that one is blue and one is
red?

People often answer that it is more probable that two blue balls are
taken out because the number of blue balls in the box is three times
greater than the number of red ones. However, the probability of taking
out two blue balls is equal to the probability of taking out a blue and
a red ball. You can see this by considering Fig. 1.7. Clearly there are
three ways in which two blue balls may be chosen and three ways of
choosing a blue and a red ball at the same time. Therefore, the
outcomes are equally probable.

Figure 1.7

We can also calculate the probability of the outcomes. The
probability of taking out two blue balls equals the product of two
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a random event. There are several interesting problems where the
probability of a random event is required to be found.

A problem with coloured balls. There are three blue balls and a red
ball in a box. You take two balls out of the box at random. Which is
more probable: that the two balls are blue or that one is blue and one is
red?

People often answer that it is more probable that two blue balls are
taken out because the number of blue balls in the box is three times
greater than the number of red ones. However, the probability of taking
out two blue balls is equal to the probability of taking out a blue and
a red ball. You can see this by considering Fig. 1.7. Clearly there are
three ways in which two blue balls may be chosen and three ways of
choosing a blue and a red ball at the same time. Therefore, the
outcomes are equally probable.
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four balls (three blue ones plus a red one) multiplied by the probability
of taking out a red ball from a set of three balls (two blue ones plus
II red one) and P rb is the probability of taking out a red ball from a set
of four balls (the second ball in this case must then be a blue one). In
other words, P br is the probability of taking out a blue ball first and
then a red ball while P rb is the probability of taking out a red ball first
lind then a blue ball. Inasmuch as P br = 3/4 x 1/3 = 1/4 and P rb =
1/4, the probability of taking out a pair of differently coloured balls
equals 1/4 + 1/4 = 1/2.

Throwing a die: a game. There are two players in this game, player
A and player B. The die is thrown three times in succession during each
turn, If a certain face turns up at least once during a turn (let it be a 5),
player A scores a point. But if the five does not turn up, a point is
scored by player B. The game is played until one of them scores, say,
II hundred points. Who has the chance of winning greater? Player A or
player B?

In order to answer, we first calculate the probability of player
.·1 scoring a point in a turn (the die is thrown three times in succession).
lie receives a point in any of the following three cases: if five turns up
III the first trial, if five does not turn up in the first trial but turns up in
I he second one, and if five does not turn up in the first two trials but
IIIrns up in the third one. Let us designate the probability of these three
events as PI' P2, and P3, respectively. The sought probability is P =
1'1 + P2 + P 3' Note that the probability of five appearing when the die
IS thrown is 1/6, and the probability that five does not appear is 5/6. It
IS dear that PI = 1/6. To find P2, we should multiply the probability of
'he absence of a five in the first trial by the probability of its presence in
I he second trial, P2 = 5/6 x 1/6 = 5/36. The probability P3 is the
product of the probability of the absence of a five in two trials (the first
IIl1d the second) and the probability of a five in the third trial, P3 =
l~/ll)l x 1/6 = 25/216. Consequently, P = PI + Pz + P3 = 1/6 +
'l;.\h + 25/216 = 91/216. Since P < 1/2, player B has more chance of
winning this game. We could have reached the same conclusion in
II simpler way by considering the probability of player B scoring a point
ulrer three trials. This is the probability of the absence of five in three
uiuls: p = 5/6 x 5/6 x 5/6 = 125/216. Since p> 1/2, player B's chances
nrc better. Note that P+p=91/216+125/216=1. This is natural
because one of the players, A or B, must score a point in each turn.
and then a blue ball. Inasmuch as P br = 3/4 x 1/3 = 1/4 and P rb =
1/4, the probability of taking out a pair of differently coloured balls
equals 1/4 + 1/4 = 1/2.

Throwing a die: a game. There are two players in this game, player
A and player B. The die is thrown three times in succession during each
turn, If a certain face turns up at least once during a turn (let it be a 5),
player A scores a point. But if the five does not turn up, a point is
scored by player B. The game is played until one of them scores, say,
II hundred points. Who has the chance of winning greater? Player A or
player B?

In order to answer, we first calculate the probability of player
.·1 scoring a point in a turn (the die is thrown three times in succession).
lie receives a point in any of the following three cases: if five turns up
III the first trial, if five does not turn up in the first trial but turns up in
I he second one, and if five does not turn up in the first two trials but
11Irn~ up in~the~hird ~n~ Let us ~~si~na~, the pro.b.ability ?~,~~es~ t~ree
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Figure 1.8

two black and two white balls and told the astrologer to put them into
two urns at random. The executioner was to choose an urn and pick
a ball out of it at random. If the ball was white, the astrologer would be
pardoned, and if the ball was black, he would be executed. How should
the astrologer distribute the balls between the two urns in order to give
himself the greatest chance of being saved?

Suppose the astrologer puts a white and a black ball into each urn
(Fig. 1.8a). In this case, no matter which urn the executioner chooses, he
will draw a white ball out of it with a probability of 1/2. Therefore, the
probability the astrologer would be saved is 1/2.

The probability of the astrologer being saved will be the same if he
puts the two white balls into one urn and the two black balls into the
other (Fig. 1.8b). His destiny will be decided by the executioner when he
chooses an urn. The executioner may choose either urn with equal
probability.

The best solution for the astrolo er is to ut a white ball into one urn

a

c

b

d

Figure 1.8
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Figure 1.9

]]

probability of him being saved will be smallest: (1/2 x 0) + (1/2 x
2/3) = 1/3.

Thus, in order to have the greatest chance of being saved, the
astrologer should distribute the balls between the urns as shown in
Fig. 1.8e. This is the best strategy. The worst strategy is to distribute the
halls as shown in Fig. 1.8d. Of course, the selection of the best strategy
does not guarantee the desired outcome. Although the risk is decreased,
it still remains.

Wandering in a labyrinth. A labyrinth with treasure has a death trap,
a" ..hown in F'io 1 Q Tlnlur- v tr I "lIrp-hl1 ptl" ip in thp tnm Whar i..

I L__ 5

I
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with probability 1/3. The first two paths lead to the trap, while the third
path leads to point 3. The probability of someone getting from the
entrance A to point 3 is the product of the probability of turning left at
point 1 and the probability of turning left at point 2, i.e., 1f2 x 1/3. It is
easy to see now that the probability of reaching point 4 from A is 1/2 x
1/3 x 1/2; the probability of reaching point 5 from A is 1/2 x 1/3 x
1/2 x 1/3; and finally, the probability of reaching the treasure from A is
P + = 1/2 x 1/3 x 1/2 x 1/3 x 1/2 = 1/72. The only way of getting
from the entrance of the labyrinth to the treasure is shown in the figure
by the dash line. The probability that a person will follow it is thus
P + = 1/72, while the probability of walking into the trap is P - = 71/72.

The probability P - was calculated from the fact that P + + P - = 1.
However, we can calculate P - directly. Let us expand P - as the sum
P - = P 1 + P2 + P3 + P4 + P5' where the Pi are the probabilities of
arriving at point i from A multiplied by the probability of walking into
the trap from point i (i = 1, 2, 3,4, 5).

P 1 = 1/2,

P 2 = 1/2 x 2/3,

P3 = 1/2 x 1/3 x 1/2,

P4 = 1/2 x 1/3 x 1/2 x 2/3,

P 5 = 1/2 x 1/3 x 1/2 x 1/3 x 1/2.

You can then find that P 1 + P2 + P3 + P4 + P 5 = 71/72.

Discrete Random Variables
Random variables. Suppose there is a batch of 100 manufactured articles
and 11 articles are rejected as defective, 9 articles are rejected in another
batch of the same size, 10 articles are rejected in the third one, 12
articles are rejected in the fourth one, etc. We use n to denote the
overall number of manufactured articles in a batch and m to denote the
number of rejected articles. The number n is constant (here n = 1(0)
while the value of m varies from batch to batch in a random manner.
Suppose there is a definite probability that there will be m rejected
articles in a randomly selected batch of n articles.

"The number of rejected articles (the variable m) is an example of
1/2 x 1/3; and finally, the probability of reaching the treasure from A is
P + = 1/2 x 1/3 x 1/2 x 1/3 x 1/2 = 1/72. The only way of getting
from the entrance of the labyrinth to the treasure is shown in the figure
by the dash line. The probability that a person will follow it is thus
P + = 1/72, while the probability of walking into the trap is P - = 71/72.

The probability P - was calculated from the fact that P + + P - = 1.
However, we can calculate P - directly. Let us expand P - as the sum
P - = P 1 + P2 + P3 + P4 + P5' where the Pi are the probabilities of
arriving at point i from A multiplied by the probability of walking into
the trap from point i (i = 1, 2, 3,4, 5).

P 1 = 1/2,

P 2 = 1/2 x 2/3,

P3 = 1/2 x 1/3 x 1/2,

P4 = 1/2 x 1/3 x 1/2 x 2/3,
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features of continuous random variables which we shall discuss later; we
shall first consider discrete variables.

Expected value and variance of a discrete random variable. Let x be
a discrete random variable which may assume s values: Xl' X2' , Xm,
... , XS' These values are associated with the probabilities Pi' P2' , Pm'
... , PS' For instance, Pm is the probability that a variable is Xm. The sum
of all the probabilities (Pi + P2 + + Ps) is the probability that a trial
will give one of the values Xl' X2' , x, (without saying which one). This
probability is unity. Consequently,

.<

L Pm= 1
",= 1

(1.3)

s

(the notation L means that the summation is performed over all
m=l

m from 1 to s).
The set of probabilities Pi' P2' ... , Ps (also called the distribution of the

probabilities) contains all the information needed about the random
variable. However, we do not need all the probabilities for many
practical purposes. It is sufficient to know two most important
characteristics of a random variable: its expected value (its mathematical
expectation) and its variance.

The expected value is an average value of the random variable taken
over a large number of trials. We shall use the letter E to denote the
expected value. The expected value of a random variable X is the sum of
the products of each variable and its probability, i.e.

I~(x) = P1X l + P2X2 + ... + PsX.,

or, using the summation sign,
s

I~' (x) = L Pmxm' (1.4)
m=l

We also need to know how a variable deviates from the expected
value, or, in other words, how much the random variable is scattered.
The expected value of the deviation from the expected value (that is the
difference X - E (x)) cannot be used because it is equal to zero. We can
show this as follows:

s s s

E(x - E(x)) = L Pm(xm- E(x)) = L PmXm - E(x) L r;
..'. _ .............- 1"''''-~~&&''''-'''' \rl I r~ I ·...-·-1 t'S' ............ - r ...~~l...""'''''''~J ...... _ .. - ...... _ ..

will give one of the values Xl' X2' ... , x, (without saying which one). This
probability is unity. Consequently,

.<

L Pm= 1
",= 1

(1.3)

s

(the notation L means that the summation is performed over all
m=l

m from 1 to s).
The set of probabilities Pi' P2' ... , Ps (also called the distribution of the

probabilities) contains all the information needed about the random
variable. However, we do not need all the probabilities for many
practical purposes. It is sufficient to know two most important
characteristics of a random variable: its expected value (its mathematical
expectation) and its variance.

The expected value is an average value of the random variable taken
over a larze number of trials. We shall use the letter E to denote the
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E(x,), var x,
-,

\
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a b

E(x ,)=E(x,1

\ varX,<varx,

Figure 1.10

This is the variance of a random variab,l~d we shall use var to denote
it. The square root of the variable Vyar is called the standard (or
root.-mean-square) deviation cr of the random variable. It is easy to show
that
var = E(x2) - (E(X))2. (1.6)

Indeed,
s s

L Pm (Xm - E (X))2 = L Pm (x;' - 2xmE(x) + (E (X))2)
m=l m=l

$ s: S

= L PmX;' - 2E (x) L v,»; + (E (X))2 L Pm
m=l m=l m=l

ba

Two probability distributions are shown in Fig. 1.lOa. The two
random variables possess different expected values while having the
same variance. Looking at Fig. 1.10b, we can see a different picture: the
random variables possess different variances while having the same
expected values.

Bernoulli's binomial distribution. Suppose a series of n independent
identical trials is performed. The trials are independentin the sense that

I

Figure 1.10

This is the variance of a random variab,l~d we shall use var to denote
it. The square root of the variable Vyar is called the standard (or
root.-mean-square) deviation cr of the random variable. It is easy to show
that
var = E(x2) - (E(X))2. (1.6)

Indeed,
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II hospital registers n newborn babies and the event U is the birth of
II girl. Hence Pn(m) is the probability that there will be m girls in a set of
" newborn babies. Suppose in a lottery, n tickets are checked, event U is
the discovery of a prize-winning ticket, and P; (m) is the probability that
m prize-winning tickets will be found out of a total of n tickets. Suppose
in a physics experiment n neutrons are recorded, the event U is the
occurrence of a neutron with an energy within a certain range, and
Pn (m) is the probability that m of the n neutrons will possess energies in
the range. In all these examples, the probability Pn (m) is described by
the same formula which is the binomial distribution (sometimes named
lifter a 17th century Swiss mathematician called Jacob Bernoulli).

The binomial distribution is derived by assuming that the probability
that event U· will occur in a single trial is known and does not vary
from trial to trial. Let us call this probability p. The probability that
event U does not occur in a single trial is q = 1 - p. It is important that
the probability that an article is rejected does not depend in any way on
how many rejected articles there are in the given batch. The probability
that a girl is born in any actual delivery does not depend on whether
II girl or a boy was born in the previous birth (nor on how many girls
have so far been born). The probability of winning a prize neither
increases nor decreases as the lottery tickets are checked. The
probability that a neutron has an energy in a given range does not
change during the experiment.

Now, once the probability p that a certain random event will occur in
II single trial is known, we find the probability Pn (m) of m occurrences in
II series of n independent identical trials.

Suppose the event U occurred in the first m trials but did not occur in
" - m trials, then the probability of the situation would be pmqn - ".
Naturally, other orders are possible. For instance, event U may not
occur in the first n - m trials and occur in the rest m trials. The
probability of this situation is also pmqn - ", There are also other possible
situations. There are as many situations as there are ways choosing
tl elements taken m at a time (this is written G:z». The probability of each
situation is identical and equals pmqn - ", The order in which event
U occurs is inessential. It is only essential that it occurs in m trials and
does not occur in the remaining n - m trials. The sought probability
P; (m) is the sum of the probabilities of each G:z) situation, i. e. the
product of pmct - m and (~):
occurrence of a neutron with an energy within a certain range, and
Pn (m) is the probability that m of the n neutrons will possess energies in
the range. In all these examples, the probability Pn (m) is described by
the same formula which is the binomial distribution (sometimes named
lifter a 17th century Swiss mathematician called Jacob Bernoulli).

The binomial distribution is derived by assuming that the probability
that event U· will occur in a single trial is known and does not vary
from trial to trial. Let us call this probability p. The probability that
event U does not occur in a single trial is q = 1 - p. It is important that
the probability that an article is rejected does not depend in any way on
how many rejected articles there are in the given batch. The probability
that a girl is born in any actual delivery does not depend on whether
II girl or a boy was born in the previous birth (nor on how many girls
have so far been born). The probability of winning a prize neither
increases nor decreases as the lottery tickets are checked. The
p,robabil~ty .that. a neutron has an energy in a given range does not
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m

20

Here n ! = 1·2·3· .... n (read n ! as "en factorial"), by convention 0 ! = 1.
Substituting (1.8) into (1.7), we can find

n! m n-mr, (m) = p q (1.9)
m!(n-m)!

This is the binomial distribution, or the distribution of a binomial
random variable. I shall explain this term below, and we shall see that

(1.1 0)

By way of example, let us calculate the probability that m girls are
born in a group of 20 babies. Assume that the probability of delivering
a girl is 1/2. We set p = 1/2 and n = 20 in expression (1.9) and consider
the integer values of variable m within the range from 0 to 20. The result
can be conveniently presented as a diagram (Fig. 1.11). We see that the
birth of 10 girls is the most probable; the probability of delivering, for
instance, 6 <;>r 14 girls is six times smaller.

If a random variable has a binomial distribution, then its expected
value is

n

E(m) = I mPn(m)
m=O

__ L 1_ _ _ __ ..J .L _ i" .L 1__

o 4 6 8 10 12 14 16

Figure 1.11

20

m

Here n ! = 1·2·3· .... n (read n ! as "en factorial"), by convention 0 ! = 1.
Substituting (1.8) into (1.7), we can find

n! m n-mr, (m) = p q (1.9)
m!(n-m)!

This is the binomial distribution, or the distribution of a binomial
random variable. I shall explain this term below, and we shall see that
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The normal (Gaussian) distribution. Probability calculations using the
binomial distribution are difficult for large n. For instance, in order to
lind the probability that 30 girls were delivered from 50 births, you have
to calculate

50! 50
PJo (50) = --(0.5) .

30 !20!

Note that even 20! is a 19-digit number. In such cases one can use
1\ formula which is the limit of the binomial distribution at large n:

(1.1 3)/
) ( ) _ I _ (m - E(m))2J2var
/I m - e

j/21tvar

where E(m) = np and var = npq, and e = 2.718... is the base of natural
logarithms. The distribution defined in (1.13) is called the normal or
Gaussian distribution.

The Poisson distribution. If the probability that an event will
occur in a single trial is very small (p « 1), the binomial distribution at
large 11 becomes the Poisson (rather than the normal) distribution, and is
defined as .

(1.14)P ( ) _ (np)m -np
/I m - e .

m!

This distribution is also sometimes called the law of rare events. It is
interesting to note that the variance of a random variable with
the Poisson distribution equals its expected value.

Two distributions are compared in Fig. 1.12. The parameters of the
Iirst distribution are n = 30 and p = 0.3, and it is close to the normal
distribution with the expected value E (m) = 9. The second distribution's
parameters are n = 30 and p = 0.05, and it is close to the Poisson
distribution with E (m) = 1.5.

A little of mathematics. The expression (q + p)", where n is a positive

n=3O
P=0.05

0.3tP1n(m),.----,;
.,t

pn(m)

0.3 r----.-......
n=3o

0.2 P=O.3'
~~.. 30 !20 !

Note that even 20! is a 19-digit number. In such cases one can use
1\ formula which is the limit of the binomial distribution at large n:

(1.1 3)

(1.14)

/
) ( ) _ I _ (m - E(m))2J2var
/I m - e

j/21tvar

where E(m) = np and var = npq, and e = 2.718... is the base of natural
logarithms. The distribution defined in (1.13) is called the normal or
Gaussian distribution.

The Poisson distribution. If the probability that an event will
occur in a single trial is very small (p « 1), the binomial distribution at
large 11 becomes the Poisson (rather than the normal) distribution, and is
defined as .

P ( ) _ (np)m -np
/I m - e ._.
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integer, is called a binomial (two-term) expression of degree n. You should
know about the binomial expansions of second and third degrees:
(q + p)2 = q2 + 2qp + p2;

(q + p)3 = q3 + 3q2p + 3qp2 +v'.
In general (for a random integer n) the binomial expansion is

(q+p)n=qn+nqn-I p+ ... + n(n-I) ... (n-m+ I) qn-mpm
m!

n-I n+ ... + nqp + p .

Using the notation given 10 (1.8), we can rewrite this formula as
(q + p)" = (~)qn + (7)qn-l p + ... + (;,,)qn-mpm + ... + (n~l)qpn-I + (~)pn.

Thus from (1.9), we can conclude that
n n

(q + p)n = L (;:')qn - mpm = L r, (m).
m=O m=O

Consequently, the probabilities P; (m) coincide with the coefficients of
the binomial expansion, and this is why the binomial distribution is so
called.

The probabilities q and p in a binomial distribution are such that q +
p = 1. Therefore, (q + p)n = 1. On the other hand,

n

(q + pt = L Pn(m).
m=O

Hence (1.10).

Continuous Random Variables
Continuous random variables are very unlike discrete ones.
A continuous variable can assume any of infinite set of values, whick
continuously fill a certain interval. It is impossible in principle to list
every value of such a variable at the very least because there is no such
thing as two neighbouring values Gust as it is impossible to mark two
neighbouring points on the number axis). Besides, the probability of
a concrete value of a continuous random variable is zero.
In general uor a ranuum integer n) we omorruar expansion 1:S

(q+p)n=qn+nqn-I p+ ... + n(n-I) ... (n-m+ I) qn-mpm
m!

n-I n+ ... + nqp + p .

Using the notation given 10 (1.8), we can rewrite this formula as
(q + p)n = (~)qn + (7)qn-l p + ... + (;,,)qn-mpm + ... + (n~l)qpn-I + (~)pn.

Thus from (1.9), we can conclude that
n n

(q + p)n = L (;:')qn - mpm = L r, (m).
m=O m=O

Consequently, the probabilities P; (m) coincide with the coefficients of
the binomial expansion, and this is why the binomial distribution is so
called.
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a

Figure 1.13

We could also use a roulette instead of throwing a needle. A strip of
paper with a numbered line could be. pasted to the circumference of the
roulette circle, as shown in Fig. 1.13b. Wherever the freely rotating
arrow of the roulette is pointing when it stops, it yields a number that
will be a continuous random variable.

What is the probability of the arrow stopping at a certain point x? In
other words, what is the probability that a concrete value x of
a continuous random variable is chosen? Suppose the roulette circle's.
radius R is divided into a finite number of identical sectors, e.g. 10
sectors (Fig. 1.14). The length of the arc corresponding to the sector
equals .1x = 27tR/lO. The probability that the arrow will stop within the
sector hatched in the figure is .1x/27tR = l/lO. Thus, the probability that
the random variable will take a value from x to x + dx is dx/27tR. Let

a

b

Figure 1.13

We could also use a roulette instead of throwing a needle. A strip of
paper with a numbered line could be. pasted to the circumference of the
roulette circle, as shown in Fig. 1.13b. Wherever the freely rotating
arrow of the roulette is pointing when it stops, it yields a number that
will be a continuous random variable.

What is the probability of the arrow stopping at a certain point x? In
other words, what is the probability that a concrete value x of
~I rCintinllClII<: r~nrlCim v~ri~hlf" i<: rhCl<:f"n? ~lInlYl<:f" thf" rClIlIf"ttf" rirrlf"'<:
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the limit as dx --+ O. In this case, the probability dx/2nR becomes zero.
Thus we can see that the probability that a continuous random variable
will take a certain value is indeed zero.

That event may be both possible and possess a zero probability may
seem paradoxical, but it is not. In fact there are parallels you are surely
well aware of. Consider a body of volume V with a mass M. Let us
select a point A within the body and consider a smaller volume VI
which contains the point (Fig. 1.15) and assign a mass M I to it. Let us
gradually shrink the smaller volume around point A. We obtain
a sequence of volumes containing A, i.e. V, VI' V2, V3, ••• , and
a corresponding sequence of decreasing masses: M, M I' M z, M3' ....

The limit of the mass vanishes as the volume around A contracts to
zero. We can see that a body which has a finite mass consists of points
which have zero masses. In other words, the nonzero mass of the body
is the sum of an infinite number of zero masses of its separate points. In
the same way, the nonzero probability that a roulette arrow stops within
a given range dX is the sum of an infinite number of zero probabilities
that the arrow will stop at each individual value within the considered
range.

The density of a probability. This conceptual difficulty can be avoided
by using the idea of density. Although the mass of a point within a body
is zero, the body's density at the point is nonzero. If dM is the mass of
a volume d V within which the point in question is located (we shall-- . . I ... .. .

,)-.-
,,/
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Figure 1.15

the limit as dx --+ O. In this case, the probability dx/2nR becomes zero.
Thus we can see that the probability that a continuous random variable
will take a certain value is indeed zero.

That event may be both possible and possess a zero probability may
seem paradoxical, but it is not. In fact there are parallels you are surely
well aware of. Consider a body of volume V with a mass M. Let us
select a point A within the body and consider a smaller volume VI

• "tI ... ~ .... 1 •
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The mass M of a body occupying volume V is then expressed by the
integral:

M = J p(f)dV,
(V)

over the volume in question.
Probability theory uses a similar approach. When dealing with

continuous random variables, the probability density is used rather than
the probability itself. Let f(x) be the probability density of a random
variable x, and so by analogy with the mass density we have

I"(x) = lim ~px/~x.
&x ....o

I fere ~px is the probability that a random variable will take a value
between x and x + ~x. The probability p that a random variable will
have a value between Xl and X2 is, in terms of probability density, as
follows:

X2

I' = Jf(x) dx. (1.15)

If the integration is over the whole range of values a random variable
may take, the integral (1.15) will evaluate to unity (this is the probability
of a certain event). In the example with a roulette mentioned above, the
whole interval is from x = 0 to x = 21tR. In general, we assume the
interval is infinite, when

J f(x)dx=t. (1.16)

The integral is very simple in the roulette example because the
probability the roulette arrow stops within an interval from x to x + L\x
titles not depend on x. Therefore, the probability density does not depend
un x, and hence,
.',11 2"R

Jfdx = f J dx = 21tRf = 1, and f = 1/21tR.
II 0

~ .. _- .--- .--.-.---- --- ~--~..-----.
Probability theory uses a similar approach. When dealing with

continuous random variables, the probability density is used rather than
the probability itself. Let f(x) be the probability density of a random
variable x, and so by analogy with the mass density we have

I"(x) = lim ~px/~x.
&x ....o

I fere ~px is the probability that a random variable will take a value
between x and x + ~x. The probability p that a random variable will
have a value between Xl and X2 is, in terms of probability density, as
follows:

X2

I' = Jf(x) dx. (1.15)
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.instead of sums, and the probability density distribution is used rather
than the probability distribution:

E(x) = J xf(x)dx;
-00

00

var = J (x - E (X))2 f(x) dx.
-00

(1.17)

(1.18)

The normal distribution of probability density. When dealing with
continuous random variables, we often encounter the normal
distribution of probability density. This distribution is defined by the
following expression (compare it with (l.t 3)):

f(x) = _1_ e - (x - E(X))2/2cr
2• (1.19)

cr~
Here cr is the standard deviation (cr = ~), and the function (l.t9) is
called the normal or Gaussian distribution.

The probability density of a continuous random variable is always
normal if the variance of its values is due to many different equally
strong factors. It has been proved in probability theory that the sum of
a large enough number of independent random variables obeying any
distributions tends to the normal distribution, and the larger the number
of sums the more accurately the normal distribution is.

For instance, suppose we are dealing with the production of nuts and
bolts. The scatter of the inside diameter of the nut is due to random
deviations in the properties of the metal, the temperature, vibration of
the machine tool, changes in the voltage, wear of the cutter, etc. All of
these effects act independently and approximately with the same
strength. They are superimposed, and the result is that the inside
diameter of the nuts is a continuous random variable with a normal
distribution. The expected value of this variable should evidently be the

f

~
~

var = J (x - E (X))2 f(x) dx.
-00

(1.18)

The normal distribution of probability density. When dealing with
continuous random variables, we often encounter the normal
distribution of probability density. This distribution is defined by the
following expression (compare it with (l.t 3)):

f(x) = _1_ e - (x - E(X))2/2cr
2• (1.19)

cr~
Here cr is the standard deviation (cr = ~), and the function (l.t9) is
called the normal or Gaussian distribution.

The probability density of a continuous random variable is always
normal if the variance of its values is due to many different equally
strong factors. It has been proved in probability theory that the sum of
a large enough number of independent random variables obeying any
distributions tends to the normal distribution. and the larger the number
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desired inside diameter of the nuts, while the variance characterizes the
scatter of the obtained diameters around the desired value.

The three-sigma rule . A normal distribution is shown in Fig. 1.16. It
has a maximum at the expected value E (x). The curve (the Gaussian
curve) is bell-shaped and is symmetric about E (x). The area under the
entire curve, i. e. for the interval (- 00 < x < + (0), is given by the

00

integral J j(x) dx. Substituting (1.19) here, it can be shown that the
-00

area is equal to unity. This agrees with (1.16), whose meaning is that the
probability of a certain event is unity. Let us divide the area under the
Gaussian curve using vertical lines (see Fig. 1.16). Let us first consider
the section corresponding to the interval E (x) - o ~ x ~ E (x) + cr. It can

E(x)+a

be shown (please believe me) that J j(x)dx = 0.683. This means
E(x)-a

that the probability of x taking a value in the interval from E (x) - rr to
E(x) + cr equals 0.683. It can also be calculated that the probability of
x taking a value from E (x) - 2cr to E (x) + 2cr is 0.954, and the
probability of x taking a value in the range of E (x) - 3cr to E (x) + 3cris
0.997. Consequently, a continuous random variable with a normal
distribution takes a value in the interval E (x) - 3cr~ x ~ E (x) + 3cr with
probability 0.997. This probability is practically equal to unity. There­
fore, it is natural to assume for all practical purposes that a random
variable will always take a value in the interval from 3cr on the right to
3cr on the left of E (x). This is called the three-sigma rule.

Gaussian -curve using vertical lines (see Fig. 1.16). Let us first consider
the section corresponding to the interval E (x) - o ~ x ~ E (x) + cr. It can

E(x)+a

be shown (please believe me) that J j(x)dx = 0.683. This means
E(x)-a

that the probability of x taking a value in the interval from E (x) - rr to
E(x) + cr equals 0.683. It can also be calculated that the probability of
x taking a value from E (x) - 2cr to E (x) + 2cr is 0.954, and the
probability of x taking a value in the range of E (x) - 3cr to E (x) + 3cris
0.997. Consequently, a continuous random variable with a normal
distribution takes a value in the interval E (x) - 3cr~ x ~ E (x) + 3cr with
probability 0.997. This probability is practically equal to unity. There­
fore, it is natural to assume for all practical purposes that a random
variable will always take a value in the interval from 3cr on the right to
3cr on the left of E (x). This is called the three-sigma rule.



Chapter 2
Decision Making

Practical demands brought forth special scientific
methods that can be collected under the heading
"operations research". We shall use this term to mean
the application of quantitative mathematical methods
to justify decisions in every area of goal-oriented
human activity.

E. S. Wentzel

These Difficult Decisions
Decision making under uncertain conditions. We often have to make
decisions when not all the information is available and this uncertainty
always decreases to some extent our ability to decide. For example,
where to go for a vacation or holiday? This has worried me many times,
since various uncertainties concerning the weather, the hotel, the
entertainment at the resort, and so on, must be foreseen. We try and
decide on the best variant from our experience and the advice of our
friends, and we often act "by inspiration". This subjective approach to
decision making is justifiable when the consequences involve ourselves
and relatives. However, there are many situations when a decision can
affect a large number of people and therefore requires a scientific and
mathematically justifiable approach rather than a subjective one.

For instance, modern society cannot function without electricity,
stores of food, raw materials, etc. The stores are kept everywhere: at
factories, shops, hospitals, and garages. But how large should the stores
be in a particular case? It is clear that they should not be too small,
otherwise the function of the enterprise would be interrupted. Neither
sho.uld. they. also be _~O? large .becau~e t.!tey c.0st mOI~ey to b~i!d an'!

Decision Making
Practical demands brought forth special scientific
methods that can be collected under the heading
"operations research". We shall use this term to mean
the application of quantitative mathematical methods
to justify decisions in every area of goal-oriented
human activity.

E. S. Wentzel

These Difficult Decisions
Decision making under uncertain conditions. We often have to make
decisions when not all the information is available and this uncertainty
_1 ..J .&. ~ .1. __ '" L~1~..._. ""_ ..J __ ~...J_ T':"~__ ~__~_1_
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or random junctions, and they have statistical properties (for instance, the
expected value and variance), which are either known or can be
obtained over time. Uncertainty of this kind is called probabilistic or
stochastic. The second kind of uncertainty is caused by unknown factors
which are not random variables (random functions) because the set of
realizations of these factors does not possess statistical stability and
-therefore the notion of probability cannot be used. We shall call this
uncertainty "bad".

"So", the reader may say, "it would seem that not every event that
cannot be predicted accurately is a random event."

"Well, yes, in a way." Let me explain. In the preceding chapter we
discussed random events, random variables, and random functions.
I repeatedly emphasized that there should always be statistical stability,
which is expressed in terms of probability. However, there are events,
which occur from time to time, that do not have any statistical stability.
The notion of probability is inapplicable to such events, and therefore,
the term "random" cannot be used here too. For instance, we cannot
assign a probability to the event of an individual pupil getting an unsatis­
factory mark in a concrete subject. We cannot, even hypothetically,
devise a set of uniform trials that might yield the event as one outcome.
There would be no sense in conducting such a trial with a group of
pupils because each pupil has his or her own individual abilities and
level of preparation for the exam. The trials cannot be repeated with the
same pupil because he will obviously get better and better in the subject
from trial to trial. Similarly there is no way we can discuss the
probability of the outcome of a game between two equally matched
chess players. In all such situations, there can be no set of uniform trials,
and so there is no stability which can be expressed in terms of
a probability. We have "bad" uncertainty in all such situations.

I am afraid we do not consider the notion "statistical stability" and
often use expressions such as "improbable", "probable", "most
probable", and "in all probability" to refer to events that cannot be
assigned by any probability. We are apt to ascribe a probability to every
event even though it might not be predictable. This is why it became
necessary to refine the notion of probability early this century. This was
done by A.N. Kolmogorov when he developed an axiomatic definition
of probability.

Options and the measureof effectiveness. When we speak of decision
-therefore the notion of probability cannot be used. We shall call this
uncertainty "bad".

"So", the reader may say, "it would seem that not every event that
cannot be predicted accurately is a random event."

"Well, yes, in a way." Let me explain. In the preceding chapter we
discussed random events, random variables, and random functions.
I repeatedly emphasized that there should always be statistical stability,
which is expressed in terms of probability. However, there are events,
which occur from time to time, that do not have any statistical stability.
The notion of probability is inapplicable to such events, and therefore,
the term "random" cannot be used here too. For instance, we cannot
assign a probability to the event of an individual pupil getting an unsatis­
factory mark in a concrete subject. We cannot, even hypothetically,
devise a set of uniform trials that might yield the event as one outcome.
There would be no sense in conducting such a trial with a group of
pup~ls rbecause ~ach r pU,l?il has his or her own individual abilities and
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for each particular purpose, e. g., not to be late for school, to solve
a problem correctly and quickly, or to reach the cinema. A doctor wants
to find an efficient method of treating his patient. A factory manager is
responsible for the fulfilment of a production plan. The most efficient
option is the one that suits its purpose best. .

Suppose we work in a shop and our target is to maximize the
receipts. We could choose profit as the measure of effectiveness and
.strive to maximize this measure. The selection of the measure in this
'example is evident. However, there are more complicated situations;
when several goals are pursued simultaneously, for example, we wish to
maximize profit, minimize the duration of the sales, and distribute the
goods to the greatest number of customers. In such cases we have to
have several measures of effectiveness; these problems are called
multicriterial,

Let W be a single measure of effectiveness. It would seem that our
task is now to find an option x at which W is at a maximum (or, the
other way round, at a minimum). However, we should remember that
decision making occurs under conditions of uncertainty. There are
unknown (random) factors (let us use ~ to denote them), which influence
the end result and therefore affect the measure of effectiveness W There
is also always a set of factors known beforehand (let us designate them
IX). Therefore the measure of effectiveness is dependent on three groups
of factors: known factors IX, unknown (random) factors ~, and the
selected option x:

W= W(IX, ~,x).

In the sales example, the IX set is goods on sale, the available premises,
the season, etc. The ~ factors include the number of customers per day
(it varies randomly from day to day), the time customers arrive (random
crowding is possible, which leads to long queues), the goods chosen by
the customers (the demand for a given commodity varies randomly in
time), etc.

Since the ~ factors are random, the measure of effectiveness W is
a random variable. Now, how is it possible to maximize (minimize)
a random variable? The answer quite clearly is that it is naturally
impossible. Whichever option x is chosen, W remains random, and it
cannot be maximized or minimized. This answer should not discourage
receipts. We could choose profit as the measure of effectiveness and
.strive to maximize this measure. The selection of the measure in this
'example is evident. However, there are more complicated situations;
when several goals are pursued simultaneously, for example, we wish to
maximize profit, minimize the duration of the sales, and distribute the
goods to the greatest number of customers. In such cases we have to
have several measures of effectiveness; these problems are called
multicriterial,

Let W be a single measure of effectiveness. It would seem that our
task is now to find an option x at which W is at a maximum (or, the
other way round, at a minimum). However, we should remember that
decision making occurs under conditions of uncertainty. There are
unknown (random) factors (let us use ~ to denote them), which influence
the end result and therefore affect the measure of effectiveness W There
is also always a set of factors known beforehand (let us designate them
IXl- !h~refor~ the me~s~re of effec~iveness ~s d~pen?e!1t on t~ree g~0l:lps
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that the problem becomes completely determined and the measure of
effectiveness W can be calculated precisely. It can, in particular, be
either maximized or minimized. This technique has been widely used to
solve problems in physics and technology. Almost every parameter
encountered in these fields (e.g., temperature, potential difference,
illuminance, pressure) is, strictly speaking, a random variable. As a rule,
we neglect the random nature of physical parameters and use their mean
values to solve the problems.

The technique is justified if the deviation of a parameter from its
mean value is insignificant. However, it is not valid if the random factor
significantly affects the outcome. For instance, when organizing the jobs
in a motor-car repair shop, we may not neglect the randomness in the
way cars fail, or the random nature of the failures themselves, or the
random time needed to complete each repair operation. If we are
dealing with the noise arising in an electronic device, we cannot neglect
the random behaviour of electron flows. In these examples, the ~ factors
must indeed be considered as random factors, we shall say they are
essentially random.

Mean-value optimization. If the ~ factors are essentially random, we
can use a technique called mean-value optimization. What we do is to use
the expected value E (W) as the measure of effectiveness, rather than the
random variable J.v, and the expected value is maximized or minimized.

Naturally, this approach does not resolve the uncertainty. The
effectiveness of an option x for concrete values of random parameters
~ may be very different from the expected one. However, using
mean-value optimization means that we can be sure that after many
repeated operations we shall gain overall. It should be borne in mind
that mean-value optimization is only admissible when the gains of
repeated operations are totalled, so that "minuses" in some operations
are compensated by the "pluses" in others. Mean-value optimization
would be justified should we be trying to increase the profit obtained,
for instance, in a sales department. The profit on different days would be
totalled, so that random "unlucky" days would be compensated by the
"lucky" days.

But here is another example. Suppose we consider the effectiveness of
the ambulance service in a large city. Let us select the elapsed time
between summoning help and the ambulance arriving as the measure of
effectiveness. It is desirable that this parameter be minimized. We cannot
~nnJ:uJUf".J\n.~v~Ina.oorimizatino.,bPE5.lJ L<:P-jf PDP_nat\p..Qt .waits, ttV:\. Jnnu_Sm:
values to solve the problems.
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mean value is insignificant. However, it is not valid if the random factor
significantly affects the outcome. For instance, when organizing the jobs
in a motor-car repair shop, we may not neglect the randomness in the
way cars fail, or the random nature of the failures themselves, or the
random time needed to complete each repair operation. If we are
dealing with the noise arising in an electronic device, we cannot neglect
the random behaviour of electron flows. In these examples, the ~ factors
must indeed be considered as random factors, we shall say they are
essentially random.

