Source code for juham.base.base

import json
from datetime import datetime, timezone
from typing import Any
from paho.mqtt.client import MQTTMessage as MqttMsg
from .object import Object


[docs] class Base(Object): """An automation object with MQTT networking, data storage, logging and factory method pattern capabilities. Example: :: obj = Base("foo") obj.mqtt_host = "myhost.com" obj.mqtt_port = 12345 obj.subscribe('foo/bar') obj.run() To configure Base class to use a specific MQTT and time series implementations set the class attributes to refer to desired MQTT and time series database implementations. When instantiated the object will instantiate the given MQTT and database objects with it. """ database_class_id: str = "" mqtt_class_id: str = "" write_attempts = 3 mqtt_root_topic: str = "juham" mqtt_host: str = "localhost" mqtt_port: int = 1883 _class_id: str = "" _valid_topics: set = set() def __init__(self, name: str = "") -> None: """Constructs new automation object with the given name, configured time series recorder and MQTT network features. Args: name (str): name of the object """ super().__init__(name) self.database_client: object = None self.init_database(name) self.init_mqtt(name) self.debug(name + " instantiated") # @override
[docs] def to_dict(self): data = super().to_dict() data["_base"] = {} attributes = ["mqtt_host", "mqtt_port", "mqtt_root_topic", "write_attempts"] for attr in attributes: if getattr(self, attr) != getattr(type(self), attr): data["_base"][attr] = getattr(self, attr) if self.database_client is not None: data["_database"] = {"db_client": self.database_client.to_dict()} return data
# @override
[docs] def from_dict(self, data): super().from_dict(data) for key, value in data["_base"].items(): if key == "db_client": self.database_client = Object.instantiate(value["_class"]) self.database_client.from_dict(value) else: setattr(self, key, value)
[docs] def init_database(self, name: str) -> None: """Instantiates the configured time series database object. Issues a warning if the :attr:`~database_class_id` has not been configured, in which case the object will not have the time series recording feature. This method is called internally and typically there is no need to call it from the application code. """ if Base.database_class_id != 0 and Object.find_class(Base.database_class_id): self.database_client = Object.instantiate(Base.database_class_id) else: self.warning("Suscpicious configuration: no database_class_id set")
[docs] def init_mqtt(self, name: str) -> None: """Instantiates the configured MQTT object for networking. This method is called internally and typically there is no need to call it from the application code. Issues a warning if the :attr:`~pubsub_class_id` has not been configured, even though objects without a capability to communicate are rather crippled. """ if Base.mqtt_class_id is not None and Base.find_class(Base.mqtt_class_id): self.mqtt_client = Object.instantiate_with_param(Base.mqtt_class_id, name) self.mqtt_client.on_message = self.on_message self.mqtt_client.on_connect = self.on_connect self.mqtt_client.on_disconnect = self.on_disconnect if self.mqtt_client.connect_to_server(self.mqtt_host, self.mqtt_port) != 0: self.error( f"Couldn't connect to the mqtt broker at {self.mqtt_client.host}" ) else: self.debug( f"{self.name} with mqtt broker {self.mqtt_client.name} connected to {self.mqtt_client.host}" ) else: self.warning("Suscpicious configuration: no mqtt_class_id set")
[docs] def subscribe(self, topic: str) -> None: """Subscribe to the given MQTT topic. This method sets up the subscription to the specified MQTT topic and registers the :meth:`on_message` method as the callback for incoming messages. Args: topic (str): The MQTT topic to subscribe to. Example: :: # configure obj.subscribe('foo/bar') """ if self.valid_topic(topic): self.mqtt_client.connected_flag = True self.mqtt_client.subscribe(topic) self.info(f"{self.name} subscribed to { topic}") else: raise ValueError( f"Subscription to invalid topic {topic} by object {self.name}" )
