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Lecture 1: Boolean Functions
Boolean values
There are two Boolean values, TRUE and FALSE. For convenience, we will

denote these values as  and . Boolean values are often also called bits. We

will use Boolean values to encode information.

Basic Boolean operations
Basic Boolean operations are functions that take one or two Boolean values as

input and output a Boolean value. We will focus the following operations:

The following notation is common:

Truth table
We can represent the Boolean operations NOT, AND, OR by the following truth

table.

1 0

NOT(x) := { 1
0

 if x = 1,
 otherwise.

AND(x, y) := { 1
0

 if x = 1 and y = 1,
 otherwise.

OR(x, y) := { 1
0

 if x = 1 or y = 1,
 otherwise.

¬x for NOT(x),

x ∧ y for AND(x, y),

x ∨ y for OR(x, y).

x

0

0

1

1

y

0

1

0

1

NOT(x)

1

1

0

0

AND(x, y)

0

0

0

1

OR(x, y)

0

1

1

1
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De Morgan’s Laws
There are redundancies among the operations NOT, AND, OR. In particular, we

can write AND in terms of NOT, OR. Similarly, OR can be expressed in terms of

NOT, AND.

We can check that these identities hold by looking at the above truth table.

Boolean functions

An -bit Boolean function  is a function that take  Boolean values as

input and outputs a Boolean value, i.e.,

Boolean function can express interesting algorithmic questions:

(The Riemann hypothesis is an important open question in mathematics. If you

resolve the hypothesis, you get a Millennium Prize.)

We will try to understand whether these kind of functions can be expressed

by a small number of basic Boolean operations. (It turns out that both functions

above can be expressed by a number of basic Boolean operations that is

polynomial in .)

¬(x ∧ y) = ¬x ∨ ¬y,

¬(x ∨ y) = ¬x ∧ ¬y.

n f n

f:{0, 1 → {0, 1}.}n

(x) := {PRIMESn
1
0

 if x is (the binary encoding of) a prime number,
 otherwise.

(x)RIEMANNn

:=

{ 1
0

 if x is (the binary encoding of) a proof of the Riemann hypothesis,
 otherwise.

n

http://en.wikipedia.org/wiki/Riemann_hypothesis
http://en.wikipedia.org/wiki/Millennium_Prize_Problems
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Lecture 2: Boolean Circuits
Boolean circuit
A Boolean circuit with  inputs and  output is a directed acyclic graph that

consists of the following kind of nodes:

Input nodes, labeled , without ingoing edges (sources).

Any number of gates, labeled with , , .

All ,  gates have two incoming edges.

All  gates have one incoming edge.

One output gate, without outgoing edges (sink). (All other gates have at least

one outgoing edge.)

Circuit computation
Suppose we assign Boolean values  to the input nodes of a circuit.

Then, we can propagate these values through the gates of the circuit by

applying the corresponding Boolean operations.

More formally, we would process the gates of the circuit in topological

order. To process a gate  labeled with a Boolean operation 

, we apply the operation  to the values assigned to the

ancestors of  and we assign the output of this operation to . (Since we

process nodes in topological order, the ancestors of  have already been

processed at the time we process .)

We say a Boolean circuit  with  inputs and  output computes an -bit

Boolean function  if for every input 

, the function value  is equal to the value

propagated to the output gate of  when we assign  to the input

nodes of .

One can show (e.g., by induction) that a circuit computes only one function.

In particular, the function does not depend on the order we process the gates.

We write  to denote the function computed by a circuit .

Example: parity
Consider the following -bit Boolean function

n 1

1, … , n

NOT AND OR

AND OR

NOT

, … ,x1 xn

u

T ∈ {NOT, AND, OR} T

u u

u

u

C n 1 n

f:{0, 1 → {0, 1}}n

x = ( , … , ) ∈ {0, 1x1 xn }n f(x)

C , … ,x1 xn

C

fC C

n

(x) := {PARITYn
1
0

 if  + … +  is an odd number,x1 xn

 otherwise.
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For , we can express  in terms of  as follows

The parity of  bits is called exclusive-or. A common notation for 

 is .

If  is a power of , we can construct a circuit for  recursively based

on the following identity

Circuit complexity
For a given Boolean functions, there could be many ways of computing it by a

circuit. But some circuits are better than others.

We measure the efficiency of a circuit  by its size

For a Boolean function , we define its size as the minimum size of circuit

that computes .

Another measure for the efficiency of a circuit is its depth

Generic upper bound

Theorem: For every -bit Boolean function  there exists a circuit of

size at most  to compute it.

Proof: We will use induction on . If we fix one of input bit of the function ,

then we are left with an -bit Boolean function.

For , the theorem is true because for every -bit function, we can find

a circuit of size at most . Suppose . Let  and  be the two  bit

functions obtained by fixing the first bit of , i.e.,

n = 2 PARITY NOT, AND, OR

( , ) = ( ∧ ¬ ) ∨ (¬ ∧ )PARITY2 x1 x2 x1 x2 x1 x2

2

( , )PARITY2 x1 x2 ⊕x1 x2

n 2 PARITY

(x) = ( , … , ) ⊕ ( , … , ).PARITYn PARITYn/2 x1 xn/2 PARITYn/2 xn/2+1 xn

C

size(C) := the number of gates of C.

f

f

depth(C)

:= length of longest path from an input node to the output gate

n f

10 ⋅ − 102n

n f

n − 1

n = 1 1

10 n > 1 f0 f1 n − 1

f

( , . . . , ) = f(0, , . . . , ),f0 x2 xn x2 xn

( , . . . , ) = f(1, , . . . , ).f1 x2 xn x2 xn



Both  and  are  bit functions. The following identity allows us to

express the original function  in terms of  and  as well as a few basic

operations

Therefore, we can construct a circuit for  from a circuit for  and a

circuit for  as well as  additional gates (one  gate, one  gate, and two 

 gates). It follows that . By induction

hypothesis, both  and  are at most . By

combining these bound, we get

f0 f1 n − 1

f f0 f1

f = (¬ ∧ ) ∨ ( ∧ ).x1 f0 x1 f1

f f0

f1 4 NOT OR

AND size(f) ≤ size( ) + size( ) + 4f0 f1

size( )f0 size( )f1 10 ⋅ − 102n−1

size(f) ≤ 10 ⋅ − 20 + 4 = 10 ⋅ − 16 ≤ 10 ⋅ − 10.2n 2n 2n
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Lecture 3: Hard functions
Generic lower bound

Theorem: For every  with , there exists an -bit Boolean

function that requires circuits of size at least .

Proof: The idea is to compare the number of -bit Boolean functions 

 to the number of circuits of size at most . If

the number of functions is larger than the number of such circuits, it means

that there exists a functions that is not computed by such a circuit.

Let us first count the number of -bit Boolean functions. In general, the

number of functions from a finite set  to a finite set  is equal to . (You

should convince yourself of this fact.) Hence, the number of -bit Boolean

functions is .

