
CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

Lecture 1: Boolean Functions
Boolean values
There are two Boolean values, TRUE and FALSE. For convenience, we will

denote these values as and . Boolean values are often also called bits. We

will use Boolean values to encode information.

Basic Boolean operations
Basic Boolean operations are functions that take one or two Boolean values as

input and output a Boolean value. We will focus the following operations:

The following notation is common:

Truth table
We can represent the Boolean operations NOT, AND, OR by the following truth

table.

1 0

NOT(x) := { 1
0

 if x = 1,
 otherwise.

AND(x, y) := { 1
0

 if x = 1 and y = 1,
 otherwise.

OR(x, y) := { 1
0

 if x = 1 or y = 1,
 otherwise.

¬x for NOT(x),

x ∧ y for AND(x, y),

x ∨ y for OR(x, y).

x

0

0

1

1

y

0

1

0

1

NOT(x)

1

1

0

0

AND(x, y)

0

0

0

1

OR(x, y)

0

1

1

1

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/

De Morgan’s Laws
There are redundancies among the operations NOT, AND, OR. In particular, we

can write AND in terms of NOT, OR. Similarly, OR can be expressed in terms of

NOT, AND.

We can check that these identities hold by looking at the above truth table.

Boolean functions

An -bit Boolean function is a function that take Boolean values as

input and outputs a Boolean value, i.e.,

Boolean function can express interesting algorithmic questions:

(The Riemann hypothesis is an important open question in mathematics. If you

resolve the hypothesis, you get a Millennium Prize.)

We will try to understand whether these kind of functions can be expressed

by a small number of basic Boolean operations. (It turns out that both functions

above can be expressed by a number of basic Boolean operations that is

polynomial in .)

¬(x ∧ y) = ¬x ∨ ¬y,

¬(x ∨ y) = ¬x ∧ ¬y.

n f n

f:{0, 1 → {0, 1}.}n

(x) := {PRIMESn
1
0

 if x is (the binary encoding of) a prime number,
 otherwise.

(x)RIEMANNn

:=

{ 1
0

 if x is (the binary encoding of) a proof of the Riemann hypothesis,
 otherwise.

n

http://en.wikipedia.org/wiki/Riemann_hypothesis
http://en.wikipedia.org/wiki/Millennium_Prize_Problems

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

»

»

»

»

»

Lecture 2: Boolean Circuits
Boolean circuit
A Boolean circuit with inputs and output is a directed acyclic graph that

consists of the following kind of nodes:

Input nodes, labeled , without ingoing edges (sources).

Any number of gates, labeled with , , .

All , gates have two incoming edges.

All gates have one incoming edge.

One output gate, without outgoing edges (sink). (All other gates have at least

one outgoing edge.)

Circuit computation
Suppose we assign Boolean values to the input nodes of a circuit.

Then, we can propagate these values through the gates of the circuit by

applying the corresponding Boolean operations.

More formally, we would process the gates of the circuit in topological

order. To process a gate labeled with a Boolean operation

, we apply the operation to the values assigned to the

ancestors of and we assign the output of this operation to . (Since we

process nodes in topological order, the ancestors of have already been

processed at the time we process .)

We say a Boolean circuit with inputs and output computes an -bit

Boolean function if for every input

, the function value is equal to the value

propagated to the output gate of when we assign to the input

nodes of .

One can show (e.g., by induction) that a circuit computes only one function.

In particular, the function does not depend on the order we process the gates.

We write to denote the function computed by a circuit .

Example: parity
Consider the following -bit Boolean function

n 1

1, … , n

NOT AND OR

AND OR

NOT

, … ,x1 xn

u

T ∈ {NOT, AND, OR} T

u u

u

u

C n 1 n

f:{0, 1 → {0, 1}}n

x = (, … ,) ∈ {0, 1x1 xn }n f(x)

C , … ,x1 xn

C

fC C

n

(x) := {PARITYn
1
0

 if + … + is an odd number,x1 xn

 otherwise.

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/

For , we can express in terms of as follows

The parity of bits is called exclusive-or. A common notation for

 is .

If is a power of , we can construct a circuit for recursively based

on the following identity

Circuit complexity
For a given Boolean functions, there could be many ways of computing it by a

circuit. But some circuits are better than others.

We measure the efficiency of a circuit by its size

For a Boolean function , we define its size as the minimum size of circuit

that computes .

Another measure for the efficiency of a circuit is its depth

Generic upper bound

Theorem: For every -bit Boolean function there exists a circuit of

size at most to compute it.

Proof: We will use induction on . If we fix one of input bit of the function ,

then we are left with an -bit Boolean function.

For , the theorem is true because for every -bit function, we can find

a circuit of size at most . Suppose . Let and be the two bit

functions obtained by fixing the first bit of , i.e.,

n = 2 PARITY NOT, AND, OR

(,) = (∧ ¬) ∨ (¬ ∧)PARITY2 x1 x2 x1 x2 x1 x2

2

(,)PARITY2 x1 x2 ⊕x1 x2

n 2 PARITY

(x) = (, … ,) ⊕ (, … ,).PARITYn PARITYn/2 x1 xn/2 PARITYn/2 xn/2+1 xn

C

size(C) := the number of gates of C.

f

f

depth(C)

:= length of longest path from an input node to the output gate

n f

10 ⋅ − 102n

n f

n − 1

n = 1 1

10 n > 1 f0 f1 n − 1

f

(, . . . ,) = f(0, , . . . ,),f0 x2 xn x2 xn

(, . . . ,) = f(1, , . . . ,).f1 x2 xn x2 xn

Both and are bit functions. The following identity allows us to

express the original function in terms of and as well as a few basic

operations

Therefore, we can construct a circuit for from a circuit for and a

circuit for as well as additional gates (one gate, one gate, and two

 gates). It follows that . By induction

hypothesis, both and are at most . By

combining these bound, we get

f0 f1 n − 1

f f0 f1

f = (¬ ∧) ∨ (∧).x1 f0 x1 f1

f f0

f1 4 NOT OR

AND size(f) ≤ size() + size() + 4f0 f1

size()f0 size()f1 10 ⋅ − 102n−1

size(f) ≤ 10 ⋅ − 20 + 4 = 10 ⋅ − 16 ≤ 10 ⋅ − 10.2n 2n 2n

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

Lecture 3: Hard functions
Generic lower bound

Theorem: For every with , there exists an -bit Boolean

function that requires circuits of size at least .

Proof: The idea is to compare the number of -bit Boolean functions

 to the number of circuits of size at most . If

the number of functions is larger than the number of such circuits, it means

that there exists a functions that is not computed by such a circuit.

Let us first count the number of -bit Boolean functions. In general, the

number of functions from a finite set to a finite set is equal to . (You

should convince yourself of this fact.) Hence, the number of -bit Boolean

functions is .