Mean-value optimization. If the ~ factors are essentially random, we
can use a technique called mean-value optimization. What we do is to use
the expected value E (W) as the measure of effectiveness, rather than the
random variable J.v, and the expected value is maximized or minimized.

Naturallv. this approach does not resolve the uncertainty. The
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probability, for instance, no less than 0.99. In order to take this into
account we delete from the X set those options x, for which the
requirement is not satisfied. These constraints are called stochastic.
Naturally, the use of stochastic constraints noticeably complicates
decision making.

Random Processes with Discrete States
A random process can be thought of as the transition of a system from
one state to another occurring in a random fashion. We shall consider
random processes with discrete states in this chapter and so our system
will be supposed to have a set of discrete states, either finite or infinite.
The random transitions of the system from one state to another are
assumed to take place instantaneously.

State raphs. Random processes with discrete states can be
convenient y considered using a diagram called a state graph. The
diagram shows the possible states a system may be in and indicates the
possible transitions using arrows.

Let us take an example. Suppose a system consists of two machine
tools, each of which produces identical products. If a tool fails its repair
is started immediately. Thus, our system has four states: Sl' both tools
are operating; S2> the first tool is under repair after a failure while the
second is operating; S3, the second tool is under repair while the first is
operating; S4, both tools are being repaired.

The state graph is given in Fig. 2.1. The transitions S1 -+ S2, S1 -+ S3'
S2 -+ S4, and S3 -+ S4 occur as a result of failures in the system. The
reverse transitions take place upon termination of the repairs. Failures
occur at unpredictable moments and the moments when the repairs are
terminated are also random. Therefore, the system's transition from state
to state is random.

~­

Random Processes with Discrete States
A random process can be thought of as the transition of a system from
one state to another occurring in a random fashion. We shall consider
random processes with discrete states in this chapter and so our system
will be supposed to have a set of discrete states, either finite or infinite.
The random transitions of the system from one state to another are
assumed to take place instantaneously.

State raphs. Random processes with discrete states can be
convenient y considered using a diagram called a state graph. The
diagram shows the possible states a system may be in and indicates the
possible transitions using arrows.

Let us take an example. Suppose a system consists of two machine
tools, each of which produces identical products. If a tool fails its repair
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Note that the figure does not show transitions 8 1 -+ 84 and 84 -+ 8 i­

The former corresponds to the simultaneous failure of both tools and
the latter to the simultaneous termination of repair of both tools. We
shall assume that the probabilities of these events are zero.

Event arrival. Suppose that we have a situation in which a stream of
uniform events follow each other at random moments. They may be
telephoned orders for taxi, domestic appliances being switched on, the
failures in the operation of a device, etc.

Suppose the dispatcher at a taxi depot records the time each taxi
order is made .er an interval of time for instance .om I? a. m to
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each interval of time varies only slightly from experiment to experiment
(from one arrival realization to another). We can see that the number of
events in the arrival realizations presented are 19, 20, 21, and 18.

In the preceding chapter, a random event in an experiment was an
outcome which has a definite probability. When we are considering
arrivals of events, we must have another meaning for the term "event".
There is no use speaking about the probability of an outcome (event)
because each event is uniform, i. e. indistinguishable from the others. For
instance, one taxi-order is a single event in a stream and is indistin­
guishable from another event. Now let us consider other probabilities, for
instance, the probabilities that an event will occur during a given
interval of time (suppose, from t to t + dt, as shown in the figure)
exactly once, twice, thrice, etc.

The notion of "event arrival" is applied to random processes in
systems with discrete states. It is assumed that the transitions of
a system from one state to another occur as a result of the effect of
event arrivals. Once an event arrives, the system instantaneously changes
state. For the state graph in Fig. 2.1, transitions 8 1 -+82 and 8 3 -+84
occur due to the arrival of events corresponding to failures in the first
tool, while transitions 8 1 -+ 8 3 and 82 -+84 occur due to failures of the
second tool. The reverse transitions are caused by the arrival of events
corresponding to the "terminations" of repair: transitions 8 2 -+8 1 and
84 -+ 8 3 are caused by the arrivals of repair terminations of the first tool,
and transitions 8 3 -+ 8 1 and 84 -+ 8 2 to the arrivals of repair
terminations of the second tool.

The system transfers from state S, to state 8j every time the next event
related to the transition arrives. The natural conclusion is that the
probability of transition S, -+ 81 at a definite moment in time t should
equal the probability of an event arrival at this moment. There is no
sense in speaking of the probability of a transition at a concrete moment
t. Like the probability of any concrete value of a continuous random
variable, this probability is zero, and this result follows from the
continuity of time. It is therefore natural to discuss the probability of
a transition (the probability of an event arrival) occurring during the
interval of time from t to t + dt, rather than its occurrence at time t. Let
us designate this probability Pij(t, dt). As dt tends to zero, we arrive at
the notion of a transition provability density at time t, i. e.

'f-.3 r: P ..{t, .1.t)
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because each event is uniform, i. e. indistinguishable from the others. For
instance, one taxi-order is a single event in a stream and is indistin­
guishable from another event. Now let us consider other probabilities, for
instance, the probabilities that an event will occur during a given
interval of time (suppose, from t to t + dt, as shown in the figure)
exactly once, twice, thrice, etc.

The notion of "event arrival" is applied to random processes in
systems with discrete states. It is assumed that the transitions of
a system from one state to another occur as a result of the effect of
event arrivals. Once an event arrives, the system instantaneously changes
state. For the state graph in Fig. 2.1, transitions 8 1 -+82 and 8 3 -+84
occur due to the arrival of events corresponding to failures in the first
tool, while transitions 8 1 -+ 8 3 and 82 -+84 occur due to failures of the
second tool. The reverse transitions are caused by the arrival of events
corresponding to the "terminations" of repair: transitions 8 2 -+8 1 and
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and therefore the event arrival rate does not depend on time, i. e. we
shall consider steady-state arrivals.

The Chapman-Kolmogorov equations for steady state. Let us use Pi
to denote the probability that a system is in state S; (since our
discussion is only for steady-state arrivals, the probabilities Pi are
independent of time). Let us consider the system whose state graph is
given in Fig. 2.t. Suppose 1... 1 is the arrival rate for failures of the first
tool and 1...2 that for the second tool; let III be the arrival rate for repair
terminations of the first tool and 112 that for the second tool. We have
labelled the state graph with the appropriate arrival rates, see Fig. 2.3.

Figure 2.3

Suppose there are N identical systems described by the state graph in
Fig. 2.3. Let N» t. The number of systems with state S, is Np, (this
statement becomes more accurate the larger N is). Let us consider
a concrete state, say, S i - Transitions are possible from this state to states
S2 and S3 with probability 1... 1 + 1...2 per unit time. (Under steady state,
the probability density is the probability for the finite time interval ~t

divided by M.) Therefore, the number of departures from state S1 per
unit time in the considered set of systems is Np1 (1... 1 + 1... 2) , We can
discern a general rule here: the number of transitions S,- SA per unit
time is the product of the number of systems with state S; (the initial
state) by the probability of the transition per unit time. We have
considered departures from state Sr- The system arrives at this state
given in Fig. 2.t. Suppose 1... 1 is the arrival rate for failures of the first
tool and 1...2 that for the second tool; let III be the arrival rate for repair
terminations of the first tool and 112 that for the second tool. We have
labelled the state graph with the appropriate arrival rates, see Fig. 2.3.
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we obtain the following equations for probabilities PI' PZ' P3, and P4:

for state SI: (AI + Az)PI = IlIPZ + IlzP3,

for state Sz: (Az + Ill) pz = AIPI + IlzP4,

for state S3: (AI+llz)P3=AzPI+IlIP4,

for state S4: (Ill + Ilz)P4 = Azpz + AIP3'

(2.2)

1

It is easy to see that the fourth equation can be obtained by summing
the first three. Instead of this equation, let us use the 'equation

PI+PZ+P3+P4=1,

which means that the system must be in one of the four states.
Therefore, we have the following system of equations:

(AI + Az)PI = IlIPZ + IlZP3,

(Az + Ill) Fz = AIPI + IlZP4,

(AI + Ill)P3 = AzPI + IlIP4,

PI + P: + P3 + P4 = 1.

These are the Chapman-Kolmogorov equations for the system whose state
graph is shown in Fig. 2.3.

Which innovation should be chosen ? Let us analyze a concrete
situation using equations (2.2). The state graph (see Fig. 2.3)
corresponding to these equations describes a system which, we assumed,
consists of two machine tools each producing identical goods. Suppose
the second tool is more modern and its output rate is twice that of the
first tool. The first tool generates (per unit time) an income of five
conventional units, while the second one generates one of ten units.
Regretfully, the second tool fails, on the average, twice as frequently as
does the first tool; hence Al = 1 and A2 = 2. The arrival rates for repair
termination are assumed to be III = 2 and 112 = 3. Using these arrival
rates for .failure and repair termination, let us rewrite (2.2) thus

3PI = 2pz + 3P3,

4P2 = PI + 3P4,

for state S4: (Ill + Ilz)P4 = A2PZ + AIP3·

It is easy to see that the fourth equation can be obtained by summing
the first three. Instead of this equation, let us use the 'equation

PI+PZ+P3+P4=1,

which means that the system must be in one of the four states.
Therefore, we have the following system of equations:

(AI + Az)PI = IlIP2 + IlZP3,

(A2 + Ill) 112 = AIPI + 1l2P4, (2.2)

(AI + Ill)P3 = A2PI + IlIP4,

PI + P: + P3 + P4 = 1.
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20 per cent of the time, the second tool operates while the first one is
being repaired (state S3) 27 per cent of the time, and both tools are
simultaneously being repaired (state S4) 13 per cent of the time. It is
easy to calculate the income this tool system generates per unit time:
(5 + 10) x 0.4 + 5 x 0.2 + lOx 0.27 = 9.7 conventional units.

Suppose an innovation is suggested which would reduce the repair
time of either the first or second tool by a factor of two. For technical
reasons, we can only apply the innovation to one tool. Which tool
should be chosen, the first or the second? Here is a concrete example of
a practical situation when, using probability theory, we must justify our
decision scientifically.

Suppose we choose the first tool. Following the introduction of the
innovation, the arrival rate of its repair termination increases by a factor
of two, whence III = 4 (the other rates remain the same, i. e. A,l = 1, A,2 =
2, and 112 = 3). Now equations (2.2) are

3Pl = 4p2 + 3P3' }
6P2 = PI + 3P4'
4P3 = 2Pl + 4P4'

PI + P2 + P3 + P4 = 1.

After solving this system, we find that PI = 0.48, P2 = 0.12, P3 = 0.32, and
P4 = 0.08. These probabilities can be used to calculate the income our
system will now generate: (5 + 10) x 0.48 + 5 x 0.12 + 10 x 0.32 = t 1
conventional units.

If we apply the innovation to the second tool, the rate 112 will be
doubled. Now A,l = t, A,2 = 2, III = 2, and 112 = 6, and equations (2.2) will
be'

3Pl = 2P2 + 6P3' 1
4P2 = PI + 6P4'

7P3 = 2Pl + 2P4'

PI + P2 + P3 + P4 = 1.

This system yields: PI = 0.5, P2 = 0.25, P3 = 0.17, and P4 = 0.08, whence
the income is (5 + 10) x 0.5 + 5 x 0.25 + lOx 0.17 = 10.45 conven­
tional units. Therefore. it is clearlv more nrofitahle to annly the
time or either the tirst or second tool by a tactor 01 two. For techmcal
reasons, we can only apply the innovation to one tool. Which tool
should be chosen, the first or the second? Here is a concrete example of
a practical situation when, using probability theory, we must justify our
decision scientifically.

Suppose we choose the first tool. Following the introduction of the
innovation, the arrival rate of its repair termination increases by a factor
of two, whence III = 4 (the other rates remain the same, i. e. A,l = 1, A,2 =
2, and 112 = 3). Now equations (2.2) are

3Pl = 4p2 + 3P3' }
6P2 = PI + 3P4'
4P3 = 2Pl + 4P4'

PI + P2 + P3 + P4 = 1.
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Despite their diversity, these systems have several things in common and
common problems.

When we seek the assistance of a doctor or service from a cafe,
restaurant, or barber, we must wait for our turn in a queue, even if we
telephone to make an appointment, that is, reserve our place in a queue
without actually attending physically. Clearly, we wish to be served
straight away and waiting can be frustrating.

It is clear that the source of the problem is the random nature of the
demands for attention in queueing systems. The arrival of calls at
a telephone exchange is random as is the duration of each telephone
conversation. This randomness cannot be avoided. However, it can be
taken into account and, as a consequence, we can rationally organize
a queueing system for all practical purposes. These problems were first
investigated in the first quarter of this century. The mathematical
problems for simulating random processes in systems with discrete states
were formulated and considered, and a new field of investigation in
probability theory was started.

Historically, queueing theory originated in research on the
overloading of telephone exchanges, a severe problem in the early 20th
century. The initial period in the development of the queueing theory
can be dated as corresponding to the work of the Danish scientist
A. Erlang in 1908-1922. Interest in the problems of queueing rapidly
increased. The desire for more rational servicing of large numbers of
people led to investigations of queue formation. It soon became evident
that the problems dealt with in queueing theory went well beyond the
sphere of rendering service and the results are applicable to a wider
range of problems. .

Suppose a workman is operating several machine tools. Failures
requiring urgent repairs occur at random moments, and the duration of
each repair is a random variable. The result is a situation similar to
a common queueing system. However, this is a problem of servicing
many tools by a worker rather than servicing many people by
a queueing system.

The range of practical problems to which queueing theory can be
applied is uncommonly wide. We need the theory when we want, say, to
organize the efficient operation of a modern sea port, when, for instance,
we analyze the servicing rate of a large berth. We apply to queueing
theory when we look at the operation of a Geiger-MUlier counter. These
straight away and waiting can be frustrating.

It is clear that the source of the problem is the random nature of the
demands for attention in queueing systems. The arrival of calls at
a telephone exchange is random as is the duration of each telephone
conversation. This randomness cannot be avoided. However, it can be
taken into account and, as a consequence, we can rationally organize
a queueing system for all practical purposes. These problems were first
investigated in the first quarter of this century. The mathematical
problems for simulating random processes in systems with discrete states
were formulated and considered, and a new field of investigation in
probability theory was started.

Historically, queueing theory originated in research on the
overloading of telephone exchanges, a severe problem in the early 20th
century. The initial period in the development of the queueing theory
can be dated as corresponding to the work of the Danish scientist
!'-. Erlan? ~. 1908-1922. Interest in the pro~l~ms of.queueing .rapidl~
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Basic notions. A queueing system is set up to organize the service of
a stream of requests. The request may be a new passenger in a booking
office, a failure in a machine tool, a ship mooring, or a particle entering
a Geiger-MUller counter. The system may have either one or 'several
servers. When you go to a large barbershop or hairdresser and want to
know the number of barbers or hairdressers, you are in effect asking for
the number of servers in the establishment. In other situations, the
servers may be the number of cashiers in a booking office, the number
of telephones at a post office for making trunk calls, the number of
berths in a port, or the number of pumps at a petrol station. If, on the
other hand, we wish to see a particular doctor, we are dealing with
a single-server queueing system.
. When we consider the operation of a queueing system, we must first

take into account the number of servers, the number of requests arriving
at the system per unit time, and the time needed to service a request.
The number of requests arriving at the system, the moments they arrive,
and the time needed to service a request are, as a rule, random factors.
Therefore, queueing theory is a theory of random processes.

Random processes of this type (i, e. with discrete states) were discussed
in the preceding section. A system transfers from state to state when
each request arrives at the system and when the requests are serviced,
The latter is given by the rate at which requests can be served by
a single, continuously occupied server.

Queueing systems. There are two sorts of queueing system: systems
witli losses and systems with queues. If a request arrives at a system with
losses when all the servers are occupied, the request is "refused" and is
then lost to the system. For example, if we want to telephone someone
and the number is engaged, then our request is refused and we put
down the receiver. When we dial the number again, we are submitting
a new request.

The more common types of system are those with queues or systems
with waiting. This is why it is called the theory of queueing. In such
a system, if a request (or customer) arrives when all the servers are
occupied, the customer takes a place in a queue and waits for a server to
become free. There are systems with infinite queues (a queueing customer
is eventually served and the number of places in the queue is unlimited)
and systems with finite queues. There are different sorts of restriction, i.e.
the number of customers queueing at the same time may be limited (the
the number of servers in the establishment. In other situations, the
servers may be the number of cashiers in a booking office, the number
of telephones at a post office for making trunk calls, the number of
berths in a port, or the number of pumps at a petrol station. If, on the
other hand, we wish to see a particular doctor, we are dealing with
a single-server queueing system.
. When we consider the operation of a queueing system, we must first

take into account the number of servers, the number of requests arriving
at the system per unit time, and the time needed to service a request.
The number of requests arriving at the system, the moments they arrive,
and the time needed to service a request are, as a rule, random factors.
Therefore, queueing theory is a theory of random processes.

Random processes of this type (i, e. with discrete states) were discussed
in the preceding section. A system transfers from state to state when
each request arrives at the system and when the requests are serviced,
The latter is .given ,by the rate at which requests can be served by
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a newcomer to a queue is served first irrespective of the queue.
A customer with a high priority may arrive at the system and interrupt
the servicing of a customer with a lower priority, which may already
start, or the higher priority customer may have to wait until the
servicing has been completed. The priority is absolute in the first case
and relative in the second. Queueing systems are always multicritical,
that is, they have a set of measures by which their effectiveness can be
estimated. These may be the average number of customers served by the
system per unit time, the average number of occupied servers, the
average number of customers in the queue, the average time of waiting
for servicing, the average percentage of refused customers, and the
probability a customer arriving at the system is immediately served.
There are other measures of such systems' effectiveness. It is quite
natural that when organizing the operation of a queueing system we
should strive to reduce the average number of customers in the queue,
and to reduce the time of waiting for servicing. It is also desirable to
maximize the probability that a customer arriving at the system is
served immediately, to minimize the average percentage of refused
customers, and so on. This eventually means that the productivity of the
system must be increased (i.e. the time needed to service each customer
be decreased), the system's operation be rationalized, and the number of
servers made as large as possible. However, by raising the number of
servers, we cannot avoid decreasing the average number of occupied
servers. This means that the duration of the time for which a server is
not occupied will increase, i. e. the server will be idle for some time. The
result is that the system's operational efficiency is lowered. Therefore, we
must in some way optimize the system's operation. The number of
servers should not be too small (to eliminate long queues and to keep
the number of refusals small), but it should also not be too large (so that
the number and duration of idle periods for each server is small).

Systems with losses. The simplest type of queueing system is
a single-server system with losses. Here are some examples: a system with
only one telephone line or a particle detector consisting of only one
Geiger-MUller counter. The state graph for such a system is shown in
Fig. 2.4a. When the server is unoccupied, the system is in state So, and
when the server is occupied, it is in state Sr- The customer's arrival rate
is A, and the service completion rate is Jl. This state graph is very simple.
When the system is in state So, a customer arriving at the system
that is, they have a set of measures by which their effectiveness can be
estimated. These may be the average number of customers served by the
system per unit time, the average number of occupied servers, the
average number of customers in the queue, the average time of waiting
for servicing, the average percentage of refused customers, and the
probability a customer arriving at the system is immediately served.
There are other measures of such systems' effectiveness. It is quite
natural that when organizing the operation of a queueing system we
should strive to reduce the average number of customers in the queue,
and to reduce the time of waiting for servicing. It is also desirable to
maximize the probability that a customer arriving at the system is
served immediately, to minimize the average percentage of refused
customers, and so on. This eventually means that the productivity of the
system must be increased (i.e. the time needed to service each customer
be decreased), the system's operation be rationalized, and the number of
servers made as large a.s, P?ssible.. Ho,:"ever, by raisin~ the number of
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as follows: So when all servers are unoccupied, S1 when one server is
occupied and the others are unoccupied, S2 when two servers are
occupied while the others are unoccupied, and so on, and S; is the state
when all n servers are occupied. As in the preceding example, A is the
customer arrival rate, and Il is the service-completion rate.

Suppose the system is in state So. When a customer request arrives,
one of the servers becomes occupied, and the system is transferred to
state S i- If the system is in state S1 and a new customer arrives, two
servers become occupied, and the system is transferred from SI to S2'
Thus, each customer (with the rate of arrivals A) transfers the system
from one state to the adjacent one from left to right (see the state graph
in the figure). The arrival of events leading to transitions to adjacent
states from right to left is somewhat more complicated. If the system is
in the state S1 (only one server is occupied), the next service-completion
event will disengage the server and transfer the system to state So. Let
me remind you that the service-completion rate is Il. Now suppose the
system is in S2' i. e. two servers are occupied. The average time of service
for each server is the same. Each server is disengaged with the rate
Il when services are completed. As to the transition of the system from
S2 to Sl' it is indifferent as to which of the two servers is unoccupied.
_. - ..~- . r ~- - . .

a

b

x A x....
So S1 S2

~

!J. 2!J. 3!J.

Figure 2.4

as follows: So when all servers are unoccupied, S1 when one server is
occupied and the others are unoccupied, S2 when two servers are
occupied while the others are unoccupied, and so on, and S; is the state
when all n servers are occupied. As in the preceding example, A is the
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can compile the Chapman-Kolmogorov equations for the. probabilities
Po, PI' P2' ... , P« (recall that Pi is the probability that the system is in the
state S;). We obtain the following system of equations:

I...Po = IlPI,
(I... + Il)PI = I...Po + 21lP2,

(I... + 21l) P2 = API + 31lP3'

(2.3)

(2.4)

[I... + (n - 1) Il] Pn-I = I...Pn-2 + nllPn>

Po+ PI + P2 + ...+ Pn = 1.

This set of equations can be solved easily. Using the first equation, we
can express PI in terms of Po and substitute it into the second equation.
Then we can express P2 in the second equation in terms of Po and
substitute it into the third one, and so forth. At the last but one stage,
we express P« in terms of Po. And finally, the results obtained at each
stage can be substituted into the last equation to find the expression for
Po. Thus

P = [1 + A/II + (A/Ill2 + WIll
3

+ ... + (A/Ill" ] - I
o ,.. 2! 3! n!'

(A/Ill!
Pk = --Po (k = 1, 2, 3, ... , n).

k!

A customer's request is refused if it arrives when all n servers are en­
gaged, i. e. when the system is in state Sn' The probability that the system
is in S; equals Pn' This is the probability that a customer arriving at the
system is refused and the service is not rendered. We can find the
probability that a customer arriving at the system will be served,

(A/Ill"
Q = 1 - Pn = 1 -;- --Po'

n!
(2.5)

By multiplying Q by A, we obtain the service-completion rate of the
system. Each occupied server serves 'Il customers per unit time, so we
(I... + 21l) P2 = API + 31lP3,

(2.3)

[I... + (n - 1) Il] Pn-I = I...Pn-2 + nllPn>

Po+ PI + P2 + ...+ Pn = 1.

This set of equations can be solved easily. Using the first equation, we
can express PI in terms of Po and substitute it into the second equation.
Then we can express P2 in the second equation in terms of Po and
substitute it into the third one, and so forth. At the last but one stage,
we express P« in terms of Po. And finally, the results obtained at each
stage can be substituted into the last equation to find the expression for
Po. Thus
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average, and the service completion rate is 0.5 request per minute (the
average service time for one customer is two minutes). Therefore, /-/Il =
3. Suppose the exchange has three servers (three telephone lines). Using
formulas (2.4)-(2.6) for /-/Il = 3 and n = 3, we can calculate that the
probability of servicing the arriving customers is only 65 per cent. The
average number of engaged lines is 1.96, which is 65 per cent of the total
number of lines. Thus, 35 per cent of the customers are refused and not
served. This is too much. We may decide on increasing the number of
servers. Suppose we add one more, a fourth line. Now the probability
of a customer being served increases to 79 per cent (the probability of
being turned away decreases to 21 per cent). The average number
of engaged lines becomes 2.38, which is 60 per cent of the total number of
lines. It would appear that the decision to install a fourth line
is reasonable because a relatively small reduction in the percentage of
occupied servers (from 65 to 60 per cent) results in a significant rise in
the probability to be served, from 65 to 79 per cent. Any further increase
in the number of lines may become unprofitable because the
effectiveness of the system may fall due to the increasing idleness of the
lines. A more detailed analysis would then be required to allow for the
cost of installing each new line. Let me remark that at n = 5 we get Q=
89 per cent and E (N)/n = 53 per cent, while for n = 6, Q= 94 per cent
and E (N)/n = 47 per cent.

Single-server · systems with finite queues. Suppose the number of
queueing customers is restricted, and the queue may only accommodate
m customers. If all places in the queue are occupied, a newcomer is
turned away. For example, a petrol station with only one pump (only
one server) and a parking area for no more than m cars. If all the places
at the station are occupied, the next car arriving at the station will not
stop and will go on to the next.

The state graph for this system is shown in Fig. 2.5a. Here So means
the server is unoccupied, S1 the server is occupied, S2 the server is
occupied and there is one. customer in the queue, S3 the server is
occupied and there are two customers in the queue, ... , Sm+ 1 means the
server is occupied and there are m customers in the queue. As before,
/- is the customer arrival rate and Il is the service completion rate. The
Chapman-Kolmogorov equations for steady state are

~Po =..,IlPl' • _ _ ) _
number of lines. Thus, 35 per cent of the customers are refused and not
served. This is too much. We may decide on increasing the number of
servers. Suppose we add one more, a fourth line. Now the probability
of a customer being served increases to 79 per cent (the probability of
being turned away decreases to 21 per cent). The average number
of engaged lines becomes 2.38, which is 60 per cent of the total number of
lines. It would appear that the decision to install a fourth line
is reasonable because a relatively small reduction in the percentage of
occupied servers (from 65 to 60 per cent) results in a significant rise in
the probability to be served, from 65 to 79 per cent. Any further increase
in the number of lines may become unprofitable because the
effectiveness of the system may fall due to the increasing idleness of the
lines. A more detailed analysis would then be required to allow for the
cost of installing each new line. Let me remark that at n = 5 we get Q=
89 per cent and E (N)/n = 53 per cent, while for n = 6, Q= 94 per cent
and E (!")/n = 47 per cent.
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l-p
(2.8)

m

E (r) = L kPH 1
k= 1

(PH 1 is the probability of k customers being in the queue). The average
waiting time in the queue is the ratio E (r)fA.

Suppose one car arrives at the petrol station per minute (A ~ 1
customer per minute) and a car is filled, on average, within two minutes
(Jl = 1/2). Therefore, p = AIJl = 2. If the number of places in the queue
m = 3, it is easy to calculate that the probability of a customer being
refused is 51.6 per cent while the average waiting time in the queue is
2.1 min. Suppose that in order to decrease the probability of a customer
being refused we double the number of places in the queue. It turns out
that at m = 6 the probability of refusal is 50.2 per cent, i.e. it is, in fact,
the same, but the waiting time in the queue noticeably increases to
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l-p k
Po = , Pk = P Po· (2.8)

1+p+p2+ p3+ ... + pm+l I_pm+2

A customer is turned away if the server is engaged and there are
~ cus.t.omers r. t~~ queue, i.e. wh~n the s~stem is .in state ~+ 1. There-

b
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Fig. 2.5b. Here So means that the server is unoccupied, St the server is
occupied, S2 the server is occupied and there is one customer in the
queue, S3 the server is occupied and there are two customers in the
queue, and Sk means that the server is occupied and there are k - 1
customers in the queue, and so on.

Up till now, we considered graphs with a finite number of states.
However, here is a system with an infinite number of discrete states. Is it
possible to discuss a steady state for such a system? In fact we can. It is
only necessary that the inequality' p < 1 holds true. If so, then the sum
1+ P + p2 + ... + p" + t in (2.8) can be substituted by the sum of the
decreasing geometric progression 1 + P+ p2 + p3 + ... = 1/(1 - pl. The
result is

Po = 1 - P and Pk = pkpO' (2.9)

If p ~ 1, then the system does not have a steady state, i. e. the queue
increases infinitely as t --+ 00.

Method of Statistical Testing
A statistical testing involves numerous repetitions of uniform trials. The
result of any individual trial is random and is not of much interest.
However, a large number of results is very useful. It shows some
stability (statistical stability) and so the phenomenon being investigated
in the trials can be described quantitatively. Let us consider a special
method for investigating a random process based on statistical testing.
The technique is commonly called the Monte Carlo method.

In fact neither the city of Monte Carlo, the capital of the independent
principality of Monaco nor its inhabitants nor guests are in any way
related to the considered method. Instead, the city is known for its
casinos where tourists pay good money playing roulette, and a roulette
wheel could be the city's emblem. At the same time, a roulette is
a generator of random numbers and this is what is involved when the
Monte Carlo method is used.

Two examples indicating the usefulness of statistical testing. First
example. Look at Fig. 2.6. It contains a square with side r in which
a quarter circle of radius r is inscribed. The ratio of the yellow area to
the area of the square is (1tr2)/4r2 = 1t/4. This ratio and, therefore, the
value of 1t can be obtained using the following statistical test. Let us
1':l()We~et,- rrere~:sa -syscerntwi.'m a"1I'lffiltffit:lIhfifm~rur\rrsde(t;:stifLe:s~~t:s·u
possible to discuss a steady state for such a system? In fact we can. It is
only necessary that the inequality' p < 1 holds true. If so, then the sum
1+ P + p2 + ... + p" + t in (2.8) can be substituted by the sum of the
decreasing geometric progression 1 + P + p2 + p3 + ... = 1/(1 - pl. The
result is

Po = 1 - P and Pk = pkpO' (2.9)

If p ~ 1, then the system does not have a steady state, i. e. the queue
increases infinitely as t --+ 00.

Method of Statistical Testing
A statistical testing involves numerous repetitions of uniform trials. The
result of any individual trial is random and is not of much interest.
However, a large number of results is very useful. It shows some
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N 2)' Since any grain may land with equal probability on any part of the
figure, the ratio N 2/N l' when the number of trials is large, will
approximate the ratio of the yellow area to the area of the square, i. e.
the number 1t/4. This approximation will become more accurate as the
number of trials increases.

This example is interesting because a definite number (the number n)
can be found following a statistical testing. It can be said that
randomness is used here to obtain a deterministic result, an
approximation of the real number n.

Second example. Statistical testing is used much more commonly to
investigate random events and random processes. Suppose someone
assembles a device consisting of three parts (A, B, and C). The assembler
has three boxes containing parts A, B, and C, respectively. Suppose half
the parts of each type are larger than the standard and the other half
are smaller. The device cannot operate when all three parts are larger
than the norm. The assembler takes the parts from the boxes at random.
What is the probability that a normally operating device will be
assembled?

Naturally, this example is rather simple and the probability can easily
be calculated. The probability of assembling a device that does not work
is the probability that all three parts will be larger than the norm, and
this equals 1/2 x 1/2 x 1/2 = 1/8. Therefore, the probability that
a normally operating device will be assembled is 1 - 1/8 = 0.875.
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N 2)' Since any grain may land with equal probability on any part of the
figure, the ratio N 2/N l' when the number of trials is large, will
approximate the ratio of the yellow area to the area of the square, i. e.
the number 1t/4. This approximation will become more accurate as the
number of trials increases.

This example is interesting because a definite number (the number n)
can be found follo~i~g a statistical testin~" . It can be said that
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n trials. It is easy to see that the. ratio (N - n)/N is the approximation of
the probability in question.

Naturally, we could use any other random number generator instead
of coins. It would also be possible, for instance, to throw three dice,
having agreed to relate three faces of each die with larger than normal
parts and three faces with smaller parts.

Let me emphasize that the randomness in these examples was
a positive factor rather than a negative one, and was a tool which
allowed us to obtain a needed quantity. Here chance works for U6 rather
than against us.

Random number tables come into play. Nobody uses statistical
testing in simple practical situations like the ones described above. It is
used when it is difficult or even impossible to calculate the probability
in question. Naturally you might ask whether a statistical testing would
be too complicated and cumbersome. We threw grains or three coins in
the examples. What will be required in complicated situations? Maybe,
there will be practically unsurmountable obstacles?

In reality, it is not necessary to stage a statistical experiment with
random trials. Instead of real trials (throwing grains, dice, etc.), we need
only use random number tables. Let me show how this can be done in
the above two examples.

First example. Let us again discuss the picture in Fig. 2.6. We now
plot two coordinate axes along the sides of the square and select the
scales such that the side of the square equals unity (Fig. 2.7). Now
instead of throwing grains, we take the random number table in Fig. 1.6
and divide each number by 10000 so that we obtain a set of random
numbers between 0 and 1. We take the numbers in the odd lines as
x-coordinates and the ones directly below as the y-coordinates of
random points. We plot the points onto the diagram, systematically
moving along the random number table (for instance, first down the first
column from top to bottom, and then down the second column, and so
on). The first fifteen random points are shown in the picture in red, and
they have the following coordinates: (0.0655,0.5255), (0.6314,0.3157),
(0.9052,0.4105), (0.1437,0.4064), (0.1037,0.5718), (0.5127,0.9401),
(0.4064,0.5458), (0.2461,0.4320), (0.3466,0.9313), (0.5179,0.3010),
(0.9599, 0.4242), (0.3585, 0.5950), (0.8462, 0.0456), (0.0672, 0.5163),
(0.4995,0.6751). The figure contains 85 random points in black. From
the diagram, it is easy to calculate that using the first fifteen points
N -J.N. =_j 1 Lt5.r.!)J)LLJhf'_,=e.v-rf' 'IT =-3..4.1mmhiJp __fnr 3 __ h'J.ndTp.p__.Jv,ints

a positive factor rather than a negative one, and was a tool which
allowed us to obtain a needed quantity. Here chance works for U6 rather
than against us.

Random number tables come into play. Nobody uses statistical
testing in simple practical situations like the ones described above. It is
used when it is difficult or even impossible to calculate the probability
in question. Naturally you might ask whether a statistical testing would
be too complicated and cumbersome. We threw grains or three coins in
the examples. What will be required in complicated situations? Maybe,
there will be practically unsurmountable obstacles?

In reality, it is not necessary to stage a statistical experiment with
random trials. Instead of real trials (throwing grains, dice, etc.), we need
only use random number tables. Let me show how this can be done in
the above two examples.

First example. Let us again discuss the picture in Fig. 2.6. We now
olot two coordinate axes along the sides of the square and select the
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Figure 2,7

a "-" sign means it is smaller. The approximation of the sought
probability is the ratio (N - n)/N, where N is the total number of triples
and n is the number of triples with three pluses (they are shaded in the
figure). It can be seen that (N - n)/N = 0.9 in this case, and this is close
enough to the accurate value 0.875.

Thus, we have reduced statistical testing to operations on a random
number table and used our desk instead of an experimental bench.
Rather than performing very many trials, we just look at a random
number table.

Computers come into play. Instead of sweating over a random
number table, we could program a computer to do the job. We place
a random number table in the computer's memory and program it to

0.8
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three numbers are over 5000. The number of such triples is n.
The Monte Carlo method. The world changed when the computer

came into play. By processing a random number table the computer
simulates the statistical testing and it can do this many times faster than
could be done either experimentally or by working manually with
a rand rhod.
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Chance complicates our investigation and so randomness is used to
investigate it. Secondly, this method is universal because it is not
restricted by any assumption, simplification, or model. There are two
basic applications. The first is the investigation of random processes
which cannot be dealt with analytically due to their complexity. The
second is to verify the correctness and accuracy of an analytical model
applied in concrete situations.

The Monte Carlo method was first widely used in operations research,
in looking for optimal decisions under conditions of uncertainty, and in
treating complicated multicriterial problems. The method is also succes­
sfully used in modern physics to investigate complex processes involving
many random events.

A Monte Carlo simulation of a physical process. Let us consider the
flow of neutrons through the containment shield of a nuclear reactor.
Uranium nuclei split in the core of the reactor and this is accompanied
by the creation of high-energy neutrons (of the order of several million
electron volts). The reactor is surrounded by a shield to protect the
working areas (and therefore, the personnel) from the radiation. The
wall is bombarded by an intense flow of neutrons from the reactor core.
The neutrons penetrate into the wall and collide with the nuclei of the
atoms of the wall. The result is that the neutrons may either be
absorbed or scattered. If scattered, they give up some of their energy to
the scattering nuclei.

This is a complicated physical process involving many random events.
The energy and the direction of a neutron when it leaves the reactor
core and enters the wall are random, the length of the neutron path
before it first collides is random, the nature of collision (absorption or
scattering) is random, the energy and the direction of the scattered
neutron are random, etc. Let me show in general how the Monte Carlo
method is applied to analyze the process. Obviously the computer is
first programmed with data on the elementary collisions between
neutrons and the wall nuclei (the probabilities of absorption and
scattering) the parameters of the neutron flow into the wall, and the
properties of the wall. The computer model simulates a neutron with
a randomly selected energy and direction (when it leaves the reactor
core and enters the wall) in line with appropriate probabilities. Then it
simulates (bearing in mind the relevant probabilities) the flight of the
neutron until it first collides. Then the first collision is simulated. If the
neutron is not absorbed, subsequent events are simulated, i.e. the

rne rVHflild Cariti' mernoo wasl1f~i wiueiy used' uioperauorrs researcn,
in looking for optimal decisions under conditions of uncertainty, and in
treating complicated multicriterial problems. The method is also succes­
sfully used in modern physics to investigate complex processes involving
many random events.

A Monte Carlo simulation of a physical process. Let us consider the
flow of neutrons through the containment shield of a nuclear reactor.
Uranium nuclei split in the core of the reactor and this is accompanied
by the creation of high-energy neutrons (of the order of several million
electron volts). The reactor is surrounded by a shield to protect the
working areas (and therefore, the personnel) from the radiation. The
wall is bombarded by an intense flow of neutrons from the reactor core.
The neutrons penetrate into the wall and collide with the nuclei of the
atoms of the wall. The result is that the neutrons may either be
absorbed or scattered. If scattered, they give up some of their energy to
the scattering nuclei.
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Figure 2.9
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an individual neutron. Given an enormous set of trials the neutron flow
through the containment wall as a whole can be analyzed and
recommendations for the thickness of the wall and its composition can
be made so as to guarantee the safety of the personnel working at the
reactor.

Modern physics requires the Monte Carlo method on many
occasions. Physicists use it to investigate cosmic-ray showers in the
Earth's atmosphere, the behaviour of large flows of electrons in electron
discharge devices, and the progress of various chain reactions.