Now let’s count the number of size-  circuits. A circuit of size  consists of a

directed acyclic graph (DAG) on  nodes (  input nodes and 

gates). Each node has in-degree at most . (The in-degree of a node is the

number of ingoing edges.) Furthermore, each input node (in-degree ) is

labeled with an input variable . Each gate is labeled with a Boolean

operation, either , , or .

We claim that we can describe such a circuit completely by a bit string of

length at most . First, we give every node a unique ID. Since there are

only  nodes in the circuit, we only need  bits for the ID. (We can use the

numbers from  to  as IDs.) Our description of the circuit will consist of 

parts, each of length at most  (one part per vertex). To describe a single

vertex , we store the ID of  (  bits), the IDs of the vertices that have

incoming arcs to  (  bits) and the label of , which is either a Boolean

function or the index of an input/output variable (at most  bits).

We don’t need to store the outgoing arcs of a vertex, because those will be

stored as incoming arcs by other vertices. In total, we store at most  bits

per vertex. Hence, the description of the whole circuit is indeed shorter than 

 bits.

n ∈ N n ≥ 100 n

/100n2n

n

f:{0, 1 → {0, 1}}n s = /100n2n

n

X Y |Y ||X|

n

22n

s s

= s + n ≤ 2ss′ n s

2

0

i ∈ [n]

AND OR NOT

10s log s

s′ log s′

1 s′ s′

10 log s′

u u log s′

u 2 log s′ u

log n ≤ log s′

4 log s′

10s log s

10 log
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It follows that the number of circuits of size  is at most  (the

number of bit strings of length ). For , this number is

much less than . (Check this calculation.) It follows that an overwhelming

majority of -bit Boolean functions does not have circuits of size .

\

Remark: While the theorem shows that some functions require large

circuits, the proof of the theorem does not give an explicit construction of such

a function. (The proof is non-constructive.) It’s a famous open problem to show

strong lower bounds on the circuit size of concrete functions. For example, the

following funtion is conjectured to require circuits of exponential size

Straight-line Programs
In this part, we will discuss an exact correspondence between circuits and a

simple kind of programs.

Here is an example of a straight-line program:

Input:  

Instructions:

Output: 

This program outputs the parity of the two input bits. We can construct a circuit

that corresponds to this program in the following way: For every instruction,

we have a gate in the circuit that applies the same Boolean operation and has

incoming edges from nodes corresponding to the right-hand-side variables of

the instruction. The size of the resulting circuit is exactly equal to the number

of instructions of the straight-line program.

s 210s log s

10s log s s = /100n2n

22n

n /100n2n

(x) :=CIRCUIT−SATn

⎧
⎩⎨

0

1

 if x is the binary encoding of a circuit
 that computes the constant 0 function,
 otherwise.

,x1 x2

:= ¬y1 x1

:= ¬y2 x2

:= ∧y3 x1 y2

:= ∧y4 y1 x2

:= ∨y5 y3 y4

y5



Definition: A straight-line program is a sequence of instructions of the

following form: Each instruction applies a basic Boolean operation (

) to input variables or previously assigned variables and

assigns the outcome of this operation to a new variable. The output of

the program is the outcome of last instruction. The length of a straight-

line program is the number of instructions.

Exercise: A Boolean function has a straight-line program of length at most  if

and only if it has a Boolean circuit of size at most .

NOT, AND, OR

ℓ

ℓ
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Lecture 4: Deterministic Finite Automata
The following figure shows the state diagram of a deterministic finite

automaton (DFA),

q₀ q₁ q₂

0 1

1
0

0,1

The automaton has three states , , and . The state  is designated as the

start state and  is designated as an accept state. The directed edges between

states specify the transitions of the automaton when reading an input string.

This automaton accepts the set of strings that contain  and have an even

number of ’s after the last .

Languages
An alphabet  is a finite set of symbols, e.g.,  or . (We

will usually content ourselves with the binary alphabet.) A string  over  is a

finite sequence of symboles, written as  for . The

empty string (string of length zero) is denoted . The set of all strings is denoted 

. A language  is any subset of strings, so that .

We will use languages to encode computational problems. (A language 

can be thought to encode the function  with  if and

only if ).

 

Operations on languages: Let  be two languages. The following

operations on languages are useful:

Basic set-theoretic operations, union , intersection , and

complementation . (These operations correspond to 

.)

Concatentation .

Kleene star $A^*:=A 1A^2 $, where  denotes the -fold concatenation of 

 with itself. (The corner cases  are defined so that the rule 

 holds. Concretely,  and ).

q0 q1 q2 q0

q1

1

0 1

Σ Σ = {0, 1} Σ = a, b, c

w Σ

w = ⋯x1 xn , … , ∈ Σx1 xn

ε

Σ∗ L L ⊆ Σ∗

L

f: → {0, 1}Σ∗ f(w) = 1

w ∈ L

A, B ⊆ Σ∗

A ∪ B A ∩ B

:= ∖ AA
¯ ¯¯̄

Σ∗

OR, AND, NOT

AB := {uv ∣ u ∈ A, v ∈ B}
0A Ai i

A i = 0, 1

=AiAj Ai+j = {ε}A0 = AA1
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(Notice that the Kleene star notation is compatible with the notation for the set

of all strings.)

Deterministic Finite Automaton

Definition: A deterministic finite automaton  consists of the following

parts:

a transition function  for an alphabet  and a set of

states ,

a start state ,

a set of accept states .

Language of a DFA

Definition: A DFA  accepts a string  if there exists a

sequence of states  such that

the first state is the start statem 

the th state is obtained by reading the th symbol, 

the final state is an accept state, .

The language of  is defined as

If  is the language of some deterministic finite automaton, we say that  is

regular.

Example proof
Recall the automaton  from the beginning:

q₀ q₁ q₂

0 1

1
0

0,1

M

δ:Q × Σ → Q Σ

Q

∈ Qq0

F ⊆ Q

M w = ⋯x1 xn

, , … , ∈ Qr0 r1 rn

=r0 q0

i i = δ( , )ri ri−1 xi

∈ Frn

M

L(M) = {w ∣ M  accepts w}.

L L

M



»

»

Lemma: The language of the automaton  is the set of all strings 

 such that  contains a  and ends with an even number of 

’s after the last .

We will prove this lemma by inductions. To make the proof easier, we will show

a stronger statement. (Proofs by induction often become easier if the statement

is strengthened.)

Define the repeated transition function ,

This function satisfies  for every string  and

symbol . Furthermore,  Hence, the

following claim implies the lemma.

 

Claim: The repeated transition function of  is

Proof of claim: By induction on the length of . (At this point, the proof is

completely mechanical.)

If , then  and the claim is true (because ).

Suppose length of  for  is greater than . The induction

hypothesis is that the claim holds for all strings that are shorter than . (In

particular, the claim holds for the substring  of .)

We consider three cases:

: By induction hypothesis, . Therefore, .

The claim is true in this case because  and .