[docs] def on_message(self, client: object, userdata: Any, msg: MqttMsg) -> None: """MQTT message notification on arrived message. Called whenever a new message is posted on one of the topics the object has subscribed to via subscribe() method. This method is the heart of automation: here, derived subclasses should automate whatever they were designed to automate. For example, they could switch a relay when a boiler temperature sensor signals that the temperature is too low for a comforting shower for say one's lovely wife. For more information on this method consult MQTT documentation available in many public sources. Args: client (obj): MQTT client userdata (Any): application specific data msg (object): The MQTT message """ if msg.topic == self.mqtt_root_topic + "/control": m = json.loads(msg.payload) if m["command"] == "shutdown": self.mqtt_client.disconnect() self.mqtt_client.loop_stop()
[docs] def on_connect(self, client: object, userdata: Any, flags: int, rc: int) -> None: """Notification on connect. This method is called whenever the MQTT broker is connected. For more information on this method consult MQTT documentation available in many public sources. Args: client (obj): MQTT client userdata (Any): application specific data flags (int): Consult MQTT rc (int): See MQTT docs """ self.mqtt_client.subscribe(self.mqtt_root_topic + "/control") self.debug(self.name + " connected to the mqtt broker ")
[docs] def on_disconnect(self, client, userdata, rc=0): """Notification on disconnect. This method is called whenever the MQTT broker is disconnected. For more information on this method consult MQTT documentation available in many public sources. Args: client (obj): MQTT client userdata (Any): application specific data rc (int): See MQTT docs """ self._log.debug(self.name + " disconnected from the mqtt broker ")
# client.loop_stop()
[docs] def epoc2utc(self, epoch): """Converts the given epoch time to UTC time string. All time coordinates are represented in UTC time. This allows the time coordinate to be mapped to any local time representation without ambiguity. Args: epoch (float) : timestamp in UTC time rc (str): time string describing date, time and time zone e.g 2024-07-08T12:10:22Z Returns: UTC time """ utc_time = datetime.fromtimestamp(epoch, timezone.utc) utc_timestr = utc_time.strftime("%Y-%m-%dT%H:%M:%S") + "Z" return utc_timestr
[docs] def timestampstr(self, ts): """Converts the given timestamp to human readable string of form 'Y-m-d H:M:S'. Args: ts (timestamp): time stamp to be converted Returns: rc (string): human readable date-time string """ return str(datetime.fromtimestamp(ts).strftime("%Y-%m-%d %H:%M:%S"))
[docs] def timestamp(self): """Returns the current date-time in UTC. Returns: rc (datetime): datetime in UTC. """ return datetime.now(timezone.utc).timestamp()
[docs] def is_time_between(self, begin_time, end_time, check_time=None): """Check if the given time is within the given time line. All timestamps must be in UTC time. Args: begin_time (timestamp): beginning of the timeline end_time (timestamp): end of the timeline check_time (timestamp): time to be checked Returns: rc (bool): True if within the timeline """ check_time = check_time or datetime.utcnow().time() if begin_time < end_time: return check_time >= begin_time and check_time <= end_time else: # crosses midnight return check_time >= begin_time or check_time <= end_time
[docs] def write(self, point): """Writes the given measurement to the database. In case of an error, it tries again until the maximum number of attempts is reached. If it is still unsuccessful, it gives up and passes the first encountered exception to the caller. Args: point: a measurement describing a time stamp and related attributes for one measurement. """ first_exception = None for i in range(self.write_attempts): try: self.database_client.write(point) return except Exception as e: if first_exception is None: first_exception = e self.warning(f"Writing ts failed, attempt {str(i+1)}", str(e)) self.log_message( "Error", f"Writing failed after {str(self.write_attempts)} attempts, giving up", str(first_exception), ) raise first_exception
[docs] def read(self, point): """Reads the given measurement from the database. Args: point: point with initialized time stamp. ... note: NOT IMPLEMENTED YET """ self.database_client.read(point)
# @override
[docs] def debug(self, msg, details=""): """Logs the given debug message to the database after logging it using the BaseClass's info() method. Args: msg (str): The information message to be logged. details (str): Additional detailed information for the message to be logged """ super().debug(msg, details) self.log_message("Debug", msg, details="")