Games and Decision Making
What is the theory of games? Suppose we must make a decision when
our objectives are opposed by another party, when our will is in conflict
with another will. Such situations are common, and they are called
conflict situations. They are typical for military actions, games, and
every-day life. They often arise in economics and politics.

A hockey player makes a decision that takes into account the current
situation and the possible actions of the other players. Every time
a chess player makes a decision, he (or she) has to consider the
counteraction of the opponent. A military decision should allow for the
retaliation of the enemy. In order to decide at what price to sell
a product, a salesman must think over the responses of the buyer. In
any election campaign, each political party in a capitalist country tries
to foresee the actions of the other parties that are competing for power.
In each case, there is a collision of opposing interests, and the decision. . - V---

Figure 2.9

an individual neutron. Given an enormous set of trials the neutron flow
through the containment wall as a whole can be analyzed and
recommendations for the thickness of the wall and its composition can
be made so as to guarantee the safety of the personnel working at the
reactor.

Modern physics requires the Monte Carlo method on many
occasions. Physicists use it to investigate cosmic-ray showers in the
Earth's atmosphere, the behaviour of large flows of electrons in electron
discharge devices, and the progress of various chain reactions.
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and the opponent cannot predict our actions. But nonetheless, we both
have to make decisions.

Because some way of justifying an optimal decision was needed in
conflict situations, a new mathematical discipline arose, the theory of
games. The "game" here is a mathematical model of a conflict situation.
Unlike a real conllict, a game has definite rules which clearly indicate
the rights and duties of the participants and the possible outcomes of
the game (a gain or loss for each participant). Long before the
emergence of game theory, simple models of conflicts were used widely.
I mean games in the literal sense of the word: chess, checkers or
draughts, dominoes, card games, etc. In fact, the name of the theory and
the various terms used in it are all derived from these simple models.
For instance, the conflicting parties are called players, a realization of
a game is a match, the selection of an action by a player (within the
rules) is a move.

There are two kinds of move, personal and chance ones. A personal
move is when the player conscientiously selects an action according to
the rules of the game. A chance move does not depend on the player's
will: it may be determined by tossing a coin, throwing a die, taking
a card from a pack, etc. Games consisting of only chance moves are
called games of chance, or games of hazard. Typical examples are
lotteries and bingo. Games with personal moves are called strategic.
There are strategic games consisting exclusively of personal moves, for
instance, chess. There are also strategic games consisting of both
personal and chance moves, for instance, certain card games. Let me
remark that the uncertainty in games with both personal and chance
moves involve both sorts of randomness: the uncertainty of the result of
the chance moves and the uncertainty of the opponent's behaviour in his
personal moves.

Game theory is not interested in gambles. It only deals with strategic
games. The aim of the game theory is to determine the player's strategy
so as to maximize his chances of winning. The following basic
assumption underlies the search for optimal strategies. It is assumed that
the opponent is as active and as reasonable as the player, and he or she
also takes attempts to succeed.

Naturally, this is not always true. Very often our actions in real
conflicts are not as good as they could be when we assume reasonable
behaviour from our adversary; it is often better to guess at the "soft
the rights and duties of the participants and the possible outcomes of
the game (a gain or loss for each participant). Long before the
emergence of game theory, simple models of conflicts were used widely.
I mean games in the literal sense of the word: chess, checkers or
draughts, dominoes, card games, etc. In fact, the name of the theory and
the various terms used in it are all derived from these simple models.
For instance, the conflicting parties are called players, a realization of
a game is a match, the selection of an action by a player (within the
rules) is a move.

There are two kinds of move, personal and chance ones. A personal
move is when the player conscientiously selects an action according to
the rules of the game. A chance move does not depend on the player's
will: it may be determined by tossing a coin, throwing a die, taking
a card from a pack, etc. Games consisting of only chance moves are
called games of chance, or games of hazard. Typical examples are
lotteries and bin~o. Games wi.th. perso~al .m?ves~ are called strategic.
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forget that the opponent also thinks and to take into account his
possible tricks and traps. The recommendations following from the
game approach are not always concrete or realizable, but it is still
useful, while taking a decision, to utilize a game model as one of several
possible ones. But the conclusions proceeding from this model should
not be regarded as final and indisputable."

The payoff matrix of a game. Finite two-person zero-sum games are the
best investigated types in game theory. A two-person game is a game in
which there are exactly two players or conflicting interests. A game is
finite if both players have a finite number of possible strategies, i. e.
a finite number of behaviours. When making a personal move, a player
follows a strategy. A zero-sum game is a game where the gain by one
player equals the loss by the other.

Suppose there is a finite two-person zero-sum game where player
A has m strategies and player B has n strategies (an m x n game). We
use A 1> A z, ... , Am to denote the strategies available to player A and B 1,

Bz, ... , B; the strategies available to player B. Suppose player A makes
a personal move and selects a strategy Ai (1 ~ i ~ m); and player B at
the same time selects strategy Bj (1 «i ~ n). We use aij to denote the
gain of player A. Let us identify ourselves with player A and consider
each move from his viewpoint. The gain a., may be either a real gain or
a loss (a loss would be a negative gain). The set of gains aij for different
values of i and j can be arranged in matrix form WIth the rows
corresponding to player A strategies and the columns to player
B strategies (Fig. 2.10). This is called the payoff matrix for the game.

Consider the following game. Each player, A and B, writes, simultane­
ously and independently, one of three numbers 1, 2, or 3. If the sum of
the numbers is even, player B pays player A the sum, while if the sum is
odd, A pays it to B. Player A has three strategies: Al to write 1, A z to

B, B2 B3 ••• Bn

7 .....
A, a" a'2 a'3 ••• a 1n

'- ~ ""- :..011
Y ~ r: "'IIi

A2 a 2, a22 a 23 ••• a 2n
~ ..A ...

r "'l . . "'i 'r .... ....
x ot a arne. r mue two- erson zerolhe payott matn g p -sum games are the

best investigated types in game theory. A two-person game is a game in
which there are exactly two players or conflicting interests. A game is
finite if both players have a finite number of possible strategies, i. e.
a finite number of behaviours. When making a personal move, a player
follows a strategy. A zero-sum game is a game where the gain by one
player equals the loss by the other.

Suppose there is a finite two-person zero-sum game where player
A has m strategies and player B has n strategies (an m x n game). We
use A 1> A z, ... , Am to denote the strategies available to player A and B 1,

Bz, ... , B; the strategies available to player B. Suppose player A makes
a personal move and selects a strategy Ai (1 ~ i ~ m); and player B at
the same time selects strategy Bj (1 «i ~ n). We use aij to denote the
gain of player A. Let us identify ourselves with player A and consider
each move from his viewpoint. The gain a., may be either a real gain or
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write 2, and A 3 to write 3. Player B has the same strategies. The game is
a 3 x 3 one because its payoff matrix contains three rows and three
columns. This matrix is given in Fig. 2.11 a. Note that a gain by player
A of, for instance, - 3 is a loss in reality because A pays 3 units to B.

Some of the elements are positive and the others are negative in the
matrix in Fig. 2.11 a. It is possible to make all the elements of the payoff
matrix positive by adding some number, say 6, to each element of the
matrix. We obtain the matrix in Fig. 2.11 b. This matrix is equivalent to
the initial one from the viewpoint of analyzing optimal strategies.

The minimax principle. Let us analyze the game using. the payoff
matrix in Fig. 2.11 b. Suppose we (player A) pick strategy A i- Then,
depending on the strategy selected by player B, our gain may be either
8 or 3 or 10. Thus, strategy A 1 yields a gain of 3 in the worst case. If we
choose either A 2 or A 3, the worst gain is 1. Let us write down the
minimum possible gains for each strategy Ai as an additional column in
the payoff matrix (Fig. 2.12). It is clear that we should choose a strategy
whose minimum possible gain is greatest (as compared with the other
strategies). This is strategy A 1 in this case. Three is the largest one out
of the minimum gains for each strategy (viz. 3, 1, and 1). This is called
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Some of the elements are positive and the others are negative in the
matrix in Fig. 2.11 a. It is possible to make all the elements of the payoff
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the maximin gain, or the maximin, or just the maxim. It is also sometimes
called the lower value of the gain. Thus, if we select the maximin strategy
(strategy Al in this case), our gain is guaranteed to be, whatever the
behaviour of the opponent, at least the lower value of the game (a gain
of 3 in this case). The opponent will reason in a similar way. If he selects
strategy B1, he will have to give us a gain of 10, which is his worst case.
The same can be said of strategy B2 . Strategy B3 yields the worst case
for the opponent corresponding to a gain of 12 for us. Numbers 10, 10,
and 12 are the maximum values of our gains corresponding to the
opponent's strategies B 1, B2 , and B 3 , respectively. Let us write these
values as a row in the payoff matrix (see Fig. 2.12). It is clear that our
opponent should select the strategy which minimizes our maximum
possible gain. This is either strategy B 1 or B2• Both strategies are
minimax ones and both guarantee that our opponent limits our gain to
the minimax, or, in other words, the upper value of the game is 10.

Our maximin strategy and the minimax strategy of the opponent are
the most cautious "safe" strategies. The principle of being cautious
dictating that the players select such strategies is called the minimax
principle.

Now let us return to the matrix in Fig. 2.12 and try some reasoning.
The opponent has two minimax strategies, B 1 and B 2• Which strategy
should he choose? If he knows that we are cautious and have selected
the maximin strategy A l' he would not select strategy B 1 because this
would yield a gain of 8. Therefore, it is likely that he would choose
strategy B 2 , and our gain would then be 3. But if we perceived our
opponent's ideas correctly, shouldn't we take a risk and choose strategy
A 2 ? If the opponent then selects strategy B 2, our strategy A 2 will give us
a gain of 10. However, our deviation from the minimax principle may
cost us dearly. If the opponent is even cleverer and reasons in a similar
way, he would answer our strategy A 2 with strategy B3 rather than B2•

And then, instead of a gain of 10, we would only gain 1.
Does this mean that game theory only recommends we adhere to

a minimax (maximin) strategy? It depends on whether the payoff matrix
has a saddle point.

A g me with add l point. Consider the 3 x 3 game, whose payoff
matrix is given in Fig. 2.13. Here both the maximin and minimax gain
4. In other words, the lower and the upper value of the game coincide
and both are equal to 4. A gain of 4 is simultaneously the maximum of
The same can be said of strategy B2 . Strategy B3 yields the worst case
for the opponent corresponding to a gain of 12 for us. Numbers 10, 10,
and 12 are the maximum values of our gains corresponding to the
opponent's strategies B 1, B2 , and B 3 , respectively. Let us write these
values as a row in the payoff matrix (see Fig. 2.12). It is clear that our
opponent should select the strategy which minimizes our maximum
possible gain. This is either strategy B 1 or B2• Both strategies are
minimax ones and both guarantee that our opponent limits our gain to
the minimax, or, in other words, the upper value of the game is 10.

Our maximin strategy and the minimax strategy of the opponent are
the most cautious "safe" strategies. The principle of being cautious
dictating that the players select such strategies is called the minimax
principle.

Now let us return to the matrix in Fig. 2.12 and try some reasoning.
The opponent has two minimax strategies, B 1 and B 2• Which strategy
should he choose? If he knows that we are cautious and have selected
.1 'I I
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Figure 2.13

saddle point of the matrix, and the game is said to have a saddle point.
We need only look through the matrix in Fig. 2.13, to see that each

player should adhere to his maximin (minimax) strategy. These strategies
are optimal in a game with a saddle point. Any deviation from them will
be disadvantageous for the player who took the risk.

However, if a game does not have a saddle point (see the matrix in
Fig. 2.12), neither of strategies Ai or B j is optimal.

The necessity of a random change of strategy in a game without
a saddle point. Suppose that we and our opponent repeatedly play the
game whose matrix is given in Fig. 2.12. If we choose a defmite strategy,
for instance, the maximin strategy Ai, and adhere to it turn after tum,
our opponent will see it and select strategy B 2 each time, so that our
gain will not exceed the lower value of the game, i.e. it will equal 3.
However, if we suddenly (for the opponent) choose strategy A 2 instead
of At, we receive a gain of 10. Having guessed our new strategy
(naturally, if we later adhere to it), our opponent will go from strategy
B 2 to strategy B 3 right away, thus decreasing our gain to 1. And so
forth. We can see here a general rule for games without a saddle point:
a player using a certain strategy will be worse off than a player who
changes strategy at random.

However, the random changes in strategies should be done wisely
rather than haphazardly. Suppose Ai' A 20 ••• , Am are the possible
strategies of player A (see Fig. 2.10). To obtain the greatest benefit, the
strategies should be chosen at random but with different (specially
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also a mixed strategy. Let us designate it SB (ql' qz, ... , q,J, where qj are
specially selected probabilities with which player B uses strategies Bj"
When player B selects an optimal mixed strategy, the gain of player
A will be no more than game value v.

The search for an optimal mixed strategy. Let us use SA(P1' ... , Pm) to
denote an optimal mixed strategy for player A. We must now find
probabilities P1' P» ... , Pm and calculate the game value v once the
payoff matrix of the game is known (see Fig. 2.10). Suppose player
B selects pure strategy B i- Then the average gain of player A will be
allP1 + aZ1PZ + ... + am1Pm' This gain should be no less than the game
value v, and hence

If player B selects strategy Bz, the average gain of player A should also
be no less than the game value v, and hence

(2.10)}
Whichever strategy player B chooses, the gain of player A should

always be no less than the game value v. Therefore, we can write the
following system of n inequalities (recall that n is the number of B's pure
strategies) :
allP1 + aZ1Pz + + am1Pm ~ v,
a12P1 + azzpz + + amZPm ~ v,

Recall that

P1+PZ+ ... +Pm=1. (2.11)

Introducing designations Xl = e.tv. Xz = pz/v, ... , Xm = Pm/v we can
rewrite (2.10) and (2.11) as .

:::::.:::::::.:a:~:::1;, t (212)

probabilities P1' P» ... , Pm and calculate the game value v once the
payoff matrix of the game is known (see Fig. 2.10). Suppose player
B selects pure strategy B i- Then the average gain of player A will be
allP1 + aZ1PZ + ... + am1Pm' This gain should be no less than the game
value v, and hence

If player B selects strategy Bz, the average gain of player A should also
be no less than the game value v, and hence

Whichever strategy player B chooses, the gain of player A should
always be no less than the game value v. Therefore, we can write the
following system of n inequalities (recall that n is the number of B's pure
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they meet inequalities (2.12) and rmrurruze the sum XI + X2 + ... + X m•

Airplanes against antiaircraft guns. Let us find the optimal mixed
strategy for. a concrete game. Suppose "player" A wants to attack
"player" B. A has two airplanes each carrying a large bomb. B has four
antiaircraft guns defending an important military base. To destroy the
base, it is sufficient for at least one airplane to approach it. To approach
the base the airplanes may choose one of four air corridors (Fig. 2.14,
where 0 is the base and I, II, III, and IV are the air corridors). A may
send both airplanes along the same corridor or along different corridors.
B may place his four antiaircraft guns to cover the corridors in different
ways. Each gun can only shoot once, but it will hit the airplane if it is in
that corridor.

Figure 2.14

A has two pure strategies: strategy A I' to send the airplanes along
different corridors (no matter which ones), and A 2, to send both
airplanes along the same corridor. B's strategies are B I to put an
antiaircraft gun into each corridor, B2 to put two guns into two
corridors (leaving the other two corridors unprotected), B 3 to put two
guns into one corridor and one gun into two of the other corridors, B4
to put three guns into a corridor and one gun into another corridor,
and B 5 to put alI four guns into one corridor. Strategies B4 and·B 5 are
certainly bad because three or four guns in a single corridor are not
needed, since A only has two airplanes. Therefore, we need only discuss
strategies B I , B 2, and B 3•

Suppose A chooses strategy A 1 and B chooses strategy B I. It is clear
thi\\.nrjthr..r gu..nJ~.v'¥.Ul.r6~ch thrybil&l::.!l}r..A:f..~~iD_oo.llbe Zt"..JJ1.Vt.r -.m..
base, it is sufficient for at least one airplane to approach it. To approach
the base the airplanes may choose one of four air corridors (Fig. 2.14,
where 0 is the base and I, II, III, and IV are the air corridors). A may
send both airplanes along the same corridor or along different corridors.
B may place his four antiaircraft guns to cover the corridors in different
ways. Each gun can only shoot once, but it will hit the airplane if it is in
that corridor.
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B 2 are chosen, the probable gain for A will be 5/6 (a12 = 5/6). Reasoning
in the same manner, it is easy to find the rest of the elements of the
payoff matrix for this game. The resultant 2 x 3 matrix is shown in
Fig. 2.15. Note that the elements of the matrix are probable gains; so
here even the pure strategies involve chance. The lower value of the
game is 1/2, and the upper one is 3/4. The maximin strategy is A 2 while
the minimax strategy is B3• There is no saddle point, and the optimal
solution for the game will be a mixed strategy.

In order to find the optimal mixed strategy, let us use the payoff
matrix and relations (2.12) and (2.13). The relations for this case are

5 1 I 3
X2 ~ 1, -Xl + -x2 ~ 1, -Xl + -X2 ~ 1, (2.14)

6 2 2 4

Xl + x 2 = l/v. (2.15)

The solution can be conveniently represented as a diagram. We plot
the positive values Xl and X 2 along the coordinate axes (Fig. 2.16). The
first inequality in (2.14) corresponds to the area above the straight line
CC; the second inequality is the area above DD; and the third
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inequality in (2.14) is the area above EE. All three inequalities are
satisfied inside the area shaded red in the figure. The equation Xl +
X 2 = const defines a family of straight lines, some of which are shown in
figure as dash lines. The straight line FF has the least sum Xl + X 2 of all
the lines in the family with at least one point within the red area. Point
G indicates the solution corresponding to the optimal mixed strategy.
The coordinates of this point are Xl = 3/5 and X 2 = 1. Hence we find
v = 5/8, PI = 3/8, and P2 = 5/8. Thus, A's optimal mixed strategy would
be to use strategy A 1 with probability 3/8 and strategy A 2 with
probability 5/8.

How could we use this recommendation in practice? If there is only
one bombing raid in the "game", A clearly should select strategy A 2
because P2 > Pl. Suppose now the game has many raids (for instance,
raids on many bases). If the game is run N times (N)> 1), then A should
choose strategy Al 3N/8 times and strategy A 2 5N/8 times.

We have so far only discussed the behaviour of A, allowing B to act
arbitrarily. If A selects his optimal mixed strategy, his average gain will
be between the upper game value of 3/4 and the game value v = 5/8. If
B behaves unreasonably, the A's gain may rise to the upper value of the
game (or even greater). However, if B in turn adheres to his optimal
mixed strategy, the A's gain will equal the game value v. The optimal
mixed strategy for B precludes his use of strategy B3 and is to use
strategy B 1 with probability 1/4 and strategy B2 with probability 3/4.
That strategy B 3 should not be used can be seen from Fig. 2.16: the
straight line EE corresponding to this strategy does not have any points
in the red area. To determine the probabilities with which to apply
strategies Bl and B 2 , we use the game value (v = 5/8), and get ql x 0 +
(1 - ql) x 5/6 = 5/8. It is clear from this that ql = 1/4 and q2 = 1 ­
ql = 3/4.
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Control
and Selfcontrol

Cybernetics penetrated and continues to penetrate
every area of man's work and daily life. This is the
science of the optimal control over complex processes
and systems.

A.I. Berg

The Problem of Control
Control against disorganization. Although the world around us is full of
chance, it nonetheless proves to be organized and ordered in many
ways. The disorganizing effect of chance is countered by the organizing
influence of control and selfcontrol.

Suppose an airplane flies from Moscow to Leningrad. Various
random factors affect it during the flight. Therefore, all three space
coordinates of the airplane are random functions of time. The flight
trajectory is a realization of these random functions. However, these
"subtleties" do not bother the passengers; they fasten their belts before
takeoff confident that whatever thunderstorms might occur on the way
and whichever winds affect the airplane, it will arrive at Leningrad
airport. The basis for this confidence lies in the aircraft's control system
and the actions of the pilot. We met queueing systems above, and al­
though there is a great deal of chance, they comply with their objec­
tives. This is because the organization of the system and the control of
its operation is well-designed.

Controls take on a variety of guises. Suppose we want a set of books
to serve public for a long time. This is impeded by chances both purely
nhvsical iri nature and those related to the attitudes of some readers. So
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every area of man's work and daily life. This is the
science of the optimal control over complex processes
and systems.

A.I. Berg

The Problem of Control
Control against disorganization. Although the world around us is full of
chance, it nonetheless proves to be organized and ordered in many
ways. The disorganizing effect of chance is countered by the organizing
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measures, constructing stadiums, swimming pools, sport complexes,
ordering pharmacies to supply the necessary drugs, etc.

Thus, there is a confrontation of two powerful factors in the world,
two basic trends. On the one hand, there is randomness , a tendency to
disorganization, disorder, and destruction in the long run. On the other
hand, there is control and selfcontrol, a tendency to organization, order,
development, and progress.

Choice as a prerequisite of control. If all the processes and
phenomena in the world were strictly predetermined, it would be
meaningless even to speak of the possibility of control. In order to
control something, there must be some choice. How may we make
a decision if everything is predetermined in advance? Every
phenomenon must have several probable lines of development. One may
say that a world built on probability is the only world in which control
is possible.

Control acts against chance, even though the possibility of control is
brought about by the existence of chance. It is random occurrences that
help us avoid predetermination. We can say that randomness "brings to
life" its own "grave-digger", i.e. control. This is a manifestation of the
dialectic unity of the necessary and the random in the real world.

Contro l and feedback. Two different control schemes are shown in
Fig. 3.1, where S is the controlled system, CU is the control unit , V is
the input to the controlled system (the control signal), P are random
perturbations affecting the controlled system, and W is the final output
from the system. Scheme b differs from scheme a in having a feedback

a
p

v s w

p

w\I

b

development, and progress.
Choice as a prerequisite of control. If all the processes and

phenomena in the world were strictly predetermined, it would be
meaningless even to speak of the possibility of control. In order to
control something, there must be some choice. How may we make
a decision if everything is predetermined in advance? Every
phenomenon must have several probable lines of development. One may
say that a world built on probability is the only world in which control
is possible.

Control acts against chance, even though the possibility of control is
brought about by the existence of chance. It is random occurrences that
help us avoid predetermination. We can say that randomness "brings to
life" its own "grave-digger", i. e. control. This is a manifestation of the
dialectic unity of the necessary and the random in the real world.

Co ntro l and feedback. Two different control schemes are shown in
~ig. . 3.1 , wher~ S is the controlled system, CU ~s the ~.on~rol unit , V is
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loop, that is the control unit receives information about the results of
control.

What is feedback for? In answering this question, let me remark that
the "relationship" between randomness and control is one of active
confrontation. Control acts against chance, and chance acts against
control. The latter fact requires flexible control, the possibility for
adjustment. The control unit must be able continuously to receive data
about the results of the control and correct its signals to the system
appropriately.

In point of fact, any real control system supposes the presence of
a feedback loop. Control without feedback is not only ineffective, it is
actually unviable.

Take for example someone driving a motor-car. Imagine for a minute
that the feedback suddenly disappeared, that is, the driver stopped
attending to the motion of the car. The car would continue to be
controlled, but without any feedback. The car is immediately affected by
a variety of random events. A small bump or bend in the road, a car
moving in the opposite direction all are random and could lead to an
accident in only a few seconds.

The control algorithm. Now what should be done and how should the
system be controlled? It depends on the situation and the goal being
pursued. In fact the answer lies in the algorithm of control. A control
algorithm is a sequence of actions that must be carried out to reach a set
of goals.

In the example with the car and a driver, the control algorithm
contains rules on how to start the engine, how to brake, how to turn,
how to shift gears, and so on. The algorithm also contains the traffic
regulations and good driving practice.

In some cases the control algorithm is simple. For instance, in order
to use a coffee machine, only the following two actions need be carried
out: put a coin in the slot, and press the appropriate buttons. This is the
complete control algorithm for this machine. In other cases, the control
algorithm is much more complicated. For instance, it is more difficult to
drive a car, while flying a jet is even more complicated. In very
complicated cases, the control algorithm cannot even be defined in full.
For instance, complete control algorithms for managing a large
enterprise or industry simply do not exist.

1:_j""__.A.'"'-_ .• 'J"IJ__ ....._.Jel •.l._.A.. ~_.J- ~_-_~_._ ~ ~ __ .1 • _
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perturbation, and WI' W2 , ... , lv" are its outputs (Fig. 3.2). Now let us
suppose that we do not know or do not care what is inside the system.
We only need investigate the relationships between the inputs
(VI' V2, ... ) and the outputs (WI' W2> ... ). It is said in this case that the
given system is a "black box".

Any controlled system is a "black box" if its internal structure is not
considered, and only the responses of the outputs to the inputs are
investigated.

'"i i "'.' I'ld !~\,.. ; The advance of science and
technology has surrounded mankind by a vast number of controlled
systems. As a rule, we are not a bit bothered by this because we quickly
get accustomed (sometimes unconsciously) to considering these systems
as black boxes. We find out how, what, and where to turn, press, or
switch the buttons to obtain the desired effect. If you want to watch
a TV show, there is no need to know the structure or workings of
a television. We need only press the proper button and select the
channel. To make a telephone call, we do not have to be telephone
engineers; we just pick up the receiver, wait for the call signal, and dial
the telephone number. We use television, telephone, and many other
systems and consider them to be black boxes. Naturally, we could learn
what is inside the system and how it works if we want to, but in our
modern world we often think it's a waste of time to study what we can
quite do without in practice. More and more often we prefer to use
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development of society, the knowledge available to the society
as a whole is more important than what a single person may
know.

Complex ~\~,lcm~ ih bLlI.:k boxes. Modern systems are becoming more
and more sophisticated as their functional capacities become more and
more diverse. Naturally, the more we'need to know about the functions
of a system, the further we push our investigation of its inner structure
into the background, and in many cases such a total investigation would
prove infeasible because of the complexity of the system.

This shift of emphasis leads us to a qualitatively new viewpoint, in
which the main aim is to investigate control and selfcontrol as general
processes irrespective of the concrete devices comprising the systems.
This point of view brings about cybernetics as the science of control
(selfcontrol) in complex systems.

Curiously this point of view reveals an interesting fact and makes us
look at the black-box model in another way. It turns out that we do not
need understand every structural subtlety of a complex system, indeed
its separation into component parts can obscure essential information.
The black-box model becomes fundamental as the only acceptable way
of analyzing a complex system.

\\11.11 h cvbcrncric-." The science of cybernetics was founded by the
American scientist Norbert Wiener (1894-1964) and dates from 1948
when he published his famous book Cybernetics, or Control and
Communication in the Animal and the Machine. Wiener wrote:

"We have decided to call the entire field of control and
communication theory, whether in the machine or in the animal, by the
name cybernetics, which we form from the Greek xvpepvTl'tTlC;, or
steersman."

It should be noted that the term "cybernetics" was not new. Plato
used it meaning the art of controlling ships. The French physicist
Ampere classified sciences in the first half of the 19th century and placed
a science, which was the study of the methods of government, in section
lB. Ampere called this science cybernetics. Today we only use the term
"cybernetics" in the sense given to it by Wiener. Cybernetics is the
science of the control and communication in complex systems, be they
machines or living organisms.

The Soviet scientist L. A. Rastrigin wrote a book called This Chancy,
Chancy, Chancy World (Mir Publishers, Moscow, 1984), in which he
rernarkerl :__, ---- -------- - r----- ---- --------"'------ -- --- ------- ---------
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methods of cybernetics independently of the physical characteristics of
the object."

L. A. Rastrigin imaginatively calls cybernetics a science which fights
randomness, thus emphasizing the idea of control counteracting
disorganization and destruction caused by diverse random factors.

Cybernetics and robots. One of the central topics of cybernetics
concerns process automation, in particular, selfcontrol in complex systems.
Investigations into this area resulted in the appearance of a discipline
called "robotics". Modern cybernetics literature discusses the possibility
of designing automata that can reproduce and teach themselves.
Artificial intelligence is also a topic being. investigated. The following
questions are being studied: Is the machine capable of creativity? Could
a machine become cleverer than its designer? Could the machine think?

The more sophisticated types of robots are still in the realms of
science fiction, although we often hear discussions about the possibilities
of robotics, or rather whether artificial "men" might be possible. The
layman now seems to believe that cybernetics is indeed simply the
science of robots, automata, or thinking machines. The true purpose of
cybernetics as the science of control is now masked by the fantastic
technological promise.

True, cybernetics does include the problems of automation, and thus
contributes to scientific and technological progress. The automation of
various processes, the design of automatic Lunar explorers, automatic
space docking are all achievements of cybernetics. Cybernetics also
investigates computer creativity and artificial intelligence. However, this
is not so as to evolve an artificial person. When we programme
computers to "compose" music or "write" a poem or play chess or give
a "talk", we are attempting to simulate creativity and so find out more
about these processes. It could be said that we are investigating the limit
of computer abilities, but not that we want to substitute them for
human beings in the future: we just want to understand several
important topics thus making it possible to go deeper into the control
processes occurring in human beings. The reader should remember this
and not consider cybernetics to be just the "science of robots".

We may now start discussing the central notion of cybernetics, i. e.
information. Let me say right away that cybernetics investigates control
and selfcontrol primarily from the viewpoint of information. It
investigates the collection, conversion, transmission, storage, and
concerns process automation, in particular, selfcontrol in complex systems.
Investigations into this area resulted in the appearance of a discipline
called "robotics". Modern cybernetics literature discusses the possibility
of designing automata that can reproduce and teach themselves.
Artificial intelligence is also a topic being. investigated. The following
questions are being studied: Is the machine capable of creativity? Could
a machine become cleverer than its designer? Could the machine think?

The more sophisticated types of robots are still in the realms of
science fiction, although we often hear discussions about the possibilities
of robotics, or rather whether artificial "men" might be possible. The
layman now seems to believe that cybernetics is indeed simply the
science of robots, automata, or thinking machines. The true purpose of
cybernetics as the science of control is now masked by the fantastic
technological promise.

True, cybernetics does include the problems of automation, and thus
contributes to scie~!ific ,al1:d tec~nological. p~ogress. The automation of
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"...if things came to being from nothing,
Every kind might be born from all things,
Nought would need a seed.
First men might arise from the sea, and from the land,
The race of scale creatures, and birds burst forth
The sky. Cattle and other herds, and all the tribe
Of wild beasts with no law of birth,
Would haunt tilth and desert...."

It is interesting that .there is here a hint of the conservation of not
only matter and energy, but also of something else, which is neither
matter nor energy. There is no shortage of energy and matter in the sea,
but people do not appear in the sea. Nor too does the dry land produce
fish. Truly, "if things came to being from nothing, ... nought would need
a seed". In the modern terminology of science, we might say that this is
a hint of the conservation of information. The information needed by
plants and animals to live and reproduce cannot appear "from nothing".
It is stored in "seeds" and thus handed down from generation to
generation.

The term "information" is now encountered everywhere in science and
everyday life. In fact, every activity is related to the collection,
conversion, transmission, storage, and retrieval of information. We live in
a world filled with information, and our very existence is impossible
without it. Academician A.I. Berg once said: "Information penetrates
every pore of the life of human beings and their societies.... Life is
impossible in a vacuum of either mass-energy or information."

The bit, the unit of information. What is information? What units is it
measured in? Let us start with a simple example. A train approaches
a station. By remote control, a signalman can switch a train from one
track (A) to another (B). If the switch is up, the train goes along track A,
and if it is down, the train goes along track B. Thus, the signalman, by
moving the switch up or down, is sending a control signal containing
1 bit of information. The word "bit" is an abbreviation of "binary digit".

To see what we mean by "binary digit", recall how digits are used to
write numbers. We commonly use the decimal number system, i.e.
a system with ten digits (0, 1, 2, ... , 9). Take a number written in the
decimal system, say 235. We say "two hundred and thirty five" and, as
a rule, do not pause to think that this means the sum of two hundreds,
• I '. 1 r- • • • ..... . ... " ., ..... -4 _ 1 ... .. ,,0 ..,.."
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Figure 3.3

Let us return to the railway example. Remember we have two choices:
the switch is either up (track A) or down (track B). We could write the
digit 0 for switch up and digit t for switch down. It can be said that the
control signal can thus be coded by one of the two binary digits, zero or
unity. The signal thus contains one binary digit, or t bit of information.

Consider a more interesting example. The railway lines near a station
011

A E
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Let us return to the railway example. Remember we have two choices:
the switch is either up (track A) or down (track B). We could write the
digit 0 for switch up and digit t for switch down. It can be said that the
control signal can thus be coded by one of the two binary digits, zero or
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1928 by the American
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are shown in Fig. 3.4. The railway switches are labelled by the letters a,
b, C, d, e, f, and g. Ifa switch receives a control signal of 0, it opens the
left-hand track, and if it receives a signal of 1, it opens the right-hand
track. The signalman has three control switches: the first one sends
a signal (0 or 1) to railway switch a, the second one sends a signal
simultaneously to switches band c, and the third one simultaneously to
switches d, e, f, and g. The station has eight tracks: A, B, C, D, E, F, G,
and H. To send a train along track A, all three control switches must be
turned to the 0 position, i. e. send the three-digit signal 000. To direct
a train to track B, it is necessary to send the three-digit signal 001. Each
track thus has its own three-digit signal, i. e.

ABC D E F G H

000 001 010 011 100 101 110 111

We see that to select one of the eight outcomes requires a set of
elementary signals, each of which carries 1 bit of information. Therefore,
to choose a track in this example requires three bits of information.

Thus, in order to select one option out of two, 1 bit of information is
required; in order to select one option out of eight, 3 bits of information
are required. In order to select one of N options, I bits of information
are required, where

1= log, N.

This is the Hartley formula. It was suggested in
engineer Ralph Hartley, who was interested
information.

The 1511 K(jhb:t ,,";111',:. A rebellion against Romans broke in 135 A.D.
in the ancient Judea led by one Bar Kohba. As the legend has it, Bar
Kohba sent a spy into the camp of Romans, and the spy discovered
a great deal before being caught. He was tortured and his tongue was
cut out. However, the spy managed to escape, but without his tongue he
could not report what he had found out in the enemy's camp. Bar
Kohba resolved the problem by asking the spy questions that only
required a "yes" or "no" answer (it was only necessary to nod or shake
the head). Bar Kohba was able to obtain all the information he wanted
switches d, e, f, and g. The station has eight tracks: A, B, C, D, E, F, G,
and H. To send a train along track A, all three control switches must be
turned to the 0 position, i. e. send the three-digit signal 000. To direct
a train to track B, it is necessary to send the three-digit signal 001. Each
track thus has its own three-digit signal, i. e.

ABC D E F G H

000 001 010 011 100 101 110 111

We see that to select one of the eight outcomes requires a set of
elementary signals, each of which carries 1 bit of information. Therefore,
to choose a track in this example requires three bits of information.

Thus, in order to select one option out of two, 1 bit of information is
required; in order to select one option.out of eight, 3 bits of information
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"yes" and "no" answers if the questions are constructed properly. This
idea underlies the Bar Kohba game, which first appeared at the turn of
the century in Hungary and then spread to other countries. A player
thinks of something. He may, for instance, make a wish or even think
up a sentence. The other player must guess the wish or sentence by
asking questions, which must be honestly answered. However, the
questions may only require a "yes" or "no" answer. The quantity of
information needed for a correct guess can be measured by the number
of questions, given that the most rational method of interrogation is
used. Each answer can be enciphered by a binary digit, for instance, we
could use a one for a "yes" and a zero for a "no". Then the information
needed for a correct guess would be a combination of zeroes and unities.

Let us play a Bar Kohba game with the railway signalman at the
station whose tracks are given in Fig. 3.4. The signalman thinks of
a track along which a train should travel to the station. We want to
guess the track. The game would go as follows.

Question: Should switch a open the track on the right? Answer: No
(let us cipher this answer by digit 0). Question: Should switch b open the
track on the right? Answer: Yes (we cipher: 1). Question: Should switch
e open the track on the right? Answer: Yes (we cipher: 1).

Having asked these three questions, we see that the signalman decided
on track D. The information needed to answer was the chain of answers
"no-yes-yes" or, in other words, by the set of binary digits 011. We
know that the information capacity of the signalman's "riddle" was three
bits long. Each of the signalman's three answers contained one bit of
information.

Let me cite one more example of the Bar Kohba game. There are 32
pupils in a class. The teacher decides on one of them. How can we find
out which one? Let us take the class register, in which the surnames of
all the pupils are listed in alphabetical order and enumerated. Let us
start asking questions.

Question: Is the pupil among those listed from 17 to 32? Answer : Yes
(we cipher: 1). Question: Is the child among those listed from 25 to 32?
Answer: No (0). Question: Is the child among those listed from 21 to 24?
Answer: No (0). Question: Is the child among those listed either 19 or
20? Answer: Yes (1). Question: Is it number 20? Answer: No (0).

Consequently, the teacher meant pupil number 19 in the class register.
This information required the chain of answers "yes-no-no-yes-no" or, in
questions may only require a "yes" or "no" answer. The quantity of
information needed for a correct guess can be measured by the number
of questions, given that the most rational method of interrogation is
used. Each answer can be enciphered by a binary digit, for instance, we
could use a one for a "yes" and a zero for a "no". Then the information
needed for a correct guess would be a combination of zeroes and unities.

Let us play a Bar Kohba game with the railway signalman at the
station whose tracks are given in Fig. 3.4. The signalman thinks of
a track along which a train should travel to the station. We want to
guess the track. The game would go as follows.

Question: Should switch a open the track on the right? Answer: No
(let us cipher this answer by digit 0). Question: Should switch b open the
track on the right? Answer: Yes (we cipher: 1). Question: Should switch
e open the track on the right? Answer: Yes (we cipher: 1).

Having asked these three questions, we see that the signalman decided
on track D. The information needed to answer was the chain of answers
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the first question
17 24

the second question

17 20

the third question
19 20

the fourth question
19

the fifth question

Figure 3.5

this is not so. Suppose that we established that a surname was listed
from 17 to 32 and then ask: Is it the surname listed from 9 to 16? It is
dear that the answer to this question must be negative. The fact that the
answer is obvious means that it does not contain any information at all.
Naturally, we might have a situation without "silly" questions.

Question: Is the surname listed from 1 to 8? Answer: No. Question: Is
it listed from 25 to 32? Answer: No. Question: Is it listed from 9 to 16?
Answer: No. Question: Is it listed from 17 to 24? Answer: Yes. Question:
Is it listed either 23 or 24? Answer: No. Question: Is it listed either 19 or
20? Answer: Yes. Question: Is it listed 19? Answer: Yes.