Now let’s count the number of size- circuits. A circuit of size consists of a

directed acyclic graph (DAG) on nodes (input nodes and

gates). Each node has in-degree at most . (The in-degree of a node is the

number of ingoing edges.) Furthermore, each input node (in-degree) is

labeled with an input variable . Each gate is labeled with a Boolean

operation, either , , or .

We claim that we can describe such a circuit completely by a bit string of

length at most . First, we give every node a unique ID. Since there are

only nodes in the circuit, we only need bits for the ID. (We can use the

numbers from to as IDs.) Our description of the circuit will consist of

parts, each of length at most (one part per vertex). To describe a single

vertex , we store the ID of (bits), the IDs of the vertices that have

incoming arcs to (bits) and the label of , which is either a Boolean

function or the index of an input/output variable (at most bits).

We don’t need to store the outgoing arcs of a vertex, because those will be

stored as incoming arcs by other vertices. In total, we store at most bits

per vertex. Hence, the description of the whole circuit is indeed shorter than

 bits.

n ∈ N n ≥ 100 n

/100n2n

n

f:{0, 1 → {0, 1}}n s = /100n2n

n

X Y |Y ||X|

n

22n

s s

= s + n ≤ 2ss′ n s

2

0

i ∈ [n]

AND OR NOT

10s log s

s′ log s′

1 s′ s′

10 log s′

u u log s′

u 2 log s′ u

log n ≤ log s′

4 log s′

10s log s

10 log

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/

»

»

»

»

»

It follows that the number of circuits of size is at most (the

number of bit strings of length). For , this number is

much less than . (Check this calculation.) It follows that an overwhelming

majority of -bit Boolean functions does not have circuits of size .

\

Remark: While the theorem shows that some functions require large

circuits, the proof of the theorem does not give an explicit construction of such

a function. (The proof is non-constructive.) It’s a famous open problem to show

strong lower bounds on the circuit size of concrete functions. For example, the

following funtion is conjectured to require circuits of exponential size

Straight-line Programs
In this part, we will discuss an exact correspondence between circuits and a

simple kind of programs.

Here is an example of a straight-line program:

Input:

Instructions:

Output:

This program outputs the parity of the two input bits. We can construct a circuit

that corresponds to this program in the following way: For every instruction,

we have a gate in the circuit that applies the same Boolean operation and has

incoming edges from nodes corresponding to the right-hand-side variables of

the instruction. The size of the resulting circuit is exactly equal to the number

of instructions of the straight-line program.

s 210s log s

10s log s s = /100n2n

22n

n /100n2n

(x) :=CIRCUIT−SATn

⎧
⎩⎨

0

1

 if x is the binary encoding of a circuit
 that computes the constant 0 function,
 otherwise.

,x1 x2

:= ¬y1 x1

:= ¬y2 x2

:= ∧y3 x1 y2

:= ∧y4 y1 x2

:= ∨y5 y3 y4

y5

Definition: A straight-line program is a sequence of instructions of the

following form: Each instruction applies a basic Boolean operation (

) to input variables or previously assigned variables and

assigns the outcome of this operation to a new variable. The output of

the program is the outcome of last instruction. The length of a straight-

line program is the number of instructions.

Exercise: A Boolean function has a straight-line program of length at most if

and only if it has a Boolean circuit of size at most .

NOT, AND, OR

ℓ

ℓ

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

»

»

»

Lecture 4: Deterministic Finite Automata
The following figure shows the state diagram of a deterministic finite

automaton (DFA),

q₀ q₁ q₂

0 1

1
0

0,1

The automaton has three states , , and . The state is designated as the

start state and is designated as an accept state. The directed edges between

states specify the transitions of the automaton when reading an input string.

This automaton accepts the set of strings that contain and have an even

number of ’s after the last .

Languages
An alphabet is a finite set of symbols, e.g., or . (We

will usually content ourselves with the binary alphabet.) A string over is a

finite sequence of symboles, written as for . The

empty string (string of length zero) is denoted . The set of all strings is denoted

. A language is any subset of strings, so that .

We will use languages to encode computational problems. (A language

can be thought to encode the function with if and

only if).

Operations on languages: Let be two languages. The following

operations on languages are useful:

Basic set-theoretic operations, union , intersection , and

complementation . (These operations correspond to

.)

Concatentation .

Kleene star $A^*:=A 1A^2 $, where denotes the -fold concatenation of

 with itself. (The corner cases are defined so that the rule

 holds. Concretely, and).

q0 q1 q2 q0

q1

1

0 1

Σ Σ = {0, 1} Σ = a, b, c

w Σ

w = ⋯x1 xn , … , ∈ Σx1 xn

ε

Σ∗ L L ⊆ Σ∗

L

f: → {0, 1}Σ∗ f(w) = 1

w ∈ L

A, B ⊆ Σ∗

A ∪ B A ∩ B

:= ∖ AA
¯ ¯¯̄

Σ∗

OR, AND, NOT

AB := {uv ∣ u ∈ A, v ∈ B}
0A Ai i

A i = 0, 1

=AiAj Ai+j = {ε}A0 = AA1

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/

»

»

»

»

»

»

(Notice that the Kleene star notation is compatible with the notation for the set

of all strings.)

Deterministic Finite Automaton

Definition: A deterministic finite automaton consists of the following

parts:

a transition function for an alphabet and a set of

states ,

a start state ,

a set of accept states .

Language of a DFA

Definition: A DFA accepts a string if there exists a

sequence of states such that

the first state is the start statem

the th state is obtained by reading the th symbol,

the final state is an accept state, .

The language of is defined as

If is the language of some deterministic finite automaton, we say that is

regular.

Example proof
Recall the automaton from the beginning:

q₀ q₁ q₂

0 1

1
0

0,1

M

δ:Q × Σ → Q Σ

Q

∈ Qq0

F ⊆ Q

M w = ⋯x1 xn

, , … , ∈ Qr0 r1 rn

=r0 q0

i i = δ(,)ri ri−1 xi

∈ Frn

M

L(M) = {w ∣ M accepts w}.

L L

M

»

»

Lemma: The language of the automaton is the set of all strings

 such that contains a and ends with an even number of

’s after the last .

We will prove this lemma by inductions. To make the proof easier, we will show

a stronger statement. (Proofs by induction often become easier if the statement

is strengthened.)

Define the repeated transition function ,

This function satisfies for every string and

symbol . Furthermore, Hence, the

following claim implies the lemma.

Claim: The repeated transition function of is

Proof of claim: By induction on the length of . (At this point, the proof is

completely mechanical.)

If , then and the claim is true (because).

Suppose length of for is greater than . The induction

hypothesis is that the claim holds for all strings that are shorter than . (In

particular, the claim holds for the substring of .)

We consider three cases:

: By induction hypothesis, . Therefore, .

The claim is true in this case because and .

: By induction hypothesis, . Therefore,

The claim is true in this case because and .