: By induction hypothesis, . Therefore,

The claim is true in this case because  and .

M

w ∈ {0, 1}∗ w 1

0 1

: → Qδ∗ Σ∗

(w) := state of M  after reading wδ∗

(wx) = δ( (w), x)δ∗ δ∗ w ∈ Σ∗

x ∈ Σ L(M) = {w ∣ (w) ∈ F}.δ∗

M

(w)δ∗

=
⎧

⎩
⎨
⎪⎪⎪⎪
⎪⎪⎪⎪

q0

q1

q2

 if w does not contains 1 (A),

 if w contains 1 and ends with an even number of 0's after the the last 1 (B)
,

 if w contains 1 and ends with an odd number of 0's after the the last 1 (C)
.

w

w = ε (w) =δ∗ q0 ε ∈ A

w = ux x ∈ {0, 1} 0

w

u w

u ∈ A (u) =δ∗ q0

(w) = δ( , x) = {δ∗ q0
q0

q1

 if x = 0,
 if x = 1.

u0 ∈ A u1 ∈ B

u ∈ B (u) =δ∗ q1

(w) = δ( , x) = {δ∗ q1
q2

q1

 if x = 0,
 if x = 1.

u0 ∈ C u1 ∈ B



» : By induction hypothesis, . Therefore,

The claim is true in this case because both  and .

We conclude that the claim is true in all three cases, which proves the claim.

u ∈ C (u) =δ∗ q1

(w) = δ( , x) = {δ∗ q1
q1

q1

 if x = 0,
 if x = 1.

u0 ∈ B u1 ∈ B
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Lecture 5: Closure Properties
We will show that the set of regular languages is closed under basic set-

theoretic operations, intersection, union, and complement.

These closure properties are useful to show that languages are regular or to

show that they are not.

Theorem: Let  be two regular languages over . Then, the

following languages are also regular:

intersection: ,

union: ,

complement:  and 

.

Furthermore, if  and  are DFAs for  and , then the languages

above have DFAs with a number of states that is polynomial in the

number of states of  and .

Proof: Suppose  and  are deterministic finite automata for  and . Let

 and  be the transition functions of 

and . Here,  and  are the states sets of  and . Let 

and  be the accept states of  and .

 Complement: We are to construct a DFA  for the complement . Let 

be the same automaton as  except with accept states .

(Concretely,  has the same transition function, set of states, alphabet, and

start state as .) Then,  accepts a word  if and only if 

. By construction,  is in the same state after reading

, i.e., . Hence,  accepts  if and only if , which

means that  does not accept . It follows that .

 

Intersection: We are to construct a DFA  for the intersection . The idea

is that  simulates both  and  at the same time. The state space of  is

the product set . The transition function is

A, B ⊆ Σ∗ Σ

A ∩ B = {w ∈ ∣ w ∈ A and w ∈ B}Σ∗

A ∪ B = {w ∈ ∣ w ∈ A or w ∈ B}Σ∗

= {w ∈ ∣ w ∉ A}Ā Σ∗ = {w ∈ ∣ w ∉ B}B̄ Σ∗

MA MB A B

MA MB

MA MB A B

: × Σ →δA QA QA : × Σ →δB QB QB MA

MB QA QB MA MB ⊆FA QA

⊆FB QB MA MB

M Ā M

MA F = ∖QA FA

M

MA M w ∈ Σ∗

(w) ∈ F = ∖δ∗ QA FA MA

w (w) = (w)δ∗ δ∗
A

M w (w) ∉δA FA

MA w L(M) = ∖ L( ) =Σ∗ MA Ā

M A ∩ B

M MA MB M

Q = ×QA QB

δ(( , ), x) = ( ( , x), ( , x))qA qB δA qA δB qB
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The start state of  has the start space of  in the first coordinate and

the start space of  in the second coordinate. Finally the accept states of 

are . With this construction,  is in state 

 after reading . Hence,  accepts  if and only 

 and , which means that .

 

Union: We could construct an automaton for  similar to the product

construction above. However, we can also use the properties we have proved

so far to conclude that  is regular whenever  and  are regular. By de

Morgan’s law, we can express the union in terms of complements and

intersection, . Since we have already shown that regular

languages are closed under complement and intersection, it follows that 

is regular.

M MA

MB M

F = ×FA FB M

(w) = ( (w), (w))δ∗ δ∗
A

δ∗
A

w M w

(w) ∈δ∗
A

FA (w) ∈δ∗
B FB w ∈ A ∩ B

A ∪ B

A ∪ B A B

A ∪ B = ( ∩ )Ā B̄
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

A ∪ B
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Lecture 6: Non-Deterministic Finite Automata
Example
The following figure shows the state diagram of a non-deterministic finite

automaton (NFA),

q₀ q₁ q₂ q₃

0, 1 0, 1

1 0, ɛ 1

The automaton accepts the set of all strings that contain  or  as a

substring.

Non-deterministic Finite Automata

Definition: A non-deterministic finite automaton (NFA)  consists of the

following

a set of states  and transitions  between

states labeled by alphabet symbols or the empty string ,

a start state ,

a set of accept states .

Language of Non-deterministic Finite Automata

Definition: A computation path of an NFA  for a string  is a

sequence of transitions 

 such that  is

the start state and . An NFA  accepts a string  if there

exists a computation path for  that ends in an accept state, so that 

.

The language of an NFA is the set of strings that  accepts,

11 101

M

Q T ⊆ Q × Q × (Σ ∪ {ε})

ε

∈ Qq0

F ⊆ Q

M w ∈ Σ∗

( , , ), ( , , ), … , ( , , ) ∈ Tr0 r1 x1 r1 r2 x2 rm−1 rm xm =r0 q0

w = ⋯x1 xm M w

w

∈ Frm

M

( )
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Closure Properties of Regular Languages

Theorem: The set of regular languages is closed under union,

concatenation, and Kleene star operations.

Lemma: Let  and  be NFAs, then there exists an NFA  with

Proof sketch: Create a designated start state with -transitions to the start state

of  and the start state of . An accepting computation path in 

corresponds to either an accepting computation path in  or an accepting

computation path in . .

 

Lemma: Let  and  be NFAs, then there exists an NFA  with

Proof sketch: Add -transitions from the accept states of  to the start

state of . An accepting computation path in  corresponds to an accepting

computation paths in  followed by an accepting computation path in . 

.

 

Lemma: Let  be an NFA, then there exists an NFA  with

Proof sketch: Create a designated start state with a -transition to the start

state of . Add -transitions from the accept states of  to this designated

start state. Make this designated start state the unique accept state of . An

accepting computation path in  corresponds to a finite sequence of accepting

computation paths in . .