Having chosen this strategy, we extracted the needed information

the second question

17 20

the third question
19 20

the fourth question
19
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"Quite true," I would answer.
"Then how about the definition of a bit of information given above?

Can we use the Hartley formula?"
All that has been said about a bit of information (and about the

Hartley formula) remains valid, although with a reservation that every
option should be equally probable. I did not want to discuss this topic too
early, but now the time has come to do so.

lnlorrnut iou ;lIHI probuhilitv. The SIJ,1'111011 I'c'!"l111I.i. I have
emphasized that control is only possible in a world where necessity is
dialectically confronted with chance. In order to control something,
there must be choice. Any situation we want to control carries with it
uncertainty. This uncertainty can be compared with a shortage of
information. While we control an object, we introduce information and
thus decrease the uncertainty.

For instance, a train may arrive along any of the eight tracks in our
example above, so there is uncertainty. By sending a control signal with
three bits of information, the signalman eliminates this uncertainty, and
the train is directed along one particular track. The teacher could have
thought of any of his 32 pupils, so there was uncertainty which surname
had been chosen. Having listened to the answers for a number of
questions with an overall quantity of information of five bits, we can
eliminate this uncertainty and identify the pupil.

Now let us return to the starting point of our reasoning and to the
presence of choice. Until now, we assumed that each option was equally
probable. The signalman could have chosen any of the eight tracks with
equal probability. The teacher could have picked anyone of his 32
pupils. However, we often have to choose between options that are not
equally probable, and then it is necessary to pay due attention to the
probability associated with each option. Suppose the answer to a question
may be either "yes" or "no" and both outcomes are equally probable.
The answer then will carry precisely 1 bit of information. However, if
the "yes" or "no" outcomes have different probabilities, then the answer
will contain less than 1 bit of information. And the greater the difference
between the probabilities of the two outcomes, the smaller the quantity
of information. In the limit of the probability of a "yes" (or a "no")
being unity, the answer will not contain any information at all.

Now, let us look at what happens when different outcomes (different
optionsr.have.different, orobabitities.J do notwanttocramthisbook
early, but now the time has come to do so.

lnlorrnut ion ;lIHI probuhilitv. The SIJ,1'111011 I'c'!"l111I.i. I have
emphasized that control is only possible in a world where necessity is
dialectically confronted with chance. In order to control something,
there must be choice. Any situation we want to control carries with it
uncertainty. This uncertainty can be compared with a shortage of
information. While we control an object, we introduce information and
thus decrease the uncertainty.

For instance, a train may arrive along any of the eight tracks in our
example above, so there is uncertainty. By sending a control signal with
three bits of information, the signalman eliminates this uncertainty, and
the train is directed along one particular track. The teacher could have
thought of any of his 32 pupils, so there was uncertainty which surname
had been chosen. Having listened to the answers for a number of
questions with an overall quantity of information of five bits, we can
eliminate this uncertainty and identify the pupil.
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Shannon in the mid-1940s. He came to the conclusion that we obtain
the quantity of information equal (in bits) to

N I
I (~) = L Pi log, - . (3.2)

i= I Pi
This is a fundamental relation in information theory. It is called the
Shannon formula.

Suppose that the outcomes are equally probable, and the random
variable may take on the values Xi with the same probability p. This
probability is clearly liN and so from (3.2) we obtain

I N 1
I = - L log, N = - N log, N = log, N,

N ;=1 N
i. e. the Hartley formula (3.1). Consequently, we see that the Hartley for­
mula is a special case of the Shannon formula when all outcomes are
equally probable.

Using the Shannon formula, let us find how much information can be
contained in a "yes" or "no" answer. Suppose p is the probability of
a "yes". Then the probability of a "no" answer is 1 - p. According to
(3.2), the information obtained from the answer to a question is

1 I
1= P log, - + (1 - P)lOg2--. (3.3)

P 1- P

The graph of I versus p, as defined by (3.3), is given in Fig. 3.6.
Maximum information (1 bit) is obtained when p = 1/2, i.e. when
a "yes" and a "no" are equally probable. Now we can refine our notion
of "1 bit of information". This is the information contained in a digit that
may take on only two values provided both values are equally probable.

It follows that the best strategy in the Bar Kohba game is to ask

Shannon formula.
Suppose that the outcomes are equally probable, and the random

variable may take on the values Xi with the same probability p. This
probability is clearly liN and so from (3.2) we obtain

I N 1
I = - L log, N = - N log, N = log, N,

N ;=1 N
i. e. the Hartley formula (3.1). Consequently, we see that the Hartley for­
mula is a special case of the Shannon formula when all outcomes are
equally probable.

Using the Shannon formula, let us find how much information can be
contained in a "yes" or "no" answer. Suppose p is the probability of
a "yes". Then the probability of a "no" answer is 1 - p. According to
(3.2), the information obtained from the answer to a question is

1 I
1= D log? - + (t - D) log? --. (3.3)
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"yes" or "no" questions, the answers to which are nearly or equally
probable. Recall the question: "Is the surname listed from 17 to 32?"
Here the answers "yes" and "no" are equally probable because there are
32 pupils and the numbers from 17 to 32 cover half of the pupils. There­
fore, the answer to this question gives 1 bit of information. But for the
question: "Is the surname listed from 1 to 8?" the range of numbers
only covers a quarter of all the numbers and therefore the probability of
a "yes" is 1/4, while that of a "no" is 3/4. The answer to this question
would contain less than 1 bit of information. According to (3.3), in
which we substitute P = 1/4, each answer contains 0.8 bit of information.

Once again I emphasize that control processes should be regarded in
a dialectical unity with the random processes of disorganization. There
is a deep relationship between information theory and probability
theory. The Shannon formula (3.2) illustrates this point. The
probabilistic approach provides a scientific, objective notion of
information that is free from a subjective substitution of the quantity of
information by its significance or importance.

Information in communication channels with noise. When
information is transmitted, some loss is unavoidable. This happens
because of the action of random factors, which are commonly lumped
together as noise. A communication channel for transmitting information
from input set A to output set B is represented in Fig. 3.7. The
information is affected by noise P as it is transmitted. Suppose that ~ is

Figure 3.7

an input discrete random variable which may assume values Xl' Xl' ... ,

X N with probabilities PI> pz, , PN' and TJ is the output variable, which
may assume values YI> Yl, , YM with probabilities ql> ql, ... , qM' Let
Pi U) denote the probability that TJ = Yj is the output variable if ~ = Xi

was transmitted. The probability PiU) is determined by noise in the
communication channel. It has been proved in information theory that
the quantity of information about the random variable ~ that can be
obtained by observing the random variable TJ is described by the
t'~__ ..1_

only covers a quarter of all the numbers and therefore the probability of
a "yes" is 1/4, while that of a "no" is 3/4. The answer to this question
would contain less than 1 bit of information. According to (3.3), in
which we substitute P = 1/4, each answer contains 0.8 bit of information.

Once again I emphasize that control processes should be regarded in
a dialectical unity with the random processes of disorganization. There
is a deep relationship between information theory and probability
theory. The Shannon formula (3.2) illustrates this point. The
probabilistic approach provides a scientific, objective notion of
information that is free from a subjective substitution of the quantity of
information by its significance or importance.

Information in communication channels with noise. When
information is transmitted, some loss is unavoidable. This happens
because of the action of random factors, which are commonly lumped
together as noise. A communication channel for transmitting information
from inl?ut set A t~. outp~t set B is represe!1te~ in Fig. 3:7- The



Ch. 3. Control and Selfcontrol 93

received at the output, probability Pi U) reflects the random nature of
the noise in the channel.

Suppose there is no noise. Then the random variable values at the
input and the output of the channel will be the same. Hence

N = M, Pi = qj, and Pi U) = 0ij, (3.5)

where 0i· = 1 for i = j and OJ. = 0 for i i=j.
Substduting (3.5) into (3.4) ~nd noting that lim z log, z = 0, we get the

z-+O

Shannon formula. This should have been expected because when there is
no noise, there is no loss of information in its transmission.

Protection against noise in a communication channel. There are many
sorts of communication channel. Information can be transmitted by
sound waves propagating in a medium, electric signals running along
wires, electromagnetic waves propagating in a medium or in vacuum,
etc. Each communication channel is affected by its own sorts of noise.
There are general techniques for handling noise that can be applied to
any communication channel. First of all, it is desirable to minimize the
level of noise and maximize the amount of information in the signals, so
that the signal-to-noise ratio is large. The ratio can be increased by
coding the transmitted information appropriately, e. g. transmitting it in
terms of "symbols" (for instance, impulses of a certain shape) which can
be distinctly identified against the background of noise. Coding a signal
increases its "noise immunity" or performance in terms of error
probability for the transmission.

A special measure against noise is filtering (both smoothing and
correlation) the information received at the output of communication
channels. If the characteristic noise frequency in a communication
channel is substantially greater than the frequency typical for the time
change in the signal, we could use a smoothing filter at its output to "cut
out" the high-frequency oscillations superimposed on the signal as it was
transmitted. This is illustrated in Fig. 3.8, in which a is a diagram of the
communication channel with a filter (A is the channel input, B is the
channel output, P is noise, and F is a smoothing filter), b is the signal at
the input, c is the signal at the output before filtering, and d is the signal
after fiItering.

Suppose we want to find out whether the output contains a signal of
a given shape. If the signal is very dilTerent (for instance, by frequency)
where 0i· = 1 for i = j and OJ. = 0 for i i=j.

Substduting (3.5) into (3.4) ~nd noting that lim z log, z = 0, we get the
z-+O

Shannon formula. This should have been expected because when there is
no noise, there is no loss of information in its transmission.

Protection against noise in a communication channel. There are many
sorts of communication channel. Information can be transmitted by
sound waves propagating in a medium, electric signals running along
wires, electromagnetic waves propagating in a medium or in vacuum,
etc. Each communication channel is affected by its own sorts of noise.
There are general techniques for handling noise that can be applied to
any communication channel. First of all, it is desirable to minimize the
level of noise and maximize the amount of information in the signals, so
that the signal-to-noise ratio is large. The ratio can be increased by
coding the transmitted information appropriately, e. g. transmitting it in
!ern;t.s <?f "~yn;t,?ols:'_ (f<;>r in~tanc~, i~p~lses of ~ c:rtai.n sh~p~) whic~ ca~
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Figure 3.8

d

a

Figure 3.9
abc

b is the multiplied signal if the recognized signal S is present in the out­
put (the correlation signal), and c is the multiplied signal if signal S is
absent in the output. Correlation filtering is used, for instance, in radar
scanners to recognize the radiation signal emitted by the radar antenna.

Selection of Information from Noise

~p

b c
Figure 3.8

d
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This argument leads inevitably to the questions: Whence the "original
information"? Whence the first algorithm? An inability (or reluctance)
to investigate scientifically the fundamental topic of where information
comes from leads to serious misconceptions.

One such misguided hypothesis is that the original information was
brought to the Earth by space travellers, who visited us in some
long-forgotten past. This hypothesis is materialistic, but it is unsat­
isfactory because it begs the question of where the aliens got the
information. Modern science indicates where the information comes
from. The modern scientific answer is that there is no "original
information": the generation of information is a continuous and
continuing process.

hr'l ,! 1:1' !U!I.!'-"[ ,I:. w[ The idea of information being handed
over like a relay baton in a race is simplistic. I pointed out that any
transmission of information is accompanied by loss caused by random
factors. However, random factors not only "steal" information, they also
generate it.

At first glance, this seems implausible. We witness the continuous
creation of information as a result of human creativity. New machines
are designed, spacecraft are launched, new books are published, and new
drugs become available: these are all a testimony to the explosive
generation of information in which everybody participates. So it would
seem strange to speak of the fundamental role of chance in generating
information.

However, consider the process of thinking, how a problem is solved,
how an intuition appears, or how a melody or image emerges. If these
examples are too philosophical, try and think at least about associative
perception, that is how we recognize objects and distinguish them. Just
try, and you will step into a domain of complicated links, probabilistic
relationships, chance guesses, and sudden "revelations". There are no
deterministic algorithms for making discoveries or solving problems.
Everything we know about the processes occurring in the brain indicates
the fundamental role of random factors. Later I shall illustrate this by the
example of perception, a cybernetic device which can recognize patterns.

( 'iii ," ( i " " ,I i ' " How can chance generate information? How
can order appear from disorder? It turns out that the generation of
information from noise can be easily observed. You can see this for
yourself using the game of scrabble, or rather the small lettered blocks.
long-forgotten past. This hypothesis is materialistic, but it is unsat­
isfactory because it begs the question of where the aliens got the
information. Modern science indicates where the information comes
from. The modern scientific answer is that there is no "original
information": the generation of information is a continuous and
continuing process.

hr'l ,! 1:1' !U!I.!'-"[ ,I:. w[ The idea of information being handed
over like a relay baton in a race is simplistic. I pointed out that any
transmission of information is accompanied by loss caused by random
factors. However, random factors not only "steal" information, they also
generate it.

At first glance, this seems implausible. We witness the continuous
creation of information as a result of human creativity. New machines
are designed, spacecraft are launched, new books are published, and new
drugs become available: these are all a testimony to the explosive
generation of inform3:tio~ i!1 "":.hic~ every~od~ pa~ti~ipates .. So it would
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words. The more letters there are in a word, the smaller the probability
of generating the word from "letter noise". The generation of a sentence,
let alone a line from a well-known work, is less probable. Nonetheless,
the probability of doing is nonzero, and so there is the possibility of any
information being generated randomly from noise.

Thus, we can say (although this sounds strange) that chance generates
information by chance. The greater the information, the smaller the
probability of its random generation. That random information can be
generated does not solve the basic problem. This randomly generated
information must be detected from the enormous flow of meaningless
"signals". In other words, the information must be selected from the noise.
In the example of taking lettered blocks out, the information is selected
from the noise by the person who wrote out the letters and looked
through the string.

Selection amplifier. Is it possible to use chance conscientiously to
generate information? It is, so long as we amplify the selection.

You can do a simple experiment to demonstrate the amplification of
selection using the random letter generator described above. In order to
amplify the selection, we take into account the frequency with which
letters appear in each word. Letter frequencies in English are often given
when you buy a commercial game of scrabble. To allow for the fre­
quencies, first eliminate the rare letters, e.g. Z, Q, J, V, X and add extra
blocks with frequent letters, e.g. four blocks with E and T, three with A,
I, 0, L, N, G, R, S, two with D, U, and one of all -the rest. I cannot
vouch that this selection is optimal, in a similar experiment I found 21
three-letter words, 4 four-letter words and 1 five-letter word in
a succession of 300 random letters.

In order to amplify the selection still greater, we should use words
rather than letters. It is curious that a similar device was suggested in
the early 18th century by the English satirist Jonathan Swift in
Gulliver's travels. When Gulliver visited the Academy in Lagado (the
capital of an imaginary kingdom), he met a professor who had an
interesting apparatus. Swift wrote:

"He then led me to the frame, about the sides whereof all his pupils
stood in ranks. It was twenty feet square, placed in the middle of the
room. The super faces were composed of several bits of wood, about the
bigness of a die, but some larger than others. They were all linked to­
gether by slender wires. These bits of wood were covered on every square
information by chance. The greater the information, the smaller the
probability of its random generation. That random information can be
generated does not solve the basic problem. This randomly generated
information must be detected from the enormous flow of meaningless
"signals". In other words, the information must be selected from the noise.
In the example of taking lettered blocks out, the information is selected
from the noise by the person who wrote out the letters and looked
through the string.

Selection amplifier. Is it possible to use chance conscientiously to
generate information? It is, so long as we amplify the selection.

You can do a simple experiment to demonstrate the amplification of
selection using the random letter generator described above. In order to
amplify the selection, we take into account the frequency with which
letters appear in each word. Letter frequencies in English are often given
when you buy a commercial game of scrabble. To allow for the fre­
9~e~cies,..~rs~t eliminll;t~ .the rare ~etter~,. e.~. Z,.9,J, V,.~ a~d add. ~.xt~a
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and where they found three or four words together they might make
part of a sentence, they dictated to the four remaining boys who were
scribes. This work was repeated three or four times, and at every turn
the engine was so contrived, that the words shifted into new places, as
the square bits of wood moved upside down."

True, Swift wrote satirically, laughing about such inventions.
However, why should we not believe that a talented popular-science
writer disguised himself behind mask of a satirist so as not to be
laughed at and misunderstood by his contemporaries?

What seemed absurd and laughable in the 18th century has now
become the subject of scientific investigation in the mid-20th century.
The English scientist W. Ross Ashby suggested a cybernetics device in
the early 1950s which could be a selection amplifier. Ashby called it an
intelligence amplifier. A diagram of this amplifier is given in Fig. 3.10.

amplifier's first
stage

Figure 3.10

second
stage

Noise generator 1 supplies "raw material" to the first stage of the
amplifier. The noise converter 2 produces various random variants of
the subjects to be selected. The selection is performed in unit 3 in
compliance with criteria of selection put into this device. In a concrete
case, if the result of a selection meets a criterion, control unit 4 opens
valve 5 and lets the selected information into the converter of the next
stage of the amplifier. One can easily imagine that the first stage of the
amplifier, supplied with random letters, selects separate randomly
emerging words or separate typical syllables; the second stage of the
amnlifier , selects word combinations: .fhej.hird .staze. .selects..sentences,
writer disguised himself behind mask of a satirist so as not to be
laughed at and misunderstood by his contemporaries?

What seemed absurd and laughable in the 18th century has now
become the subject of scientific investigation in the mid-20th century.
The English scientist W. Ross Ashby suggested a cybernetics device in
the early 1950s which could be a selection amplifier. Ashby called it an
intelligence amplifier. A diagram of this amplifier is given in Fig. 3.10.
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the system to this new state. How is it to be done? Information is
needed firstly on the new state, and, secondly, on how the transition of
the system to the new state can be carried out. Since the change in the
environment is random in nature, we know neither the new normal state
nor how to organize a transition to it. A random search may help in
such situations. This means that we should randomly change the
system's parameters until it randomly matches the new normal state,
which can be immediately recognized by monitoring the system's
behaviour.

It can be said that the process of random search generates the
information needed to transfer the system to the new normal state. This
is nothing else but the selection of information from noise about which we
have been talking. The selection criterion here is the change in the
system's behaviour: once in the new normal state, the system "calms
down" and starts functioning normally.

In 1948 Ashby designed a device which possessed the property of
selforganization on the basis of random search. He called the device
a homeostat. A diagram of a homeostat is shown in Fig. 3.11.

3

L..-__-' Figure 3.11

A homeostat is often compared to a sleeping cat. If the cat is bothered,
it wakes up, chooses a new more comfortable position, and goes to sleep
again. A homeostat behaves in a similar manner: when it is "woken up",
it carries out random search for new values for its parameters, and when
it finds them, it "goes to sleep" again.

System 1 in Fig. 3.11 may be either in a stable or unstable state.
Without going into detail, let me note that system 1 consists of four
system's parameters until it randomly matches the new normal state,
which can be immediately recognized by monitoring the system's
behaviour.

It can be said that the process of random search generates the
information needed to transfer the system to the new normal state. This
is nothing else but the selection of information from noise about which we
have been talking. The selection criterion here is the change in the
system's behaviour: once in the new normal state, the system "calms
down" and starts functioning normally.

In 1948 Ashby designed a device which possessed the property of
selforganization on the basis of random search. He called the device
a homeostat. A diagram of a homeostat is shown in Fig. 3.11.

n ~ n
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unit 4 having verified the stability sends a signal to control unit 2, which
switches off the random parameter generator 3.

On the Way to a Stochastic Model
of the Brain
lhe pattern recognition problem. We do not commonly think about the
brain's ability to recognize patterns, although it is amazing. Several
characters differing in size, shape, and line breadth are shown in
Fig. 3.t 2. Despite this, we immediately recognize the same character, the
letter A, in every image. It is still more amazing when there is a crowd
of variously dressed people with poorly distinguishable faces (because of
the distance) and yet we usually manage to distinguish between men and
women without error.

The ability to recognize patterns is called associative perception, i. e.
when certain general, characteristic features are perceived while other
more individual aspects recede into the background. Is associative

Figure 3.12

perception possible for a machine? Is it possible to simulate the
processes occurring in the brain and relate them to pattern recognition?
Thp~.;' (lJ1P~tinn~ JVprp l'Ip~wprpcl in thp l'I ffirml'ltivp i'1 1Qf\O whe-n thp
brain's ability to recognize patterns, although it is amazing. Several
characters differing in size, shape, and line breadth are shown in
Fig. 3.t 2. Despite this, we immediately recognize the same character, the
letter A, in every image. It is still more amazing when there is a crowd
of variously dressed people with poorly distinguishable faces (because of
the distance) and yet we usually manage to distinguish between men and
women without error.

The ability to recognize patterns is called associative perception, i. e.
when certain general, characteristic features are perceived while other
more individual aspects recede into the background. Is associative
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by the analysis unit within the perceptron. Before going into detail on
the perceptron, let me make two fundamental points. Firstly, the
relations between the receptors and the perceptron's internal units which
process the information recorded by receptors should not be rigidly
defined. If they were so defined, the signals from the images shown in
Figs. 3.1 3a and 3.13b would be "perceived" by the perceptron as
different patterns (only five excited receptors shown in red coincide in
these images), while the images in Figs. 3.13a and 3.l3c would be
"perceived", by contrast, to be the same pattern because there are 28
excited receptors in common. In reality, a perceptron should "perceive"
the images in Figs. 3.13a and 3.13b as the same pattern while those in
Figs. 3.13a and 3.13c as different patterns. Thus, we must accept that
the internal relations in a perceptron should be random. They have to be
probabilistic relations.
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these images), while the images in Figs. 3.13a and 3.l3c would be
"perceived", by contrast, to be the same pattern because there are 28
excited receptors in common. In reality, a perceptron should "perceive"
the images in Figs. 3.13a and 3.13b as the same pattern while those in
Figs. 3.13a and 3.13c as different patterns. Thus, we must accept that
the internal relations in a perceptron should be random. They have to be
probabilistic relations.
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Secondly, the random nature of these relations suggests the adjustment
of the perceptron to the patterns being recognized. A perceptron should
he presented with different images of the recognized patterns in turn
(and several times), and we should teach it, the percept ron's parameters
being adjusted as needed in the process. A perceptron should take into
account its progress at each stage (at each presentation of the image), so
a perceptron should have a memory.

Considering both these points, we can define perceptrons to be
devices which have a memory and a random structure of the links
between its units. A perceptron can be thought of as a simplified model
of the brain, and this model is promising because it is probabilistic, or,
in other words, stochastic. Some scientists believe that stochastic models
will be best able to simulate the processes occurring in the brain.

Various sorts of perceptron have been designed. Below we shall
consider a simple perceptron which can distinguish two patterns.

The arrangement of the simplest perceptron. A diagram of this
perceptron is given in Fig. 3.14. Here the S, are photoelectric cells
(receptors), the I k are phase inverters, which change the sign of the
electric voltage, the Aj are associative units (A-units), the Aj are
amplifiers with varying gain factors, ~ is a summator, and R is the
receiver. Suppose that the total number of receptors S, is N, (i =
I. 2, 3, ... , N). In the first models, N was 20 x 20 = 400 receptors. The
number of inverters is not fixed in that it can be different in different
copies of the same device. The total number of associative units A j and
amplifiers Aj equals M U= 1, 2, ... , M). The receptors are wired to the
..1-units either directly or via the inverters. It is essential that the choice
of which receptor is connected to which A-unit and the selection of the
potential sign are random. Thus when a circuit is being assembled, the
wires connecting the receptors to the A-units are soldered together
randomly, for instance, in accordance with instructions from a random
number generator.

Suppose that an image is projected onto the perceptron's sensor grid.
Since the intensity of the light at each point is different, some of the
receptors will be excited, generating a logic signal of 1, while others will
not, generating an electric signal of 0 at the output of the receptor. If the
signal passes through an inverter, a 1 is transformed into a-I. The
system of random links transmits the signals from the receptors to the
A_uvit.... F..a".h -4,-.!l~.i.t .".1~r!'ir.Q.l:J,>J {Uirls...-UF.' the_~i.",-",-.,Jc."t_it<:u;""","·.·.t..oUdbe
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Considering both these points, we can define perceptrons to be

devices which have a memory and a random structure of the links
between its units. A perceptron can be thought of as a simplified model
of the brain, and this model is promising because it is probabilistic, or,
in other words, stochastic. Some scientists believe that stochastic models
will be best able to simulate the processes occurring in the brain.

Various sorts of perceptron have been designed. Below we shall
consider a simple perceptron which can distinguish two patterns.

The arrangement of the simplest perceptron. A diagram of this
perceptron is given in Fig. 3.14. Here the S, are photoelectric cells
(receptors), the I k are phase inverters, which change the sign of the
electric voltage, the Aj are associative units (A-units), the Aj are
amplifiers with varying gain factors, ~ is a summator, and R is the
receiver. Suppose that the total number of receptors S, is N, (i =
I. 2. 3. ... . N). In the first models. N was 20 x 20 = 400 recentors. The
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Then it is sent to the input of theR-unit, which checks its sign. If
I: XjYj ~ 0, the R-unit output is + 1, otherwise the R-unit output is O.
I

This perceptron is designed to recognize only two patterns.
Irrespective of the concrete images of the patterns, the perceptron will
respond to one pattern with an output signal of + 1 and with a signal
of 0 to the other. The perceptron must learn this ability.

Teaching a perceptron. Let us call the two patterns B and C. Suppose
pattern B corresponds to an output signal of + 1 and pattern C to an
output signal of O. Suppose Xl' X2, ... , Xj' ... , XM are the perceptron's
gain factors before it is taught. Let us designate this ordered set {x}. To
leach the perceptron, we present it with an image of pattern B. This will
excite a certain set of A-units, i. e. we get a succession of signals Yb
yz, ... , Yj' . 00' YM' or, in short, {y}. Now suppose the sum I: xjYj is

J

non-negative, so the perceptron's output signal is + 1. If so, then
everything is true, and we can present the perceptron with a second
image of pattern B. The second image will excite a new set of A-units,
i. c. a new succession of signals {y'}. The set of gain factors {x} remains
yet the same, but the sum I: xjY; may be negative, and then the signal at

J

the perceptron's output will be O. This is not good, and therefore the
perceptron is "discouraged": the gain factors of the excited A-units are
incremented by, say, unity, so that a new set of gain factors {x'} ensures
that the sum I: x;y; is non-negative. Now the perceptron responds

J

correctly to the second image of pattern B. But what about the first
image? The set of gain factors has been changed, so that the sign of the
sum I:x;Yj may be changed. We present the perceptron with the first

J

image of pattern B again and identify the sign of the sum I: x;Yj by the
J

output signal.
If the sum is non-negative, we are satisfied because the set of gain

factors {x'} has caused the perceptron to respond correctly to both the
first and the second images of pattern B. Now we can present the

:J - ... • ~ 1 ~.. 1 • r.. rw. Tr". 1 • • • • 1

This perceptron is designed to recognize only two patterns.
Irrespective of the concrete images of the patterns, the perceptron will
respond to one pattern with an output signal of + 1 and with a signal
of 0 to the other. The perceptron must learn this ability.

Teaching a perceptron. Let us call the two patterns B and C. Suppose
pattern B corresponds to an output signal of + 1 and pattern C to an
output signal of O. Suppose Xl' X2, ... , Xj' ... , XM are the perceptron's
gain factors before it is taught. Let us designate this ordered set {x}. To
leach the perceptron, we present it with an image of pattern B. This will
excite a certain set of A-units, i. e. we get a succession of signals Yb
Yz, ... , Yj' . 00' YM' or, in short, {y}. Now suppose the sum I: xjYj is

J

non-negative, so the perceptron's output signal is + 1. If so, then
everything is true, and we can present the perceptron with a second
image of pattern B. The second image will excite a new set of A-units,
i. c. ~ new suc~essi<?n of sig~als {y'}. ~he set o~ gain factors {x} rem~ins
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Chapter

Probability in
Classical Physics
Probability theory is used in physics, and its first
application of fundamental importance for our
understanding of the laws of nature can be found in
the general statistical theory of heat founded by
Boltzmann and Gibbs ....
The most elegant and important advantage of this
theory is the understanding of thermodynamical
"irreversibility" as a picture of transition to more
probable states.

W Pauli

Thermodynamics and Its Puzzles

All bodies consist of molecules in chaotic thermal motion. This
fundamental point can be disregarded when considering the basic
problems of thermodynamics, the branch of physics which seeks to derive,
from a few basic postulates, relationships between the properties of
matter, especially those which are affected by changes in temperature,
and a description of the conversion of energy from one form to another.

Thermodynamics is a branch of physics in which the energy transfers
between macroscopic bodies and their environment are investigated
from the most general positions (without using molecular concepts).
Thermodynamic considerations are underlain by a description of the
states of the bodies using thermodynamic variables or the thermodynamic
functions of state or state parameters, and the use of several basic
principles called the laws of thermodynamics. You already know about
such thermodynamic variables as temperature and pressure.

Probability in
Classical Physics
Probability theory is used in physics, and its first
application of fundamental importance for our
understanding of the laws of nature can be found in
the general statistical theory of heat founded by
Boltzmann and Gibbs ....
The most elegant and important advantage of this
theory is the understanding of thermodynamical
"irreversibility" as a picture of transition to more
probable states.

W Pauli
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thermodynamic functions of state (temperature and pressure) remain
constant until disturbed. Another feature of a thermodynamic equilib­
rium is that the temperature is constant at all points of the system.

If a system does not exchange energy with bodies around it, it is
a closed system. When we talk about a thermodynamic equilibrium of
a closed system, we mean an equilibrium between its various parts, each
of which can be regarded as a macroscopic body.

Suppose we heat a body unevenly and then put it in a vessel which
does not conduct heat. It can be said that we first disturb the
thermodynamic equilibrium in the body and then leave it. The
temperature of the hotter regions will decrease, and that of cooler ones
will increase, and finally the temperature will become the same
throughout the body: they will reach a thermodynamic equilibrium with
each other. An unperturbed macrosystem will always reach a state of
thermodynamic equilibrium and remain there until some external action
brings it out of this state. If this action stops, the system will again reach
a thermodynamic equilibrium.

And here is the first puzzle of thermodynamics. Why does a system
brought out of thermal equilibrium and left to itself return to an
equilibrium state, while systems in a thermal equilibrium and left to
themselves do not leave it? Why is it not necessary to spend energy to
maintain thermal equilibrium, while energy is needed to maintain
a system in a thermodynamic equilibrium? By the way, this is a far from
futile question. The weather outside may be below freezing, e. g. - 1°C,
while it's warm in the room, + 25°C. The walls of houses conduct heat
fairly well, and therefore, there is a nonequilibrium "room-outside"
system. To maintain this thermodynamic nonequilibrium state, it is
necessary to spend energy continuously to heat.

The first law of thermodynamics. A system may exchange energy with
its environment in many ways, or, as is said, along many channels. For
simplicity's sake, let us limit ourselves to a consideration of two
channels, namely, the transfer of energy by heat conduction and the
transfer of energy by performing work. The first law of thermodynamics is
simply the law of the conservation of energy involving the possible
energy transfer between a body and its environment via different
channels, i.e.

~U=A+Q, (4.1)
of which can be regarded as a macroscopic body.

Suppose we heat a body unevenly and then put it in a vessel which
does not conduct heat. It can be said that we first disturb the
thermodynamic equilibrium in the body and then leave it. The
temperature of the hotter regions will decrease, and that of cooler ones
will increase, and finally the temperature will become the same
throughout the body: they will reach a thermodynamic equilibrium with
each other. An unperturbed macrosystem will always reach a state of
thermodynamic equilibrium and remain there until some external action
brings it out of this state. If this action stops, the system will again reach
a thermodynamic equilibrium.

And here is the first puzzle of thermodynamics. Why does a system
brought out of thermal equilibrium and left to itself return to an
equilibrium state, while systems in a thermal equilibrium and left to
themselves do not leave it? Why is it not necessary to spend energy to
maintain thermal equilibri.um, while e~e~y..is needed to ~ai~tain
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equally absurd to say that a body in a state has so much heat or so
much work. The heat Q and work A in formula (4.1) are the changes in
the body's energy carried out through different channels. Let us consider
a simple macrosystem, an ideal gas (m is the mass of the gas). The
internal energy of an ideal gas is proportional to the absolute
temperature T of the gas and does not depend on the volume V it
occupies. Let us change the gas volume using a piston. By pushing
a closefitting piston down a cylinder and thus compressing the gas in
the cylinder, we perform some work A. When the gas expands, it
performs work A' to move the piston back: A' = - A. This work is
related to the change in the gas volume. It is numerically equal to the
area under the pressure-volume curve, which describes the process, from
V = V1 to V = V2 , where V1 and V2 are the initial and final volumes of
the gas.

Let us consider, from the viewpoint of the first law of
thermodynamics, two types of gas expansion, isothermal and adiabatic.
The former process occurs at constant gas temperature while the latter
occurs when there is no heat exchange between the gas and the
environment. The change in the gas volume should be carried out very
slowly (compared to the rate at which thermal equilibrium is reached
within the gas), and so the gas can be regarded at any moment in time
as being in thermodynamic equilibrium. In other words, we assume that
the gas passes from one .thermodynamic equilibrium state to another, as
it were, via a succession of intermediate equilibrium states.

If the expansion is isothermal, the gas's temperature remains constant,
and therefore, !:iV = 0 (V 1 = V 2)' Noting this, we obtain from (4.1)

- A = Q or A' = Q. (4.2)

The expanding gas performs as much work as it receives heat from the
environment during its expansion.

When the expansion is adiabatic, there is no heat exchange with the
environment (Q = 0). Therefore,

!:iV = A or A' = - !:iV. (4.3)

The expanding gas performs work owing to a decrease in its internal
energy, and the gas's temperature therefore falls.
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occupies. Let us change the gas volume using a piston. By pushing
a closefitting piston down a cylinder and thus compressing the gas in
the cylinder, we perform some work A. When the gas expands, it
performs work A' to move the piston back: A' = - A. This work is
related to the change in the gas volume. It is numerically equal to the
area under the pressure-volume curve, which describes the process, from
V = V1 to V = V2 , where V1 and V2 are the initial and final volumes of
the gas.

Let us consider, from the viewpoint of the first law of
thermodynamics, two types of gas expansion, isothermal and adiabatic.
The former process occurs at constant gas temperature while the latter
occurs when there is no heat exchange between the gas and the
environment. The change in the gas volume should be carried out very
slowly (compared to the rate at which thermal equilibrium is reached
within the gas), and so the gas can be regarded at any moment in time
as being in thermodynamic equilibrium. In other words, we assume that
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isothermal expansion

adiabatic expansion

p

Figure 4.1

Using an equation of state for an ideal gas (the Mendeleev­
Clapeyron equation), we get

p = mRTj MV, (4.5)

where M is the molar mass of the gas and R is the universal gas
constant. Substituting (4.5) into (4.4) and given that the temperature of
the gas is constant, we obtain

~

A = mRT f~dV= mRT In~ (4.6)
M v M VI

J--;

VIo
adiabatic expansion

(the symbol In designates a logarithm to base e = 2.71828... ).
The Carnot cycle. In 1824, a 28-year-old engineer called Sadi, Carnot
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the heat source, and the second is called the heat sink. Besides the heat
source and heat sink, there must be a working substance (a liquid,
steam, or gas), which transmits the heat from the heat source to the heat
sink and performs work in the process. Carnot considered a closed cycle
consisting of two isotherms and two adiabats. Later this cycle was called
the Carnot cycle. It is shown in Fig. 4.2 for an ideal gas. Suppose T 1 is
the temperature of the heat source and Tz is that of the heat sink.
Moving from point 1 to point 2 (the isotherm for T 1) , the gas receives
a heat Q I from the heat source and expands, thus spending energy to
perform work A{. From point 2 to point 3 (along an adiabat), the gas
performs work A~ and its temperature falls to Tz. From point 3·to point
4 (the isotherm for Tz) the gas gives a heat Qz to the heat sink, and this
heat equals the work A z performed to compress the gas. From point
4 to point 1 (another adiabat), the work A4 is expended to compress the
gas, and this goes to increasing the internal energy of the gas, so its
temperature rises to T 1• The result is that the working substance returns
to its initial state 1. Suppose that a heat engine operates following the
Carnot cycle. The gas receives a heat Q I from the beat source and gives

\
\,,

/4
isothermal

path T2

01.- ___.

Figure 4.2

the heat source, and the second is called the heat sink. Besides the heat
source and heat sink, there must be a working substance (a liquid,
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the work performed by the heat engine during its cycle. Hence the
efficiency of the heat engine is

11 = (Ql -I Q21)/Ql' (4.7)

Carnot showed that

QdT1 = IQ21/T2·
This allows us to rewrite (4.7) in the form

11 = (T 1 - T2)/T1•

(4.8)

(4.9)

The efficiency of a heat engine, as defined by (4.7) and (4.9), is the best
possible efficiency. The efficiency of real heat engines is always less
because of unavoidable irreversible processes.

Reversible and irreversible processes. The notions of reversible and
irreversible processes are essential for thermodynamics. A process is said
to be reversible if the system (the working substance) is in thermal
equilibrium all the time, continuously passing from one equilibrium
state to another. This process is completely controlled, while it lasts, by
the changes in its parameters, for instance, the temperature or volume. If
the parameters are changed in the reverse direction, the process will also
go backwards. Reversible processes are also called equilibrium processes.

Boyle's (Mariotte's) and Gay-Lussac's (Charles') laws define reversible
processes in an ideal gas. The expressions (4.7) and (4.9) we have just
obtained are related to a reversible Carnot cycle, which is also called the
ideal Carnot cycle. Each part of the cycle and the whole cycle can be
reversed if desired.

An irreversible process is a process that cannot be controlled. It
proceeds independently, or, in other words, spontaneously. The result is
that we cannot reverse such a process. It was noted above that once
a system is moved from its thermodynamic equilibrium, it tends
spontaneously to another thermodynamic equilibrium state. Processes
related to transition of a system from a nonequilibrium state to an
equilibrium one are irreversible. They are also called nonequilibrium
processes.

Here are some examples of irreversible processes: conduction of heat
from a hotter body to a cooler one, mixing of two or more gases in the
same vessel, expansion of a gas in vacuum. All of these processes occur
spontaneously, without any external control. Heat does not
~J.f-l I;z;,..,~,,-~· , •• -/

This allows us to rewrite (4.7) in the form

11 = (T 1 - T2)/T1• (4.9)

The efficiency of a heat engine, as defined by (4.7) and (4.9), is the best
possible efficiency. The efficiency of real heat engines is always less
because of unavoidable irreversible processes.

