
Bits, Signals, and Packets
 
An Introduction to Digital Communications & Networks 

M.I.T. 6.02 Lecture Notes 

Hari Balakrishnan 
Christopher J. Terman 

George C. Verghese 

M.I.T. Department of EECS 

Last update: November 2012 



MIT 6.02 DRAFT Lecture Notes 
Last update: September 13, 2012 

CHAPTER 1 
Introduction
 

The ability to deliver and exchange information over the world’s communication networks 
has revolutionized the way in which people work, play, and live. At the turn of the century, 
the U.S. National Academy of Engineering produced a list of 20 technologies that made the 
most impact on society in the 20th century.1 This list included life-changing innovations 
such as electrification, the automobile, and the airplane; joining them were four technolog­
ical achievements in the area of commununication—radio and television, the telephone, the 
Internet, and computers—whose technological underpinnings we will be most concerned 
with in this book. 

Somewhat surprisingly, the Internet came in only at #13, but the reason given by the 
committee was that it was developed toward the latter part of the century and that they 
believed the most dramatic and significant impacts of the Internet would occur in the 21st 
century. Looking at the first decade of this century, that sentiment sounds right—the ubiq­
uitous spread of wireless networks and mobile devices, the advent of social networks, and 
the ability to communicate any time and from anywhere are not just changing the face of 
commerce and our ability to keep in touch with friends, but are instrumental in massive 
societal and political changes. 

Communication is fundamental to our modern existence. It is hard to imagine life with­
out the Internet and its applications and without some form of networked mobile device. 
In early 2011, over 5 billion mobile phones were active worldwide, over a billion of which 
had “broadband” network connectivity. To put this number in perspective, it is larger 
than the number of people in the world who in 2011 had electricity, shoes, toothbrushes, 
or toilets!2 

⌅ 1.1 Objectives 

What makes our communication networks work? This book is a start at understanding the 
answers to this question. This question is worth studying for two reasons. First, to under-

1“The Vertiginous March of Technology”, obtained from nae.edu. Document at http://bit.ly/owMoO6 
2It is in fact distressing that according to a recent survey conducted by TeleNav—and we can’t tell if this 

is a joke—40% of iPhone users say they’d rather give up their toothbrushes for a week than their iPhones! 
http://www.telenav.com/about/pr-summer-travel/report-20110803.html 

1 

bit.ly/owMoO6
http://www.telenav.com/about/pr-summer-travel/report-20110803.html


2 CHAPTER 1. INTRODUCTION 

stand the key design principles and basic techniques of analysis used in communication 
systems. Second, because the technical ideas involved also arise in several other fields of 
computer science (CS) and electrical engineering (EE), the study of communication sys­
tems provides an excellent context to introduce concepts that are more widely applicable. 

Before we dive in and describe the technical topics, we to share a bit of the philosophy 
behind the material and approach used in this book. The material is well-suited for a 
one-semester course on the topic; at MIT, such a course is taken (mostly) by sophomores 
whose background includes some basic programming (for the accompanying labs) and 
some exposure to probability and the Fourier series. 

Traditionally, in both education and in research, much of “low-level communication” has 
been considered an EE topic, covering primarily the issues governing how information 
moves across a single communication link. In a similar vein, much of “networking” has 
been considered a CS topic, covering primarily the issues of how to build communication 
networks composed of multiple links. In particular, many traditional courses on digi­
tal communication rarely concern themselves with how networks are built and how they 
work, while most courses on computer networks treat the intricacies of communication 
over physical links as a black box. As a result, a sizable number of people have a deep 
understanding of one or the other topic, but few people are expert in every aspect of the 
problem. This division is one way of conquering the immense complexity of the topic. Our 
goal in this book is to understand the important details of both the CS and EE aspects of 
digital communications, and also to understand how various abstractions allow different 
parts of the system to be designed and modified without paying close attention (or even 
fully understanding) what goes on elsewhere in the system. 