M

w ∈ {0, 1}∗ w 1

0 1

: → Qδ∗ Σ∗

(w) := state of M after reading wδ∗

(wx) = δ((w), x)δ∗ δ∗ w ∈ Σ∗

x ∈ Σ L(M) = {w ∣ (w) ∈ F}.δ∗

M

(w)δ∗

=
⎧

⎩
⎨
⎪⎪⎪⎪
⎪⎪⎪⎪

q0

q1

q2

 if w does not contains 1 (A),

 if w contains 1 and ends with an even number of 0's after the the last 1 (B)
,

 if w contains 1 and ends with an odd number of 0's after the the last 1 (C)
.

w

w = ε (w) =δ∗ q0 ε ∈ A

w = ux x ∈ {0, 1} 0

w

u w

u ∈ A (u) =δ∗ q0

(w) = δ(, x) = {δ∗ q0
q0

q1

 if x = 0,
 if x = 1.

u0 ∈ A u1 ∈ B

u ∈ B (u) =δ∗ q1

(w) = δ(, x) = {δ∗ q1
q2

q1

 if x = 0,
 if x = 1.

u0 ∈ C u1 ∈ B

» : By induction hypothesis, . Therefore,

The claim is true in this case because both and .

We conclude that the claim is true in all three cases, which proves the claim.

u ∈ C (u) =δ∗ q1

(w) = δ(, x) = {δ∗ q1
q1

q1

 if x = 0,
 if x = 1.

u0 ∈ B u1 ∈ B

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

»

»

»

Lecture 5: Closure Properties
We will show that the set of regular languages is closed under basic set-

theoretic operations, intersection, union, and complement.

These closure properties are useful to show that languages are regular or to

show that they are not.

Theorem: Let be two regular languages over . Then, the

following languages are also regular:

intersection: ,

union: ,

complement: and

.

Furthermore, if and are DFAs for and , then the languages

above have DFAs with a number of states that is polynomial in the

number of states of and .

Proof: Suppose and are deterministic finite automata for and . Let

 and be the transition functions of

and . Here, and are the states sets of and . Let

and be the accept states of and .

 Complement: We are to construct a DFA for the complement . Let

be the same automaton as except with accept states .

(Concretely, has the same transition function, set of states, alphabet, and

start state as .) Then, accepts a word if and only if

. By construction, is in the same state after reading

, i.e., . Hence, accepts if and only if , which

means that does not accept . It follows that .

Intersection: We are to construct a DFA for the intersection . The idea

is that simulates both and at the same time. The state space of is

the product set . The transition function is

A, B ⊆ Σ∗ Σ

A ∩ B = {w ∈ ∣ w ∈ A and w ∈ B}Σ∗

A ∪ B = {w ∈ ∣ w ∈ A or w ∈ B}Σ∗

= {w ∈ ∣ w ∉ A}Ā Σ∗ = {w ∈ ∣ w ∉ B}B̄ Σ∗

MA MB A B

MA MB

MA MB A B

: × Σ →δA QA QA : × Σ →δB QB QB MA

MB QA QB MA MB ⊆FA QA

⊆FB QB MA MB

M Ā M

MA F = ∖QA FA

M

MA M w ∈ Σ∗

(w) ∈ F = ∖δ∗ QA FA MA

w (w) = (w)δ∗ δ∗
A

M w (w) ∉δA FA

MA w L(M) = ∖ L() =Σ∗ MA Ā

M A ∩ B

M MA MB M

Q = ×QA QB

δ((,), x) = ((, x), (, x))qA qB δA qA δB qB

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/

The start state of has the start space of in the first coordinate and

the start space of in the second coordinate. Finally the accept states of

are . With this construction, is in state

 after reading . Hence, accepts if and only

 and , which means that .

Union: We could construct an automaton for similar to the product

construction above. However, we can also use the properties we have proved

so far to conclude that is regular whenever and are regular. By de

Morgan’s law, we can express the union in terms of complements and

intersection, . Since we have already shown that regular

languages are closed under complement and intersection, it follows that

is regular.

M MA

MB M

F = ×FA FB M

(w) = ((w), (w))δ∗ δ∗
A

δ∗
A

w M w

(w) ∈δ∗
A

FA (w) ∈δ∗
B FB w ∈ A ∩ B

A ∪ B

A ∪ B A B

A ∪ B = (∩)Ā B̄
¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

A ∪ B

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

»

»

»

Lecture 6: Non-Deterministic Finite Automata
Example
The following figure shows the state diagram of a non-deterministic finite

automaton (NFA),

q₀ q₁ q₂ q₃

0, 1 0, 1

1 0, ɛ 1

The automaton accepts the set of all strings that contain or as a

substring.

Non-deterministic Finite Automata

Definition: A non-deterministic finite automaton (NFA) consists of the

following

a set of states and transitions between

states labeled by alphabet symbols or the empty string ,

a start state ,

a set of accept states .

Language of Non-deterministic Finite Automata

Definition: A computation path of an NFA for a string is a

sequence of transitions

 such that is

the start state and . An NFA accepts a string if there

exists a computation path for that ends in an accept state, so that

.

The language of an NFA is the set of strings that accepts,

11 101

M

Q T ⊆ Q × Q × (Σ ∪ {ε})

ε

∈ Qq0

F ⊆ Q

M w ∈ Σ∗

(, ,), (, ,), … , (, ,) ∈ Tr0 r1 x1 r1 r2 x2 rm−1 rm xm =r0 q0

w = ⋯x1 xm M w

w

∈ Frm

M

()

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/

Closure Properties of Regular Languages

Theorem: The set of regular languages is closed under union,

concatenation, and Kleene star operations.

Lemma: Let and be NFAs, then there exists an NFA with

Proof sketch: Create a designated start state with -transitions to the start state

of and the start state of . An accepting computation path in

corresponds to either an accepting computation path in or an accepting

computation path in . .

Lemma: Let and be NFAs, then there exists an NFA with

Proof sketch: Add -transitions from the accept states of to the start

state of . An accepting computation path in corresponds to an accepting

computation paths in followed by an accepting computation path in .

.

Lemma: Let be an NFA, then there exists an NFA with

Proof sketch: Create a designated start state with a -transition to the start

state of . Add -transitions from the accept states of to this designated

start state. Make this designated start state the unique accept state of . An

accepting computation path in corresponds to a finite sequence of accepting

computation paths in . .

L(M)

= {w ∈ ∣ there exits an accepting computation path in M for w}.Σ∗

M1 M2 M

L(M) = L() ∪ L().M1 M2

ε

M1 M2 M

M1

M2 □

M1 M2 M

L(M) = L()L().M1 M2

ε M1

M2 M

M1 M2

□

M0 M

L(M) = L(.M0)∗

ε

M0 ε M0

M

M

M0 □

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

Lecture 7: Non-deterministic vs Deterministic Finite

Automata
The following theorem shows that deterministic and non-deterministic finite

automata accept the same class of languages.

Theorem: For every non-deterministic finite automaton , there exists

a deterministic finite automaton that accepts the same language,

.

Proof: The idea is to have states in that correspond to subsets of states in .