Reversible and irreversible processes. The notions of reversible and
irreversible processes are essential for thermodynamics. A process is said
to be reversible if the system (the working substance) is in thermal
equilibrium all the time, continuously passing from one equilibrium
state to another. This process is completely controlled, while it lasts, by
the changes in its parameters, for instance, the temperature or volume. If
the parameters are changed in the reverse direction, the process will also
go backwards. Reversible processes are also called equilibrium processes.

Boyle's ~Mari~t~e's) and ~ay-Lussac'~ (Ch!1.r~~s') l3;w~. ~~fine ~evers~ble
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a

b

A'

Figure 4.3

the second law of thermodynamics was given by the English physicist
William Thompson (Lord Kelvin):

"It is not possible that, at the end of a cycle of changes, heat has been
extracted from a reservoir and an equal amount of work has been
produced without producing some other effects."

This means that it is impossible to design a machine to carry out
work by reducing the internal energy of a medium, sea water, for
instance. Kelvin called such a machine a perpetuum mobile of the second
kind. While some perpetua mobile violate the law of the conservation of
energy (j)'erpetua mobile of the first kind), those of the second kind do not

I I I I

a

b
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friction, transform this work into heat at a higher temperature, we
would contradict Clausius's formulation because it would involve the
conduction of heat from a cooler body to ~ hotter one within a closed
cycle without any external force perforrnirg work.

On the other hand, suppose that, despite Clausius's formulation, we
succeed in getting some quantity of heal Q to conduct itself from
a cooler body (at a temperature T2) to a hotter one (T1), and subse­
quently, allow this heat to go naturally from the hotter body to the
cooler at the same time performing some wirk A' while the rest of the
heat QI = Q - A' returns to the cooler bocy. This process is shown in
Fig. 4.3a. It is clear that this process corresponds to direct
transformation of heat Q - QI into work A (Fig. 4.3b), which evidently
contradicts Kelvin's formulation.

Entropy. As he was studying Camet's investigations, Clausius
discovered that relationship (4.8) is similar to a conservation law. The
value of QIiT1 "taken" by the working substance from the heat source
equals the IQ21/T2 "conducted" to the heat sink. Clausius postulated
a variable S, which like the internal energy is a state function of the
body. If the working substance (an ideal gss in this case) receives heat
Q at temperature T, then S is incremented by

~S = Q/T. (4.10)

Clausius called S entropy.
From point 1 to point 2 of the Carnot cycle (see Fig. 4.2), a heat QI

is conducted from the. heat source to the working substance at
a temperature T1, and the entropy of the working substance increases by
~S I ='= Q I / T1• From point 2 to point 3 and from point 4 to point 1,
there is no conduction of heat, and therefore, the entropy of the working
substance does not vary. From point 3 to point 4, a heat Q2 is
conducted from the working substance to the heat sink at temperature
T2, and the entropy of the body .s decreased by I~S21 =
IQ21/T2 (~S2 < 0). According to (4.8) and (4.10),

~Sl + ~S2 = O. (4.11)

Consequently, when an ideal (reversible' Carnot cycle comes to an
end, the working substance's entropy returns to its initial value.

Note that entropy can be defined as ne state function of a body
(system) whose value remains constant during an adiabatic process.
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quently, allow this heat to go naturally from the hotter body to the
cooler at the same time performing some wirk A' while the rest of the
heat QI = Q - A' returns to the cooler bocy. This process is shown in
Fig. 4.3a. It is clear that this process corresponds to direct
transformation of heat Q - QI into work A (Fig. 4.3b), which evidently
contradicts Kelvin's formulation.

Entropy. As he was studying Camet's investigations, Clausius
discovered that relationship (4.8) is similar to a conservation law. The
value of QIiT1 "taken" by the working substance from the heat source
equals the IQ21/T2 "conducted" to the heat sink. Clausius postulated
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entropy, we can formulate the second law of thermodynamics as follows:
Any irreversible process in a closed system proceeds so that the system's
entropy increases. Consider the following irreversible process by way of
an example. Suppose a closed system consists of two subsystems 1 and
2 which are at temperatures T1 and T2 , respectively. Suppose that an
infinitesimal amount of heat l\Q is conducted from subsystem 1 to
subsystem 2, so that the temperatures of the subsystems almost remain
the same. The entropy of subsystem 1 reduces by l\QIT1 (S1 =
- l\Q I Ttl while the entropy of subsystem 2 increases by M 2 = l\QI T2 •

The entropy of the whole system is the sum of its subsystems' entropies,
and therefore, the change in the system's entropy will be

(4.12)

Heat conduction from subsystem 1 to subsystem 2 is irreversible if T 1 >
T2 • Using this inequality, we can conclude from (4.12) that l\S > O. Thus,
we see that the process of heat conduction from a heated body to
a cooler One is accompanied by an increase in the entropy of the system
consisting of the two.

A gain in entropy during irreversible processes is only a necessary law
for closed systems. If a system is open, a reduction in its entropy is
possible. Thus, if some external body does work with respect to the
system, heat can be transferred from a heat sink to a heat source. It is
essential that if the system includes a heat source, a heat sink, a working
substance, and all the bodies that perform work (i. e. if we consider
a closed system again), then. the total entropy of this system will
increase.

I shall now formulate the basic conclusions concerning the change in
the system's entropy.

The first conclusion. If a system is closed, its entropy does not
decrease over time:

(4.13)

The system's entropy does not vary if the processes within it are
reversible. If'<the processes are irreversible, the system's entropy
increases. The gain in entropy can be regarded as a measure of the
irreversibility of the processes occurring in it.

The second conclusion. Generally, nothing can be said about the
subsystem 2, so that the temperatures of the subsystems almost remain
the same. The entropy of subsystem 1 reduces by l\QIT1 (S1 =
- l\Q I Ttl while the entropy of subsystem 2 increases by M 2 = l\QI T2 •

The entropy of the whole system is the sum of its subsystems' entropies,
and therefore, the change in the system's entropy will be

(4.12)

Heat conduction from subsystem 1 to subsystem 2 is irreversible if T 1 >
T2 • Using this inequality, we can conclude from (4.12) that l\S > O. Thus,
we see that the process of heat conduction from a heated body to
a cooler One is accompanied by an increase in the entropy of the system
consisting of the two.

A gain in entropy during irreversible processes is only a necessary law
for closed systems. If a system is open, a reduction in its entropy is
possible., Thus, i~ some external body.does .w~rk wit.h respect to the
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vacuum but does not compress spontaneously? Why, when in the same
vessel, do two or more gases mix, but not spontaneously separate?
A hammer strikes an anvil. The temperature of the anvil rises a bit. But
however strongly we might heat the anvil with the hammer resting on it,
the reverse will not happen: the hammer will not jump off the anvil.
Why? Very many similar "whys" .can be asked. Thermodynamics does
not answer these questions in principle. The answer must be sought in
the kinetic theory of matter. We should now look into the picture of
chaotically moving molecules.

Molecules in a Gas and Probability

A dialogue with the author. Imagine that we are talking with a physicist
of the 1860s. We do not need a "time machine". We shall just believe
that my partner adheres to the views typical of physicists in the
mid-19th century, the same physicists, many of whom later, in the 1870s,
could not understand or accept the ideas of the Austrian physicist
Ludwig Boltzmann (1844-1906). Anyway, let us imagine that it is 1861.
AUTHOR: "Let us consider a gas to be an ensemble of very many

chaotically moving molecules." -
PARTNER: "Good. I'm aware of the recent investigations of James

Clerk Maxwell, who calculated the velocity distribution of molecules
in a gas."

AUTHOR: "I would like to dis.cuss some thing more fundamental than
the distribution established by Maxwell. The point is that there is
a qualitative difference between considering thermodynamic equilibria
and considering the motion of molecules. In the first we have dynamic
laws with strictly determined dependences, and in the second we have
the probabilistic laws that govern processes in large ensembles of
molecules."

PARTNER: "But the movements of molecules are governed by
Newton's laws of classical mechanics rather than by probabilistic
laws. Suppose we assign coordinates and velocities to all the
molecules in a gas at a certain moment. Suppose that we can follow
all the collisions of the molecules with each other and with the walls
of the vessel. It is clear that in this case we will be able to predict
where a molecule will be at some other moment and what velocity it
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the kinetic theory of matter. We should now look into the picture of
chaotically moving molecules.

Molecules in a Gas and Probability

A dialogue with the author. Imagine that we are talking with a physicist
of the 1860s. We do not need a "time machine". We shall just believe
that my partner adheres to the views typical of physicists in the
mid-19th century, the same physicists, many of whom later, in the 1870s,
could not understand or accept the ideas of the Austrian physicist
Ludwig Boltzmann (1844-1906). Anyway, let us imagine that it is 1861.
AUTHOR: "Let us consider a gas to be an ensemble of very many

chaotically moving molecules." -
PARTNER: "Good. I'm aware of the recent investigations of James

Clerk Maxwell, who calculated the velocity distribution of molecules
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PARTNER: "Naturally, it would be exceptionally difficult. But the diffi­
culty is purely technical and not fundamental. So long as our
calculational abilities are limited, we shall have to resort to
probabilities, the probability of a molecule arriving in a volume, its
probability of having a velocity in a certain range, etc."

AUTHOR: "Thus, you believe that the use of probabilities is only
related to our practical inability to perform a very cumbersome
calculation, but that in principle an ensemble of molecules behaves
according to Newton's laws as applied to individual molecules."

PARTNER: "Precisely. This is why 1 do not see the qualitative
difference you mentioned."

AUTHOR: "I have at least three hefty arguments to support my
position that the probabilistic description of large ensembles of
molecules is necessary in principle, that chance is present in the very
nature of these ensembles rather than simply being related, as you
seem to believe, with our inadequate knowledge and inability to
perform cumbersome calculations."

PARTNER: "I'd like to know of these arguments."
AUTHOR: ''I'll start with the first. Suppose there is, as you postulate,

a rigid system of strictly determined links (as given by Newton's laws)
between the molecules in a gas. Now imagine that some of these
molecules suddenly escape from this system (e.g. they escape from the
vessel through a slit). Clearly the disappearance of these molecules
will bring about the disappearance of all that is predetermined by
their presence, 1 mean their later collisions with other molecules,
which, in its turn, will change the behaviour of the other molecules.
All this will affect the whole system of rigid relationships and, as
a consequence, the behaviour of the ensemble as a whole. However,
we know that from the viewpoint of gas as a whole you can suddenly
withdraw a large number of molecules without any noticeable effect
(for instance, t0 12 molecules or more). The properties of the gas and
its behaviour do not change in the least. Does this not indicate that
the dynamic laws governing the behaviour of individual molecules
do not actually interfere· with the behaviour of the gas as a
whole?"

PARTNER: "Still, it is hard to believe that molecules obey some laws
while the ensemble of the same molecules obeys quite different laws."

AUTHOR: "But this is exactly so. And my second argument will
related to our practical inability to perform a very cumbersome
calculation, but that in principle an ensemble of molecules behaves
according to Newton's laws as applied to individual molecules."

PARTNER: "Precisely. This is why 1 do not see the qualitative
difference you mentioned."

AUTHOR: "I have at least three hefty arguments to support my
position that the probabilistic description of large ensembles of
molecules is necessary in principle, that chance is present in the very
nature of these ensembles rather than simply being related, as you
seem to believe, with our inadequate knowledge and inability to
perform cumbersome calculations."

PARTNER: "I'd like to know of these arguments."
AUTHOR: "I'll start with the first. Suppose there is, as you postulate,

a rigid system of strictly determined links (as given by Newton's laws)
between the molecules in a gas. Now imagine that some of these
mole~ul.es su~denly..e~car.e fr?m!his ~.ystem (e.g. the~ ~cape fr~m t.he
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Figure 4.4

determined by its preceding one and, in its turn, determines the subse­
quent one."

AUTHOR: "Another example: a ball hits a wall elastically and bounces
off (Fig. 4.4b). If you change the direction of the ball's velocity to the
opposite one at point E, the situation will recur in the reverse order:
the ball will hit the walland return to point A.

"I cited these examples in order to illustrate an essential idea: the
movements determined by the laws of classical mechanics have a kind
of "memory" of the past. This is why these movements can be
reversed.

"Another thing is the behaviour of gas. Imagine the following
situation. There is a beam of molecules whose velocities are parallel.
After entering a vessel, the molecules collide many times with each
other and the walls. The result is that the molecules reach a state of
thermodynamic equilibrium, and they lose all 'memory' of their past.
It can be said that any gas in a state of thermal .equilibrium, as it
were, 'forgets' its prehistory and does not 'remember' how it arrived at
the equilibrium state. Therefore, it is absurd to think of reversing the
situation: the molecules. could not recollect into a beam and depart
from. the vessel in one definite direction. Many examples of such
forgetfulness can be cited.

"Suppose there is some gas on one side of a partition in a vessel
and another gas is on the other side. If you take away the partition,
the molecules of both gases will mix. Evidently, we should not expect
this picture to reverse: the molecules will not move back into their
own halves of the vessel. We might say that the mixture of two gases
does not remember its prehistory."

PARTNER: "Do you want to say that the equilibrium state of a gas is
a b

Figure 4.4

determined by its preceding one and, in its turn, determines the subse­
quent one."

AUTHOR: "Another example: a ball hits a wall elastically and bounces
off (Fig. 4.4b). If you change the direction of the ball's velocity to the
opposite one at point E, the situation will recur in the reverse order:
the ball will hit the walland return to point A.

"I cited these examples in order to illustrate an essential idea: the
movements determined by the laws of classical mechanics have a kind
of "memory" of the past. This is why these movements can be
reversed.

"Another thing is the behaviour of gas. Imagine the following
situation. There is a beam of molecules whose velocities are parallel.
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AUTHOR: "And when does this loss of memory occur? It occurs when
chance comes into play. You throw a die, and, say, a four turns face
up. You throw again and a two appears. The appearance of the two is
not related to the appearance of the four before it. You throw the die
many times and obtain a set of digits. This set possesses stability (for
instance, the four occurs approximately in one-sixth of all trials). This
stability does not have any prehistory, it is not related to the
occurrence of any other digit in the previous trials.

"The same happens in a gas. The loss of prehistory indicates that
we must deal with statistical laws, laws in which chance plays
a fundamental role."

PARTNER: "It seemed to me before that everything was clear. Newton
developed his mechanics. Then the temperature and pressure of gas
appeared. Using the notion of molecules, we reduced these physical
variables to mechanical ones by relating temperature to the energy of
molecules and the pressure of the gas to the impulses transferred to
the wall by the molecules striking it. Therefore, the laws of mechanics
were and continue to be fundamental laws. Are you suggesting we put
probabilistic laws on the same level as the laws of mechanics?"

AUTHOR: "I believe that you are aware of the fact that some
thermodynamic variables do not have analogues in classical
mechanics. And here is my third argument. Entropy does not have
a mechanical analogue. The very existence of a variable such as
entropy is sufficient to disprove the thesis of the total fundamentality
of the laws of classical mechanics."

PARTNER: "I would not like to discuss entropy at all... "
Let us finish with this dialogue because it has become a bit too long,

We agreed that it referred to 1861. Therefore, I could not use arguments
that were unknown at the time. But here I can cite two more arguments
in favour of my position. Firstly, note that entropy is explicitly
expressed in terms of probability, and that namely this makes it possible
to explain every puzzle of thermodynamics. We shall discuss this in
detail in the next sections. Secondly, it follows from quantum physics
that the assumption (made by my partner) that he can assign
coordinates and velocities to all the molecules simultaneously proves to
be inconsistent. This cannot be done due to fundamental considerations,
which we shall talk about in detail in Chapter 5.

And now let us discuss molecules moving in a gas.
stability does not have any prehistory, it is not related to the
occurrence of any other digit in the previous trials.

"The same happens in a gas. The loss of prehistory indicates that
we must deal with statistical laws, laws in which chance plays
a fundamental role."

PARTNER: "It seemed to me before that everything was clear. Newton
developed his mechanics. Then the temperature and pressure of gas
appeared. Using the notion of molecules, we reduced these physical
variables to mechanical ones by relating temperature to the energy of
molecules and the pressure of the gas to the impulses transferred to
the wall by the molecules striking it. Therefore, the laws of mechanics
were and continue to be fundamental laws. Are you suggesting we put
probabilistic laws on the same level as the laws of mechanics?"

AUTHOR: "I believe that you are aware of the fact that some
thermodynamic variables do not have analogues in classical
mechanics. And here is ~ third arg';lment. E~tropy ~o.e~ not have
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of movement. and the absolute value of the velocities of molecules. Let
us take an imaginary "photograph" of the molecules' positions at
a single moment in time. It might look like the one in Fig. 4.5, where
for simplicity's sake only two rather than three dimensions are
considered (the "photograph" is flat). It is clear that the points

- (molecules) fill the volume of the vessel uniformly (the vessel in the
figure is the square). Suppose N is the total number of molecules in the
vessel; N = NAmIM, where N A is Avogadro's number. At any site
within the vessel and at any moment in time, the number of molecules
per unit volume is the same (on average), N I V. Molecules may be found
with equal probability at any point within the vessel.

Let us use G (x, y, z)dx ~y ~z to denote the probability of finding
a molecule within a volume ~V = ~x ~y ~z in the vicinity of a point
with coordinates (x, y, z). To be more accurate, this is the probability
that the x-coordinate of the molecule will take a value from x to x + dx,
its y-coordinate from y to y + ~y, and its z-coordinate from z to z + ~z.

At small ~x, ~y, and ~z, the function G (x, y, z) will be the density of the
probability of finding a molecule at point (x, y, z). The probability
density in this case does not depend on the coordinates, hence G =
const. Since the probability of finding a molecule somewhere within the
______ 1 ~ ~~.oL 1 _ ..~
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of movement. and the absolute value of the velocities of molecules. Let
us take an imaginary "photograph" of the molecules' positions at
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finding a molecule within the unit volume is l/V, i.e. the ratio of the
unit volume to the volume of the vessel. Generalizing this conclusion,
we can state that the probability of finding a molecule within volume Vo
is Vol v.

Now let us discuss the velocities of the gas molecules. It is clear from
the start that the velocities cannot all be equally probable: there should
be few molecules with very high and very small velocities. When
considering the velocities of molecules, it is convenient to use the
concept of a velocity space, i. e. the molecular velocities are projected
onto the coordinate axes vx' vy, Vc' For simplicity's sake, Fig. 4.6 shows
only two axes: the vx-axis and the vy-axis (a two-dimensional velocity
space). The figure shows a molecular velocity distribution in a gas for
some moment in time. Each point in the figure relates to a molecule.
The abscissa of the point is the x-projection of the molecule's velocity
and the ordinate is its y-projection.

It is interesting to compare Fig. 4.5 and Fig. 4.6. The points in
Fig. 4.5 are within a certain area and the distribution is uniform. The
scatter of points in Fig. 4.6 is unlimited in principle. These points
clearly focus around the origin. This means that although the projection
of a molecule velocity may be as lar~e as you wish, the projections of
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finding a molecule within the unit volume is l/V, i.e. the ratio of the
unit volume to the volume of the vessel. Generalizing this conclusion,
we can state that the probability of finding a molecule within volume Vo
is Vol V.
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We should then see that the points in Fig. 4.5 move in different
directions: the trajectories change during collisions. The points in
Fig. 4.6 do not move; however, some suddenly disappear and some
appear. Each time a pair of points disappears another pair of new points
appears: this is the result of collision between two molecules.

Maxwell's distribution law. Suppose F (v.,,) ~vx is the probability that
a certain molecule (at a certain moment in time) has an x-velocity
component from u, to Vx + ~vx, the other two velocity components
taking any arbitrary value. At small ~vx' the function F (vx) is the
density of the probability of finding a molecule with velocity component
Vx '

The English physicist James Clerk Maxwell (1831-1879) showed that
the probability density F (vx ) corresponds to Gauss's law:
F(vx)=Ae-~, (4.14)

where IX is a parameter (IX> 0) and the constant A is determined from

(4.15)

(4.16)

-00

which is a reflection of the fact that the probability of a molecule having
an x-component in its velocity is unity. Substituting (4.14) into (4.15), we

00

obtain A J e -!XV; dvx = 1. The integral jn this expression is known in

mathematics as Poisson's integral and, evaluates to ~. Consequently,
A=~. Thus, we can rewrite (4.i4) as

VIX -IXV2

F(vx)= -;e '.

Similar functions can be derived for the probability densities for the y­
and z-components of a molecule's velocity. The function F (vx ) is plotted
in Fig. 4.7. Suppose f(v x , vy, vz) is the density of the probability of

-.J
a certain molecule (at a certain moment in time) has an x-velocity
component from u, to Vx + ~vx, the other two velocity components
taking any arbitrary value. At small ~vx' the function F (vx) is the
density of the probability of finding a molecule with velocity component
Vx '

The English physicist James Clerk Maxwell (1831-1879) showed that
the probability density F (vx ) corresponds to Gauss's law:
F(vx)=Ae-~, (4.14)

where IX is a parameter (IX> 0) and the constant A is determined from
00

(4.15)
-00

which is a reflection of the fact that the probability of a molecule having
an x-component in its velocity is unity. Substituting (4.14) into (4.15), we
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finding a molecule with velocity components v"' vy, and Vz • Using the
theorem of probability multiplication, we can write:

It»; vy, vz ) L\v" L\vyL\vz = [F (v,,) L\v"HF (vy) L\vyJ[F (vz ) / L\v.J .

Whence

(4.17)

We see that the probability densi\y depends on the squares of the
velocity components, viz. v; + v; + v. = v.This we might have expected
because, as it was already noted, each velocity direction is equally
probable, and so the probability density may only depend on the
absolute value of a molecule's velocity.

Thus, the probability of finding a molecule with velocity components
taking the values v" - v" + L\v", vy - vy + L\vy , Vx - Vz + L\v. is:

(4.18)(
a.)3/2 2L\wv = -; e-(lV L\v"L\vyL\vz ,

where

v2 = v; + v; + v;.
Let us take one more step: since each velocity direction is equally

probable, let us look at the probability of finding a molecule with an
absolute velocity from v to v + L\v, irrespective of its direction. If we
consider a velocity space. (Fig. 4.8), then L\w~ (see (4.18)) is the
probability of finding a molecule in the "volume" L\Vv shown in
Fig. 4.8a (the word "volume" is enclosed in quotation marks to remind
us that we are dealing with a velocity space rather than with a normal
space). Now we want to consider the probability of finding a molecule
within the spherical layer shown in Fig. 4.8b and confined between

(4.17)

ba

ss, I

f(v", vy, vz ) = (~) .~; +v; +v;) =

We see that the probability densi\y depends on the squares of the
velocity components, viz. v; + v; + v. = v . This we might have expected
because, as it was already noted , each velocity direction is equally
probable, and so the probability density may only depend on the
absolute value of a molecule's velocity.

Thus, the probability of finding a molecule with velocity components
taking the values v" - v" + L\v", vy - vy + L\vy , Vx - Vz + L\vz is:

L\wv = (~r2 e-(lV
2

L\v"L\vyL\vz , (4.18)

where

v2 = v;+ v; + v;.
Let us take one more step: since each velocity direction is equallv
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spheres with radii v and v + ~v. The "volume" of this layer is the surface
area of a sphere of radius v multiplied by the thickness of the layer ~v,

i. e. 41tv2~v. Therefore, the probability we want has the form:

~wv=(~r2e-'Xv241tV2~v. (4.19)

This formula expresses the distribution of molecules in an ideal gas by
the absolute value of their velocities, i.e. the Maxwellian distribution.
The probability density 9 (v) = ~wv/~v is shown in Fig. 4.9. It vanishes
both when v tends to zero and when it tends to infinity. The "volume"
of the spherical layer shown in Fig. 4.8b vanishes when v tends to zero
and the factor e - 'Xv

2
in the distribution law vanishes when v tends to

infinity.
Chance and necessity in the pattern of moving molecules. Suppose we

could record the position and velocity of every molecule in a volume of
gas at some moment in time. Imagine now that we divide the volume
into numerous identical cells, and look at our instantaneous "pho­
tograph" from cell to cell. It will turn out that the number of molecules
varies from cell to cell in a random fashion. Let us only pay attention to
those molecules whose velocities are within the range from v to v + ~v.

The number of such molecules varies randomly from cell to cell. Let us
divide the solid angle for all space at a point, i. e. 41t steradians, into
many identical elementary solid angles. The number of molecules whose
velocities lie within an elementary solid angle varies randomly from one
such an angle to another.

We could look at the situation in another way, that is, we could focus
our attention on some cell or an elementary solid angle and take
snapshots at different moments in time. The number of molecules (in
a cell or a solid angle) at different times will also randomly change.

To emphasize the randomness in the picture of moving molecules, the
term "chaotic" is applied: chaotic collisions between molecules,
chaotically directed molecule velocities, or generally, the chaotic thermal

1
9 /

ocv 2
/

This formula expresses the distribution of molecules in an ideal gas by
the absolute value of their velocities, i.e. the Maxwellian distribution.
The probability density 9 (v) = ~wv/~v is shown in Fig. 4.9. It vanishes
both when v tends to zero and when it tends to infinity. The "volume"
of the spherical layer shown in Fig. 4.8b vanishes when v tends to zero
and the factor e - 'Xv
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in the distribution law vanishes when v tends to
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could record the position and velocity of every molecule in a volume of
gas at some moment in time. Imagine now that we divide the volume
into numerous identical cells, and look at our instantaneous "pho­
tograph" from cell to cell. It will turn out that the number of molecules
varies from cell to cell in a random fashion. Let us only pay attention to
those molecules whose velocities are within the range from v to v + ~v.

The number of such molecules varies randomly from cell to cell. Let us
divide the solid angle for all space at a point, i. e. 41t steradians, into
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movement of molecules. However, there is some order in this "chaos" or,
in other words, necessity or what we have repeatedly called statistical
stability.

The statistical stability shows itself in the existence of definite
probabilities: the probability of a molecule being in a volume ~V (the
probability is ~V/ V), the probability of a molecule moving within
a solid angle ~Q (the probability is ~Q/41t), and the probability of
a molecule having an absolute value of velocity from v to v + ~v (the
probability is defined by (4.19».

The number of molecules per unit volume each possessing an absolute
value of velocity from v to v + ~v is, to a great degree of accuracy,

N N ( ex )312 2
~n = - ~wv = 41t - - e - exv v2 ~v. (4.20)

v v It

Collisions between molecules push some molecules out of this range
of velocity values; however, other collisions bring new molecules into it.
So order is maintained: the number of molecules in a given interval of
velocity values remains practically constant and is defined by (4.20). Let
me emphasize that chance and necessity, as always, are dialectically
united here. Collisions among a great number of molecules give the
picture of the moving molecules its randomness. But at the same time
the collisions maintain the thermodynamic equilibrium in the gas, which
is characterized by definite probabilities, and in turn reveals 'statistical
stability.

Pressure and Temperature of an Ideal Gas

Pressure as the result of molecular bombardment. The walls of a vessel
containing a gas are continuously struck by gas molecules. This
molecular bombardment results in the pressure exerted by a gas on
a wall. Let us take an x-axis at right angles to the wall. It is clear from
Fig. 4.10a that the x-component of a molecule's momentum in an elastic
collision with the wall changes by 2rnovx' where rno is the mass of the
molecule. This means that when it strikes the wall, the molecule gives it
an impulse of 2rnovx ' Let us first look at those gas molecules whose
x-components of velocity lie between Vx and Vx + ~vx (note that Vx > 0,
otherwise the molecule will be moving from the wall rather than
towards it); the other components of the molecule's velocity are not
imnortant. The n)JTT)her of c.olliSl·ons .betw...eYtl the molecules in guestioQ
a soud angle ~u (the probability IS ~U/41t), and the proba I11ty ot
a molecule having an absolute value of velocity from v to v + ~v (the
probability is defined by (4.19».

The number of molecules per unit volume each possessing an absolute
value of velocity from v to v + ~v is, to a great degree of accuracy,

N N ( ex )312 2
~n = - ~wv = 41t - - e - exv v2 ~v. (4.20)

v v It

Collisions between molecules push some molecules out of this range
of velocity values; however, other collisions bring new molecules into it.
So order is maintained: the number of molecules in a given interval of
velocity values remains practically constant and is defined by (4.20). Let
me emphasize that chance and necessity, as always, are dialectically
united here. Collisions among a great number of molecules give the
picture of the moving molecules its randomness. But at the same time
the collisions maintain_th.e ther~o~y-~~mic eq.ui.librium in th~ g;as, ~~ic~
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(4.21)

(4.22)

The wall receives an impulse of 2moV;x at each collision. The force
acting on an area s of the wall per unit time is the impulse transferred
to the area. Dividing the force by the area s, we can find the pressure
exerted by the gas on the wall caused by the molecules whose x-velocity
components take values from v" to v" + dV"

A 2 A D 1 2 N Vex - av' 2 Aup = mov"un - = mo - - e ·v"uv".
S V It

The only thing left is to sum up, or, more accurately, to integrate (4.21)
over all non-negative values of velocity V,,:

P = 2m !!...- Vex "'fe - av; v2 dvo V It x ".

o

The following is a standard identity:

fe - av; v~ do; = ~ V; .
o

Therefore,

a b

I A "\"l\

Figure 4.10

The wall receives an impulse of 2moV;x at each collision. The force
acting on an area s of the wall per unit time is the impulse transferred
to the area. Dividing the force by the area s, we can find the pressure
exerted by the gas on the wall caused by the molecules whose x-velocity
components take values from v" to v" + dV"

._1 1\11(::: 2 ~.
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pV= NkT (4.24)

Now we obtain from (4.23) and (4.24)

IX = mo/2kT. (4.25)

Consequently, (4.19).becomes
rnov2

L\wv = g(v)L\v = 41tC:orY'2 e - 2kT v2L\v. (4.26)

Temperature as a measure of mean molecular energy. The mean value
of the squared velocity of molecules in an ideal gas can be found using
(1.17) and (4.26):

co 00 mov l

E(v 2) = fV 2g (v)dv = 41tC:korY'z fe - 2kT v4dv.

° °
Another standard integral IS

co

f -(1V
Z

4 d 3 .toe v v=- -8 (15'

°

(4.27)

whence we obtain from (4.27):

E (v2) = _3 = 3kr. (4.28)
2(1 mo

If we apply the model of an ideal gas, we can neglect the energy of the
collisions between the molecules as compared with their kinetic energy,
i.e. we can present the energy of a molecule as e = mov

2/2. From (4.28)
we find the following expression for the mean energy of a molecule in an
ideal gas:

m 3
E(s) = _0 E(v 2) = -kT. (4.29)

2 2
Therefore, we see that the temperature can be considered as a measure of
the mean energy of a molecule.

It follows from (4.29) that the internal energy of an ideal gas in
pnll111hrl11m !lnrl t""nnt!:llnlno M rnnlp{",111p~ ~nrl nn~~p~~ino tprnnpr~tl1rp T i~

Consequently, (4.19).becomes
rnov2

L\wv = g(v)L\v = 41tC:orY'2 e - 2kT v2L\v. (4.26)

Temperature as a measure of mean molecular energy. The mean value
of the squared velocity of molecules in an ideal gas can be found using
(1.17) and (4.26):

co 00 mov l

E(v 2) = fV 2g (v)dv = 41tC:korY'z fe - 2kT v4dv.

° °
Another standard integral IS

co

f -(1V
Z

4 d 3 .toe v v=- -8 (15'

°

(4.27)
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Fluctuations
Fluctuations of microvariables and macrovariables. Let us call the
variables governing a particular molecule microvariables and those
governing a macroscopic body, for instance, a gas as a whole,
macrovariables. The velocity v and energy £ of a molecule, are
microvariables; while the internal energy of a gas U, temperature T, and
pressure pare macrovariables.

Let us imagine that we are following the energy of a molecule in
a gas. The energy varies randomly from collision to collision. Knowing
the function £ (t) for a long enough time interval r, we can find the mean
value of the molecule's energy:

r

£(£) = ~ f £ (t)dt.

o

(4.31)

Recall that we approached the notion of mean energy in another
manner in the section Pressure and Temperature of an Ideal Gas.
Instead of following the energy of a molecule during a time interval, we
recorded the instantaneous energies of all the molecules and divided the
sum by the number of molecules ; this is the idea behind equation (4.27).
It can be said that here we regarded averaging over the collective
(ensemble) of molecules. Now (4.31) corresponds to averaging over time.
Both lead to the same result.

However, let us return to the energy of a molecule in a gas. In the
course of time, the energy £(t) varies randomly, or rather it fluctuates
around a mean value E (e). In order to select a measure for the deviation
of energy from the mean value, we choose the variance
var £ = E(£2 ) - (E(£»2. (4.32)

The variance var e is called the quadratic fluctuation of energy £. Once
we know the distribution of molecules by velocities, we can calculate
£(£2) thus:

co

£(£2)= f(m~2Yg(v)dV.
o

(4.33)

RllcroWit~6):eS"; Wntle~lle"Tflmh1li+~rd:!gY:+O'1 a/~M-Li,' L~hi1f~nlmre'\ Ijnrl.
pressure pare macrovariables.

Let us imagine that we are following the energy of a molecule in
a gas. The energy varies randomly from collision to collision. Knowing
the function £(t) for a long enough time interval r, we can find the mean
value of the molecule's energy :

,

£(£) = ~ f £ (t)dt.

o

(4.31)

Recall that we approached the notion of mean energy in another
manner in the section Pressure and Temperature of an Ideal Gas.
Instead of following the energy of a molecule during a time interval, we
recorded the instantaneous energies of all the molecules and divided the
sum by the number of molecules; this is the idea behind equation (4.27).
It can be said that here we. regarded aver,aging over the collective
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(4.36)

The ratio of the square root of the quadratic fluctuation to the mean
value of a variable is called its relative fluctuation. The relative fluc­
tuation of the energy is approximately unity:

~ - v'vare - V2
-E(Ej- r

The amplitude of a microvariable's fluctuation proves to be of the' same
order as its mean value.

Now let us consider the fluctuation of a macrovariable, for instance,
the internal energy of the gas consisting of N monoatomic molecules.
Suppose U (t) is the instantaneous value of the gas internal energy at
time t:

N

U(t) = L E;(t).
i= 1

(4.37)

The values of U (r) fluctuate around mean value E (U). The fluctuations
of the gas internal energy can be related to the chaotic elementary
exchanges of energy between the gas molecules and the vessel wall. Since
the mean of a sum is the sum of the means, we have

N

E(U) = L E(E) = NE(E).
;=1

(4.38)

We have made use of the fact that the mean energy is the same for any
molecule.

Let us first write the variance var U in the form
var U = E(U 2) - (E(U»2 = E((U (t) - E(U»2.

We shall use oU to denote the ditTerence U (t) - E (U)

var U = E(OU)2. (4.39)

Using (4.37) and (4.38), we can find:
N N N

oU= U(t)-E(U)= ~>i(t)-NE(E)= L(Ei(t)-E(E»= LOE;.
i= 1 i= 1 i~ 1

Therefore,

var U = E(t OE;Y. (4.40)
The amplitude of a microvariable's tluctuation proves to be of the same
order as its mean value.

Now let us consider the fluctuation of a macrovariable, for instance,
the internal energy of the gas consisting of N monoatomic molecules.
Suppose U (t) is the instantaneous value of the gas internal energy at
time t:

N

U(t) = L E;(t).
i= 1

(4.37)

The values of U (r) fluctuate around mean value E (U). The fluctuations
of the gas internal energy can be related to the chaotic elementary
exchanges of energy between the gas molecules and the vessel wall. Since
the mean of a sum is the sum of the means, we have

N

E(U) = L E(E) = NE(E).
;=1

(4.38)

, .. r : L ~_..J_ _ ~ _ ",,-L 1"_
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(4.43)

(4.43)

too because a variable is equally likely to deviate from its mean on
either side. Thus,
varU=NE(oE)2=NvarE. (4.41)

Using (4.35) we can obtain the following expression for the quadratic
fluctuation of the gas internal energy:

3
var U = - N (kTf . (4.42)

2

The relative fluctuation of the internal energy is

~=V~=V: 'V~ '
We can see, therefore, that the relative fluctuation of the internal energy
of a gas of N molecules is proportional to' 1;VN, i. e. it is very small
(recall that a cubic centimetre of a gas contains about 101 9 molecules at
normal pressure). In fact, ~ o; 1/~ for all macrovariables, which allows us
to neglect their fluctuations for all practical purposes, and to regard the
mean values of macrovariables as the true values. The fluctuations of the
microvariable E and macrovariable U are compared in Fig. 4.1 1.

Thus, the total internal energy U is not a fixed value for an equilib­
rium state of a macroscopic body. It varies slightly in time, going
through small fluctuations around its mean value . Temperature,
pressure, and entropy fluctuate around their mean values too.

Brownian movement. Having seen (4.43), a reader may conclude that
under ordinary conditions, i. e. when we deal with macroscopic bodies
and the macrovariables characterizing them, fluctuations do not show
themselves. However, we can actually observe fluctuations by eye.
Consider the Brownian movement as an example.

In 1827, the English biologist Robert Brown (1773-1858) used
a microscope to study small particles (plant pollen) suspended in water.
He discovered that they were in constant chaotic motion. He was sure
that this movement was due to the particles themselves rather than
a result of flows in the liquid or its evaporation.

A correct explanation of Brownian movement was given in 1905 by
Albert Einstein (1879-1955). He showed that the cause of the Brownian
movement is the chaotic bombardment of the small suspended particles
var U = -N(kTY. (4.42)

2

The relative fluctuation of the internal energy is

~= V~ = V: 'V~ ·
We can see, therefore, that the relative fluctuation of the internal energy
of a gas of N molecules is proportional to' 1;VN , i. e. it is very small
(recall that a cubic centimetre of a gas contains about 101 9 molecules at
normal pressure). In fact, ~ o; 1/~ for all macrovariables, which allows us
to neglect their fluctuations for all practical purposes, and to regard the
mean values of macrovariables as the true values. The fluctuations of the
microvariable E and macrovariable U are compared in Fig. 4.1 1.

Thus, the total internal energy U is not a fixed value for an equilib-
r . t 1 T ~ • _ 1 ~ _ ·,- ...1 __ • ",' _ _ ~ _
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Einstein considered a concrete physical model with a ball as
II Brownian particle. He showed that the mean square of the
displacement of such a particle during an observational period r is
defined by the following formula

. t
, ,; (/2) = -kT, (4.44)

81tflr

where r is the ball's radius, TJ is the viscosity coefficient of the liquid ,
IIl1d T is its temperature.

Why the sky is blue. The colour of the sky is due to the diffusion of
sunlight through the Earth's atmosphere. Let us imagine the atmosphere
10 be separated into a great number of small cubic cells each with an
edge a wavelength of light long (about 0.5 x 10- 4 ern). The chaotic
motion of the air molecules results in that the number of molecules
within the cell varies randomly from cell to cell. It will also vary
rundomly within a cell if we observe it at different instants in time. Sun­
light diffuses through these fluctuations of air density.