One drawback of preserving strong boundaries between different components of a com­
munication system is that the details of how things work in another component may re­
main a mystery, even to practising engineers. In the context of communication systems, 
this mystery usually manifests itself as things that are “above my layer” or “below my 
layer”. And so although we will appreciate the benefits of abstraction boundaries in this 
book, an important goal for us is to study the most important principles and ideas that go 
into the complete design of a communication system. Our goal is to convey to you both 
the breadth of the field as well as its depth. 

We cover communication systems all the way from the source, which has some infor­
mation it wishes to transmit, to packets, which messages are broken into for transmission 
over a network, to bits, each of which is a “0” or a “1”, to signals, which are analog wave­
forms sent over physical communication links (such as wires, fiber-optic cables, radio, or 
acoustic waves). We study a range of communication networks, from the simplest dedi­
cated point-to-point link, to shared media comprising a set of communicating nodes sharing 
a common physical communication medium, to larger multi-hop networks that themselves 
are connected to other networks to form even bigger networks. 

⌅ 1.2 Themes 

Three fundamental challenges lie at the heart of all digital communication systems and 
networks: reliability, sharing, and scalability. We will spend a considerable amount of time 
on the first two issues in this introductory course, but much less time on the third. 
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⌅ 1.2.1 Reliability 

A large number of factors conspire to make communication unreliable, and we will study 
numerous techniques to improve reliability. A common theme across these different tech­
niques is that they all use redundancy in creative and efficient ways to provide reliability us­
ing unreliable individual components, using the property of independent (or perhaps weakly 
dependent) failures of these unreliable components to achieve reliability. 

The primary challenge is to overcome a wide range of faults and disturbances that one 
encounters in practice, including Gaussian noise and interference that distort or corrupt sig­
nals, leading to possible bit errors that corrupt bits on a link, to packet losses caused by 
uncorrectable bit errors, queue overflows, or link and software failures in the network. All 
these problems degrade communication quality. 

In practice, we are interested not only in reliability, but also in speed. Most techniques to 
improve communication reliability involve some form of redundancy, which reduces the 
speed of communication. The essence of many communication systems is how reliability 
and speed tradeoff against one another. 

Communication speeds have increased rapidly with time. In the early 1980s, people 
would connect to the Internet over telephone links at speeds of barely a few kilobits per 
second, while today 100 Megabits per second over wireless links on laptops and 1-10 Gi­
gabits per second with wired links are commonplace. 

We will develop good tools to understand why communication is unreliable and how 
to overcome the problems that arise. The techniques involve error-correcting codes, han­
dling distortions caused by “inter-symbol interference” using a linear time-invariant chan­
nel model, retransmission protocols to recover from packet losses that occur for various rea­
sons, and developing fault-tolerant routing protocols to find alternate paths in networks to 
overcome link or node failures. 

⌅ 1.2.2 Efcient Sharing 

“An engineer can do for a dime what any fool can do for a dollar,” according to folklore. A 
communication network in which every pair of nodes is connected with a dedicated link 
would be impossibly expensive to build for even moderately sized networks. Sharing is 
therefore inevitable in communication networks because the resources used to communi­
cate aren’t cheap. We will study how to share a point-to-point link, a shared medium, and 
an entire multi-hop network among multiple communications. 

We will develop methods to share a common communication medium among nodes, a 
problem common to wired media such as broadcast Ethernet, wireless technologies such 
as wireless local-area networks (e.g., 802.11 or WiFi), cellular data networks (e.g., “3G”), 
and satellite networks (see Figure 1-1). 

We will study modulation and demodulation, which allow us to transmit signals over 
different carrier frequencies. In the process, we can ensure that multiple conversations 
share a communication medium by operating at different frequencies. 

We will study medium access control (MAC) protocols, which are rules that determine 
how nodes must behave and react in the network—emulate either time sharing or frequency 
sharing. In time sharing, each node gets some duration of time to transmit data, with no 
other node being active. In frequency sharing, we divide the communication bandwidth 
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Figure 1-1: Examples of shared media. 

Individual images É source unknown. All rights reserved. This content is excluded from 

our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. 