Let be the states of . We want that for every word , the

automaton is in the following state after reading ,

If we have an automaton with this property, then it has the same language

as if we choose the accept states of as

Let be the start state of . As start state for , we choose

Finally, the transition function of is defined as

With this transition function and start state, the repeated transition function

indeed has the property above (proof by induction). Therefore,

N

M

L(M) = L(N)

M N

QN N w ∈ Σ∗

M w

(w)δ∗
M

= {q ∈ QN

∣ N has a computation path for the word w that ends in the state q}
.

M

N M

= {Q ⊆ ∣ Q contains an accept state of N}.FM QN

q0 N M

= {q ∈ ∣ q can be reached from by ε-transitions}.Q0 QN q0

M

(Q, x) = {q ∈ ∣δM QN q can be reached from a state in Q by ε-transitions

and exactly one x-transition}.

δ∗
M

w ∈ L(M) ⇔

⇔

⇔

(w) ∈δ∗
M FM

N has a computation for w that ends in an accept state of N

w ∈ L(N).

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/

□

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

»

»

»

»

»

»

Lecture 8: Regular Expressions
Regular Expressions

Definition: A regular expression over an alphabet is a formula with

alphabet symbols , the empty set , and the empty string as

constants, and union, concatenation, and Kleene star as operations.

Order of precedence: Kleene star has the highest precedence, followed by

concatenation, and then union. For example, is short for .

Example: The following expression describes the set of strings that contain

or as substring.

The language of a regular expression is defined recursively. In the base

case, is a constant. Then,

 for all ,

,

.

Otherwise, a regular expression is obtained by applying an operation to one or

two smaller expressions. In this case,

 (union),

 (concatenation),

 (Kleene star).

Regular Expressions vs. Finite Automata
The following theorem shows that the set of languages generated by regular

expressions is the same as the set of languages accepted by finite automata.

Theorem: For every language , there exists a regular expression

with if and only if there exists a finite automaton with

.

Σ

x ∈ Σ ∅ ε

0 ∪ 10∗ 0 ∪ (1())0∗

11

101

(0 ∪ 1 1(0 ∪ ε)1(0 ∪ 1)∗)∗

R

R

L(x) = {x} x ∈ Σ

L(ε) = {ε}

L(∅) = ∅

L(∪) = L() ∪ L()R1 R2 R1 R2

L() = L()L()R1R2 R1 R1

L() = L(RR∗)∗

A R

L(R) = A M

L(M) = A

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/

To show this theorem, we will first show how to construct an automaton from a

given regular expression. Then, we will show how to construct a regular

expression from a given finite automaton.

From regular expression to finite automaton: Let be a regular expression.

We can construct a finite automaton with recursively. The

idea is to use the fact that the set of languages of finite automata is closed under

union, concatenation, and Kleene star operations.

In the base case, is a constant, either for , or .

In all cases, is finite. Hence, there exists a finite automaton for .

(See Problem 2 in Homework 2.)

Otherwise, is an operation applied to one or two smaller expressions.

Either, , , or . Since and are smaller

regular expressions, we can construct automata and with

 and . Then, by closure properties of finite

automata (see Lecture 6), there exist finite automata for the languages

, and . Therefore, there exists a finite

automaton for .

From finite automaton to regular expression: Let be a finite automaton.

We are to construct a regular expression with the same language as . The

idea is to transform step-by-step into a regular expression. We will refer to

the intermediate objects as generalized finite automata (GFA). In contrast to the

usual kind of finite automata, generalized finite automata have transitions

labeled by regular expressions. We say that a generalized finite automaton

accepts a word if there exists an accepting computation path of with

transitions such that .

We say that a GFA has dedicated start and accept states, if it has exactly one

start state and exactly one accept state and if no transitions go into the start

state and no transitions go out of the accept state.

Lemma: Suppose is a GFA with dedicated start and accept states and

with at least one additional state (not the start or accept state). Then,

there exists a GFA with dedicated start and accept states that has

fewer states than , but accepts the same language, .

R

M L(M) = L(R)

R R = x x ∈ Σ R = ε R = ∅

L(R) L(R)

R

R = ∪R1 R2 R = R1R2 R = R∗
1 R1 R2

M1 M2

L() = L()M1 R1 L() = L()M2 R2

L() ∪ L()M1 M2 L()L()M1 M2 L(M1)∗

L(R)

M

M

M

M

w M

, … ,R1 Rm w ∈ L() ⋯ L()R1 Rm

M

M ′

M L() = L(M)M ′

http://dsteurer.org/toc13/homework/hw2.pdf
http://dsteurer.org/toc13/lectures/6

Proof: Let be an additional state of the automaton (not the start of accept

state). We show how to remove this state and update the transitions between

the remaining states such that the language of the automaton doesn’t change.

For simplicity, we will assume that contains a transition labeled by from

 to itself. (We can take if doesn’t contain such a transition.)

Construction of : Let be the states of . Let be

the label of the transition from to , or if there is no such transition,

let . For all , we label the transition from to in

by

We claim that the GFA has the same language as . The reason is that

every computation path in that uses can be shortcut to an equivalent

computation path in . Similarly, every computation path in can be

extended to an equivalent computation path in .

q0 M

M R0

q0 = ∅R0 M

M ′ , , … ,q0 q1 qm M Ri→j

qi qj

= ∅Ri→j i, j ≥ 1 qi qj M ′

= ∪ .R′
i→j Ri→j Ri→0R∗

0→0R0→j

M ′ M

M q0

M ′ M ′

M □

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

»

»

»

Lectures 9 & 10: Limitations of Finite Automata
Pumping Lemma
The following theorem, known as pumping lemma gives a way to show that a

language is not regular.

Theorem: Suppose is the language of a finite automaton . Then,

there exists a number (called pumping length) such that for every

word of length at least , there exists a decomposition

with the following properties:

 for every integer ,

,

.

Proof: We may assume that doesn’t have -transitions. (We could even

assume is deterministic.) We choose as the number of states of . Let

 be a word in the language . We are to show a decomposition of with

the properties above.

Consider a computation path of that accepts . Since has length at

least , one state of appears at least twice on this computation path (by the

pigeonhole principle). Let be the first repeated state on the computation path.

We divide the computation path into three parts: from the start state to the first

occurance of , from the first occurance of to its second occurance, and from

the second occurance of to an accept state.

Let be the strings corresponding to these three parts of the

computation path. Then, . We are to check that this decomposition

satisfies the above properties. First, because doesn’t have -

transitions. Second, because is the first repeated state and therefore

all other states on the first and second part of the path are distinct. Finally,

 for every integers , because we can obtain accepting

computation paths for these strings by repeating the second part of the paths

times.

Examples

L M

p

w ∈ L p w = xyz

x z ∈ Lyi i ≥ 0

|y| > 0

|xy| ≤ p

M ε

M p M

w ∈ L L w

M w w

p M

q

q q

q

x, y, z

w = xyz

|y| > 0 M ε

|xy| ≤ p q

x z ∈ Lyi i ≥ 0

i

□

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/

Lemma: The language is not regular.