The intensity AI of light diffused through a volume of air L\ V at
distance R from the observer is defined by the relationship

AV I
t\I = a-·-kT (4.45)

R 2 ),,4 '

where ').. is the light wavelength, T is the air temperature, and a is
II factor we shall not deal with here. It is clear from (4.45) that the
shorter the wavelength the more light diffuses (AI oc 1/')..4). Therefore, the
spectrum of the light which diffuses through the Earth's atmosphere
proves to have a peak at the shortwave end, which explains why the sky
IS blue.

The Nyquist formula. It follows from Ohm's law that if there is no
electromotive force in an electric circuit, there is no current in it.
Ilowever, this is not qu ite true. The point is that fluctuations related to
the thermal movement of electrons in a conductor result in fluctuating
currents, and hence a fluctuating electromotive force. In 1927, the
American physicist and engineer Harry Nyquist (1889-1976) showed that
if there is a conductor with resistance R and temperature T, a voltage
fluctuation 0V appears at the ends of the resistor, the mean square of the
fluctuation being
E(OV)2 = 4RkTL\v, (4.46)

where r is the ball's radius, TJ is the viscosity coefficient of the liquid,
und T is its temperature.

Why the sky is blue. The colour of the sky is due to the diffusion of
Nunlight through the Earth's atmosphere. Let us imagine the atmosphere
to be separated into a great number of small cubic cells each with an
edge a wavelength of light long (about 0.5 x 10- 4 ern), The chaotic
motion of the air molecules results in that the number of molecules
within the cell varies randomly from cell to cell. It will also vary
rundomly within a cell if we observe it at different instants in time. Sun­
light diffuses through these fluctuations of air density.

The intensity AI of light diffused through a volume of air L\ V at
distance R from the observer is defined by the relationship

AV I
t\I=a-·-kT

R 2 ),,4 '
(4.45)
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tuation, the fluctuation in a number of electrons leaving the heated
cathode of an electron tube.

Fluctuations and temperature. I would like to draw the reader's
attention to expressions (4.35) and (4.42). It is clear that a quadratic fluc­
tuation is related to the absolute temperature: l/var o: T. The same result
can be derived from formulas (4.44)-(4.46). The relation between the
quadratic fluctuation of a physical variable and temperature has a deep
meaning. The greater the temperature of a body the more a physical
parameter will fluctuate.

We noted above that the temperature of a body can be regarded as
a measure of the average energy of the body's particles. Recall that this
is only valid if the body is in thermal equilibrium. If an ensemble of
particles is very far from equilibrium (suppose we are discussing
a cosmic shower or the beam of particles from an accelerator), then the
average energy of the particles cannot be measured by temperature.
A more general approach to the notion of a body's temperature is its
relation with the fluctuations of its physical parameters rather than the
average energy of its particles. Temperature can be regarded as
a measure of fluctuation. By measuring the fluctuations, we can measure
the absolute temperature of the body in principle. The fluctuations in
the electrical variables suit this purpose best.

The relationship between temperature and fluctuations indicates, in
particular, that the notion of temperature, strictly speaking, has no
analogue in Newtonian mechanics. Temperature involves probabilistic
processes and is a measure of the variance of random variables.

Entropy and Probability
From the formula of the work done by a gas during an isothermal
expansion to Boltzmann's formula. Suppose an ideal gas with mass
m and temperature T expands isothermally from volume Vt to volume
V2 . According to (4.6), the work performed by the gas during the
expansion is (mRT/ M) In (V2 / Vd. During an isothermal expansion, the
work is done due to a quantity of heat Q drawn by the gas from the
environment. Therefore,

Q= mRT In ~. (4.47)
M v,

quadratic fluctuation of a physical variable' and temperature has a deep
meaning. The greater the temperature of a body the more a physical
parameter will fluctuate.

We noted above that the temperature of a body can be regarded as
a measure of the average energy of the body's particles. Recall that this
is only valid if the body is in thermal equilibrium. If an ensemble of
particles is very far from equilibrium (suppose we are discussing
a cosmic shower or the beam of particles from an accelerator), then the
average energy of the particles cannot be measured by temperature.
A more general approach to the notion of a body's temperature is its
relation with the fluctuations of its physical parameters rather than the
average energy of its particles. Temperature can be regarded as
a measure of fluctuation. By measuring the fluctuations, we can measure
the absolute temperature of the body in principle. The fluctuations in
the electrical variables suit this purpose best.

The relationship between temperature and fluctuations indicates, in
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(4.49)/\S = Nkln~.
VI

The isothermal expansion of a gas is a reversible process. The increase
of entropy in a reversible process should not surprise the reader: we
consider the entropy of a gas, and the gas here is an open system (it
performs work on a piston or draws heat from an external body). The
NlImc increase in entropy is observed in an irreversible process of gas
expansion from VI to Vz when the gas is a closed system. This
irreversible process can be carried out as follows. Suppose that
II thermally insulated vessel of volume Vo has a partition, and first all
the gas is on one side of the partition and occupies volume VI' Then the
partition is removed and the gas expands into vacuum. The expansion is
considered to start when the partition is removed and to end when the
6lllS occupies volume Vz. The increment in the gas's entropy during this
process is also defined by formula (4.49).

Using the example of gas expansion into a vacuum, we can explain
the increase in entropy on the basis of probabilities. The probability that
II gas molecule occurs in volume VI is evidently equal to VI / Vo' The
probability that another molecule will occur in volume VI simultane­
ously with the first one is (VI / VO)2. The probability that all N molecules
will gather in volume VI is (Vt! Vo)N. Let us lise WI to denote the
probability that all molecules are in volume VI and W z to denote the
probability that all molecules will occur in volume V2• The first
probability is (VI!Vo)N while the second one is (V2/Vo)N. Therefore,

We can therefore obtain from (4.49):

AS = Nkln.!2.- = kln(~)N = kln~.
VI VI WI

(4.50)

(4.51)

Thus, using rather simple reasoning, we have arrived at an essential
result, namely Boltzmann's formula.

Boltzmann's formula. In 1872, Ludwig Boltzmann (1844-1906) pub­
lished a formula in which the entropy of a system in a certain state is
If\or--'T\..Tl.""ttitS~ ... at,-, ..t1-..c- t'~,;) ..""",-,""n~~.I-- ...u.-J"t,J-n"",m--.l""'"V:I.J.li'-lJ..Il ""'7L-{"",~1It;:J,.& cA.rO.}JO "'t'''cJ'C.,

NlImc increase in entropy is observed in an irreversible process of gas
expansion from VI to Vz when the gas is a closed system. This
irreversible process can be carried out as follows. Suppose that
II thermally insulated vessel of volume Vo has a partition, and first all
the gas is on one side of the partition and occupies volume VI' Then the
partition is removed and the gas expands into vacuum. The expansion is
considered to start when the partition is removed and to end when the
6lllS occupies volume V2• The increment in the gas's entropy during this
process is also defined by formula (4.49).

Using the example of gas expansion into a vacuum, we can explain
the increase in entropy on the basis of probabilities. The probability that
II gas molecule occurs in volume VI is evidently equal to VI / Vo' The
probability that another molecule will occur in volume VI simultane­
ously with the first one is (VI / VO)2. The probability that all N molecules
will gather in volume VI is (Vt! Vo)N. Let us lise WI to denote the
_ ,.1....".." ......~1~+,., +1-.. ."... ..,,11 ...-_l.a"nl.o.~ ,... ....0. ~_ ... . _l ... ---. .:::lIt. II ..... _ ....1 u. +_ ,.I.a__+.:lIt. +l.. .a



1]4 Part Two. Fundamentality of the Probability Laws

1 with entropy SI and probability WI and the other is in state 2 with
entropy Sz and probability Wz. Let Sand W be the entropy and the
probability of the entire system's state, respectively. Entropy is additive,
and therefore

S=SI +Sz. (4.53a)

This state is realized when the first subsystem is in state 1 and the
second subsystem is in state 2 at the same time. According to the
theorem of probability multiplication,

(4.53b)

It is clear that (4.53a) and (4.53b) are in agreement with Boltzmann's
formula:

S=kln(w1wz)=klnw1+klnwz=SI +Sz·

Macrostates and microstates. Now what is the "probability of the
system's state"? Consider a simple system consisting of four particles,
each of which may be in either of two states with equal probability. We
can imagine a vessel divided into two equal parts (left and right) and
only four molecules inside the vessel. Each of the molecules may be
found in the left or right half with equal probability. This system has
five possible macrostates : 1, there are no molecules in the left half; 2,
there is one molecule in the left half; 3, there are two molecules in the
left half; 4, there are three molecules in the left half; and 5, there are
four molecules in the left half. These macrostates may be realized by
different numbers of equally probable ways, or, in other words, different
macrostates correspond to different numbers of microstates. This is clear
from Fig. 4.12, where different colours are used to mark the different
molecules. We can see that macrostates 1 and 5 may only occur in one
way each. Each therefore corresponds to one microstate. Macrostates
2 and 4 correspond to four microstates. Macrostate 3 corresponds to six
equally probable microstates. There can be 16 equally probable
microstates in all. The probability of a macrostate is proportional to the
number of corresponding microstates, and this is the probability involved
in Boltzmann's formula. The number of microstates corresponding to
a given macrostate is called its statistical weight.

Suppose that there are N molecules rather than four in the vessel
divided into two equal halves. Now there are N + 1 macrostates, which
rms 'StatelS reauzeo whentne ilrs'tUsuDsystem is 10 state 1. ana the
second subsystem is in state 2 at the same time. According to the
theorem of probability multiplication,

(4.53b)

It is clear that (4.53a) and (4.53b) are in agreement with Boltzmann's
formula:

S=kln(w1wz)=klnw1+klnwz=SI +Sz·

Macrostates and microstates. Now what is the "probability of the
system's state"? Consider a simple system consisting of four particles,
each of which may be in either of two states with equal probability. We
can imagine a vessel divided into two equal parts (left and right) and
only four molecules inside the vessel. Each of the molecules may be
found in the left or right half with equal probability. This system has
five possible macrostates : 1, there are no molecules in the left half; 2,
th.. r .. i" nn.. rnnl ....... I.. in th .. I.. ft h",lf· ~ th.. r .. o r-.. tUJn rnnl ....... I.. c in th".
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The total number of microstates is defined by the sum o~o (~). The

probability of the nth macros tate is

(4.55)w. = (N)~/f (N).
n V0=0 n

An example using Boltzmann's formula. Suppose a gas consisting of
N molecules expands into vacuum. Its volume doubles. Find the
increase in the gas's entropy.

The initial state of the gas is the macrostate with n = 0 (all molecules
nrc in the right half of the vessel), and the final state is the macrostate
with n = N /2 (the molecules are uniformly distributed between both
halves of the vessel, which means the volume of the gas has doubled).
Here we assume that N is an even number (this reservation is not
essential for large N). In agreement with (4.54) and (4.55), we can write:

W:~2_ = (~2)/(~) = (~2) = (N/2)~(~/2)! • (4.56)

According to Boltzmann's formula, the increase in the gas's entropy is

(4.59)

(4.58)

(4.57)

use the approximation

N!AS = kin WN/2 = kin ----
Wo (N/2) !(N/2)!

Since N is a very large number, we can
In (N !) = N In N,

hence (4.57) takes the form

tiS = kN In 2.

The same result follows from (4.49) if we assume V2 / VI = 2.
Entropy as a measure of disorder in a system. Let us return to

Fig. 4.12. Macrostates 1 and 5 clearly show the structure of the system,
its separation into two halves. There are molecules in one half and no
molecules in the other. On the contrary, macrostate 3 does not have this
structure at all because the molecules are evenly distributed in both
halves. The presence of a definite structure is related to the order in
a system while the absence of structure is related to disorder. The greater
the degree of order in a macrostate, the smaller its statistical weight (i.e.

p n \ n )/ .'='0 \ n )

An example using Boltzmann's formula. Suppose a gas consisting of
N molecules expands into vacuum. Its volume doubles. Find the
increase in the gas's entropy.

The initial state of the gas is the macrostate with n = 0 (all molecules
nrc in the right half of the vessel), and the final state is the macrostate
with n = N /2 (the molecules are uniformly distributed between both
halves of the vessel, which means the volume of the gas has doubled).
Here we assume that N is an even number (this reservation is not
essential for large N). In agreement with (4.54) and (4.55), we can write:

W:~2_ = (~2)/(~) = (~2) = (N/2)~(~/2)! • (4.56)

According to Boltzmann's formula, the increase in the gas's entropy is

N!
(4.57)
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Figure 4.12

during irreversible processes in a closed system as postulated by the
second law of thermodynamics. The increase in entropy means the
transition of the system from a less probable state to a more probable
one. The example of gas expanding into vacuum illustrates this. While
the gas expands, the system moves from a less probable to a more
probable macros tate.
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II less probable to a more probable state corresponds to an
order-disorder transition. For instance, when a hammer strikes an anvil,
Ihe ordered component of the hammer's molecular movement related to
liN overall downward movement is transformed into the disordered
Ihermal molecular movement of the anvil and the hammer.

The quantity of energy in a closed system does not vary in time.
However, the quality of the energy varies. In particular, its capacity to
perform usable work decreases. The increase of entropy in a closed
system is, in its essence, a gradual destruction of the system. Any closed
system is unavoidably disordered and degraded as time passes. The
Isolation of a system subjects it to the power of destructive chance,
which always sends the system into disorder. As the French scientist
Leon Brillouin once said, "the second law of thermodynamics means
death due to isolation".

Maintaining or, moreover, increasing the order in a system requires
Ihat the system be controlled, for which it is necessary, first of all, that
the system should not be isolated or closed. Naturally, when the system
loses its "protecting envelope", it is open to external disorganizing factors.
However, it also becomes available to control factors. The action of the
latter can decrease the system's entropy. Of course, this does not
contradict the second law of thermodynamics: the decrease of entropy is
local in nature, only the entropy of the given system decreases. This
decrease is more than compensated by an increase in the entropy in
other systems, in particular, those that control the given system.

Fluctuations and the second law of thermodynamics. The probabilistic
upproach both explained the second law of thermodynamics and showed
Ihat the demands of this law are not absolute. The direction in which
It process must proceed is dictated by the second law, but it is not
strictly predetermined. It is only the most probable direction. In
principle, violations of the second law of thermodynamics are possible.
However, we do not observe them because their probability is low.

A gas expands into vacuum spontaneously. This is the most probable
direction of the process. However, there is another possible situation,
viz. the velocities of the molecules in the gas suddenly point in
directions such that the gas spontaneously compresses. This situation
has an exceptionally low probability because of the enormous number of
molecules in any macrovolume of gas. The spontaneous compression of
the gas should be regarded as a fluctuation of its density. If the number
Ilowever, the quatity ot the energy vanes. In particular, Its capacity to
perform usable work decreases. The increase of entropy in a closed
system is, in its essence, a gradual destruction of the system. Any closed
system is unavoidably disordered and degraded as time passes. The
Isolation of a system subjects it to the power of destructive chance,
which always sends the system into disorder. As the French scientist
Leon Brillouin once said, "the second law of thermodynamics means
death due to isolation".

Maintaining or, moreover, increasing the order in a system requires
Ihat the system be controlled, for which it is necessary, first of all, that
the system should not be isolated or closed. Naturally, when the system
loses its "protecting envelope", it is open to external disorganizing factors.
However, it also becomes available to control factors. The action of the
latter can decrease the system's entropy. Of course, this does not
contradict the second law of thermodynamics: the decrease of entropy is
local in nature, only the entropy of the given system decreases. This

1 ~ ""-1 L_--' 1__' • LI ~.L ~_
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whose linear dimensions are comparable to the light wavelengths. These
fluctuations appear as spontaneous compressions and rarefactions in the
air, bringing about the blue colour of the sky.

It is most probable for a Brownian particle to collide with the same
number of liquid molecules on both sides per unit time. However,
because of the small dimensions of the Brownian particle, fluctuations of
pressure due to unbalanced number of collisions from different
directions are quite probable such that the particle will randomly move.
A moving Brownian particle demonstrates the spontaneous
transformation of heat taken from a liquid into the kinetic energy of the
particle's motion.

Therefore, we see that the probabilistic explanations of entropy and
the second law of thermodynamics help comprehend more deeply the
nature of processes in macrosystems. The probabilistic approach
explains the puzzles thermodynamics could not solve and, moreover,
indicates that the second law of thermodynamics itself has the
probabilistic nature because it is only valid on the average, and various
fluctuations violate this law of thermodynamics. We come to an
essential conclusion: probabilistic laws rather than strictly deterministic
ones underlie the second law of thermodynamics.

Entropy and Information

The relation between entropy and information. It was shown in Chapter
3 that the notion of information is underlain by probability. Now we
have seen that probability is the basis of entropy. The unity of the
nature of information and entropy proves to be essential. An increase in
the entropy of a system corresponds to its transition from a less ordered
state to a more ordered one. This transition is accompanied by
a decrease in the information contained in the structure of the system.
Disorder and uncertainty can be regarded as a lack of information. In
turn, information is nothing else but a decrease in uncertainty.

According to the second law of thermodynamics, the entropy of
a closed system increases in time. This process corresponds to the loss of
information due to random factors, as was considered in Chapter 3.
Fluctuations in physical parameters cause random violations of the
second law of thermodynamics. Random decreases of entropy are
pressure due to unbalanced number of collisions from different
directions are quite probable such that the particle will randomly move.
A moving Brownian particle demonstrates the spontaneous
transformation of heat taken from a liquid into the kinetic energy of the
particle's motion.

Therefore, we see that the probabilistic explanations of entropy and
the second law of thermodynamics help comprehend more deeply the
nature of processes in macrosystems. The probabilistic approach
explains the puzzles thermodynamics could not solve and, moreover,
indicates that the second law of thermodynamics itself has the
probabilistic nature because it is only valid on the average, and various
fluctuations violate this law of thermodynamics. We come to an
essential conclusion: probabilistic laws rather than strictly deterministic
ones underlie the second law of thermodynamics.
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(4.60)

(4.60)

Thus, entropy is a measure of disorder and uncertainty in a system,
and information is a measure of order and structural certainty. An
increase in information corresponds to a decrease in entropy and, vice
versa, a decrease in information corresponds to an increase in entropy.

Boltzmann's formula and Hartley's formula. We came across Hartley's
formula in Chapter 3 (see (3.1)). According to this formula, the
information required to indicate which of N 1 equally probable outcomes
is wanted is 1= IOg2Nl' Suppose N 1 is the number of railroad tracks at
a station. The signalman has to send a signal indicating the track along
which the train is to approach the station. Sending the signal, the signal­
man selects front N 1 equally probable outcomes. This signal contains
/1 = log, N 1 bits of information. Now suppose that some of the
tracks must be repaired, so that the signalman must select from N 2 out­
comes (N 2 < N 1)' Now his signal contains information 12 = log, N 2'

The difference

I
Nl

M = 11 - 12 = og2­
Nz

is information about the repair of the tracks. In other words, this is the
information required to decrease the number of equally probable
outcomes from N 1 to N 2'

Let us compare the existence of N equally probable outcomes with
the presence of N equally probable microstates, i.e. with the statistical
weight N of a certain macrostate. According to Boltzmann's for­
mula, a decrease in the statistical weight of a macrostate from N 1 to N 2

means that the system's entropy is incremented by

~s = - k ln~. (4.61)
Nz

I used a minus sign here because the entropy decreases (the increment is
negative) as the statistical weight decreases. In compliance with (4.60), to
realize this negative entropy requires an increment in the information of
M = log, (N 1/ N 2)' Comparing (4.60) with (4.61) and given that

log, (N tiN2) = In(N liN z)
In2

we obtain
mformation required to indicate which or N 1 equally probable outcomes
is wanted is 1= log2Nl' Suppose N 1 is the number of railroad tracks at
a station. The signalman has to send a signal indicating the track along
which the train is to approach the station. Sending the signal, the signal­
man selects front N 1 equally probable outcomes. This signal contains
/1 = log, N 1 bits of information. Now suppose that some of the
tracks must be repaired, so that the signalman must select from N 2 out­
comes (N 2 < N 1)' Now his signal contains information 12 = log, N 2'

The difference

I
Nl

M = 11 - 12 = og2­
Nz

is information about the repair of the tracks. In other words, this is the
information required to decrease the number of equally probable
outcomes from N 1 to N 2'

Let us comp..a~~ the ~~isten~e .o.f N .equally pr?babl~. ou.tcomes. ~it~
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Maxwell's demon and its exorcism. In 1871, Maxwell formulated the
following paradox. Suppose a vessel with a gas is separated into two
halves (A and B) by a partition with a trapdoor over a microscopic hole
in it. And suppose, Maxwell continued, a "being" (Maxwell called it
a "demon") controls the trapdoor causing it to close and open the hole
so as to let the fastest molecules from the A half .of the vessel enter the
B half and to let the slowest molecules from the B half into the A half.
Thus, the demon would increase the temperature in the B half and
decrease it in the A half without doing any work, which evidently
contradicts the second law of thermodynamics.

When looking at the illustration of Maxwell's demon (Fig. 4.13), the
reader clearly should not think of an evil force. The point of contention
is a device that opens and closes a hole in the way the demon described
above would act.

Three types of device could be suggested in principle. The first type
would be a device controlled by the gas molecules present in the vessel.
Imagine there is a one-way trapdoor which responds to the energy of
the molecules striking it: fast molecules open the door and slow ones do
not. So that it open when struck by an individual molecule, the door
would have to be exceedingly light. However, such a door, if it could be
produced, would be unable to carry out the functions of the demon. The
door would in fact be affected both by the fluctuations due to the
motion of the gas molecules and by the fluctuations related to the
thermal motion of the molecules of the material making up the door.
The door would. therefore operate chaotic:.all~ and would not sort
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This is essential because it is a decrease in the entropy of a closed
system that violates the second law of thermodynamics. But our system
is open, the "demon" obtaining information from the outside. The
reception of information must be regarded as an inflow of negative
entropy (negentropy) into the system, which is equivalent to a decrease
in the system's entropy.

There is one more type of the demon, an intelligent demon. However,
such a demon would not be what we are looking for because, as
Einstein said, an intelligent mechanism cannot act in an equilibrium
medium. In other words, life and intelligence are impossible in a closed
system, that is in a state of equilibrium.

Entropy and life. A living organism is a very ordered system with low
entropy. The existence of living organisms suggests a continuous
maintenance of the system's entropy at a low level, a continuous
reaction to disordering factors, and, in particular, the factors causing
diseases. It may seem that an organism does not obey the demands of
the second law of thermodynamics.

Naturally, this is not so. We should take into account that any
organism is an open system in an essentially nonequilibrium state. This
system actively interacts with its environment, continuously drawing
negentropy from it. For instance, it is well-known that food has lower
entropy than waste.

Man does not just live. He works, creates, and therefore, actively
decreases entropy. All this is only possible because man obtains
negentropy (information) from the environment. It is supplied to him via
two different channels. The first one is related to the process of learning.
The second channel is related to physiological processes of metabolism
occurring in the "man-environment" system.
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Chapter 5
Probability in

the Microtosm
To date quantum theory led us to a deeper
comprehension: it established a closer relation between
statistics and the fundamentals of physics. This is an
event in the history of human thought, whose sig­
nificance is beyond science itself.

M. Born

... Quantum mechanics allowed us to postulate the
existence of primary probabilities in the laws of nature.

W. Pauli

Spontaneous Microprocesses

Classical physics proceeded from that randomness only reveals itself in
large collections, for instance, in ensembles of molecules, in appreciable
volumes of gas. However, classical physics did not see randomness in
the behaviour of individual molecules. The investigations resulting in the
appearance and development of quantum physics showed that this
viewpoint was invalid. It turned out that randomness is seen both in
ensembles of molecules and in the behaviour of individual molecules.
This is demonstrated by spontaneous microprocesses.

Neutron decay. A typical example of a spontaneous microprocess is
the decay of a free neutron. Usually, neutrons are in a bound state.
Together with protons, they are the "bricks" from which atomic nuclei
are built. However, neutrons can also be observed outside nuclei, in the
free state. For instance, free neutrons appear when uranium nuclei split.

Probability in
the Microtosm

To date quantum theory led us to a deeper
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statistics and the fundamentals of physics. This is an
event in the history of human thought, whose sig­
nificance is beyond science itself.

M. Born

... Quantum mechanics allowed us to postulate the
existence of primary probabilities in the laws of nature.

W. Pauli
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antineutrino. Note that the term "decay" is not entirely suitable here
because it conveys the idea that a neutron consists of a proton, electron,
and antineutrino. In reality, all three particles are born at the moment
the neutron annihilates, and it is no use looking for them "inside" the
neutron.

The very fact of spontaneous neutron decay is random, but there is
also a dialectic necessity here as well. In order to reveal it, we should
consider a large number of neutrons. Suppose there are No neutrons in
a volume at moment t = 0, where No» 1. Let us measure the number of
neutrons in the volume at different moments t, the result being
a function N (t) whose plot has a certain shape (Fig. 5.1). The resultant
function is
N(t)=Noe- ar

, (5.1)

where a is a constant and is commonly given as l/t, measurements
show that r = 103 seconds.

The value r is called the neutron's lifetime. It is called this
conventionally not because it is the true lifetime of a neutron, but
because it is the time needed for the number of intact (undecayed)
neutrons to decrease e times. Whence from (5.1) we have N(t)/No =
e -'I' = l/e. The true lifetime of a neutron may vary considerably from
r in both directions. It is in principle impossible to predict when
a neutron will decay. We can only consider the probability that
a neutron will live a while until it decays. When the number of neutrons
is large, the ratio N(t)/No is the probability that a neutron will survivefor atUneLP:~~_~r;:;: this Probabi~ty is e-'/'

Figure 5.1

antineutrino. Note that the term "decay" is not entirely suitable here
because it conveys the idea that a neutron consists of a proton, electron,
and antineutrino. In reality, all three particles are born at the moment
the neutron annihilates, and it is no use looking for them "inside" the
neutron.

The very fact of spontaneous neutron decay is random, but there is
also a dialectic necessity here as well. In order to reveal it, we should
consider a large number of neutrons. Suppose there are No neutrons in
a volume at moment t = 0, where No» 1. Let us measure the number of
neutrons in the volume at different moments t, the result being



144 Part Two. Fundamentality of the Probability Laws

It is interesting that (5.1), which expresses a certain necessity, is
nothing but a direct consequence of the fact that the decays occur
independently and randomly. Since the decay is a random process, the
decrease in the number of neutrons (in other words, the number of
decays) liN during an interval of time from t to t + !:it is proportional to
the number of neutrons N (t) at that instant and the lapse of time !:it, i.e.

!:iN = - aN (t)!:it. Let us rewrite this equality as !:iN = - aN (t). In the
!:it

limit as !:it --+ 0, we obtain a differential equation known as the equation
of exponential decay:

dN
-= - aN(t).
dr

(5.2)

The function (5.1) is the solution of this equation given the initial
condition N (0)= No.

In conclusion, let me remark that if a neutron is not free but is bound
with protons and other neutrons in an atomic nucleus, it loses its ability
to decay. However, it regains this ability in some cases. The
phenomenon of beta decay is then observed (we shall discuss it below).

The instability of elementary particles. The neutron is not at all the
only elementary particle that turns spontaneously into other particles.
Most elementary particles possess this property, which might be called
instability. There are only several particles that are stable: the photon,
the neutrino, the electron, and the proton.

The instabilities of different particles teach us additional things of
randomness. For instance, let us take the particle called the sigma-plus­
hyperon I: + . It has a positive electric charge equal in its absolute value
to the charge of electron, and has a mass 2328 times that of an electron.
Like the neutron, this particle decays spontaneously. Its lifetime (this
term is understood in the same way as it was for a neutron) is 0.8 x
10- 1 0 s. Unlike the neutron, the hyperon may decay in two ways:
either I: + --+ p + nO or I: + --+ n + n +

(nO and n + are neutral and positively charged pions, respectively).
Approximately 50 per cent of the hyperons decay in one way, and the
others decay in the other way. We cannot unambiguously predict either

!:iN = - aN (t)!:it. Let us rewrite this equality as !:iN = - aN (t). In the
!:it

limit as !:it --+ 0, we obtain a differential equation known as the equation
of exponential decay:

dN
-= - aN(t).
dr

(5.2)

The function (5.1) is the solution of this equation given the initial
condition N (0)= No.

In conclusion, let me remark that if a neutron is not free but is bound
with protons and other neutrons in an atomic nucleus, it loses its ability
to decay. However, it regains this ability in some cases. The
phenomenon of beta decay is then observed (we shall discuss it below).

The instability of elementary particles. The neutron is not at all the
?~ly el~mentary parti~l~ that turns. ~pontaneously.i~~o· o!h.er 'parti~~es:
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phenomenon is called radioactivity. It was first discovered by the French
physicist Antoine Henry Becquerel (1852-1908) in 1896. The term
"radioactivity" was introduced by Pierre Curie (1859-1906) and Marie
Sklodowska-Curie (1867-1934) who investigated the phenomenon and
won the Nobel Prize for physics (with A. H. Becquerel) in 1903.

Investigations showed that the lifetime of unstable isotopes is
essentially different for different isotopes and follow different decay
routes (different types of radioactivity). The lifetime of an isotope may
be measured in milliseconds, or it may be years or centuries. There are
isotopes with lifetimes of over 108 years. The study of long-lived
unstable isotopes in nature have allowed scientists to determine the age
of rocks.

Let us discuss different types of radioactivity. Let us use Z to denote
the number of protons in a nucleus (the atomic number of an element)
and use A to denote the sum of the number of protons and neutrons in
the nucleus (the mass number). One type of radioactivity is called alpha
decay. During the process, the initial nucleus (Z, A) decays into an
alpha-particle (a helium nucleus, which consists of two protons and two
neutrons) and a nucleus with two less protons (Z - 2) and a mass
number four units smaller (A - 4):

X(Z, A)-cx(2, 4) + Y(Z - 2, A - 4).

Another type of radioactivity is beta decay. During this process, one of
the neutrons in the initial atomic nucleus turns into a proton, an
electron, and an antineutrino, like a free neutron does. The proton stays
within the new nucleus while the electron and the antineutrino escape.
The scheme of beta decay can be presented as:

X(Z, A)- Y(Z+ 1, A)+e- +Ve.

Proton radioactivity is also possible:

X(Z, A)-p+ Y(Z -1, A-I).

Let me draw your attention to the spontaneous fission of atomic
nuclei. The initial nucleus disintegrates spontaneously into two
"fragments" (two new nuclei), approximately equal in mass, and several
free neutrinos are formed in the process.

A chain of consecutive spontaneous transformations is shown in
~ig. 5.2. The neptunium iso~ope 237~r ~Z = 93, A = 237) finally tUrI?-s
into__the._5tMle~Jsotnot'_ of..hismnrh 1i\d7~:::::..Rl_A_::;::; ?Q9J.uThe chain
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Let us discuss different types of radioactivity. Let us use Z to denote
the number of protons in a nucleus (the atomic number of an element)
and use A to denote the sum of the number of protons and neutrons in
the nucleus (the mass number). One type of radioactivity is called alpha
decay. During the process, the initial nucleus (Z, A) decays into an
alpha-particle (a helium nucleus, which consists of two protons and two
neutrons) and a nucleus with two less protons (Z - 2) and a mass
number four units smaller (A - 4):
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called energy levels. When we excite atoms by irradiating them, they
jump from low energy levels to higher ones. The excited atoms return to
the lower levels by emitting light. These jumps are called quantum
transitions.

A quantum transition may be either induced (stimulated) or
spontaneous. Transitions due to the excitation of an atom are always
induced. The reverse transitions may be both induced and spontaneous.
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Spontaneous light emission

Light absorption

147



148 Part Two. Fundamentality of the Probability Laws

these three processes: (a) the absorption of a photon with energy £12 by
the atom (atom transition E1 --+ E2 ), (b) the spontaneous emission of
a photon with energy £12 by the atom (atom transition E 2 --+ Ed, and
(c) the induced emission of a photon possessing energy £12 by the atom
while it interacts with the stimulating primary photon also possessing
energy £12 (atom transition E 2 --+E 1).

It should be noted that the photon emitted during an induced
transition, as it were, copies every property of the primary photon that
caused the atom transition. For instance, it moves in the same direction
as the primary photon.

How does a laser generate radiation? Many books on science for the
general reader cover lasers and explain the induced emission of photons
as being due to simultaneous emission by a large number of specially
selected atoms or molecules (they are called active centres). The photons
resulting from induced radiation move in the same direction, thus
forming laser radiation (laser is the abbreviation for light amplification
by stimulated emission of radiation).

The explanation of how a laser generates is commonly given as
follows. First, the active centres are excited, for instance, by an intense
/lash of light. It is necessary that the number of active centres in the high­
er energy level should be greater than those in the lower one. Then
photons begin to appear with an energy equal to the difference between
the energies of the higher and lower levels of the active centres, and the
active centres radiate by induced emission more often than the reverse
process (the process of photon absorption) occurs. This is easy to see if
we take into account that each primary photon can cause with equal
probability the transition of an active centre both upwards (the process
of light absorption) and downwards (induced emission). Therefore,
everything depends on whether the number of active centres is greater
in the higher or in the lower level. If there are more centres in the higher
level, more downward transitions will occur i. e. induced emission
prevails. The result is an intense beam of laser photons.

Everything is correct in this explanation. However, most writers
ignore the appearance of the primary photons which induce emission of
the new photons and trigger the process of laser generation. The protons
appear due to the spontaneous transition of active centres from the
higher level to the lower one. Because they are so important for lasers,
we should not forget the primacy (and fundamentality) of the

It should be noted that the photon emitted during an induced
transition, as it were, copies every property of the primary photon that
caused the atom transition. For instance, it moves in the same direction
as the primary photon.

How does a laser generate radiation? Many books on science for the
general reader cover lasers and explain the induced emission of photons
as being due to simultaneous emission by a large number of specially
selected atoms or molecules (they are called active centres). The photons
resulting from induced radiation move in the same direction, thus
forming laser radiation (laser is the abbreviation for light amplification
by stimulated emission of radiation).

The explanation of how a laser generates is commonly given as
follows. First, the active centres are excited, for instance, by an intense
/lash of light. It is necessary that the number of active centres in the high­
er energy level should be greater than those in the lower one. Then
p'hotons t;>egin~ tc? apI?e.ar wit~ ~n ene!gy .equ~l.to the. differe.nce bet~~~n
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passing by a number of excited active centres, will induce an
avalanche of photons in the direction it is moving in. The second
spontaneous photon will cause an avalanche of induced photons in
another direction, and so on. Now how come a laser beam has
a single direction?"

AUTHOR: "You have made an essential point. Suppose AA is the beam
direction (Fig. 5.4). The active medium of a laser is formed into
a cylinder with its long axis in the AA direction. Two mirrors (end
plates) are placed at right angles to AA, one mirror being partially
silvered: it lets the emission out. Some photons will be randomly born
in the AA direction (or close enough to it), and then will pass the
active substance along a relatively long path, which is increased
because it might be reflected many times from the mirrors at both
ends. By interacting with induced active centres, these photons, sooner
or later, will cause a powerful flux of induced photons to appear, and
these form the laser beam. Photons randomly born in other directions
and their associated induced photons will only travel a short distance
along the active substance and will very soon be 'out of play'. This
can be seen clearly in the figure.

"Let me note that the mirrors which set the direction of the laser
beam constitute the resonator of the laser."

READER: "So the laser radiation appears from noise (spontaneous
radiation) owing to the selectivity of amplification, i. e. because the
amplification occurs mainly in a certain direction."

AUTHOR: "Exactly. Once again we encounter the selection of
information from noise. The ordered (coherent) laser radiation is, as it
were, selected from noise by the mirrors (end plates) of the resonator.
The amplification of selection occurs owing to induced emission: when
the secondary photon copies the properties of the primary one."

From Uncertainty Relations to the Wave Function

As we discussed spontaneous microprocesses, we found that the random
in the mi~rocos.m reveals itself even in. the ~ehaviour of an. ind~idual
body. ThIS bnngs us close to a dISCUSSIOn of the primacy and
fundamentality of the notion of probability in quantum mechanics. We
shall start with the uncertainty principle suggested in 1927 by the
German physicist Werner Heisenberg (1901-1976).
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"Let me note that the mirrors which set the direction of the laser
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x-component of its momentum does not. There are an infinite number
of intermediate cases when both the x-coordinate of the body and the
x-component of its momentum are not certain, although they take
values within certain intervals.

Suppose Lix: is the interval within which the x-coordinate values lie;
let us call Lix: the uncertainty of the x-coordinate. Let us consider the
uncertainty of the x-component of the momentum lJ..px in a similar way.
Heisenberg showed that the uncertainties Lix: and lipx are related as:

(5.3)

where Ii = 1.05 x 10- j4 J. s is Planck's constant. Similar relations can be
written down for other components of the coordinates and the
momentum of the microbody: liy lip, ~ Ii and liz Sp, ~ h,

These are Heisenberg's famous uncertainty relations. We shall limit
ourselves to a discussion of the coordinate-momentum uncertainty
relations. However, there are similar relations for some other pairs of
variables, for instance, for energy and time, and angle and the moment of
momentum. Heisenberg wrote that we cannot interpret the processes on
the atomic scale as we might a large-scale process. However, if we use
common notions, their applicability is limited by the uncertainty
relations.

When we discuss the uncertainty relations, we Shall only use (5.3). Do
not, however, think that this relation outlaws accurate measurements of
the momentum or coordinates of a microbody. It only states that
a microbody cannot simultaneously have both accurately defined
coordinates and an accurately defined momentum. For instance, if we
try to measure the x-coordinate of a microbody more accurately (in
other words, to decrease lix), we will cause its momentum's
x-component to become more uncertain. In the limit when the
x-coordinate of the microbody has a certain value (the microbody is
accurately localized), the uncertainty of the x-component of its
momentum becomes very large. And vice versa, establishing the
x-component of the microbody's momentum more accurately
unavoidably causes its x-coordinate to become more uncertain.