L(M)

= {w ∈ ∣ there exits an accepting computation path in M  for w}.Σ∗

M1 M2 M

L(M) = L( ) ∪ L( ).M1 M2

ε

M1 M2 M

M1

M2 □

M1 M2 M

L(M) = L( )L( ).M1 M2

ε M1

M2 M

M1 M2

□

M0 M

L(M) = L( .M0)∗

ε

M0 ε M0

M

M

M0 □
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Lecture 7: Non-deterministic vs Deterministic Finite

Automata
The following theorem shows that deterministic and non-deterministic finite

automata accept the same class of languages.

Theorem: For every non-deterministic finite automaton , there exists

a deterministic finite automaton  that accepts the same language, 

.

Proof: The idea is to have states in  that correspond to subsets of states in .

Let  be the states of . We want that for every word , the

automaton  is in the following state after reading ,

If we have an automaton  with this property, then it has the same language

as  if we choose the accept states of  as

Let  be the start state of . As start state for , we choose

Finally, the transition function of  is defined as

With this transition function and start state, the repeated transition function 

indeed has the property above (proof by induction). Therefore,

N

M

L(M) = L(N)

M N

QN N w ∈ Σ∗

M w

(w)δ∗
M

= {q ∈ QN

∣ N  has a computation path for the word w that ends in the state q}
.

M

N M

= {Q ⊆ ∣ Q contains an accept state of N}.FM QN

q0 N M

= {q ∈ ∣ q can be reached from   by ε-transitions}.Q0 QN q0

M

(Q, x) = {q ∈ ∣δM QN q can be reached from a state in Q by ε-transitions 

and exactly one x-transition}.

δ∗
M

w ∈ L(M) ⇔

⇔

⇔

(w) ∈δ∗
M FM

N  has a computation for w that ends in an accept state of N

w ∈ L(N).
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Lecture 8: Regular Expressions
Regular Expressions

Definition: A regular expression over an alphabet  is a formula with

alphabet symbols , the empty set , and the empty string  as

constants, and union, concatenation, and Kleene star as operations.

Order of precedence: Kleene star has the highest precedence, followed by

concatenation, and then union. For example,  is short for .

 

Example: The following expression describes the set of strings that contain 

or  as substring.

The language of a regular expression  is defined recursively. In the base

case,  is a constant. Then,

 for all ,

,

.

Otherwise, a regular expression is obtained by applying an operation to one or

two smaller expressions. In this case,

 (union),

 (concatenation),

 (Kleene star).

Regular Expressions vs. Finite Automata
The following theorem shows that the set of languages generated by regular

expressions is the same as the set of languages accepted by finite automata.

Theorem: For every language , there exists a regular expression 

with  if and only if there exists a finite automaton  with 

.

Σ

x ∈ Σ ∅ ε

0 ∪ 10∗ 0 ∪ (1( ))0∗

11

101

(0 ∪ 1 1(0 ∪ ε)1(0 ∪ 1)∗ )∗

R

R

L(x) = {x} x ∈ Σ

L(ε) = {ε}

L(∅) = ∅

L( ∪ ) = L( ) ∪ L( )R1 R2 R1 R2

L( ) = L( )L( )R1R2 R1 R1

L( ) = L(RR∗ )∗

A R

L(R) = A M

L(M) = A
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To show this theorem, we will first show how to construct an automaton from a

given regular expression. Then, we will show how to construct a regular

expression from a given finite automaton.

 

From regular expression to finite automaton: Let  be a regular expression.

We can construct a finite automaton  with  recursively. The

idea is to use the fact that the set of languages of finite automata is closed under

union, concatenation, and Kleene star operations.

In the base case,  is a constant, either  for ,  or .

In all cases,  is finite. Hence, there exists a finite automaton for .

(See Problem 2 in Homework 2.)

Otherwise,  is an operation applied to one or two smaller expressions.

Either, , , or . Since  and  are smaller

regular expressions, we can construct automata  and  with 

 and . Then, by closure properties of finite

automata (see Lecture 6), there exist finite automata for the languages 

,  and . Therefore, there exists a finite

automaton for .

 

From finite automaton to regular expression: Let  be a finite automaton.

We are to construct a regular expression with the same language as . The

idea is to transform  step-by-step into a regular expression. We will refer to

the intermediate objects as generalized finite automata (GFA). In contrast to the

usual kind of finite automata, generalized finite automata have transitions

labeled by regular expressions. We say that a generalized finite automaton 

accepts a word  if there exists an accepting computation path of  with

transitions  such that .

We say that a GFA has dedicated start and accept states, if it has exactly one

start state and exactly one accept state and if no transitions go into the start

state and no transitions go out of the accept state.

Lemma: Suppose  is a GFA with dedicated start and accept states and

with at least one additional state (not the start or accept state). Then,

there exists a GFA  with dedicated start and accept states that has

fewer states than , but accepts the same language, .

R

M L(M) = L(R)

R R = x x ∈ Σ R = ε R = ∅

L(R) L(R)

R

R = ∪R1 R2 R = R1R2 R = R∗
1 R1 R2

M1 M2

L( ) = L( )M1 R1 L( ) = L( )M2 R2

L( ) ∪ L( )M1 M2 L( )L( )M1 M2 L(M1)∗

L(R)

M

M

M

M

w M

, … ,R1 Rm w ∈ L( ) ⋯ L( )R1 Rm

M

M ′

M L( ) = L(M)M ′

http://dsteurer.org/toc13/homework/hw2.pdf
http://dsteurer.org/toc13/lectures/6


Proof: Let  be an additional state of the automaton  (not the start of accept

state). We show how to remove this state and update the transitions between

the remaining states such that the language of the automaton doesn’t change.

For simplicity, we will assume that  contains a transition labeled by  from 

 to itself. (We can take  if  doesn’t contain such a transition.)

Construction of : Let  be the states of . Let  be

the label of the transition from  to , or if there is no such transition,

let . For all , we label the transition from  to  in 

by

We claim that the GFA  has the same language as . The reason is that

every computation path in  that uses  can be shortcut to an equivalent

computation path in . Similarly, every computation path in  can be

extended to an equivalent computation path in . 

q0 M

M R0

q0 = ∅R0 M

M ′ , , … ,q0 q1 qm M Ri→j

qi qj

= ∅Ri→j i, j ≥ 1 qi qj M ′

= ∪ .R′
i→j Ri→j Ri→0R∗

0→0R0→j

M ′ M

M q0

M ′ M ′

M □



CS 4810 — Fall'13
Syllabus |  Lectures |  Homework |  Resources

»

»

»

Lectures 9 & 10: Limitations of Finite Automata
Pumping Lemma
The following theorem, known as pumping lemma gives a way to show that a

language is not regular.

Theorem: Suppose  is the language of a finite automaton . Then,

there exists a number  (called pumping length) such that for every

word  of length at least , there exists a decomposition 

with the following properties:

 for every integer ,

,

.

Proof: We may assume that  doesn’t have -transitions. (We could even

assume  is deterministic.) We choose  as the number of states of . Let 

 be a word in the language . We are to show a decomposition of  with

the properties above.

Consider a computation path of  that accepts . Since  has length at

least , one state of  appears at least twice on this computation path (by the

pigeonhole principle). Let  be the first repeated state on the computation path.