Proof: We will show that for any potential pumping length , there exists a

word of length that does not admit a decomposition as in the

pumping lemma. Then, from the pumping lemma it follows that the language

cannot be the language of a finite automata.

Let be a natural number. Consider the word in . Let

be any decomposition of this word that satisfies the second and third condition

of the pumping lemma. Then, and for integers and

(because and). But then , which means

that the decomposition doesn’t satisfy the first condition of the pumping

lemma.

\

The next example shows that sometimes one has to be careful to choose the

right word in the language to show that the conditions of the pumping

lemma are not satisfied.

Lemma: The language is not regular.

Proof: Same proof strategy as before.

Let be a natural number. Consider the word in . Let be

any decomposition of this word that satisfies the second and third condition of

the pumping lemma. As before, and for integers and

. Again is not in , which means that the

decomposition doesn’t satisfy the first condition of the pumping lemma.

(Convince yourself that for example, for the proof would fail.)

\

The following example shows that sometimes it is useful to “pump down”

(which means to choose to show that the first condition in the pumping

lemma is violated).

Lemma: The language is not regular.

Proof: Same proof strategy as before.

Let be a natural number. Consider the word . Let be any

decomposition of this word that satisfies the second and third condition of the

pumping lemma. As before, and for integers and .

{ ∣ n ∈ N}0n1n

p

w ∈ L |w| ≥ p

p w = 0p1p L w = xyz

x = 0s y = 0t s ≥ 0 t ≥ 1

|xy| ≤ p |y| ≥ 1 x z = ∉ Ly2 0p+t1p

□

w

{ww ∣ w ∈ {0, 1 }}∗

p 10p10p L w = xyz

x = 0s y = 0t s ≥ 0

t ≥ 1 x z = 1y2 0p+t10p L

w = (01 ∈ L)p

□

i = 0

{ ∣ i ≥ j}0i1j

p 0p1p w = xyz

x = 0s y = 0t s ≥ 0 t ≥ 1

But then, the word is not in , which means that the first

condition in the pumping lemma is not satisfied. (Convince yourself that

is in the language for all integers .)

x z =y0 0p−t1p L

x zyi

i ≥ 1 □

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

»

»

»

Lecture 11: Turing machines
What is computation?
The idea of computation is ancient (especially arithmetic computation, like

addition and multiplication). Also computing devices have been around for a

long time. (Think about tally sticks and abaci)

If we want to reason about the limitations of computation, we need a

rigorous mathematical definition of computation. Turing machines provide

such a definition. Before the formal definition, we will discuss an “informal

definition” of computation. Then we will see that Turing machines indeed

capture this informal definition.

“Informal de↌nition” of computation
At an informal level, we can define computation as the process of manipulating

data according to simple rules. If we represent data as a binary string

, then we can visualize a (discrete) process that manipulates data

by the following kind of diagram:

To make the notion of “simple rules” more concrete, the idea of locality is

helpful; we want that a computation step only changes a small

part of the data. To further concretize this idea, we will add a “marker,”

denoted , to indicate which part of the data is allowed to change. With this

marker, the computation looks as follows:

The rules of the computation specify how the data around the marker changes

in one step depending on the current data around the marker.

Turing machines are a further formalization along this line of thought.

Turing machine
We can visualize a Turing machine as the union of three components:

a finite-state control (akin to a deterministic finite automaton)

a tape, extending infinitely in one direction

a read / write head, pointing to a tape position

w ∈ {0, 1}n

w ⟶ ⟶ ⋯ ⟶ ⟶ ⟶ ⋯ ⟶w(1) w(i) w(i+1) w(n)

→w(i) w(i+1)

†

†w ⟶ † ⟶ ⋯ ⟶ † ⟶ † ⟶ ⋯u(1) v(1) u(i) v(i) u(i+1) v(i+1)

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/
http://en.wikipedia.org/wiki/Hindu%E2%80%93Arabic_numeral_system
http://en.wikipedia.org/wiki/History_of_computing_hardware
http://en.wikipedia.org/wiki/Tally_stick
http://en.wikipedia.org/wiki/Abacus

»

»

»

»

»

»

»

»

The computation starts with the head and input placed at the beginning of the

tape. In each computation step, the control reads the symbols under the head,

writes a symbol under the head, and moves the head one position to the left or

to the right. The computation halts if the control accepts or rejects.

Definition: A Turing machine consists of the following:

input alphabet (e.g.,).

tape alphabet ,

contains all symbols of input alphabet, ,

contains a designated blank symbol .

transition function ,

set of states ,

 and indicate left and right movement of head,

special states: start , accept , and reject

.

Con↌gurations of Turing machines
A configuration describes the state of the whole machine (as opposed to just the

control) during some step of a computation. In particular, the configuration

contains the content of the tape, the position of the head, and the state of the

control. We represent a configuration by a string ,

where is the tape content before the head position, is the state of

the machines, and is the tape content after the head position, including

the symbol directly under the head.

M

Σ Σ = {0, 1}

Γ

Σ ⊆ Γ

□ ∈ Γ ∖ Σ

δ : Q × Γ → Q × Γ × {R, L}

Q

R L

∈ Qq0 ∈ Qqaccept

∈ Q ∖ { }qreject qaccept

C

C = uqv

u ∈ Γ∗ q ∈ Q

v ∈ Γ+

»

»

Definition: For a Turing machine , a configuration yields in one

step a configuration , denoted if one of the following rules is

matched:

Suppose for some and .

Then, for all ,

Suppose for some and .

Then, for all and ,

For every configuration , there exists exactly one configuration such that

 (the computation is deterministic).

Computation of Turing machines
Definition: We say a configuration yields in a finite number of steps a

configuration , denoted , if there exists a sequence of

configurations such that for all . A

Turing machine accepts on input if for some

configuration that contains the accept state. Similarly, rejects on if

 for some configuration that contains the reject state. Finally we

say that halts on input if it either accepts or rejects on .

Definition: The language of a Turing machine ,

Decidability
We say a language is recognizable (by a Turing machine) if there

exists a Turing machine such that . A language is decidable if

there exists a Turing machine that accepts every and rejects every

.

Theorem: A language is decidable if and only if both and are

recognizable.