Let us consider a plane in which the x-coordinate of a body is plotted
along one axis (the x-axis) and its momentum's x-component is plotted
along the other axis (the Px-axis) (Fig. 5.5). If the body obeyed the laws
uncertainty or tIie x-component or the momentum flpx' In a sunuar 'way.
Heisenberg showed that the uncertainties Lix: and lipx are related as:

(5.3)

where Ii = 1.05 x 10- j4 J. s is Planck's constant. Similar relations can be
written down for other components of the coordinates and the
momentum of the microbody: liy lip, ~ Ii and liz Sp, ~ h,

These are Heisenberg's famous uncertainty relations. We shall limit
ourselves to a discussion of the coordinate-momentum uncertainty
relations. However, there are similar relations for some other pairs of
variables, for instance, for energy and time, and angle and the moment of
momentum. Heisenberg wrote that we cannot interpret the processes on
the atomic scale as we might a large-scale process. However, if we use
common notions, their applicability is limited by the uncertainty
relations.
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postulated, are related to its wave characteristics (frequency co and
wavelength A) thus:

E = hco and p = 21th/A. (5.4)

This hypothesis seemed absurd to many physicists. They could not
understand what a particle's wavelength might be.

In 1927, a striking result was obtained during experiments in which
an electron beam was sent through thin metal plates. After leaving the
plate the electrons spread out in a diffraction pattern (Fig. 5.6). Electron
diffraction by a crystalline lattice became an experimental fact, and yet
diffraction and interference are wave properties. Therefore, the
experiments on electron diffraction were unanimously accepted as proof
of the wave properties of the electron. The nature of the electron waves
remained as puzzling as before, but nobody doubted their existence.

We shall return to the waves below. Let us use de Broglie's hypothesis
to explain the uncertainty relations. Suppose that a strictly parallel
electron beam with a momentum p passes through a plate with a very
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nurrow slit whose width in the x-direction is d (the x-axis is at right
ungles to the beam) (Fig. 5.7). The electrons are diffracted when they
puss through the slit. According to classical wave theory, the angle
through which the electrons are diffracted to the first diffraction
maximum is e~ "A./d. If we use "A. as the wave characteristic of the
electron and use the second relation in (5.4), we can write e as e~ Ii/pd.
Ilowever, what does the angle e mean in terms of particles? In fact what
happens is that when the electron passes through the slit, it acquires
II momentum Apx in the x-direction. Clearly, Apx~ pe. Since e~ Ii/pd,
we obtain Apxd ~ h. If d is thought of as the uncertainty Ax of the
x-coordinate while the electron passes through the slit, we obtain the
uncertainty relation (5.3).

The wave function. Suppose a microbody is in a state such that the
x-component of its momentum has a value po. We know that the value
of the x-coordinate of the microbody in this state is very uncertain. In
other words, the microbody may be found at any place on the x-axis.

Does this mean that we can say nothing about the x-coordinate of the
microbody? No, it does not. It turns out that. we can establish the
probability that the microbody's x-coordinate takes a value from x to
x + Ax. This probability can be written as

l'Ppo(x)1
2 1i.x .

We see that the probability density needed to find the microbody at
a point x is the square of the function 'IIPo (x). This function is
commonly called the wave junction. The reader should not understand
the term "wave" literally. The point is that in the 1930s the researchers
looking at the microcosm got so carried away by wave concepts (due to
the experiments on electron diffraction) that they spoke of "wave
mechanics" rather than "quantum mechanics".

Thus, the state of a microbody such that the x-component of its
momentum possesses a value Po and given that the x-coordinate does
not have any certain value is described by the wave function 'lip (x)
whose squared absolute value is the probability density of °the
microbody to be found at point x. I want to emphasize that the results
of measuring a microbody's coordinate in state 'lip (x) prove to be
random each time. A value of the coordinate is realized with the
probability density I'lip (x) 1

2
•

I have only selected one state of the microbody without dealing with,
However, whit does the angle l:J mean in terms of particles? In "fact what
happens is that when the electron passes through the slit, it acquires
II momentum Apx in the x-direction. Clearly, Apx~ pe. Since e~ Ii/pd,
we obtain Apxd ~ h. If d is thought of as the uncertainty Ax of the
x-coordinate while the electron passes through the slit, we obtain the
uncertainty relation (5.3).

The wave function. Suppose a microbody is in a state such that the
x-component of its momentum has a value Po. We know that the value
of the x-coordinate of the microbody in this state is very uncertain. In
other words, the microbody may be found at any place on the x-axis.

Does this mean that we can say nothing about the x-coordinate of the
microbody? No, it does not. It turns out that. we can establish the
probability that the microbody's x-coordinate takes a value from x to
x + Ax. This probability can be written as
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Figure 5.8

The electron in the atom. The electrons in atoms may occur in
different states. A change in the electron's state may, for instance, be
related to the atom's transition from one energy level to another. Let us
put down possible states of an electron in an atom by means of wave
functions 'PAx, y, z), where j is a set of some numbers characterizing
a state and (x, y, z) are coordinates of the electron. Given what we said
above, we.can conclude that I 'Pj(x, y, z) 1

2 is the density of probability
that we can find an electron in state j at point (x, y, z). Now imagine an
"object" whose density is proportional to 1'Pj(x, y, z) 1

2 at various points
of space. We can imagine a cloud with the density varying from point to
point. The density inside the cloud is the greatest. While the point
approaches the surface of the cloud, the density falls to zero, and thus
the cloud has some shape (although without a distinct bounding surface).

This "cloud" is the probabilistic "image" of an electron in an atom.
Several "electron clouds" are shown in Fig. 5.8 for the electron's several
states in an atom.

Interference and Summing Probability Amplitudes
After reading this section, we shall see that the probabilities in the
microcosm obey the laws we have not dealt with above. It is noteworthy
that these laws allow us to make a rather unexpected conclusion,
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Figure 5.8

The electron in the atom. The electrons in atoms may occur in
different states. A change in the electron's state may, for instance, be
related to the atom's transition from one energy level to another. Let us
put down possible states of an electron in an atom by means of wave
functions 'PAx, y, z), where j is a set of some numbers characterizing
a state and (x. v, z) are coordinates of the electron . Given what we said
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than a probability density, suppose that the x-axis on the screen is
separated into small identical intervals, so that when we speak of the
probability that a particle arrives at a point x we mean the probability
of arriving at the appropriate part of the axis around point x.

Suppose slit A is closed while slit B is open. After a large enough
number of particles have been detected on the screen, we obtain
a distribution defined by the function WB (x) (Fig. 5.9a). This function is
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"probability density amplitude"). Therefore, the probabilistic nature of
the particle's state is emphasized in this way. We shall now use the term
probability amplitude and not wave function. Thus, 'PB (x) is the
probability amplitude that a particle will arrive at point x after passing
through slit B (when slit A is closed).

Now suppose that slit B is closed while slit A is open. If this is the
case, the screen (Fig. 5.9b) will show the distribution WA (x):

WA(X) = l'PA(X)1 2
, (5.6)

where 'P A (x) is the probability amplitude of a particle arriving at point
x after passing through slit A (when slit B is closed).

And finally, let us open both slits. It would be natural to believe that
if it passes through one of the slits, a particle "does not feel" the other
slit. It can be said that it is "indifferent" as to whether the other slit is
open or closed. And in this case the distribution on the screen should be
the sum of distributions (5.5) and (5.6), which, by the way, corresponds
to the rule of probability summation: .

WAB (x) = WA (x) + WB (x) = I 'PA (x) 1
2 + I 'PB (x) 1

2
• (5.7)

In reality, the screen yields a typical interference distribution
(Fig. 5.9c) rather than distribution (5.7). It turns out that when it passes
through one slit the particle somehow "feels" the other slit. Or, perhaps
more incomprehensible, the particle somehow manages to pass through
both slits at the same time. How does it actually pass the
interferometer?
"Spying" destroys the interference pattern. Let us try and "spy" on

how the particle behaves when both slits are open. The "spying" would
seem to be possible in principle. For instance, we might place a source
of light near each slit and detect the photons reflected by the particles
near each slit. Such experiments have in fact been carried out. They
showed that the particle passes through only one slit, and at the same
time it turned out that the distribution on the screen was described by
(5.7). This means that "spying" helps establish the details of the particle's
passing through the interferometer, but the interference distribution is
destroyed.

We have thus a curious situation. If the light is turned off (no
"spying"), there is interference, but the mechanism by which the particle
case, the screen (Fig. 5.9b) will show the distribution WA (x):

WA(X) = l'PA(X)1 2
, (5.6)

where 'P A (x) is the probability amplitude of a particle arriving at point
x after passing through slit A (when slit B is closed).

And finally, let us open both slits. It would be natural to believe that
if it passes through one of the slits, a particle "does not feel" the other
slit. It can be said that it is "indifferent" as to whether the other slit is
open or closed. And in this case the distribution on the screen should be
the sum of distributions (5.5) and (5.6), which, by the way, corresponds
to the rule of probability summation: .

WAB (x) = WA (x) + WB (x) = 1 'PA (x) 1
2 + I 'PB (x) 1

2
• (5.7)

In reality, the screen yields a typical interference distribution
(Fig. 5.9c) rather than distribution (5.7). It turns out that when it passes
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One of the basic conclusions of quantum mechanics is that if
alternatives are distinguishable, the respective probabilities are to be
summed up ; but if the alternatives are indistinguishable, probability
amplitudes rather than probabilities are summed up. Therefore, when the
light is on, the probabilities should be summed up, but when the light is
off, the probability amplitudes should be summed up. In the former
case, we arrive at distribution (5.7), and in the latter case, we obtain the
distribution

w(x) = 1 'PA (x) + 'PB(X) 1
2

• (5.8)

This is an interference distribution. It can be shown that

I'PA +'PB 1
2= I'PA 12+I'P

B 12+[:~ I'PB 12+ :: I'PA 1
2} (5.9)

The expression in the square brackets is "responsible" for the
interference nature of the distribution w(x). In classical physics, the
problem of distinguishable (indistinguishable) events does not exist since
classical events are always distinguishable. In the microcosm, the
situation is qualitatively different. Here we encounter the possibility of
complete indistinguishability of some random events. This possibility
arises because of the fundamental identity of all particles of the same
type. An electron is like any other to a far greater extent than the
proverbial two peas in a pod. Naturally, electrons may be in different
states, which allows us to distinguish between them. However, any
electron (as a physical particle) is indistinguishable from any other
electron. Here we are dealing with absolute identity. In the last analysis,
it allows for indistinguishable alternatives. .

We see that interference should not be limited to wave concepts. The
interference in microphenomena is not necessarily related to waves, it
may be a consequence of probabilistic laws, or more accurately,
a consequence of the fact that we should sum up probability amplitudes
rather than probabilities for indistinguishable events.

Quantum-mechanical superposition. Consider

'PA (x) + 'PB (x) = 'P (x). (5.10)

The function 'P(x) in quantum mechanics is on an equal footing with
functions 'PA (x) and 'PB (x), and like them it defines a state, or rather
the probability amplitude for a random event. In this case, 'P (x) is the
case, we arrive at distribution (5.7), and in the latter case, we obtain the
distribution

w(x) = 1 'PA (x) + 'PB(X) 1
2

• (5.8)

This is an interference distribution. It can be shown that

I'PA +'PB 1
2= I'PA 12+I'P

B 12+[:~ I'PB 12+ :: I'PA 1
2} (5.9)

The expression in the square brackets is "responsible" for the
interference nature of the distribution w(x). In classical physics, the
problem of distinguishable (indistinguishable) events does not exist since
classical events are always distinguishable. In the microcosm, the
situation is qualitatively different. Here we encounter the possibility of
complete indistinguishability of some random events. This possibility
arises because of the fundamental identity of all particles of the same
type. An electron is like any other to a far greater extent than the
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slit A) or in favour of 'PB (the particle passed through slit B).
. Here we encounter one more manifestation of the random. We have

noted above that the arrival of the particle at a point on the screen is
a random event; and probabilities (5.7) and (5.8) characterize these
random events. It turns out that the "selection" of a slit by a particle is
also random. The particle passes through slit A with a probability
proportional to I 'PA 1

2 and passes through slit B with a probability
proportional to I 'PB 1

2
•

A wave or the sum of probability amplitudes? The wave concept
explains the appearance of interference patterns best. However, the wave
.concept cannot explain the other phenomenon, the destruction of the
interference pattern by "spying". In other words, a wave can explain the
appearance of quantum-mechanical superposition, but it cannot explain
the destruction of the superposition in the process of observation.

Once convinced of this and the futility of the attempts to make "de
Broglie's waves" material, physicists admitted that these "waves" have
nothing in common with really existing waves. This gave rise to a very
expressive term of probability waves. Gradually, the term "wave
mechanics" has been substituted everywhere by the term "quantum
mechanics" while the term "wave function" has become more often
replaced by the term "probability amplitude".

Therefore, we should explain both the interference and diffraction of
particles in terms of the necessity of summing up probability amplitudes
instead of probabilities rather than in terms of enigmatic waves when
the considered alternatives are indistinguishable. The probabilistic
approach completely explains both the appearance and destruction of
quantum-mechanical superposition.

In conclusion, let us consider a situation which illustrates the limited
nature of the wave approach. We shall discuss the diffusion of very slow
neutrons passing through a crystal.

Diffusion of neutrons in a crystal. A beam of neutrons with energies
of only 0.1 eV is passed through a crystal. The neutrons diffused by the
crystal's nuclei are registered by a system of detectors (counters) along
the x-axis (Fig. 5.10). The crystal contains N nuclei, therefore, there are
N alternatives. Each alternative corresponds to the diffusion of
a neutron by a nucleus. Let us use 'Pj(x) to denote the probability
amplitude that a neutron will arrive at the detector at point x after
diffusing past the jth nucleus.
proportional to I 'i'A ,.. and passes through slit B WIth a probability
proportional to I 'liB 1

2
.

A wave or the sum of probability amplitudes? The wave concept
explains the appearance of interference patterns best. However, the wave
.concept cannot explain the other phenomenon, the destruction of the
interference pattern by "spying". In other words, a wave can explain the
appearance of quantum-mechanical superposition, but it cannot explain
the destruction of the superposition in the process of observation.

Once convinced of this and the futility of the attempts to make "de
Broglie's waves" material, physicists admitted that these "waves" have
nothing in common with really existing waves. This gave rise to a very
expressive term of probability waves. Gradually, the term "wave
mechanics" has been substituted everywhere by the term "quantum
mechanics" while the term "wave function" has become more often
replaced by the term "probability amplitude".

Therefore, we should explain bo!h the interference a?~. diffrac~i.on .of
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Figure 5.10

rotation. In the former case, the neutron's spin remains unchanged while
in the latter it is reversed. If a diffused neutron changes the direction of
its rotation, the direction of rotation of the nucleus at which the act of
diffusion occurred should somehow change as well. Therefore, if
diffusion occurs with one neutron's spin inversion, we are dealing with
a distinguishable alternative. We can state that diffusion occurred
precisely at the nucleus which changed the direction of its rotation. If
diffusion occurs without spin inversion, it is in principle impossible to
indicate which nucleus diffused the neutron; here we deal with an
indistinguishable alternative.

Suppose <p is the probability amplitude that a neutron will diffuse
with spin inversion while X is the probability amplitude without
inversion. Let us use <1> (x) to denote the probability amplitude that
a neutron with inverted spin will arrive at point x, and X(x) the same for
a neutron with noninverted spin. The distribution of diffused neutrons
detected by the counters can be presented as:

w(x) = 1<p121<1>(x)1 2 + IxI2 IX (x)12. (5.11)

Naturally, the alternatives corresponding to different types of neutron
diffusion are distinguishable; therefore, probability w (x) consists of two
terms (two probabilities ~re summed up). In turn, each term is the

diffusing crystal

neutron
beam

Figure 5.10

rotation. In the former case, the neutron's spin remains unchanged while
in the latter it is reversed. If a diffused neutron changes the direction of
its rotation, the direction of rotation of the nucleus at which the act of
diffusion occurred should somehow change as well. Therefore, if
diffusion occurs with one neutron's spin inversion, we are dealing with
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a x
Figure 5.11

(5.14)

(5.13)

(5.13)

are indistinguishable; therefore the probability amplitudes are to be
summed up (amplitude superposition occurs) and hence

IX(x)12 =Ij~ 'Pj (X) /2.

Substituting (5.12) and (5.13) into (5.11), we obtain:

w(x) = [1q>12jtll'Pj(X)12] + [IXI 2
I

j
t,'Pj(X)12J

The distribution of diffused neutrons w (x) in experiment is shown in
Fig. 5.11. It consists of a smoothly varying "background" and a set of
interference maxima. The "background" is defined in (5.14) by the term
in the first square brackets while the interference maxima give the term
in the second square brackets.

Using wave concepts, we have to assume that a neutron has the wave
properties while diffusing without spin inversion (the interference pattern
appears). The same neutron does not show any wave properties in
diffusion with spin inversion (the interference pattern does not appear).
It is evident that this assumption is quite unnatural.

Probability and Causality

Figure 5.11

are indistinguishable; therefore the probability amplitudes are to be
summed up (amplitude superposition occurs) and hence

IX(x)12 =Ij~ 'Pj (X) /2.

Substituting (5.12) and (5.13) into (5.11), we obtain:
r-
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AUTHOR: "No, it doesn't. The phenomena of the microcosm show
very explicitly the dialectical unity of the random and the necessary.
Neutrons decay in a random manner, but their quantity varies in time
according to a certain law. An electron randomly arrives at a point on
the screen, but the distribution of arrivals of many electrons is
necessary. There are no grounds for doubting existence of causality in
the microcosm. We should bear in mind that causality in the
microcosm reveals itself unlike that in the macrocosm. In quantum
mechanics, potential possibilities to realize events or, in other words,
the probabilities of these events are only causally related, rather than
individual realized events themselves. The probability amplitude (wave
function) obeys a definite equation of motion. Knowing the
probability amplitude at the initial moment and using this equation (it
is called Schrodinqer's equation), we can find the probability amplitude
at an arbitrary moment in time,"

READER: "It is not clear why a neutron should suddenly decay.
Maybe, the particles in question are, in fact, more complex systems
whose physical nature is not yet known?"

AUTHOR: "We touched on this in our first talk. I said that the search
for hidden parameters, which would explain why, for instance,
a neutron decays, eventually, at a given moment in time proved to be
unsuccessful. But I would like to show what is behind the posed
question. Asking it, you proceed from that probability in the
microcosm is not objective but related with our lack of knowing some
details. I think that both the examples from the microcosm and many
of the examples from our macrocosm we cited convinced you' that
probability can be both subjective (related to a lack of knowledge)
and objective. This is essential. It is only when probability is objective
that we can say that probabilistic regularities are primary, or
fundamental."

READER: "Please explain this idea."
AUTHOR: "If probability were reduced to a lack of information, it

could be reduced in principle to dynamic relations supposing unam­
biguous prediction. This would mean that the probabilistic laws would
conceal the dynamic ones. In this case it could be possible to assume
that, in the last analysis, everything is strictly interrelated in the
Nature."

READER: "But doesn't any event, any phenomenon have a cause in the
lone XJJu!' uu •• __ u n_ uuu__u .1 u_ u __
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a die, and the three comes up. Are these events objectively random or
not? What do you think?"

READER: "Each event has definite causes. The occurrence of an event
depends, over a long stretch, on the position of the die in your hand,
the wave of hand, the push, the air resistance, the distance from the
hand to the floor, etc."

AUTHOR: "Right. And nonetheless, the events are not objectively
random ones. Throwing a die, you are not interested in the way
I threw mine. We are not interested in how a die is thrown at all, do
not try to control and direct our actions. Therefore, the occurrence of
the four on my die and the three on yours are objectively random
events. The occurrence of the three is not related to the occurrence of
the four just before it."

READER: "I don't quite understand."
AUTHOR: "I can give you another example. Suppose the events are

telephoned taxi orders. Each order conceals a chain of causes.
However, the arriving orders are objectively random events for the
taxi-depot dispatcher. And this is not because he does not know the
chain of causes but because of an objective circumstance, namely the
lack of connection between the actions of the people making orders
for taxi. The events are considered, as it were, in two different planes.
In one, they are objectively random, while in the other each of them
has definite causes. As you see, objective probability agrees with
causality."

READER: "Your example is from practice. And what about
microphenomena? Let us once again take the example with neutron
decay. Suppose this event is objectively random in a- 'plane'. But in
what plane should we look for the causes for the neutron decay?"

AUTHOR: "Neutron decay is indeed objectively random. We cannot
control the lifetime of a given neutron in principle because of deep
reasons and not a lack of knowledge about some details. There is no
internal "clock" in a neutron. As was noted above, neutrons "do not
get old". This can be seen in that a neutron may live for some time
irrespective of how long it has already lived by the moment we start
counting time. Because it is objectively random, neutron decay is not
a causeless event. I want to note that when we speak of the
spontaneous behaviour of a particle, we are being inaccurate. Strictly
speaking, only a hundred per cent isolated particle can behave

AUTHOR: "Right. And nonetheless, the events are not objectively
random ones. Throwing a die, you are not interested in the way
I threw mine. We are not interested in how a die is thrown at all, do
not try to control and direct our actions. Therefore, the occurrence of
the four on my die and the three on yours are objectively random
events. The occurrence of the three is not related to the occurrence of
the four just before it."

READER: "I don't quite understand."
AUTHOR: "I can give you another example. Suppose the events are

telephoned taxi orders. Each order conceals a chain of causes.
However, the arriving orders are objectively random events for the
taxi-depot dispatcher. And this is not because he does not know the
chain of causes but because of an objective circumstance, namely the
lack of connection between the actions of the people making orders
for taxi. The events are considered, as it were, in two different planes.
!n on.e,}~ey are objec.tively random, .~hil~ in th~ o.t~~r each of th~~
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AUTHOR: "I do not mean any puzzles. At a certain level of
investigation of physical phenomena, isolation is lost in principle. For
instance, the distinct boundary between the field and the matter is
erased. The mutual transformations of particles become apparent. The
idea of the unity of the world and the universal interrelation of the
phenomena in it acquires a special meaning on the level of the
microcosm."

READER: "How can we imagine in a demonstrative way that
a decaying neutron is not isolated?"

AUTHOR: "A vacuum in quantum mechanics is not a void but a space
in which particles are randomly born and annihilated. The neutron
interacts with them."
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Chapter 6
Probability
in Biology

Mutations that bring about changes seem to be
a random phenomenon at first glance, but they have
regularity in the long run.

N. I. Vavilov

The genetic code as it is passed from generation to
generation changes randomly due to many causes and
without any definite direction, and these changes only
randomly turn to be fit to survive.

B. M. Mednikov

Introduction
Jean Baptiste Lamarck (1744-1829). In 1809, the French scientist Jean
Baptiste Lamarck published Philosophy of Zoology. It was the first
attempt to produce a theory of evolution for all species, but it was
unsuccessful. In his work on the theory, Lamarck started from two
erroneous axioms. Firstly, he believed that the tendency to improvement
is inherent in all living beings. He saw here the drive for evolution.
Naturally, there is no mysterious inner drive which makes all species
evolve and advance.

Secondly, Lamarck believed that the environment can directly induce
changes in the shape of living being's organs. For instance, there was
a time when giraffes with short necks existed. For some reason, their
habitat changed and their food rose high above the ground (the leaves
of high trees). In order to reach the food, giraffes had to extend their- -- . - - . ..robability

in Biology
Mutations that bring about changes seem to be
a random phenomenon at first glance, but they have
regularity in the long run.

N. I. Vavilov

The genetic code as it is passed from generation to
generation changes randomly due to many causes and
without any definite direction, and these changes only
randomly turn to be fit to survive.

B. M. Mednikov
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lack of exercise gradually weakens any organ, brings its decline,
continuously decreases its ability, and finally, makes it disappear."

Lamarck was utterly wrong. It is known that trained muscles, like
other acquired abilities, cannot be inherited. Using modern terminology,
we can say that Lamarck did not understand the difference between
phenotype and genotype. The genotype is the genetic constitution of an
organism, usually in respect to one or more genes responsible for
a particular ability. Parents transfer a set of hereditary elements to their
progeny. The phenotype is the entire physical, biochemical, and physio­
logical make-up of an individual as determined both genetically and
environmentally, the set of internal and external features of the
organism. The phenotype varies during the organism's life as it interacts
with the environment. Regular physical exercise, persistent learning,
a correct organization of labour and rest help everyone improve their
own phenotype. However, this does not influence the genotype.

Charles Darwin (1809-1882). The correct theory of evolution of the
species was developed by the English scientist Charles Darwin, and his
theory became known as Darwinism. Darwin presented the theory in
The Origin of Species by Means of Natural Selection, or the Preservation
of Favoured Races in the Struggle for Life, which was published in 1859.

Darwin emphasized three factors: variability, inheritance, and natural
selection. The environment, which influences an organism, may bring
about random changes in its genotype. These changes can be inherited
and gradually accumulated in the progeny. The nature of the changes
varies. Some of them are randomly more favourable from the viewpoint
of the organism's adaption to the environment while others are less fa­
vourable or even bad. When the progeny accumulate these random
changes, natural selection reveals itself. The organisms that are least fit
produce less offspring, die prematurely, and are forced out by the more
fit individuals in the long run.

In describing Darwin's theory, I emphasize the role of the random on
purpose. The reader may recognize the familiar idea of the selection of
information from noise.

In his consideration of the evolution of species, Lamarck in fact only
recognized necessity. Once the environment changes, the organism would
necessarily change by exercising or not exercising the relevant organs.
Lamarck's "evolution" would only necessitate a complication in the
organism's organization if each species had an inner drive to advance.
organism, usually in respect to one or more genes responsible for
a particular ability. Parents transfer a set of hereditary elements to their
progeny. The phenotype is the entire physical, biochemical, and physio­
logical make-up of an individual as determined both genetically and
environmentally, the set of internal and external features of the
organism. The phenotype varies during the organism's life as it interacts
with the environment. Regular physical exercise, persistent learning,
a correct organization of labour and rest help everyone improve their
own phenotype. However, this does not influence the genotype.

Charles Darwin (1809-1882). The correct theory of evolution of the
species was developed by the English scientist Charles Darwin, and his
theory became known as Darwinism. Darwin presented the theory in
The Origin of Species by Means of Natural Selection, or the Preservation
of Favoured Races in the Struggle for Life, which was published in 1859.

Darwin emphasized three factors: variability, inheritance, and natural
selection. The e~viron~en~, which influences an organism,. m~y. b~~n~



166 Part Two. Fundamentality of the Probability Laws

complicated. The possibilities for adaptation are diverse. The result is
the diversity of the plant and animal species we observe. Earth is
thought to accommodate about 1.5 million animal species and about
0.5 million plant species.

Darwin's theory has become 'universally recognized. However, there
was a "soft spot" in it, which was pointed out in 1867 by Fleming
Jenkins, a teacher from Edinburgh. Jenkins noted that Darwin's theory
is not clear about the mechanism by which the changes in the progeny
accumulated. At first, changes in a trait only occur in a limited number
of individuals. These individuals crossbreed with normal ones. The
result, as Jenkins asserted, should be dissipation of the changed trait in
the progeny and not its accumulation. The trait should dilute out and
gradually eliminate (1/2 of the change in the first generation, 1/4 of the
change in the second generation, 1/8 in the third, 1/16 in the fourth,
etc.],

Darwin contemplated Jenkins's objection for the remaining fifteen
years of his life. He could not find a solution.

However, a solution was already found in 1865 by Gregor Johann
Mendel, a teacher in the monastery school in Briinn (now Brno,
Czechoslovakia). Alas, Darwin did not know about Mendel's
investigations.

Gregor Johann Mendel (1822-1884). Mendel started his famous
experiments on peas three years before the publication of The Origin of
Species. When. Darwin's book appeared, he read it thoroughly and was
very interested in Darwin's work. Mendel is said to have remarked with
respect to Darwin's theory: "It is not yet complete. Something is
missing." Mendel's investigation was directed to mending the "flaw" in
Darwin's theory. Mendel was a plant breeder and he wanted to follow
the change in the genotype over successive generations of a crossing. He
picked the pea as the subject of investigation.

Mendel took two varieties of pea, one with yellow seeds and one with
green seeds. By crossing the two .varieties, he found that the first
generation only had yellow seeds. The green pea trait had vanished.
Then Mendel crossed the first generation with itself and grew a second
generation. This time individuals with green seeds appeared, although
there were noticeably fewer of them than there were individuals with
yellow seeds. Mendel counted the number of both and took the ratio,
i.e.
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is not clear about the mechanism by which the changes in the progeny
accumulated. At first, changes in a trait only occur in a limited number
of individuals. These individuals crossbreed with normal ones. The
result, as Jenkins asserted, should be dissipation of the changed trait in
the progeny and not its accumulation. The trait should dilute out and
gradually eliminate (1/2 of the change in the first generation, 1/4 of the
change in the second generation, 1/8 in the third, 1/16 in the fourth,
etc.],

Darwin contemplated Jenkins's objection for the remaining fifteen
years of his life. He could not find a solution.

However, a solution was already found in 1865 by Gregor Johann
Mendel, a teacher in the monastery school in Briinn (now Brno,
Czechoslovakia). Alas, Darwin did not know about Mendel's
investigations.

Gregor Johann Mendel (1822-1884). Mendel started his famous
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individuals with smooth seeds to the number of individuals with
wrinkled seeds was
x t y = 5474: 1850 = 2.96: 1.

In the other five experiments, Mendel crossed varieties which differed
in skin colour or seed shape or colouration when immature or the
location of flowers or the size of the individuals (dwarfs and giants).

In each experiment, the first generation consisted of individuals with
one of the two opposite parental traits. Mendel called this trait the
dominant one, and the other trait, which disappeared for a generation, he
called the recessive one. Yellow seeds was a dominant trait, while the
green-seed trait was recessive in the first of the experiments we
mentioned. In the second experiment, the smooth-seed trait was
dominant, and the wrinkled-seed was recessive. We gave the ratio x : y,
i. e. the ratio of the number of individuals with the dominant trait to the
number of individuals with the recessive one in the second generation
for the two of Mendel's experiments. Mendel obtained the following
ratios from the other five experiments:
x:y = 705 :224 = 3.15: 1,

x :y = 882 : 299 = 2.95 : 1,

x:y = 428: 152 = 2.82: 1,

x: y = 651 : 207 = 3.14 : 1,

x:y = 787 :277 = 2.84: 1.

In each case, the x :y ratio is close to 3: 1. So Mendel could maintain
that when individuals with opposite traits are crossed, one trait is
suppressed by the other and not diluted out (as Jenkins believed). Thus
Mendel asserted the existence of dominant and recessive traits such that
individuals in the first generation only have the dominant trait, while
the recessive one is completely suppressed (the law of uniformity offirst­
generation individuals). When the first generation is crossed with ,one
another, individuals bearing both the dominant and recessive traits
appear in the second generation, their ratio being approximately 3: 1.

However, Mendel did not stop there. He crossed the second
generation with itself and obtained individuals in the third and then in
location of flowers or the size of the individuals (dwarfs and giants).

In each experiment, the first generation consisted of individuals with
one of the two opposite parental traits. Mendel called this trait the
dominant one, and the other trait, which disappeared for a generation, he
called the recessive one. Yellow seeds was a dominant trait, while the
green-seed trait was recessive in the first of the experiments we
mentioned. In the second experiment, the smooth-seed trait was
dominant, and the wrinkled-seed was recessive. We gave the ratio x : y,
i. e. the ratio of the number of individuals with the dominant trait to the
number of individuals with the recessive one in the second generation
for the two of Mendel's experiments. Mendel obtained the following
ratios from the other five experiments:
x:y = 705 :224 = 3.15: 1,

x :y = 882 : 299 = 2.95 : 1,
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Figure 6.1

different progeny in the fourth generation, while the other individuals in
the third generation did produce different progeny, the ratio of
individuals with each trait being 3 : 1 again.

Note that the production of different progeny demonstrates an
essential point: individuals with identical external features may possess
different hereditary trait, which is revealed in the external features of
their progeny. We see that one cannot use the phenotype to make
generalizations about the genotype. If an individual does not produce
different progeny, then it is called homozygotic, otherwise being termed
heterozygotic. All the individuals with the recessive trait in the second
generation are homozygotic.
. Mendel's results ~an be se.en in Fig: 6.1,_~here_ the yellow circles are
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outward appearance changes noticeably. The perfect uniformity of the
first generation individuals is usually replaced by an extreme diversity of
progeny, some of them being close to the species type of the father and
the other close to that of the mother.. .. " But nobody before Mendel
had attempted to investigate the change in separate traits, or count the
number of individuals with different traits in consecutive generations.
Mendel was the first person to do this, spending eight years on his
experiments. Therefore, unlike his predecessors, Mendel came to
understand the pattern behind the hereditary transmission of traits.

It is good to pause here, to discuss the laws governing crossbreeding
which Mendel discovered. We shall do this in the next section from the
viewpoint of modern genetics. Let me only tell the reader that Mendel
presented his results first in February 1865 to the Society of Natural
Scientists in Briinn. The audience did not understand the exceptional
importance of the presentation, nor could they guess that it would cause
a revolution in the study of heredity. In 1866, Mendel's paper was pub­
lished in the Briinn Bulletin and was sent to some 120 listed scientific
institutions in many countries. Unfortunately, Darwin did not receive
a copy.

The world now recognizes Mendel as the founder of modern genetics.
However, the recognition only came in 1900, fifteen years after his
passing,

The Patterns After the Random Combination of
Genes in Crossbreeding
Chromosomes and genes. Perhaps you can recall some data on cytology,
the branch of biology dealing with the structure, behaviour, growth, and
reproduction of cells, and the functions and chemistry of the cell
components. There are two types of cell: germ cells (gametes) and
somatic cells. The nucleus of each cell contains threadlike structures,
chromosomes, which carry linearly arranged genetic units in gigantic
molecules of deoxyribonucleic acid (DNA) or combination with protein
molecules. The chromosomes, or, to be more accurate, the DNA
molecules are the carriers of genetic information, which is encoded in
the sequence of bases, defining the genotype of the organism. The
separate parts of a chromosome, responsible for a hereditary trait, are
the basic units of heredity, or genes. Each chromosome contains several
Mendel was the first person to do this, spending eight years on his
experiments. Therefore, unlike his predecessors, Mendel came to
understand the pattern behind the hereditary transmission of traits.

It is good to pause here, to discuss the laws governing crossbreeding
which Mendel discovered. We shall do this in the next section from the
viewpoint of modern genetics. Let me only tell the reader that Mendel
presented his results first in February 1865 to the Society of Natural
Scientists in Briinn. The audience did not understand the exceptional
importance of the presentation, nor could they guess that it would cause
a revolution in the study of heredity. In 1866, Mendel's paper was pub­
lished in the Briinn Bulletin and was sent to some 120 listed scientific
institutions in many countries. Unfortunately, Darwin did not receive
a copy.

The world now recognizes Mendel as the founder of modern genetics.
However, the recognition only came in 1900, fifteen years after his
passing,
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The numbers of chromosomes we gave for several species characterize
the chromosomes in the somatic cell, rather than in germ cells. Each
germ cell (gamete) has half the number of chromosomes than a somatic
cell.

Let us start with the chromosome set of a somatic cell. This set
includes two sex chromosomes. Female individuals have two identical sex
chromosomes (two X -chromosomes) while male individuals have two
different sex chromosomes (one X-chromosome and one Yechromosomei.
The somatic chromosomes in a somatic cell come in pairs; the
chromosomes in each pair (they are called homologous) are very much
like each other. Each contains the same number of genes at the same
loci on both chromosome threads, and the main point is that they are
responsible for the same kind of trait. For instance, the pea has a pair of
homologous chromosomes each of which contains a gene for seed
colour. This gene, like any other gene, has two forms (they are called
alleles), dominant and recessive, The dominant form of the colour gene
(the dominant allele) corresponds to yellow while the recessive one (the
recessive allele) corresponds to green. If the genes on both homologous
chromosomes contain the same allele, the individual is homozygotic with
respect to the trait in question. If a chromosome contains an allele
which is different from the one contained in the homologous
chromosome, the individual is heterozygotic. Its phenotype shows the
trait corresponding to the dominant allele.

Now let us consider the chromosome set of a gamete (a germ cell).
A gamete has only one sex chromosome. It is always an X -chromosome
for a female individual. A male individual may contain either an
X -chromosome (in some gametes) or a Y-chromosome (in the other
gametes). Besides the single sex chromosome, a gamete contains one
chromosome from each pair of homologous chromosomes.

Suppose there are only two pairs of homologous chromosomes, and
a certain trait corresponds to each pair. Moreover, assume the given
individual is heterozygotic with respect to both traits. This individual
will have four types of gamete, which can be seen in Fig. 6.2a (the red
colour in the figure is for the chromosomes with the dominant alleles
and the blue colour for the recessive alleles). The individual in Fig. 6.2b
is homozygotic with respect to one trait and heterozygotic with respect
to the other. There are only two types of gamete in this case.

During fertilization, a female gamete fuses with a male gamete. The
chromosomes (two X -chromosomes) while male individuals have two
different sex chromosomes (one X-chromosome and one Yechromosomei.
The somatic chromosomes in a somatic cell come in pairs; the
chromosomes in each pair (they are called homologous) are very much
like each other. Each contains the same number of genes at the same
loci on both chromosome threads, and the main point is that they are
responsible for the same kind of trait. For instance, the pea has a pair of
homologous chromosomes each of which contains a gene for seed
colour. This gene, like any other gene, has two forms (they are called
alleles), dominant and recessive, The dominant form of the colour gene
(the dominant allele) corresponds to yellow while the recessive one (the
recessive allele) corresponds to green. If the genes on both homologous
chromosomes contain the same allele, the individual is homozygotic with
respect to the trait in question. If a chromosome contains an allele
which is different from the one contained in the homologous
chromosome, the individual is ~eterozJ;{J~tic. Its phenotype shows the
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a b

Figure 6.2

gametesgametes

leading to the production of gametes. We shall discuss this process
below.

The law of segregation. Let us consider one particular trait, for
instance the colour of pea seeds, as in one of Mendel's experiments. Let
us consider the results of this experiment from the point of view of
modern cytology.

All the individuals in the first generation are heterozygotic for the
trait. Each somatic cell contains both alleles for seed colour: yellow
(dominant allele) and green (recessive allele). Naturally, every seed
belonging to these individuals is yellow. Each first-generation individual
has two types of gamete: some with the dominant allele (A-gametes) and
the others with the recessive allele (a-gametes). It is clear that there must
be both female and male A-gametes and a-gametes.

Now let us consider the second generation. Each new organism
develops from a zygote which is formed when a male gamete (A or a)
fuses with a female gamete (A or a). Clearly, four alternatives are
....u·u·C";)"'lA (,I::;"~n /;. \.
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female gametes

Figure 6.3

enough number of zygotes, a quarter of them will be composed of
AA-zygotes, a quarter will contain aa-zygotes, and finally, a half will
contain Aa-zygotes (the variants Aa and aA are equal from the
viewpoint of trait heredity). If a zygote contains at least one dominant
allele, the phenotype will reveal the dominant feature (yellow seeds).
Therefore, individuals (plants) developing from AA- or Aa-zygotes will
have yellow seeds while individuals developing from aa-zygotes will have
green seeds. We see, therefore, that the probability that an individual will
have a dominant trait is 3/4 while the probability that an individual will
have the recessive trait is 1/4. Hence the ratio 3: 1 Mendel obtained,
which quantatively characterizes the segregation of a trait in the
transition from the first generation of the crossing to the second. Mendel
both found this ratio and correctly explained it using the notion of
probability. This was Menders first law, which is also known as the law
of segregation.