(i.e., frequency range) amongst the nodes in a way that ensures a dedicated frequency 
sub-range for different communications, and the different communications can then occur 
concurrently without interference. Each scheme has its sweet spot and uses. 

We will then turn to multi-hop networks. In these networks, multiple concurrent com­
munications between disparate nodes occur by sharing over the same links. That is, one 
might have communication between many different entities all happening over the same 
physical links. This sharing is orchestrated by special computers called switches, which im­
plement certain operations and protocols. Multi-hop networks are generally controlled in 
distributed fashion, without any centralized control that determines what each node does. 
The questions we will address include: 

1. How do multiple communications between different nodes share the network? 

2. How do messages go from one place to another in the network? 

3. How can we communicate information reliably across a multi-hop network (as op­
posed to over just a single link or shared medium)? 

The techniques used to share the network and achieve reliability ultimately determine 
the efficiency of the communication network. In general, one can frame the efficiency ques­
tion in several ways. One approach is to minimize the capital expenditure (hardware 
equipment, software, link costs) and operational expenses (people, rental costs) to build 
and run a network capable of meeting a set of requirements (such as number of connected 
devices, level of performance and reliability, etc.). Another approach is to maximize the 
bang for the buck for a given network by maximizing the amount of “useful work” that can 
be done over the network. One might measure the “useful work” by calculating the aggre­
gate throughput (in “bits per second”, or at higher speeds, the more convenient “megabits 
per second”) achieved by the different communications, the variation of that throughput 
among the set of nodes, and the average delay (often called the latency, measured usu­
ally in milliseconds) achieved by the data transfers. We will primarily be concerned with 
throughput and latency in this course, and not spend much time on the broader (but no 
less important) questions of cost. 

http://ocw.mit.edu/fairuse
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Of late, another aspect of efficiency that has become important in many communica­
tion systems is energy consumption. This issue is important both in the context of massive 
systems such as large data centers and for mobile computing devices such as laptops and 
mobile phones. Improving the energy efficiency of these systems is an important problem. 

⌅ 1.2.3 Scalability 

In addition to reliability and efficient sharing, scalability (i.e., designing networks that scale 
to large sizes) is an important design consideration for communication networks. We will 
only touch on this issue, leaving most of it to later courses (6.033, 6.829). 

⌅ 1.3 Outline and Plan 

We have divided the course into four parts: the source, and the three important abstrac­
tions (bits, signals, and packets). For pedagogic reasons, we will study them in the order 
given below. 

1.	 The source. Ultimately, all communication is about a source wishing to send some 
information in the form of messages to a receiver (or to multiple receivers). Hence, 
it makes sense to understand the mathematical basis for information, to understand 
how to encode the material to be sent, and for reasons of efficiency, to understand how 
best to compress our messages so that we can send as little data as possible but yet 
allow the receiver to decode our messages correctly. Chapters 2 and 3 describe the 
key ideas behind information, entropy (expectation of information), and source coding, 
which enables data compression. We will study Huffman codes and the Lempel-Ziv-
Welch algorithm, two widely used methods. 

2.	 Bits. The main issue we will deal with here is overcoming bit errors using error-
correcting codes, specifically linear block codes (Chapters 5 and 6) and convolutional 
codes (Chapters 7 and 8). These codes use interesting and sophisticated algorithms 
that cleverly apply redundancy to reduce or eliminate bit errors. 

3.	 Signals. The main issues we will deal with here are how to modulate bits over signals 
and demodulate signals to recover bits, as well as understanding how distortions of 
signals by communication channels can be modeled using a linear time-invariant (LTI) 
abstraction. Topics include going between time-domain and frequency-domain rep­
resentations of signals, the frequency content of signals, and the frequency response 
of channels and filters. Chapters 9 through 14 describe these topics. 