M C

C ′ ,C ′
C

δ(q, a) = (, , R)q ′ a′ q, ∈ Qq ′ a, ∈ Γa′

u, v ∈ Γ∗

uqav u v and uqa u □⊢δ a′ q ′ ⊢δ a′ q ′

δ(q, a) = (, , L)q ′ a′ q, ∈ Qq ′ a, ∈ Γa′

u, v ∈ Γ∗ b ∈ Γ

ubqav uqb v and qav v⊢δ a′ ⊢δ q ′ a′

C C ′

C ⊢δ C ′

C

C ′ C ⊢∗
δ

C ′

, … ,C0 Cn Ci ⊢δ Ci+1 i ∈ {0, … , n − 1}

M w ∈ Σ∗ w Cq0 ⊢∗
δ

C M w

w Cq0 ⊢∗
δ

C

M w w

M

L(M) := {w ∈ ∣ M accepts on input w}.Σ∗

L ⊆ Σ∗

M L(M) = L L

M w ∈ L

w ∉ L

L L ¬L

»

»

»

»

»

»

»

»

»

Proof: One direction is trivial. A machine that decides also recognizes . If we

exchange the accept and reject state of this machine, it recognizes .

It remains to show that if both and are recognizable then is

decidable. Let and be machines with and

. Then, we can build a Turing machine that decides as follows:

Operation of on input :

Repeat the following, starting with :

Simulate for steps on input . Accept if accepts in

steps.

Simulate for steps on input . Reject if accepts in

steps.

Increment by one.

The machine accepts if and only if accepts , and rejects if and

only if accepts .

Example: Powers of Two

Lemma: The following language is decidable,

Proof: We are to construct a Turing machine that decides the above

language. A general way to implement a Turing machine is to sweep over the

tape content repeatedly, and on each sweep, the machine behaves like a DFA

(with the difference that the machine may also write to the tape). The

additional power of Turing machines over finite automata comes from the fact

that they may sweep over the data multiple times.

Operation of on input :

Reject if is not of the form .

Repeat the following:

Accept if exactly one (uncrossed) is on the tape.

Reject if the number (uncrossed) ’s is odd and bigger than .

Cross out every other on the tape (say by replacing them with

the symbol)..comment

L L

¬L

L ¬L L

MY MN L() = LMY L() = ¬LMN

M L

M w

i = 0

MY i w MY i

MN i w MY i

i

M w MY w M w

MN w □

{ ∣ n ∈ }.02n

N0

M

M w 1

w 0+

0

0 1

0

X ∈ Γ

Each of these steps can be implemented by one sweep over the data, using a

constant number of states. Hence, the above algorithm as a whole can be

implemented as a Turing machine.

It remains to argue that the above algorithm decides the language

. (We need to show that the machine always halts and if it halts

its answer is correct.) We may assume that has the form . (Otherwise, the

machine rejects, which is correct.) During the operation of the machine, we will

maintain the invariant that there is at least one uncrossed on the tape. The

third step of the loop is reached only if the number of uncrossed ’s is even and

at least two (by the invariant). Hence, each full iteration exactly halves the

number of uncrossed ’s. Thus, if , there are exactly uncrossed

’s after full iterations of the loop. We conclude that accepts only if

 for some , which means is a power of , and rejects

only if is an odd number bigger than , which means that is not a

power of . Furthermore, the machine halts after at most iterations, where

is the smallest integer such that .

1. As very first step, we mark the beginning of the tape, using special symbols

from the tape alphabet, and . This marker will allow us to detect in

future iterations if we reached the beginning of the tape. For all other

purposes, these special symbols will be treated as regular symbols, e.g.,

is treated as and is treated as .↩

{ ∣ n ∈ }02n

N0

w 0+

0

0

0 w = 0m m/2i

0 i M

1 = m/2i i ∈ N0 m 2 M

m/2i 1 m

2 i i

m/ ≤ 12i
□

0^ 1^

0^
0 1^ 1

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

»

»

»

Lecture 12: Church–Turing Thesis
Church–Turing Thesis

.center Intuitive notion of computation

equals

Turing-machine model of computation.

The thesis is not a mathematical statement and therefore it is not possible to

prove it (in the usual mathematical sense). Instead we should view the thesis as

a scientific hypothesis. Nevertheless, the thesis makes interesting mathematical

predictions that we can prove or disprove rigorously. (A disproof of a

prediciton of the Church–Turing thesis would falsify the hypothesis.)

Computing on Con߰gurations
We will discuss examples of other computational models (variants of Turing

machines) and verify that these models are no more powerful than ordinary

Turing machines. (In this way, we verify predictions of the Church–Turing

thesis.)

In order to simulate another computational model by Turing machines, we

will follow a simple strategy:

Identify a notion of configuration for the competing computational model.

Encode these configurations as strings.

Argue that Turing machines can manipulate these strings in a way that

simulates the computation of the competing model.

Multi-tape Turing machines
Suppose we augment Turing machine with multiple tapes and multiple

independent heads. As before, the finite-state control determines the behavior

of the heads depending on what the heads read in the current step. Formally,

we have a transition function to control

independent heads.

Theorem: Single-tape Turing machines can simulate multi-tape Turing

machines.

δ:Q × → Q × × {L, RΓk Γk }k k

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/

»

»

»

»

»

Proof Sketch: For simplicity we consider the case . We can encode the

configuration of a -tape machine as a string of the form

Here, is the state of the control, is the content of tape before

the head, is the content of tape after the head, and is the

symbol that head is reading in the current step. (The hash symbol

delimits the contents of the two tapes.)

The following single-tape Turing machine simulates the computation of

the -tape machine . For simplicity, we can choose the tape alphabet of

such that it contains all elements of (but we could also choose to

encode everything as binary strings).

Operation of on input :

Write the start configuration of on the tape of

.

Repeat the following steps:

Read the configuration of on the tape of .

Accept if is an accept-configuration for and reject if is a

reject-configuration for .

Manipulate the tape content such that it becomes the subsequent

configuration of .

Each of the steps can be implemented by a constant number of passes over the

tape. After full iterations of the loop, the tape of contains the

configuration of after computaton steps. Therefore, accepts or rejects

on input if and only if accepts or rejects on input .

Non-deterministic Turing machines
Suppose we allow non-deterministic transitions in the finite-state control of a

Turing machine . Formally, we have a transition function such that

 describes the possible transitions if the control is in

state and the head reads . Then, a configuration of can yield multiple

configurations in one step, denoted .

We say that a non-deterministic Turing machine accepts on input if there

exists a sequence of configurations such that is the start

configuration, for all , and is an accept-

configuration. The language of a non-deterministic Turing machine

k = 2

2 M C

C = q # q .u1 a1v1 u2 a2v2

q ∈ Q ∈ui Γ∗ i

∈vi Γ∗ i ∈ Γai

i # ∉ Γ

M ′

2 M M ′

Γ ∪ Q ∪ {#}

M ′ w

= w# □C0 q0 q0 M

M ′

C M M ′

C M C

M

C ′ M

i M ′

M i M ′

w M w □

M δ

δ(q, a) ⊆ Q × Γ × {L, R}

q a C M

C ′ C ⊢δ C ′

w

, … ,C0 Cm C0

Ci ⊢δ Ci+1 i ∈ {0, … m − 1} Cm

L(M) M

»

»

»

»

»

»

is the set of strings such that accepts on input . (Unlike for

deterministic machines, we don’t define what it means for a non-deterministic

machine to reject.)