I want to emphasize: a zygote is formed as the result of the random
union of male and female gametes. A large number of such random
unions will necessarily lead to a definite pattern, which is expressed in
the Mendel's first law.

~\J
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Figure 6.3

enough number of zygotes, a quarter of them will be composed of
AA-zygotes, a quarter will contain aa-zygotes, and finally, a half will
contain Aa-zygotes (the variants Aa and aA are equal from the
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combination is the colour of pea seeds and the shape of the seeds. Let
us use A to denote the dominant allele of colour (yellow), a to denote
the recessive allele of colour (green), B to denote the dominant allele of
shape (smooth seeds), and b to denote the recessive allele of shape
(wrinkled seeds).

Each first-generation individual has four types of male and four types
of female gamete: AB, Ab, aB, and ab (recall Fig. 6.2a). A zygote is
formed when two gametes (male and female) of any of the four types
fuse. There are 16 possible alternatives; they are presented in Fig. 6.4.
Each alternative is equally probable. Therefore, the ratio of the number
of zygotes of different types (with respect to the total number of zygotes,
which should be large) is: 1/16 for zygotes AB· AB, 1/16 for Ab· Ab, 1/16
for aB· aB, 1/16 for ab- ab, 1/8 for AB· Ab (which includes the Ab· AB
combination), 1/8 for AB· aB (including aB· AB), 1/8 for AB· ab
(including ab- AB), 1/8 for Ab· aB (including aB· Ab), 1/8 for Ab· ab
(including ab- Ab), and 1/8 for aB· ab (including ab- aB). Regarding the
suppression of recessive alleles by the corresponding dominant alleles,
we can conclude that the probability that an individual will have yellow
smooth seeds in the second generation equals the sum of probabilities

female gametes

GGGG
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formed when two gametes (male and female) of any of the four types
fuse. There are 16 possible alternatives; they are presented in Fig. 6.4.
Each alternative is equally probable. Therefore, the ratio of the number
of zygotes of different types (with respect to the total number of zygotes,
which should be large) is: 1/16 for zygotes AB· AB, 1/16 for Ab· Ab, 1/16
for aB· aB, 1/16 for ab- ab, 1/8 for AB· Ab (which includes the Ab· AB
combination), 1/8 for AB· aB (including aB· AB), 1/8 for AB· ab
(including ab- AB), 1/8 for Ab· aB (including aB· Ab), 1/8 for Ab· ab
(including ab- Ab), and 1/8 for aB· ab (including ab- aB). Regarding the
suppression of recessive alleles by the corresponding dominant alleles,
we can conclude that the probability that an individual will have yellow
smooth seeds in the second generation equals the sum of probabilities
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for the zygotes AB· AB, AB· Ab, AB· aB, AB· ab, and Ab· aB, i.e. 1/16 +
1/8 + 1/8 + 1/8 + 1/8 = 9/16. The probability that an individual will have
yellow wrinkled seeds equals the sum of probabilities of the formation of
zygotes Ab· Ab and Ab· ab, i.e. 1/16 + 1/8 = 3/16. The probability that
an individual will have green smooth seeds equals the sum of
probabilities of the formation of zygotes aB· aB and aB· ab, i. e. 1/16 +
1/8 = 3/16. And finally, the probability that an individual will have
green wrinkled seeds equals the probability of the formation of the
zygote ab- ab, i. e. 1/16. Therefore, the numbers of different phenotypes
(with these traits) in the second generation are in the ratio 9 :3 : 3 : 1.
This is the essence of Mendel's second law, according to .which the seg­
regation by one trait is independent from the segregation by another
trait.

Morgan's law. The law of the independent assortment of genes is valid
when the genes are on different chromosomes in a gamete (and on
different pairs of homologous chromosomes in a somatic cell). If the
genes belong to the same chromosome, they will be inherited together.
This is the explanation for deviations from Mendel's second law. The
deviation was discovered and investigated by the American biologist
Morgan and is observed whenever traits are defined by linked genes, i.e.
the genes are on the same chromosome. The joint inheritance of linked
genes became known as Morgan's law.

Thomas Hunt Morgan (1866-1945) was the founder of the
chromosome theory of inheritance. By introducing the idea of
a chromosome, he substantiated Mendel's laws and pointed out under
which conditions they are applicable. Besides, he obtained a number of
new results. These results include Morgan's law and the phenomenon of
chromosome crossing over, which he discovered.

Chromosome crossing over. In an investigation of the inheritance of
traits defined by linked genes, Morgan discovered that the linkage is not
absolute: some of the second-generation individuals inherit some of the
linked genes from one parent and the rest from the other. Carrying out
his investigations on Drosophila, Morgan could explain this fact. He
showed that the formation of germ cells in an organism (this process is
called meiosis) starts with a "farewell dance" of homologous
chromosomes. .

Imagine two elongated homologous chromosome threads, which,
before they leave each other and join different gametes, tightly embrace
1/8 = 3/16. And finally, the probability that an individual will have
green wrinkled seeds equals the probability of the formation of the
zygote ab- ab, i. e. 1/16. Therefore, the numbers of different phenotypes
(with these traits) in the second generation are in the ratio 9 :3 : 3 : 1.
This is the essence of Mendel's second law, according to .which the seg­
regation by one trait is independent from the segregation by another
trait.

Morgan's law. The law of the independent assortment of genes is valid
when the genes are on different chromosomes in a gamete (and on
different pairs of homologous chromosomes in a somatic cell). If the
genes belong to the same chromosome, they will be inherited together.
This is the explanation for deviations from Mendel's second law. The
deviation was discovered and investigated by the American biologist
Morgan and is observed whenever traits are defined by linked genes, i.e.
the genes are on the same chromosome. The joint inheritance of linked
ge~~s became known as Mor~.a!!~~ ~'!..~.~,
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Figure 6.5
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process is illustrated in Fig. 6.5. Let me emphasize that corresponding
genes on both chromosomes (I mean the alleles) are in contact with each
other at the moment of break. Therefore, wherever the break might be,
an allele from one chromosome gets into one gamete while an allele
from the other chromosome gets into the other gamete. In other words,
either gamete gets an allele with the considered gene. This can be
thought of as "dancing" pairs of chromosomes exchanging equivalent
parts of themselves before leaving each other. All the same, each gamete
has a complete set of genes characterizing the given chromosome. And
there is a random combination of paternal and maternal alleles.

Chance plays an essential role in the phenomenon of chromosome
. -~_.~--



176 Part Two. Fundamentality of the Probability Laws

hybrids unites chromosomes that are very unlike in their gene structure
(because the chromosomes come from parents of different species). When
the time comes to produce the germ cells, these chromosomes are
unable to carry out the "farewell dance" because of fundamental
differences. They consequently are unable to form gametes, and there­
fore, no second-generation hybrids appear. This is why mules (the
hybrid offspring of a male ass and a female horse) do not have any
progeny.

A boy or a girl? I have already noted that the sex chromosomes of
a female are both the same: they are X-chromosomes. By contrast, the
sex chromosomes of a male are different, each male having one
X-chromosome and one Y-chromosome. Half of all male gametes carry
one X-chromosome and the rest carry one Y-chromosome. If a female
gamete joins a male X-gamete, an XX-zygote is produced, and a female
offspring develops from it. But if a female gamete fuses with a male
Y-gamete, an X Y-zygote is produced, and a male offspring develops from
it. This is the answer to the question: a boy or a girl?

Mutations

We have considered random changes in the genetic code that might
occur when a combination of parental genes is crossed over. All these
changes are limited by the available gene pool. New genes cannot be
created in the process. However, random inheritable changes do occur
which are not related to the combination of genes. They are caused by
the action of the environment on the genetic structure of the
chromosomes and random disorders in the biological mechanism that
maintains the genetic information during meiosis and the division of the
somatic cells. These genetic changes are called mutations.

The appearance of mutations. There is a serious human disease in
which a sufferer's blood is unable to clot. This disease is called hemo­
philia. It is inherited and occurs in men only. It has been found out that
hemophilia is the consequence of a mutation in a gene that is located on
the X-chromosome. Since women have two X-chromosomes, the
mutated gene, which is recessive, on one chromosome is matched by
a normal gene on the other, which suppresses the illness. This is why
hybrid offspring of a male ass and a female horse) do not have any
progeny.

A boy or a girl? I have already noted that the sex chromosomes of
a female are both the same: they are X-chromosomes. By contrast, the
sex chromosomes of a male are different, each male having one
X-chromosome and one Y-chromosome. Half of all male gametes carry
one X-chromosome and the rest carry one Y-chromosome. If a female
gamete joins a male X-gamete, an XX-zygote is produced, and a female
offspring develops from it. But if a female gamete fuses with a male
Y-gamete, an X Y-zygote is produced, and a male offspring develops from
it. This is the answer to the question: a boy or a girl?

Mutations
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More frequent mutations show themselves as, for instance, different eye
colours, baldness (including the shape of the bald spot), and unusual
hair colour in animals. Mutations often occur in plants and appear in
a great variety of ways, such as changes in the shape of the stem, leaves,
and flowers.

The causes of mutations. A mutation is a rather rare event. For
instance, the probability that a gamete with an, X-chromosome taken at
random will contain the mutation related to hemophilia is only one in
105

• Other mutations occur even less often, with the probability of about
one 4} 106 on the average. However, we should take into account the
diversity of mutations. They can be associated with very different genes
of which there is an enormous number in each gamete. We should also
take into account that mutations are inherited and thus accumulate. The
result is that mutations per se are not too rare events. It has been
calculated that one in ten human gametes carries a mutation.

The appearance of each mutation is a random event. However, the
event results from objective causes. An organism develops from a zygote
due to the cell divisions. The process of cell division begins with
replication of chromosomes, and therefore, DNA molecules in the cell
nucleus. Each DNA molecule recreates an exact copy of itself with the
same set of genes. The complicated process of replication of a DNA
molecule sometimes occurs with random deviations. We know that
genetic information is recorded in DNA very economically on the
molecular level. When the data is copied, various kinds of "misprint" are
possible due to the thermal movement of molecules. The "misprints"
appear due to the unavoidable fluctuations in the behaviour of matter.
For instance, when a DNA molecule replicates, there might be
a random increase in the number of hydrogen ions in the vicinity of
some' nitrogen base. This fluctuation may cause the detachment of the
base from the DNA, i. e. to a disturbance in the structure of the gene.

In every sexually reproducing species, the progeny only receive the
mutations in the germ cells. Therefore, the random disordering that
occurs in the formation of the germ cells, in meiosis, is essential. These
disorders may cover both separate genes and chromosomes as a whole.
Individual gametes may receive a chromosome with a distorted gene
structure or not receive a chromosome at all. The formation of gametes
with extra chromosomes is also possible.

The thermal movement of matter molecules is not the only cause of
mutation __S.npci;:JLioJlt'Jtig.aJj()J1~_hRY.e revealed _J1 .mimher__or external:
random will contain the mutation related to hemophilia is only one in
105

• Other mutations occur even less often, with the probability of about
one 4} 106 on the average. However, we should take into account the
diversity of mutations. They can be associated with very different genes
of which there is an enormous number in each gamete. We should also
take into account that mutations are inherited and thus accumulate. The
result is that mutations per se are not too rare events. It has been
calculated that one in ten human gametes carries a mutation.

The appearance of each mutation is a random event. However, the
event results from objective causes. An organism develops from a zygote
due to the cell divisions. The process of cell division begins with
replication of chromosomes, and therefore, DNA molecules in the cell
nucleus. Each DNA molecule recreates an exact copy of itself with the
same set of genes. The complicated process of replication of a DNA
molecule sometimes occurs with random deviations. We know that
genetic information is recorded in DNA very economically on the
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occurred over many millions of years, and they still occur. From the
point of view of an individual, as a rule, mutations are harmful and even
lethal more often than not. Being the result of long-term evolution, each
organism is a complex genotype and adapted to its habitat. A random
change in the genotype would more likely disrupt its smoothly running
biological mechanism.

Therefore, we see that mutations are at the same time both useful
(even necessary) and harmful, If mutations occur too frequently in
a given species (for instance, because its habitat is radioactively
contaminated), this will increase the mortality rate and, as
a consequence, cause the decline or possibly the extinction of the
species. By contrast, if mutations occur too rarely in a given species, it
may not be able to adapt and may also become extinct should its
habitat change considerably. For instance, the dinosaurs could not
adapt to a cooling in the climate and became extinct. Thus, it is
disadvantageous for there to be too many mutations or for them to be
too frequent. It is also disadvantageous for there to be practically no
mutations or for them to occur too rarely.

The organism and mutation!'. The adaptation of an organism to its
habitat also supposes the adaptation to mutations, owing to which the
degree of harm brought about by mutations can be essentially reduced.
This adaptation is natural because the development of species is directly
related to its survivability.

Let us discuss this problem from the positions of genetics. Suppose
a zygote appears when a normal and a mutated gamete combine. We
shall call a gamete mutated if one of its chromosomes has a faulty
(mutated) gene. Suppose this gene is responsible for a vital process, and
so we are dealing with a dangerous mutation. The mutated gene is
opposed by the normal gene in the paired chromosome. Now mutated
gene may either be dominant or recessive with respect to the normal
gene, and we shall consider both possibilities.

If the mutated gene is dominant, it immediately starts its "harmful
activity", and the organism may die as an embryo. Darwinian selection
here carries out its sanitary mission long before the dominant mutation
can propagate to future progeny. The result is that there is no accu­
mulation of dominant mutated genes. This is not so if the mutated gene
is recessive. It is' suppressed by the normal gene, and therefore, the
organism will be phenotypically healthy. Moreover, there will be healthy

Therefore, we see that mutations are at the same time both useful
(even necessary) and harmful, If mutations occur too frequently in
a given species (for instance, because its habitat is radioactively
contaminated), this will increase the mortality rate and, as
a consequence, cause the decline or possibly the extinction of the
species. By contrast, if mutations occur too rarely in a given species, it
may not be able to adapt and may also become extinct should its
habitat change considerably. For instance, the dinosaurs could not
adapt to a cooling in the climate and became extinct. Thus, it is
disadvantageous for there to be too many mutations or for them to be
too frequent. It is also disadvantageous for there to be practically no
mutations or for them to occur too rarely.

The organism and mutation!'. The adaptation of an organism to its
habitat also supposes the adaptation to mutations, owing to which the
degree of harm brought about by mutations can be essentially reduced.
This adaptation is natural because the development of species is directly
__ I _ ...._.J ...._ .: .... -= L.: l.:.Lu
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The probability that two recessive genes will combine in a descendant
increases if close relatives marry or a small group of people, for instance,
a small religious sect, small community, or the population of a hamlet in
the mountains, intermarry. Wherever this practice is common, various
types of genetic disease are unavoidable (they are called recessive
fliseases). There are about five hundred such diseases known so far. They
may bring about idiocy, debility, deaf-mutism, constitutional inferiority,
etc. Therefore, any artificial separation or division of people into closed
groups increases the genetic danger and leads to a higher probability of
recessive disease.

In the second half of this century, the mutation danger drastically
increased due to nuclear weapon testing. Radioactivity is very muta­
genic. Therefore, it is impossible to overestimate the importance of the
international treaty banning the testing of nuclear weapons in the
atmosphere, space,. and underwater, which was concluded at the
initiative of the Soviet Union. In 1963, the treaty was signed by the
USSR, USA, and Great Britain. Over a hundred countries have signed it
so far.

The law of homologous series in hereditary variability. Each
individual mutation is a random, undirected, and unpredictable event. If
a given species sustains relatively many mutations (this is seen in plants),
the picture of mutations on the whole shows some regularity, or
necessity. This is substantiated by the law of homologous series in
mutations discovered by the Soviet biologist Nikolai I. Vavilov
(1887-1943). Generalizing a great deal of data, Vavilov concluded that
genetically close species should be characterized by similar (homologous)
series of hereditary variability. For instance, if mutations cause
a number of rather frequently occurring hereditary traits in rye,
a similar series of traits should also be observed in wheat, barley, oats,
etc.

Vavilov's law is sometimes compared to Mendeleev's periodic table,
thus emphasizing that like the periodic table it can be used to predict
new members, or mutants. In 1917, during a scientific expedition in the
Pamir, Vavilov found a variety of wheat with leaves without a ligule,
a small growth at the base. At the time, biologists were not aware of rye
or barley varieties without ligules. However, Vavilov's law required that
they exist, and in 1918 a variety of rye was found without ligules, while
in 1935, a barley variety without ligules was obtained after irradiating
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etc. Therefore, any artificial separation or division of people into closed
groups increases the genetic danger and leads to a higher probability of
recessive disease.

In the second half of this century, the mutation danger drastically
increased due to nuclear weapon testing. Radioactivity is very muta­
genic. Therefore, it is impossible to overestimate the importance of the
international treaty banning the testing of nuclear weapons in the
atmosphere, space,. and underwater, which was concluded at the
initiative of the Soviet Union. In 1963, the treaty was signed by the
USSR, USA, and Great Britain. Over a hundred countries have signed it
so far.

The law of homologous series in hereditary variability. Each
individual mutation is a random, undirected, and unpredictable event. If
a given species sustains relatively many mutations (this is seen in plants),
the picture of mutations on the whole shows some regularity, or
necessity. This is substantiated hv the law n( homoloaous serip!, in
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put Darwin's theory of the origin and evolution of species on a sound
scientific basis, and explained the hereditability of changed traits.
Darwinism is a logical and authoritative science capable of giving
valuable practical recommendations. Modern genetics is deeply rooted
in Darwinism.

Undirected hereditary variability. The Soviet biologist Ivan Shmal­
gausen (1884-1963) once said that each species and each of its
populations contain a "pool of hereditary variability". This pool can be
utilized by natural selection in a changed habitat.

There are two basic "mechanisms" for the appearance of undirected
hereditary variability. Firstly, there is mutation variability. Mutations
underlie the diversity of species and the diversity of genes within
a species. Mutation changes occur very slowly, but they occur continu­
ouslyand have done so since the time immemorial. The "mechanism" by
which hereditary variability appears as the result of the random crossing
of parental genes is faster. Here we should distinguish between the
combination of genes as the result of fusing random pairs of gametes
and the combination of genes as the result of "shuffled" parts of paired
chromosomes getting randomly into a gamete (the phenomenon of
chromosome crossing over).

Naturally, the changes in the combination of genes are limited by the
volume of the gene pool. However, the pool is enormous. It has been
calculated that the gene pools of a father and a mother make it possible
in principle to construct up to 105 0 different human genotypes. This is
a rather hard number to imagine. Less than 101 0 people live on the
Earth. Therefore, there is practically no chance that two individuals will
be genetically identical (unless, of course, they are twins developing from
the same zygote). Each person is genetically unique; a person possesses
a genotype which is unlike any other genotype.

Darwin's demon versus Maxwell's demon. We discussed the Maxwell's
demon in Chapter 4. Without getting outside information, the demon
could not in principle select faster molecules and direct them into the
other half of the vessel. This hapless demon demonstrated the
fundamental impossibility of selection at the atomic or molecular level, as
was demanded by the second law of thermodynamics.

In a discussion on natural selection in the Nature, the American
biochemist and science-fiction writer Isaac Asimov (b. 1920) used the
term "Darwin's demon". Unlike Maxwell's hapless demon, Darwin's
gausen (1884-1963) arlee said that each species and each of its
populations contain a "pool of hereditary variability". This pool can be
utilized by natural selection in a changed habitat.

There are two basic "mechanisms" for the appearance of undirected
hereditary variability. Firstly, there is mutation variability. Mutations
underlie the diversity of species and the diversity of genes within
a species. Mutation changes occur very slowly, but they occur continu­
ouslyand have done so since the time immemorial. The "mechanism" by
which hereditary variability appears as the result of the random crossing
of parental genes is faster. Here we should distinguish between the
combination of genes as the result of fusing random pairs of gametes
and the combination of genes as the result of "shuffled" parts of paired
chromosomes getting randomly into a gamete (the phenomenon of
chromosome crossing over).

Naturally, the changes in the combination of genes are limited by the
volume o.f the g.ene pool. H.owc:verl t.he poo.l is enormous. It has been
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not occur because selection is impossible at the atomic or molecular
level.

And here is where the principle of reinforcement starts. Suppose that
a mutated gene has got into a zygote. While the organism develops, the
cells divide, and the result is that the mutated gene is replicated about
101 5 times. The combination of genes in the zygote has also been
replicated. Therefore, random changes in the genetic code in the process
of the development of the phenotype becomes reinforced. And this is
a transition from the atomic or molecular level to the level of
macrophenomena. Selection at this level is possible. I want to emphasize:
Darwin's demon does not try to select different genetic codes, and in
this sense it is not quite like Maxwell's demon. It influences the
organism's phenotypes, where any change in the genetic code is
amplified about 1015 times. .

There should be no need to explain how Darwin's demon
operates. The way natural selection is realized is described in every
textbook on biology. Let me only note that the "demon" is rather
merciless. It operates severely: it eliminates phenotypes which have
randomly proved unfit. Taking those which are randomly less or more
fit to the habitat, it gives preference to the more fit while the less fit are,
as a rule, eliminated.

However, Darwin's demon does not operate directly and gives the less
fit a chance to survive. Changes in the genetic code which may not be
used today may be utilized tomorrow. They are useless and even harm­
ful today, but they may become useful later. It means that we should
not hurry and render the verdict. Let the random variation in the
genetic code "sleep", stay dormant for a while, for several generations of
phenotypes, masked as a recessive gene. It may suddenly be helpful
later.

Naturally, the. effect of Darwin's demon or, in other words, natural
selection does not oppose the second law of thermodynamics in any
way. We noted above, that living beings only exist due to the inflow of
negentropy from the environment, i. e. due to the rise of entropy in this
environment. This increase in entropy is the "fee" for the service
provided by Darwin's demon.

Diversity of species. The diversity of species on the Earth, where
Protozoa coexist with very complicated and organized species, is the
result of evolution proceeding for about two thousand million years.
replicated. .rnererore, random changes III the genetic Code III tne process
of the development of the phenotype becomes reinforced. And this is
a transition from the atomic or molecular level to the level of
macrophenomena. Selection at this level is possible. I want to emphasize:
Darwin's demon does not try to select different genetic codes, and in
this sense it is not quite like Maxwell's demon. It influences the
organism's phenotypes, where any change in the genetic code is
amplified about 1015 times. .

There should be no need to explain how Darwin's demon
operates. The way natural selection is realized is described in every
textbook on biology. Let me only note that the "demon" is rather
merciless. It operates severely: it eliminates phenotypes which have
randomly proved unfit. Taking those which are randomly less or more
fit to the habitat, it gives preference to the more fit while the less fit are,
as a rule, eliminated.
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process. Naturally, many species became extinct; nevertheless, today
a tremendous number of simple species exist alongside complicated
ones. Evolution has been directed from the less fit to the more fit rather
than from the simple to the complicated because natural selection
operates in this direction and no other one. The characteristic feature of
this process is the increase in the number of species and their growing
diversity. Higher species will appear, which is an advance for the
evolution process.

We could give a number of reasons why evolution increases the
number of species. Firstly, hereditary variability increases in time, i.e.
mutations accumulate and the gene pool extends. Secondly, there are
a great number of ways to adapt to any given change in the
environment. Natural selection approves of any acceptable versions. The
selected variants may have either a more or less complicated
organization. Thirdly, once it has appeared, a species has a certain
stability. In particular, it resists the danger of being incorporated by
other species. Recall that hybrids produced by crossing between different
species cannot form germ cells, and therefore, cannot have any progeny.
Naturally, when we consider the increase in the number of species, we
have to take into account the reverse processes, such as the elimination
of a species due to an interspecific struggle or the extinction of a species
because of its inability to adapt to sudden severe changes in the
environment.

Unpredictability of new species. We considered fluctuations in an
ensemble of gas molecules in Chapter 4 and saw how the fluctuations of
the variables for an individual molecule are great. They are comparable
to the means of the variables. On the contrary, fluctuations of the
variables for a macrosystem are extremely small. Therefore,
a macro system could be described on the basis of dynamic laws rather
than probabilistic laws. This is done in thermodynamics. This means
that the transition from the atomic or molecular level of consideration
to the macrolevel brings about, as it were, a reciprocal compensation of
numerous random deviations in the behaviour of individual molecules.
The result is that the behaviour of the macrosystem as a whole becomes
unpredictable unambiguously.

As to Nature, we encounter a qualitatively different situation. The
individual fluctuations characterizing random changes in the genetic
code are reinforced 101

5 times and can be revealed on the macrolevel, in
diversity. Higher species will appear, which is an advance for the
evolution process.

We could give a number of reasons why evolution increases the
number of species. Firstly, hereditary variability increases in time, i.e.
mutations accumulate and the gene pool extends. Secondly, there are
a great number of ways to adapt to any given change in the
environment. Natural selection approves of any acceptable versions. The
selected variants may have either a more or less complicated
organization. Thirdly, once it has appeared, a species has a certain
stability. In particular, it resists the danger of being incorporated by
other species. Recall that hybrids produced by crossing between different
species cannot form germ cells, and therefore, cannot have any progeny.
Naturally, when we consider the increase in the number of species, we
have to take into account the reverse processes, such as the elimination
of a species due to an interspecific struggle or the extinction of a species
because of its inability to adapt to sudden severe changes in the
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related to genetics and evolution theory. These problems clearly show
the fundamentality of probabilistic laws and the fundamental role of
chance. However, the topic of probability in biology is much wider. It
also includes a number of problems that could not be treated in this
book, such as the origin of life on the Earth, the change in the sizes of
populations of species, the simulation of the nervous system, and the
creation of a model of the human brain.
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related to genetics and evolution theory. These problems clearly show
the fundamentality of probabilistic laws and the fundamental role of
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A Concluding
Conversation

It is only when we finish writing that we lind what we
should have begun from.

Blaise Pascal

AUTHOR: "This book on the world of probabilities has come to an
end. I hope that it gave some food for thought."

READER: "I have to admit that some points do not fit in with my own
views. For instance, it is hard for me to see how randomness can be
used to solve problems. I mean the percept ron, the Monte Carlo
method, and the principle of homeostat. These are very much like
'miracles'."

AUTHOR: "In the meantime, they are just as 'miraculous' as the
random number table."

READER: "I do not understand."
AUTHOR: "Each new digit in the table is independent of its

predecessors. 111 spite of that, the table as a whole has stability. The
digits appear independently from each other, but the frequency in
which any digit appears is determinate.
"Besides, it is useless to try and write down a set of random digits
"by hand". For instance, you might write 8, 2, 3, 2, 4, 5, 8, 7 '" And
naturally, you see that perhaps you should write a 1 or a 6 because
the digits are not in the sequence. And against your will, you correct
your actions as a result of your preceding ones. The result is that you
won't have a table of truly random numbers.

"It is essential to see that the occurrence of each random event is in
no way related to the preceding ones. Therefore, the stability observed
in the picture of a large number of random events seems to be
'miraculous'. In the long ~~!1..! __~h~ _'~i~_a~l~~_. is responsible for the

Blaise Pascal

AUTHOR: "This book on the world of probabilities has come to an
end. I hope that it gave some food for thought."

READER: "I have to admit that some points do not fit in with my own
views. For instance, it is hard for me to see how randomness can be
used to solve problems. I mean the percept ron, the Monte Carlo
method, and the principle of homeostat. These are very much like
'miracles'."

AUTHOR: "In the meantime, they are just as 'miraculous' as the
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In other words, any digits from 0 to 9 should have the same chance of
appearing."

READER: "Suppose I have a bag and draw out balls labelled
with different digits. What kind. of symmetry do you · mean
here?"

AUTHOR: "For instance, the symmetry with respect to the exchange of
the balls. Imagine that all the balls suddenly change places. If the
symmetry exists, you will not notice the exchange. But this is not all.
Once you return the balls to the bag and mix them, you restore the
initial situation and take care to make the system symmetrical -with
respect to each act in which a ball is drawn. As you can see, the
explanation is deep enough. Symmetry and asymmetry are related to
the most fundamental notions. These notions underlie the scientific
picture of the universe."

READER: "I have read your book This Amazingly Symmetrical World*.
I was really amazed how far symmetry penetrates into every
phenomenon occurring in this world. Now I see that the same can be
said about randomness."

AUTHOR: "Thank you. You refer to my book This Amazingly
Symmetrical World, in which I· attempted to set forth the notion of
symmetry and show how the concepts of symmetry and asymmetry
underlie our physical picture of the world.

"In fact, the point of that book was not just symmetry but the
dialectical unity of symmetry and asymmetry. Here I was not just
considering randomness but the dialectical unity of necessity
and randomness, which is, by the way, expressed in terms of probabi­
lity."

READER: "Judging from the remarks above, there seems to be
a relation between necessity-randomness and symmetry-asymmetry."

AUTHOR: "Yes, and a very profound one. The principles of
symmetry-asymmetry control both the laws of Nature and the laws of
human creativity. And the role of probabilistic principles is no less
fundamental."

READER: "I'd like to discuss the relation between symmetry and
probability in more detail"

AUTHOR: "The classical definition of probability is underlain by the
idea of equally possible outcomes. In turn, equally possible outcomes
always have a certain symmetry. We dealt with equally possible
the balls. Imagine that all the balls suddenly change places. If the
symmetry exists, you will not notice the exchange. But this is not all.
Once you return the balls to the bag and mix them, you restore the
initial situation and take care to make the system symmetrical -with
respect to each act in which a ball is drawn. As you can see, the
explanation is deep enough. Symmetry and asymmetry are related to
the most fundamental notions. These notions underlie the scientific
picture of the universe."

READER: "I have read your book This Amazingly Symmetrical World*.
I was really amazed how far symmetry penetrates into every
phenomenon occurring in this world. Now I see that the same can be
said about randomness."

AUTHOR: "Thank you. You refer to my book This Amazingly
Symmetrical World, in which I· attempted to set forth the notion of
symmetry and show how the concepts of symmetry and asymmetry
un.~_erli~ our. physi~al p~ct~re ?f t~e world.
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as being proportional to the number of equally possible (I can now
say, symmetrical) outcomes, in each of which the given event is
realized. In other words, the probability of an event is the sum of the
probabilities of the respective equally possible outcomes."

READER: "I begin to think that the very rule of the summation of
probabilities is based on a certain symmetry."

AUTHOR: "An interesting idea."
READER: "Given we are looking for the probability that one of two

events will occur, it is irrelevant which one does because either of
them brings about a result. The symmetry here is related to the
independence with which the result is obtained with respect to the
substitution of one event for the other."

AUTHOR: "We can go further. Suppose there is a deeper symmetry
related to the indistinguishability between the first and the second
event (similar situations were discussed in Chapter 5). The rule of the
summation of probabilities is replaced in this case by the rule of the
summation of the probability amplitudes."

READER: "True, I can clearly see here the relation between symmetry
and probability." .

AUTHOR: "This relation can be represented even more clearly if we
use the notion of information. Of course, you remember that
information is underlain by probability in principle (see Chapter 3).
Now the relation between information and symmetry is as follows:
less information corresponds to a more symmetrical state."

READER: "Then it is possible to believe that an increase in the
symmetry of a state should result in a rise in its entropy."

AUTHOR: "Exactly. Have a look at Fig. 4.12. The state with the
greatest statistical weight, and therefore, with the greatest entropy is
the state corresponding to the uniform distribution of molecules in
both halves of the vessel. Evidently, this is the most symmetrical
arrangement (there is a mirror symmetry with respect to the plane
separating the vessel in two)."

READER: "That is something here to think over. It means that human
creativity reduces symmetry. However, symmetry is widely used in art.
Is this not a contradiction?"

AUTHOR: "No. We use symmetry-asymmetry rather than only
symmetry in art. We have already discussed it elsewhere, in my book
on symmetry. Of course, these problems require special consideration.

AUTHOR: "An interesting idea."
READER: "Given we are looking for the probability that one of two

events will occur, it is irrelevant which one does because either of
them brings about a result. The symmetry here is related to the
independence with which the result is obtained with respect to the
substitution of one event for the other."

AUTHOR: "We can go further. Suppose there is a deeper symmetry
related to the indistinguishability between the first and the second
event (similar situations were discussed in Chapter 5). The rule of the
summation of probabilities is replaced in this case by the rule of the
summation of the probability amplitudes."

READER: "True, I can clearly see here the relation between symmetry
and probability." .

AUTHOR: "This relation can be represented even more clearly if we
use the notion of information. Of course, you remember that
information is underlain by. probability in .principle (see Chap~~r 3).
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READER: "This means that we can speak of the 'composition of forces'
as follows. There are symmetry and necessity on the one side, and
asymmetry and chance are on the other side."

AUTHOR: "Yes, this 'composition of forces' is correct. Please recall the
parable about the 'Buridan's ass'. I started with it my first
conversation 'between the author and the reader' in This Amazingly
Symmetrical World."

READER: "I know this parable. The legend has it that a philosopher
named Buridan left his ass between two heaps of food. The ass
starved to death because he could not decide which heap to start
with."

AUTHOR: "The parable was an illustration of mirror symmetry. There
were two identical heaps of food and the ass at the same distance
between them. The ass was unable to make his choice."

READER: "As I see it, the ass starved to death because of symmetry."
AUTHOR: "As the parable has it, he did. In reality, however, the ass

lived in the 'symmetrical world built on probability' rather than in the
'symmetrical world' without any randomness. Any chance occurrence
(a fly could bother the ass, he could jerk or move a little) might easily
destroy the symmetry: one of the heaps could become a bit closer, and
the problem of choice is 'null and void'. As physicists say,
a spontaneous violation of symmetry could easily occur."

READER: "Is it possible to conclude that symmetry is harmful while
chance is beneficial?"

AUTHOR: "I'm sure you realise that such a question is too far reach­
ing. We have seen that symmetry decreases the number of versions of
behaviour and reduces a number of altefnatives, It is logical to admit
that this reduction may lead to a hopeless situation, to a blind alley.
And then chance becomes essential. On the other hand; too many
chances, an abundance of alternatives and disorder may also be harm­
ful. And then, order comes to rescue, i. e. symmetry and necessity."

READER: "The danger of randomness is understandable. But what
might be the danger of symmetry? If of course we exclude the
situation the 'Buridan's ass' was in.

AUTHOR: "Firstly, the 'Buridan's ass' was not an illustration from the
life of animals but rather the presentation of a problem. Secondly, it is
quite easy to give a practical example of the danger of symmetry.
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with."

AUTHOR: "The parable was an illustration of mirror symmetry. There
were two identical heaps of food and the ass at the same distance
between them. The ass was unable to make his choice."

READER: "As I see it, the ass starved to death because of symmetry."
AUTHOR: "As the parable has it, he did. In reality, however, the ass

lived in the 'symmetrical world built on probability' rather than in the
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READER: "True, symmetry may be dangerous. As far as I understand,
it is quite easy to destroy symmetry, be it a fly bothering an animal or
an extra beam in a construction."

AUTHOR: "Your attention has been drawn to an essential point. The
instability of symmetry makes it easily upset and, in particular, allows
for the possibility of spontaneous violation."

READER: "Symmetry is unstable. This is something new to me."
AUTHOR: "The investigation of unstable symmetry has not been going
. long, only a decade. It has led to the appearance of a new scientific
discipline called catastrophe theory. This theory studies the
relationship between symmetry and chance from the point of view of
the development of various processes and phenomena."

READER: "The very name of the theory is somewhat dismal."
AUTHOR: "The catastrophes considered in the theory occur on

different levels. Suppose a particle causes a violent process in
a Geiger-MUller counter. The result is that the particle is registered.
The process is a catastrophe on the scale of the microcosm. An
enormous bridge or a jet plane may be suddenly brought down due to
resonance oscillations. This is a catastrophe on our common scale.
Catastrophes occur in a diversity of situations: sudden crystallization
in a supercooled liquid, a landslide, the start of laser generation, etc.
In each case, the system has an unstable symmetry, which may be
upset by a random factor. These random factors may be very slight in
influence, but they destroy the symmetry and therefore trigger violent
processes in an unstable system, and these processes are called
catastrophes."

READER: "Catastrophe theory appears to show up the deep re­
lationship between symmetry-asymmetry and necessity-randomness
quite clearly."

AUTHOR: "I quite agree with you. However, it is a theme for another
•.Jr~~I. " ,.. ,""on<;,uaong ....cnversucron
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Something Called Nothing
Physical Vacuum:
What Is It?

What does emptiness consist of? On the face of it, this
question seems senseless. Emptiness is caUed emptiness
precisely because it consists of nothing. But this is not exactly
so. Absolute emptiness "exists" only theoretical1y. Real empty
space, however, is not a simple void. It is a physical vacuum,
a complex intermixture of spontaneously appearing and
immediately vanishing fields. The deeper we penetrate into
the region of ultrasmall scales, the more complex and rich
in properties does this void - the vacuum - become. If we
descend farther and farther down, to distances represented
by a decimal with 32 zeros fol1owing the decimal point
(10- 33 em, a quantity difficult to even conceive), we shal1
find something entirely fantastic. Space resembles a sponge
or a foamlike structure: It is a vacuum foam, undulating,
continuously changing its shape and consisting of self-closing
spatial bubbles.

AI1 of this is vividly and fascinatingly dealt with in this
book.
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What does emptiness consist of? On the face of it, this
question seems senseless. Emptiness is called emptiness
precisely because it consists of nothing. But this is not exactly
so. Absolute emptiness "exists" only theoretical1y. Real empty
space, however, is not a simple void. It is a physical vacuum,
a complex intermixture of spontaneously appearing and
immediately vanishing fields. The deeper we penetrate into
the region of ultrasmall scales, the more complex and rich
in properties does this void - the vacuum - become . If we
descend farther and farther down, to distances represented
by a decimal with 32 zeros fol1owing the decimal point
(10- 33 em, a quantity difficult to even conceive), we shal1
find something entirely fantastic. Space resembles a sponge
or a foamlike structure: It is a vacuum foam, undulating,
continuously changing its shape and consisting of self-closing
spatial bubbles.

All of this is vividly and fascinatingly dealt with in this
book .









The World Is Built on Probabili~
This text is divided into two major parts.
The aim of the first part is to convince the
reader that the random world begins directly
in his or her own living room because, in fact,
all modern life is based on probability.
The first part is on the concept of probability
and considers making decisions in conflict
situations, optimizing queues, games, and the
control of various processes, and doing ran­
dom searches.
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