We divide the computation path into three parts: from the start state to the first

occurance of , from the first occurance of  to its second occurance, and from

the second occurance of  to an accept state.

Let  be the strings corresponding to these three parts of the

computation path. Then, . We are to check that this decomposition

satisfies the above properties. First,  because  doesn’t have -

transitions. Second,  because  is the first repeated state and therefore

all other states on the first and second part of the path are distinct. Finally, 

 for every integers , because we can obtain accepting

computation paths for these strings by repeating the second part of the paths 

times. 

Examples

L M

p

w ∈ L p w = xyz

x z ∈ Lyi i ≥ 0

|y| > 0

|xy| ≤ p

M ε

M p M

w ∈ L L w

M w w

p M

q

q q

q

x, y, z

w = xyz

|y| > 0 M ε

|xy| ≤ p q

x z ∈ Lyi i ≥ 0

i

□
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Lemma: The language  is not regular.

Proof: We will show that for any potential pumping length , there exists a

word  of length  that does not admit a decomposition as in the

pumping lemma. Then, from the pumping lemma it follows that the language

cannot be the language of a finite automata.

Let  be a natural number. Consider the word  in . Let 

be any decomposition of this word that satisfies the second and third condition

of the pumping lemma. Then,  and  for integers  and 

(because  and ). But then , which means

that the decomposition doesn’t satisfy the first condition of the pumping

lemma. 

\

The next example shows that sometimes one has to be careful to choose the

right word  in the language to show that the conditions of the pumping

lemma are not satisfied.

Lemma: The language  is not regular.

Proof: Same proof strategy as before.

Let  be a natural number. Consider the word  in . Let  be

any decomposition of this word that satisfies the second and third condition of

the pumping lemma. As before,  and  for integers  and 

. Again  is not in , which means that the

decomposition doesn’t satisfy the first condition of the pumping lemma.

(Convince yourself that for example, for  the proof would fail.) 

\

The following example shows that sometimes it is useful to “pump down”

(which means to choose  to show that the first condition in the pumping

lemma is violated).

Lemma: The language  is not regular.

Proof: Same proof strategy as before.

Let  be a natural number. Consider the word . Let  be any

decomposition of this word that satisfies the second and third condition of the

pumping lemma. As before,  and  for integers  and .

{ ∣ n ∈ N}0n1n

p

w ∈ L |w| ≥ p

p w = 0p1p L w = xyz

x = 0s y = 0t s ≥ 0 t ≥ 1

|xy| ≤ p |y| ≥ 1 x z = ∉ Ly2 0p+t1p

□

w

{ww ∣ w ∈ {0, 1 }}∗

p 10p10p L w = xyz

x = 0s y = 0t s ≥ 0

t ≥ 1 x z = 1y2 0p+t10p L

w = (01 ∈ L)p

□

i = 0

{ ∣ i ≥ j}0i1j

p 0p1p w = xyz

x = 0s y = 0t s ≥ 0 t ≥ 1



But then, the word  is not in , which means that the first

condition in the pumping lemma is not satisfied. (Convince yourself that 

is in the language for all integers .) 

x z =y0 0p−t1p L

x zyi

i ≥ 1 □
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Lecture 11: Turing machines
What is computation?
The idea of computation is ancient (especially arithmetic computation, like

addition and multiplication). Also computing devices have been around for a

long time. (Think about tally sticks and abaci)

If we want to reason about the limitations of computation, we need a

rigorous mathematical definition of computation. Turing machines provide

such a definition. Before the formal definition, we will discuss an “informal

definition” of computation. Then we will see that Turing machines indeed

capture this informal definition.

“Informal de↌nition” of computation
At an informal level, we can define computation as the process of manipulating

data according to simple rules. If we represent data as a binary string 

, then we can visualize a (discrete) process that manipulates data

by the following kind of diagram:

To make the notion of “simple rules” more concrete, the idea of locality is

helpful; we want that a computation step  only changes a small

part of the data. To further concretize this idea, we will add a “marker,”

denoted , to indicate which part of the data is allowed to change. With this

marker, the computation looks as follows:

The rules of the computation specify how the data around the marker changes

in one step depending on the current data around the marker.

Turing machines are a further formalization along this line of thought.

Turing machine
We can visualize a Turing machine as the union of three components:

a finite-state control (akin to a deterministic finite automaton)

a tape, extending infinitely in one direction

a read / write head, pointing to a tape position

w ∈ {0, 1}n

w ⟶ ⟶ ⋯ ⟶ ⟶ ⟶ ⋯ ⟶w(1) w(i) w(i+1) w(n)

→w(i) w(i+1)

†

†w ⟶ † ⟶ ⋯ ⟶ † ⟶ † ⟶ ⋯u(1) v(1) u(i) v(i) u(i+1) v(i+1)
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The computation starts with the head and input placed at the beginning of the

tape. In each computation step, the control reads the symbols under the head,

writes a symbol under the head, and moves the head one position to the left or

to the right. The computation halts if the control accepts or rejects.

Definition: A Turing machine  consists of the following:

input alphabet  (e.g., ).

tape alphabet ,

contains all symbols of input alphabet, ,

contains a designated blank symbol .

transition function ,

set of states ,

 and  indicate left and right movement of head,

special states: start , accept , and reject 

.

Con↌gurations of Turing machines
A configuration describes the state of the whole machine (as opposed to just the

control) during some step of a computation. In particular, the configuration

contains the content of the tape, the position of the head, and the state of the

control. We represent a configuration by a string ,

where  is the tape content before the head position,  is the state of

the machines, and  is the tape content after the head position, including

the symbol directly under the head.

M

Σ Σ = {0, 1}

Γ

Σ ⊆ Γ

□ ∈ Γ ∖ Σ

δ : Q × Γ → Q × Γ × {R, L}

Q

R L

∈ Qq0 ∈ Qqaccept

∈ Q ∖ { }qreject qaccept

C

C = uqv

u ∈ Γ∗ q ∈ Q

v ∈ Γ+
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Definition: For a Turing machine , a configuration  yields in one

step a configuration , denoted  if one of the following rules is

matched:

Suppose  for some  and .

Then, for all ,

Suppose  for some  and .

Then, for all  and ,

For every configuration , there exists exactly one configuration  such that 

 (the computation is deterministic).

Computation of Turing machines
Definition: We say a configuration  yields in a finite number of steps a

configuration , denoted , if there exists a sequence of

configurations  such that  for all . A

Turing machine  accepts on input  if  for some

configuration  that contains the accept state. Similarly,  rejects on  if 

 for some configuration  that contains the reject state. Finally we

say that  halts on input  if it either accepts or rejects on .

Definition: The language of a Turing machine ,

Decidability
We say a language  is recognizable (by a Turing machine) if there

exists a Turing machine  such that . A language  is decidable if

there exists a Turing machine  that accepts every  and rejects every 

.