Theorem: A language is recognizable by non-deterministic Turing

machines if and only if it is recognizable by deterministic Turing

machines.

Proof: Let be a non-deterministic Turing machine. We are to construct a

deterministic Turing machine with the same language .

The idea is that enumerates all possible computation paths of .

Operation of on input :

Enumerate all binary strings (e.g., in lexicographic order) and

perform the following operations:

Check that encodes a sequence of configuration .

Check that is the start configuration.

Check that for all .

Check that is an accept configuration.

Accept if all checks are passed.

The machine can perfom each step of the loop by doing a finite number of

passes over the tape content. If accepts, then there exists an accepting

computation path for and therefore accepts. On the other hand, if

accepts, then there exists an accepting computation path and an encoding of

the path as a binary string . The machine will accept when the

enumeration reaches the string .

Computing on Turing Machines
Going the beyond idea of encoding configurations as strings and computing on

them, we can encode whole machines as strings and compute on them. For a

Turing machine , we write

to denote an encoding of it as a binary string. We assume that the formatting of

the encoding is so that it is easy for another Turing machine to manipulate it.

For convenience, we also assume that every binary string encodes some Turing

w ∈ Σ∗ M w

L

M

M ′ L() = L(M)M ′

M ′ M

M ′ w

x

x , … ,C0 Cm

= wC0 qo

Ci ⊢δ Ci+1 i ∈ 0, … , m − 1

Cm

M ′

M ′

M M M

x M ′

x □

M

⟨M⟩

machine. (For example, we can say if a binary string doesn’t respect the usual

formatting, then it decodes to a dummy machine .)

Another property of such encodings that is sometimes useful is that for

every machine , there are infinitely many binary strings that decode to or

to a machine that behaves exactly in the same way as . We can assume this

property because by adding unreachable dummy states to , we can get

infinitely many machines that behave exactly like .

In the following, we will use the notation to encode arbitrary

mathematical objects as binary strings.

Universal Turing machines
We will show that there exists a Turing machine that can simulate arbitrary

Turing machines. Here, it is interesting that the number of states of and its

tape alphabet are fixed, but it can still simulate machines with many more

states and many more tape alphabet symbols. A Turing machine with this

property is called universal. (In contrast, the machines in our previous

constructions were allowed to depend on the machine they are simulating.)

The fact that modern computers are multi-purpose devices and can, in

principle, execute arbitrary programs stems from this formal idea of

universality.

Theorem: There exist a Turing machine that on input

simulates the operation of the Turing machine on input .

Proof: It’s convenient to first build a two-tape machine that achieves this

task. Then, we can simulate by a single-tape machine using our previous

construction for multi-tape machines.

M0

M M

M

M

M

⟨⋅⟩

U

U

U ⟨M , w⟩

M w ∈ {0, 1}∗

U0

U0 U

»

»

»

»

»

»

»

»

»

Operation of on input .

Write ’s start configuration as binary string on

tape .

Write ’s description as binary string on tape .

Repeat the following steps:

Invariant: tape holds the binary encoding of a configuration

of .

Locate on tape the state of (encoded as binary

string).regular.grey.

Locate on tape the tape symbol under ’s head (encoded as

binary string).comment.

Look up the corresponding part in the transition table of on

tape .

Accept or reject if the current state is the accept or reject of .

Update the content of tape according to this transition.

It’s important to note the finite control of cannot “remember” the current

state of or the tape symbol that is currently reading. Nevertheless,

can find the positions of these items on the tapes. (We can implement this

process by moving markers across the tape until we find a match.)

After full iterations of the loop, tape holds the configuration of after

steps on input . Therefore, the machine on accepts or rejects if

and only if on accepts or rejects.

Acceptance problem for Turing machines

Theorem: The acceptance problem for Turing machines is

recognizable,

Proof: The universal Turing machine from the previous theorem recognizes

this language, because accepts on input if and only if accepts on

input .

U0 ⟨M , w⟩

M = wC0 q0 C0

1

M ⟨M⟩ 2

1 C

M

1 M

1 M

M

2

M

1

U0

M M U0

i 1 M i

w U0 ⟨M , w⟩

M w □

ATM

= {⟨M , w⟩ ∣ M accepts on input w}.ATM

U

U ⟨M , w⟩ M

w □

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

Lecture 13: Undecidable Languages
Diagonalization

Theorem: Every set has cardinality strictly smaller than its powerset

.

Proof sketch: The theorem is especially interesting for infinite sets. For

concreteness, we prove it only for finite sets, but our proof would also work for

infinite sets. (Exercise.) Suppose for . We can encode

every subset as an -bit string .

Let be a list of binary strings of length . We are to

show that there exists an -bit binary string not

contained in the list. Let us arrange the strings as an matrix,

An explicit -bit string not in this list is the string . The

reason is that this string differs from in (at least) the -th coordinate. It

follows that the number -bit strings is larger than .

Existence of undecidable languages
We can use the previous theorem as a black-box to show that some languages

are undecidable.

Theorem: Not every language is decidable.

Proof: The set of all Turing machines has the same cardinality as the set of

binary strings . On the other hand, the set of all languages is the power

set of the set of binary strings. Therefore, the set of all languages has strictly

S

2S

S = {0, 1, … , n} n ∈ N

A ⊆ S n ∈ {0, 1xA }n

, … , ∈ {0, 1x1 xn }n n n

n x ∈ {0, 1 ∖ { , … , }}n x1 xn

n × n

x1

x2

⋮
xn

1
x1,1

x2,1

⋮
xn,1

2
x1,2

x2,2

xn,2

⋯
⋯

⋯

⋱
⋯

n

x1,n

x2,n

⋮
xn,n

n ⋯x̄1,1 x̄2,2 x̄n,n

xi i

n n □

{0, 1}∗

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/

larger cardinality than the set of Turing machines (by the previous theorem).

Hence, there exists a language that is not decided by any Turing machine. (A

Turing machine decides at most one language.)

Explicit undecidable language
The previous theorem shows that undecidable languages exist but it doesn’t

give any hint how such languages might look like. The following theorem shows

an explicit language that is undecidable.

Theorem: The following language is undecidable,

Proof: Every machine fails to decide the language on input . If

, then rejects . On the other hand, if , then does

not reject . In either case, fails to decide on input .

Remark: In lecture 3, we have seen a non-constructive proof that some -bit

functions require large circuits, concretely size . The proof used the

same kind of counting argument that showed the existence of undecidable

languages in this lecture. Here, we managed to use diagonalization to come up

with an explicit undecidable language. Exercise: Does the same kind of

diagonalization give us an explicit function that requires larger circuits? Why

not?

□

= {⟨M⟩ ∣ M on input ⟨M⟩ rejects}.Ldiag

M L w = ⟨M⟩

w ∈ Ldiag M w w ∉ Ldiag M

w M Ldiag w □

n

Ω(/n)2n

http://dsteurer.org/toc13/lectures/3

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

»

»

»

Lecture 14: Reductions
Decidability and Reductions

Definition: A function is a reduction from language to

language if for every .