4.	 Packets. The main issues we will study are how to share a medium using a MAC pro­
tocol, routing in multi-hop networks, and reliable data transport protocols. Chapters 
15 through 19 describe these topics. 
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CHAPTER 2 
Information, Entropy, and the
 
Motivation for Source Codes
 

The theory of information developed by Claude Shannon (MIT SM ’37 & PhD ’40) in the late 
1940s is one of the most impactful ideas of the past century, and has changed the theory 
and practice of many fields of technology. The development of communication systems 
and networks has benefited greatly from Shannon’s work. In this chapter, we will first 
develop the intution behind information and formally define it as a mathematical quantity, 
then connect it to a related property of data sources, entropy. 

These notions guide us to efficiently compress a data source before communicating (or 
storing) it, and recovering the original data without distortion at the receiver. A key under­
lying idea here is coding, or more precisely, source coding, which takes each “symbol” being 
produced by any source of data and associates it with a codeword, while achieving several 
desirable properties. (A message may be thought of as a sequence of symbols in some al­
phabet.) This mapping between input symbols and codewords is called a code. Our focus 
will be on lossless source coding techniques, where the recipient of any uncorrupted mes­
sage can recover the original message exactly (we deal with corrupted messages in later 
chapters). 

⌅ 2.1 Information and Entropy 

One of Shannon’s brilliant insights, building on earlier work by Hartley, was to realize that 
regardless of the application and the semantics of the messages involved, a general definition of 
information is possible. When one abstracts away the details of an application, the task of 
communicating something between two parties, S and R, boils down to S picking one of 
several (possibly infinite) messages and sending that message to R. Let’s take the simplest 
example, when a sender wishes to send one of two messages—for concreteness, let’s say 
that the message is to say which way the British are coming: 

• “1” if by land. 

• “2” if by sea. 

7 
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(Had the sender been a computer scientist, the encoding would have likely been “0” if 
by land and “1” if by sea!) 

Let’s say we have no prior knowledge of how the British might come, so each of these 
choices (messages) is equally probable. In this case, the amount of information conveyed 
by the sender specifying the choice is 1 bit. Intuitively, that bit, which can take on one 
of two values, can be used to encode the particular choice. If we have to communicate a 
sequence of such independent events, say 1000 such events, we can encode the outcome 
using 1000 bits of information, each of which specifies the outcome of an associated event. 

On the other hand, suppose we somehow knew that the British were far more likely 
to come by land than by sea (say, because there is a severe storm forecast). Then, if the 
message in fact says that the British are coming by sea, much more information is being 
conveyed than if the message said that that they were coming by land. To take another ex­
ample, far more information is conveyed by my telling you that the temperature in Boston 
on a January day is 75°F, than if I told you that the temperature is 32°F! 

The conclusion you should draw from these examples is that any quantification of “in­
formation” about an event should depend on the probability of the event. The greater the 
probability of an event, the smaller the information associated with knowing that the event 
has occurred. It is important to note that one does not need to use any semantics about the 
message to quantify information; only the probabilities of the different outcomes matter. 

⌅ 2.1.1 Definition of information 

Using such intuition, Hartley proposed the following definition of the information associ­
ated with an event whose probability of occurrence is p: 

I ⌘ log(1/p) =  - log(p). (2.1) 

This definition satisfies the basic requirement that it is a decreasing function of p. But so do 
an infinite number of other functions, so what is the intuition behind using the logarithm 
to define information? And what is the base of the logarithm? 

The second question is easy to address: you can use any base, because log (1/p) =a

logb(1/p)/ logb a, for any two bases a and b. Following Shannon’s convention, we will use 
2base 2,1 in which case the unit of information is called a bit. 

The answer to the first question, why the logarithmic function, is that the resulting defi­
nition has several elegant resulting properties, and it is the simplest function that provides 
these properties. One of these properties is additivity. If you have two independent events 
(i.e., events that have nothing to do with each other), then the probability that they both 
occur is equal to the product of the probabilities with which they each occur. What we 
would like is for the corresponding information to add up. For instance, the event that it 
rained in Seattle yesterday and the event that the number of students enrolled in 6.02 ex­
ceeds 150 are independent, and if I am told something about both events, the amount of 
information I now have should be the sum of the information in being told individually of 
the occurrence of the two events. 

1And we won’t mention the base; if you see a log in this chapter, it will be to base 2 unless we mention 
otherwise. 