Theorem: A language  is decidable if and only if both  and  are

recognizable.

M C

C ′ ,C ′
C

δ(q, a) = ( , , R)q ′ a′ q, ∈ Qq ′ a, ∈ Γa′

u, v ∈ Γ∗

uqav u v and uqa u □⊢δ a′ q ′ ⊢δ a′ q ′

δ(q, a) = ( , , L)q ′ a′ q, ∈ Qq ′ a, ∈ Γa′

u, v ∈ Γ∗ b ∈ Γ

ubqav uqb v and qav v⊢δ a′ ⊢δ q ′ a′

C C ′

C ⊢δ C ′

C

C ′ C ⊢∗
δ

C ′

, … ,C0 Cn Ci ⊢δ Ci+1 i ∈ {0, … , n − 1}

M w ∈ Σ∗ w Cq0 ⊢∗
δ

C M w

w Cq0 ⊢∗
δ

C

M w w

M

L(M) := {w ∈ ∣ M  accepts on input w}.Σ∗

L ⊆ Σ∗

M L(M) = L L

M w ∈ L

w ∉ L

L L ¬L
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Proof: One direction is trivial. A machine that decides  also recognizes . If we

exchange the accept and reject state of this machine, it recognizes .

It remains to show that if both  and  are recognizable then  is

decidable. Let  and  be machines with  and 

. Then, we can build a Turing machine  that decides  as follows:

Operation of  on input :

Repeat the following, starting with :

Simulate  for  steps on input . Accept if  accepts in 

steps.

Simulate  for  steps on input . Reject if  accepts in 

steps.

Increment  by one.

The machine  accepts  if and only if  accepts , and  rejects  if and

only if  accepts . 

Example: Powers of Two

Lemma: The following language is decidable,

Proof: We are to construct a Turing machine  that decides the above

language. A general way to implement a Turing machine is to sweep over the

tape content repeatedly, and on each sweep, the machine behaves like a DFA

(with the difference that the machine may also write to the tape). The

additional power of Turing machines over finite automata comes from the fact

that they may sweep over the data multiple times.

Operation of  on input :

Reject if  is not of the form .

Repeat the following:

Accept if exactly one (uncrossed)  is on the tape.

Reject if the number (uncrossed) ’s is odd and bigger than .

Cross out every other  on the tape (say by replacing them with

the symbol )..comment

L L

¬L

L ¬L L

MY MN L( ) = LMY L( ) = ¬LMN

M L

M w

i = 0

MY i w MY i

MN i w MY i

i

M w MY w M w

MN w □

{ ∣ n ∈ }.02n

N0

M

M w 1

w 0+

0

0 1

0

X ∈ Γ



Each of these steps can be implemented by one sweep over the data, using a

constant number of states. Hence, the above algorithm as a whole can be

implemented as a Turing machine.

It remains to argue that the above algorithm decides the language 

. (We need to show that the machine always halts and if it halts

its answer is correct.) We may assume that  has the form . (Otherwise, the

machine rejects, which is correct.) During the operation of the machine, we will

maintain the invariant that there is at least one uncrossed  on the tape. The

third step of the loop is reached only if the number of uncrossed ’s is even and

at least two (by the invariant). Hence, each full iteration exactly halves the

number of uncrossed ’s. Thus, if , there are exactly  uncrossed 

’s after  full iterations of the loop. We conclude that  accepts only if 

 for some , which means  is a power of , and  rejects

only if  is an odd number bigger than , which means that  is not a

power of . Furthermore, the machine halts after at most  iterations, where 

is the smallest integer such that . 

1. As very first step, we mark the beginning of the tape, using special symbols

from the tape alphabet,  and . This marker will allow us to detect in

future iterations if we reached the beginning of the tape. For all other

purposes, these special symbols will be treated as regular symbols, e.g., 

is treated as  and  is treated as .↩

{ ∣ n ∈ }02n

N0

w 0+

0

0

0 w = 0m m/2i

0 i M

1 = m/2i i ∈ N0 m 2 M

m/2i 1 m

2 i i

m/ ≤ 12i
□

0^ 1^

0^
0 1^ 1
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Lecture 12: Church–Turing Thesis
Church–Turing Thesis

.center Intuitive notion of computation 

equals 

Turing-machine model of computation.

The thesis is not a mathematical statement and therefore it is not possible to

prove it (in the usual mathematical sense). Instead we should view the thesis as

a scientific hypothesis. Nevertheless, the thesis makes interesting mathematical

predictions that we can prove or disprove rigorously. (A disproof of a

prediciton of the Church–Turing thesis would falsify the hypothesis.)

Computing on Con߰gurations
We will discuss examples of other computational models (variants of Turing

machines) and verify that these models are no more powerful than ordinary

Turing machines. (In this way, we verify predictions of the Church–Turing

thesis.)

In order to simulate another computational model by Turing machines, we

will follow a simple strategy:

Identify a notion of configuration for the competing computational model.

Encode these configurations as strings.

Argue that Turing machines can manipulate these strings in a way that

simulates the computation of the competing model.

Multi-tape Turing machines
Suppose we augment Turing machine with multiple tapes and multiple

independent heads. As before, the finite-state control determines the behavior

of the heads depending on what the heads read in the current step. Formally,

we have a transition function  to control 

independent heads.

Theorem: Single-tape Turing machines can simulate multi-tape Turing

machines.

δ:Q × → Q × × {L, RΓk Γk }k k
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Proof Sketch: For simplicity we consider the case . We can encode the

configuration of a -tape machine  as a string  of the form

Here,  is the state of the control,  is the content of tape  before

the head,  is the content of tape  after the head, and  is the

symbol that head  is reading in the current step. (The hash symbol 

delimits the contents of the two tapes.)

The following single-tape Turing machine  simulates the computation of

the -tape machine . For simplicity, we can choose the tape alphabet of 

such that it contains all elements of  (but we could also choose to

encode everything as binary strings).

Operation of  on input :

Write the start configuration  of  on the tape of 

.

Repeat the following steps:

Read the configuration  of  on the tape of .

Accept if  is an accept-configuration for  and reject if  is a

reject-configuration for .

Manipulate the tape content such that it becomes the subsequent

configuration  of .

Each of the steps can be implemented by a constant number of passes over the

tape. After  full iterations of the loop, the tape of  contains the

configuration of  after  computaton steps. Therefore,  accepts or rejects

on input  if and only if  accepts or rejects on input . 

Non-deterministic Turing machines
Suppose we allow non-deterministic transitions in the finite-state control of a

Turing machine . Formally, we have a transition function  such that 

 describes the possible transitions if the control is in

state  and the head reads . Then, a configuration  of  can yield multiple

configurations  in one step, denoted .