# @override
[docs] def info(self, msg: str, details: str = ""): """Logs the given information message to the database after logging it using the BaseClass's info() method. Args: msg : The information message to be logged. details : Additional detailed information for the message to be logged Example: :: obj = new Base('test') obj.info('Message arrived', str(msg)) """ super().info(msg, details) self.log_message("Info", msg, details="")
# @override
[docs] def warning(self, msg, details=""): """Logs the given warning message to the database after logging it using the BaseClass's info() method. Args: msg (str): The information message to be logged. details (str): Additional detailed information for the message to be logged """ super().warning(msg, details) self.log_message("Warn", msg, details)
# @override
[docs] def error(self, msg, details=""): """Logs the given error message to the database after logging it using the BaseClass's info() method. Args: msg (str): The information message to be logged. details (str): Additional detailed information for the message to be logged """ super().error(msg, details) self.log_message("Error", msg, details)
[docs] def log_message(self, type, msg, details=""): """Publish the given log message to the MQTT 'log' topic. This method constructs a log message with a timestamp, class type, source name, message, and optional details. It then publishes this message to the 'log' topic using the MQTT protocol. Parameters: type : str The classification or type of the log message (e.g., 'Error', 'Info'). msg : str The main log message to be published. details : str, optional Additional details about the log message (default is an empty string). Returns: None Raises: Exception If there is an issue with the MQTT client while publishing the message. Example: :: # publish info message to the Juham's 'log' topic self.log_message("Info", f"Some cool message {some_stuff}", str(dict)) """ try: msg = { "Timestamp": self.timestamp(), "Class": type, "Source": self.name, "Msg": msg, "Details": str(details), } self.publish(Base.mqtt_root_topic + "/log", json.dumps(msg), 1) except Exception as e: if self._log is not None: self._log.error(f"Publishing log event failed {str(e)}")
[docs] def publish(self, topic: str, msg: str, qos: int = 1, retain: bool = True): """Publish the given message to the given MQTT topic. For more information consult MQTT. Args: topic (str): topic msg (str): message to be published qos (int, optional): quality of service. Defaults to 1. retain (bool, optional): retain. Defaults to True. """ if self.valid_topic(topic): self.mqtt_client.publish(topic, msg, qos, retain) super().debug(f"Message published to valid topic: {topic}") else: raise ValueError(f"Publish to invalid topic {topic} by object {self.name}")
[docs] def valid_topic(self, topic: str) -> bool: """Check if the given topic has been registered as valid topic. Args: topic (str): topic to be validated Returns: bool: true if known topic. """ return topic in self._valid_topics
[docs] @classmethod def register_topic(cls, topic: str): """Register the given topic as known valid topic. Publishing and subscriptions are allowed only to registered topics. Each topic must have an owner, who is responsible for registering the topic. Args: topic (str): valid topic """ cls._valid_topics.add(topic)
[docs] def shutdown(self): """Shut down all services, free resources, stop threads, disconnect from mqtt, in general, prepare for shutdown.""" self.mqtt_client.disconnect() self.mqtt_client.loop_stop()
[docs] def run(self): """Start a new thread to runs the network loop in the background. Allows the main program to continue executing while the MQTT client handles incoming and outgoing messages in the background. """ self.mqtt_client.loop_start()
[docs] def run_forever(self): """Starts the network loop and blocks the main thread, continuously running the loop to process MQTT messages. The loop will run indefinitely unless the connection is lost or the program is terminated. """ self.mqtt_client.loop_forever()
[docs] @classmethod def register(cls) -> None: if cls._class_id == "": # register super class and other dependencies Object.register() cls.initialize_class() cls.register_topic(cls.mqtt_root_topic + "/control") cls.register_topic(cls.mqtt_root_topic + "/log")