We say a function is computable if there exists a Turing machine

that for every input halts with just written on its tape.

We say reduces to , denoted , if there exists a computable

reduction from to .

Theorem: If and is undecidable, then so is .

Proof: We prove the contrapostive. If is decidable, then is decidable.

Suppose decides and computes . Then, the following machine

decides :

Operation of on input :

Simulate on to compute .

Simulate on .

Accept if accepts and reject if rejects.

Since if and only if , the machine decides .

Example 1: Acceptance of Turing Machines
In lecture 13, we showed that the diagonal language for Turing machines

is undecidable

In lecture 12, we introduced the acceptance problem for Turing machines

and showed that this language is recognizable (by a universal Turing machine).

f: →Σ∗ Σ∗ A

B w ∈ A ⇔ f(w) ∈ B w ∈ Σ∗

f: →Σ∗ Σ∗

w ∈ Σ∗ f(w)

A B A B≤m

A B

A B≤m A B

B A

MB B Mf f M

A

M w

Mf w f(w)

MB f(w)

MB MB

f(w) ∈ B w ∈ A M A

Ldiag

= {⟨M⟩ ∣ M on input ⟨M⟩ rejects}.Ldiag

ATM

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/
http://dsteurer.org/toc13/lectures/13/#sec-undecidable
http://dsteurer.org/toc13/lectures/12/#sec-acceptance

»

»

Lemma: The acceptance problem for Turing machines is undecidable,

Proof: We will show that . Consider the computable function

that maps to , where and is a machine that accepts if

and only if rejects. This function is a reduction from to .

Therefore, , which shows that is undecidable.

Example 2: Non-emptiness

Lemma: The non-emptiness property for Turing machines is

undecidable,

Proof: We will show . Consider the computable function

that maps to , where is the following machine:

Operation of on input :

If , simulate on input and accept if accepts.

If , reject.

The language of is non-empty if and only if accepts . Therefore, is a

reduction from to , which shows that is

undecidable.

Example 3: Halting Problem

Lemma: The halting problem for Turing machines is undecidable,

Proof: We will show . Consider the computable function that

maps to , where is the following machine:

= {⟨M , w⟩ ∣ M on input w accepts}.ATM

Ldiag ≤m ATM

M ⟨ , w⟩M ′ w = ⟨M⟩ M ′

M Ldiag ATM

Ldiag ≤m ATM ATM

NONEMPTY = {⟨M⟩ ∣ L(M) ≠ ∅}.

NONEMPTYATM ≤m f

⟨M , w⟩ ⟨ ⟩Mw Mw

Mw u

u = w M w M

u ≠ w

Mw M w f

ATM NONEMPTY NONEMPTY

HALT = {⟨M , w⟩ ∣ M halts on input w}.

HALTATM ≤m f

⟨M , w⟩ ⟨ , w⟩M ′ M ′

»

»

Operation of on input :

Simulate on .

Accept if accepts (but do not reject if rejects).

The machine halts on some input if and only if accepts . Therefore,

 if and only if , which means that the function

 is a reduction from to .

M ′ u

M u

M M

M ′ u M u

⟨M , w⟩ ∈ ATM ⟨ , w⟩ ∈ HALTM ′

f ATM HALT

CS 4810 — Fall'13
Syllabus | Lectures | Homework | Resources

Lecture 15: General undecidability criterion
Rice’s Theorem
We will show that every non-trivial property of languages of Turing machines

is undecidable (Rice’s theorem). To show this theorem, we will formalize what

properties of languages are and what it means for them to be non-trivial for

Turing machines.

Let be the set of all languages over the binary alphabet. A property

of languages is a subset . We say satisfies if and we say

that violates if . For example, we can choose to be the set of

languages that contain the string .

We say that is a non-trivial property of languages of Turing machines if

there exists Turing machines and such that satisfies the

property and violates the property. Here is an example of a property

that is non-trivial for languages of Turing machines,

The property is non-trivial because there are Turing machines that

recognize the empty language and there are Turing machines that recognize a

non-empty language. Here is an examples of a property that is trivial for

languages of Turing machines,

Theorem: Let be any non-trivial property of languages of Turing

machines. Then, the following language is undecidable,

Proof: We distinguish two cases, and .

Case : In this case, we will show that , which implies that

 is undecidable. (See the notes for lecture 14 for the proof that the

acceptance problem is undecidable.) Let be a Turing machine such

2{0,1}∗

P ⊆ 2{0,1}∗
L P L ∈ P

L P L ∉ P P

0000

P

MY MN L()MY

L()MN

= {∅}.Pempty

= {L ∣ L is recognizable}.Precognizable

P

= {⟨M⟩ ∣ L(M) satisfies P}.LP

∅ ∈ P ∅ ∉ P

∅ ∉ P ATM ≤m LP

LP

ATM MY

http://dsteurer.org/toc13/
http://dsteurer.org/toc13/syllabus/
http://dsteurer.org/toc13/lectures/
http://dsteurer.org/toc13/homework/
http://dsteurer.org/toc13/resources/
http://dsteurer.org/toc13/lectures/14/#sec-acceptance

»

»

that satisfies . (We know it exists because is a non-trivial

property of languages of Turing machines.) Consider the computable function

that maps to , where is the following Turing machine:

Operation of on input :

Simulate on input .

If accepts, simulate on input and accept if accepts.

By construction, the machine accepts on input if and only if accepts

and accepts . Therefore, if accepts on and

 if does not accept . Since and , we see

that satisfies if and only if accepts . Thus, is a reduction from

 to .

Case : We will reduce this case to the previous case. The complement

property is also a non-trivial property of languages of Turing machines and

it satisfies . The proof for the previous case applies and we get that

is undecidable. Since , we can conclude that is undecidable

(undecidability is closed under complementation).

L() ∈ PMY P P

f

⟨M , w⟩ ⟨ ⟩M ′
w M ′

w

M ′
w u

M w

M MY u MY

M ′
w u M w

MY u L() = L()M ′
w MY M w

L() = ∅M ′
w M w L() ∈ PMY ∅ ∉ P

L()M ′
w P M w f

ATM LP

∅ ∈ P

¬P

∅ ∉ ¬P L¬P

= ¬LP L¬P LP

□

	Lecture 1: Boolean Functions
	Lecture 2: Boolean Circuits
	Lecture 3: Hard functions
	Lecture 4: Deterministic Finite Automata
	Lecture 5: Closure Properties
	Lecture 6: Non-Deterministic Finite Automata
	Lecture 7: Non-deterministic vs Deterministic Finite
	Lecture 8: Regular Expressions
	Lectures 9 & 10: Limitations of Finite Automata
	Lecture 11: Turing machines
	Lecture 12: Church–Turing Thesis
	Lecture 13: Undecidable Languages
	Lecture 14: Reductions
	Lecture 15: General undecidability criterion