We say that a non-deterministic Turing machine accepts on input  if there

exists a sequence of configurations  such that  is the start

configuration,  for all , and  is an accept-

configuration. The language  of a non-deterministic Turing machine 

k = 2

2 M C

C = q # q .u1 a1v1 u2 a2v2

q ∈ Q ∈ui Γ∗ i

∈vi Γ∗ i ∈ Γai

i # ∉ Γ

M ′

2 M M ′

Γ ∪ Q ∪ {#}

M ′ w

= w# □C0 q0 q0 M

M ′

C M M ′

C M C

M

C ′ M

i M ′

M i M ′

w M w □

M δ

δ(q, a) ⊆ Q × Γ × {L, R}

q a C M

C ′ C ⊢δ C ′

w

, … ,C0 Cm C0

Ci ⊢δ Ci+1 i ∈ {0, … m − 1} Cm

L(M) M
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is the set of strings  such that  accepts on input . (Unlike for

deterministic machines, we don’t define what it means for a non-deterministic

machine to reject.)

Theorem: A language  is recognizable by non-deterministic Turing

machines if and only if it is recognizable by deterministic Turing

machines.

Proof: Let  be a non-deterministic Turing machine. We are to construct a

deterministic Turing machine  with the same language .

The idea is that  enumerates all possible computation paths of .

Operation of  on input :

Enumerate all binary strings  (e.g., in lexicographic order) and

perform the following operations:

Check that  encodes a sequence of configuration .

Check that  is the start configuration.

Check that  for all .

Check that  is an accept configuration.

Accept if all checks are passed.

The machine  can perfom each step of the loop by doing a finite number of

passes over the tape content. If  accepts, then there exists an accepting

computation path for  and therefore  accepts. On the other hand, if 

accepts, then there exists an accepting computation path and an encoding of

the path as a binary string . The machine  will accept when the

enumeration reaches the string . 

Computing on Turing Machines
Going the beyond idea of encoding configurations as strings and computing on

them, we can encode whole machines as strings and compute on them. For a

Turing machine , we write

to denote an encoding of it as a binary string. We assume that the formatting of

the encoding is so that it is easy for another Turing machine to manipulate it.

For convenience, we also assume that every binary string encodes some Turing

w ∈ Σ∗ M w

L

M

M ′ L( ) = L(M)M ′

M ′ M

M ′ w

x

x , … ,C0 Cm

= wC0 qo

Ci ⊢δ Ci+1 i ∈ 0, … , m − 1

Cm

M ′

M ′

M M M

x M ′

x □

M

⟨M⟩



machine. (For example, we can say if a binary string doesn’t respect the usual

formatting, then it decodes to a dummy machine .)

Another property of such encodings that is sometimes useful is that for

every machine , there are infinitely many binary strings that decode to  or

to a machine that behaves exactly in the same way as . We can assume this

property because by adding unreachable dummy states to , we can get

infinitely many machines that behave exactly like .

In the following, we will use the notation  to encode arbitrary

mathematical objects as binary strings.

Universal Turing machines
We will show that there exists a Turing machine  that can simulate arbitrary

Turing machines. Here, it is interesting that the number of states of  and its

tape alphabet are fixed, but it can still simulate machines with many more

states and many more tape alphabet symbols. A Turing machine with this

property is called universal. (In contrast, the machines in our previous

constructions were allowed to depend on the machine they are simulating.)

The fact that modern computers are multi-purpose devices and can, in

principle, execute arbitrary programs stems from this formal idea of

universality.

Theorem: There exist a Turing machine  that on input 

simulates the operation of the Turing machine  on input .

Proof: It’s convenient to first build a two-tape machine  that achieves this

task. Then, we can simulate  by a single-tape machine  using our previous

construction for multi-tape machines.

M0

M M

M

M

M

⟨⋅⟩

U

U

U ⟨M , w⟩

M w ∈ {0, 1}∗

U0

U0 U
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Operation of  on input .

Write ’s start configuration  as binary string  on

tape .

Write ’s description as binary string  on tape .

Repeat the following steps:

Invariant: tape  holds the binary encoding of a configuration 

of .

Locate on tape  the state of  (encoded as binary

string).regular.grey.

Locate on tape  the tape symbol under ’s head (encoded as

binary string).comment.

Look up the corresponding part in the transition table of  on

tape .

Accept or reject if the current state is the accept or reject of .

Update the content of tape  according to this transition.

It’s important to note the finite control of  cannot “remember” the current

state of  or the tape symbol that  is currently reading. Nevertheless, 

can find the positions of these items on the tapes. (We can implement this

process by moving markers across the tape until we find a match.)

After  full iterations of the loop, tape  holds the configuration of  after 

steps on input . Therefore, the machine  on  accepts or rejects if

and only if  on  accepts or rejects. 

Acceptance problem for Turing machines

Theorem: The acceptance problem  for Turing machines is

recognizable,

Proof: The universal Turing machine  from the previous theorem recognizes

this language, because  accepts on input  if and only if  accepts on

input . 

U0 ⟨M , w⟩

M = wC0 q0 C0

1

M ⟨M⟩ 2

1 C

M

1 M

1 M

M

2

M

1

U0

M M U0

i 1 M i

w U0 ⟨M , w⟩

M w □

ATM

= {⟨M , w⟩ ∣ M  accepts on input w}.ATM

U

U ⟨M , w⟩ M

w □
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Lecture 13: Undecidable Languages
Diagonalization

Theorem: Every set  has cardinality strictly smaller than its powerset 

.

Proof sketch: The theorem is especially interesting for infinite sets. For

concreteness, we prove it only for finite sets, but our proof would also work for

infinite sets. (Exercise.) Suppose  for . We can encode

every subset  as an -bit string .

Let  be a list of  binary strings of length . We are to

show that there exists an -bit binary string  not

contained in the list. Let us arrange the strings as an  matrix,

An explicit -bit string not in this list is the string . The

reason is that this string differs from  in (at least) the -th coordinate. It

follows that the number -bit strings is larger than . 

Existence of undecidable languages
We can use the previous theorem as a black-box to show that some languages

are undecidable.

Theorem: Not every language is decidable.

Proof: The set of all Turing machines has the same cardinality as the set of

binary strings . On the other hand, the set of all languages is the power

set of the set of binary strings. Therefore, the set of all languages has strictly

S

2S

S = {0, 1, … , n} n ∈ N

A ⊆ S n ∈ {0, 1xA }n

, … , ∈ {0, 1x1 xn }n n n

n x ∈ {0, 1 ∖ { , … , }}n x1 xn

n × n

x1

x2

⋮
xn

1
x1,1

x2,1

⋮
xn,1

2
x1,2

x2,2

xn,2

⋯
⋯

⋯

⋱
⋯

n

x1,n

x2,n

⋮
xn,n

n ⋯x̄1,1 x̄2,2 x̄n,n

xi i

n n □

{0, 1}∗
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larger cardinality than the set of Turing machines (by the previous theorem).

Hence, there exists a language that is not decided by any Turing machine. (A

Turing machine decides at most one language.) 

Explicit undecidable language
The previous theorem shows that undecidable languages exist but it doesn’t

give any hint how such languages might look like. The following theorem shows

an explicit language that is undecidable.

Theorem: The following language is undecidable,

Proof: Every machine  fails to decide the language  on input . If 

, then  rejects . On the other hand, if , then  does

not reject . In either case,  fails to decide  on input . 

 

Remark: In lecture 3, we have seen a non-constructive proof that some -bit

functions require large circuits, concretely size . The proof used the

same kind of counting argument that showed the existence of undecidable

languages in this lecture. Here, we managed to use diagonalization to come up

with an explicit undecidable language. Exercise: Does the same kind of

diagonalization give us an explicit function that requires larger circuits? Why

not?

□

= {⟨M⟩ ∣ M  on input ⟨M⟩ rejects}.Ldiag

M L w = ⟨M⟩

w ∈ Ldiag M w w ∉ Ldiag M

w M Ldiag w □

n

Ω( /n)2n

http://dsteurer.org/toc13/lectures/3
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Lecture 14: Reductions
Decidability and Reductions

Definition: A function  is a reduction from language  to

language  if  for every .

We say a function  is computable if there exists a Turing machine

that for every input  halts with just  written on its tape.

We say  reduces to , denoted , if there exists a computable

reduction from  to .

Theorem: If  and  is undecidable, then so is .

Proof: We prove the contrapostive. If  is decidable, then  is decidable.

Suppose  decides  and  computes . Then, the following machine 

decides :

Operation of  on input :

Simulate  on  to compute .

Simulate  on .

Accept if  accepts and reject if  rejects.

Since  if and only if , the machine  decides .

Example 1: Acceptance of Turing Machines
In lecture 13, we showed that the diagonal language  for Turing machines

is undecidable

In lecture 12, we introduced the acceptance problem  for Turing machines

and showed that this language is recognizable (by a universal Turing machine).

f: →Σ∗ Σ∗ A

B w ∈ A ⇔ f(w) ∈ B w ∈ Σ∗

f: →Σ∗ Σ∗

w ∈ Σ∗ f(w)

A B A B≤m

A B

A B≤m A B

B A

MB B Mf f M

A

M w

Mf w f(w)

MB f(w)

MB MB

f(w) ∈ B w ∈ A M A

Ldiag

= {⟨M⟩ ∣ M  on input ⟨M⟩ rejects}.Ldiag

ATM
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Lemma: The acceptance problem for Turing machines is undecidable,

Proof: We will show that . Consider the computable function

that maps  to , where  and  is a machine that accepts if

and only if  rejects. This function is a reduction from  to .

Therefore, , which shows that  is undecidable.

Example 2: Non-emptiness

Lemma: The non-emptiness property for Turing machines is

undecidable,

Proof: We will show . Consider the computable function 

that maps  to , where  is the following machine:

Operation of  on input :

If , simulate  on input  and accept if  accepts.

If , reject.

The language of  is non-empty if and only if  accepts . Therefore,  is a

reduction from  to , which shows that  is

undecidable.

Example 3: Halting Problem

Lemma: The halting problem for Turing machines is undecidable,

Proof: We will show . Consider the computable function  that

maps  to , where  is the following machine:

= {⟨M , w⟩ ∣ M  on input w accepts}.ATM

Ldiag ≤m ATM

M ⟨ , w⟩M ′ w = ⟨M⟩ M ′

M Ldiag ATM

Ldiag ≤m ATM ATM

NONEMPTY = {⟨M⟩ ∣ L(M) ≠ ∅}.

NONEMPTYATM ≤m f

⟨M , w⟩ ⟨ ⟩Mw Mw

Mw u

u = w M w M

u ≠ w

Mw M w f

ATM NONEMPTY NONEMPTY

HALT = {⟨M , w⟩ ∣ M  halts on input w}.

HALTATM ≤m f

⟨M , w⟩ ⟨ , w⟩M ′ M ′



»

»

Operation of  on input :

Simulate  on .

Accept if  accepts (but do not reject if  rejects).

The machine  halts on some input  if and only if  accepts . Therefore, 

 if and only if , which means that the function 

 is a reduction from  to .

M ′ u

M u

M M

M ′ u M u

⟨M , w⟩ ∈ ATM ⟨ , w⟩ ∈ HALTM ′

f ATM HALT
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Lecture 15: General undecidability criterion
Rice’s Theorem
We will show that every non-trivial property of languages of Turing machines

is undecidable (Rice’s theorem). To show this theorem, we will formalize what

properties of languages are and what it means for them to be non-trivial for

Turing machines.

Let  be the set of all languages over the binary alphabet. A property

of languages is a subset . We say  satisfies  if  and we say

that  violates  if . For example, we can choose  to be the set of

languages that contain the string .

We say that  is a non-trivial property of languages of Turing machines if

there exists Turing machines  and  such that  satisfies the

property and  violates the property. Here is an example of a property

that is non-trivial for languages of Turing machines,

The property is non-trivial because there are Turing machines that

recognize the empty language and there are Turing machines that recognize a

non-empty language. Here is an examples of a property that is trivial for

languages of Turing machines,

Theorem: Let  be any non-trivial property of languages of Turing

machines. Then, the following language is undecidable,

Proof: We distinguish two cases,  and . 

Case : In this case, we will show that , which implies that 

 is undecidable. (See the notes for lecture 14 for the proof that the

acceptance problem  is undecidable.) Let  be a Turing machine such

2{0,1}∗

P ⊆ 2{0,1}∗
L P L ∈ P

L P L ∉ P P

0000

P

MY MN L( )MY

L( )MN

= {∅}.Pempty

= {L ∣ L is recognizable}.Precognizable

P

= {⟨M⟩ ∣  L(M) satisfies P}.LP

∅ ∈ P ∅ ∉ P

∅ ∉ P ATM ≤m LP

LP

ATM MY
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that  satisfies . (We know it exists because  is a non-trivial

property of languages of Turing machines.) Consider the computable function 

that maps  to , where  is the following Turing machine:

Operation of  on input :

Simulate  on input .

If  accepts, simulate  on input  and accept if  accepts.

By construction, the machine  accepts on input  if and only if  accepts 

and  accepts . Therefore,  if  accepts on  and 

 if  does not accept . Since  and , we see

that  satisfies  if and only if  accepts . Thus,  is a reduction from 

 to . 

Case : We will reduce this case to the previous case. The complement

property  is also a non-trivial property of languages of Turing machines and

it satisfies . The proof for the previous case applies and we get that 

is undecidable. Since , we can conclude that  is undecidable

(undecidability is closed under complementation). 

L( ) ∈ PMY P P

f

⟨M , w⟩ ⟨ ⟩M ′
w M ′

w

M ′
w u

M w

M MY u MY

M ′
w u M w

MY u L( ) = L( )M ′
w MY M w

L( ) = ∅M ′
w M w L( ) ∈ PMY ∅ ∉ P

L( )M ′
w P M w f

ATM LP

∅ ∈ P

¬P

∅ ∉ ¬P L¬P

= ¬LP L¬P LP

□
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