2If we were to use base 10, the unit would be Hartleys, and if we were to use the natural log, base e, it would 
be nats, but no one uses those units in practice. 
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The logarithmic definition provides us with the desired additivity because, given two 
independent events A and B with probabilities pA and pB , 

1 1 
IA + IB = log(1/pA) + log(1/pB) = log = log . 

pApB P (A and B) 

⌅ 2.1.2 Examples 

Suppose that we’re faced with N equally probable choices. What is the information re­
ceived when I tell you which of the N choices occurred? Because the probability of each 
choice is 1/N , the information is log

2

(1/(1/N )) = log
2 N bits. 

Now suppose there are initially N equally probable and mutually exclusive choices, 
and I tell you something that narrows the possibilities down to one of M choices from this 
set of N . How much information have I given you about the choice? 

Because the probability of the associated event is M/N , the information you have re­
ceived is log

2

(1/(M/N)) = log
2

(N/M) bits. (Note that when M = 1, we get the expected 
answer of log

2 N bits.) 
Some examples may help crystallize this concept: 

One flip of a fair coin 
Before the flip, there are two equally probable choices: heads or tails. After the flip, 
we’ve narrowed it down to one choice. Amount of information = log

2

(2/1) = 1 bit. 

Simple roll of two dice 
Each die has six faces, so in the roll of two dice there are 36 possible combinations for 
the outcome. Amount of information = log

2

(36/1) = 5.2 bits. 

Learning that a randomly chosen decimal digit is even 
There are ten decimal digits; five of them are even (0, 2, 4, 6, 8). Amount of informa­
tion = log

2

(10/5) = 1 bit. 

Learning that a randomly chosen decimal digit � 5 
Five of the ten decimal digits are greater than or equal to 5. Amount of information 
= log

2

(10/5) = 1 bit. 

Learning that a randomly chosen decimal digit is a multiple of 3 
Four of the ten decimal digits are multiples of 3 (0, 3, 6, 9). Amount of information = 
log

2

(10/4) = 1.322 bits. 

Learning that a randomly chosen decimal digit is even, � 5, and a multiple of 3 
Only one of the decimal digits, 6, meets all three criteria. Amount of information = 
log

2

(10/1) = 3.322 bits. 

Learning that a randomly chosen decimal digit is a prime 
Four of the ten decimal digits are primes—2, 3, 5, and 7. Amount of information = 
log

2

(10/4) = 1.322 bits. 

Learning that a randomly chosen decimal digit is even and prime 
Only one of the decimal digits, 2, meets both criteria. Amount of information = 
log

2

(10/1) = 3.322 bits. 
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To summarize: more information is received when learning of the occurrence of an 
unlikely event (small p) than learning of the occurrence of a more likely event (large p). 
The information learned from the occurrence of an event of probability p is defined to be 
log(1/p). 

⌅ 2.1.3 Entropy 

Now that we know how to measure the information contained in a given event, we can 
quantify the expected information in a set of possible outcomes or mutually exclusive events. 
Specifically, if an event i occurs with probability pi,1  i  N out of a set of N mutually 
exclusive events, then the average or expected information is given by 

N

H(p
1

, p
2

, . . . pN ) =  
X 

pi log(1/pi). (2.2) 
i=1 

H is also called the entropy (or Shannon entropy) of the probability distribution. Like 
information, it is also measured in bits. It is simply the sum of several terms, each of which 
is the information of a given event weighted by the probability of that event occurring. It 
is often useful to think of the entropy as the average or expected uncertainty associated with 
this set of events. 

In the important special case of two mutually exclusive events (i.e., exactly one of the two 
events can occur), occuring with probabilities p and 1 - p, respectively, the entropy 

H(p,1 - p) =  -p log p- (1 - p) log(1 - p). (2.3) 

We will be lazy and refer to this special case, H(p,1 - p) as simply H(p). 
This entropy as a function of p is plotted in Figure 2-1. It is symmetric about p = 1/2, 

with its maximum value of 1 bit occuring when p = 1/2. Note that H(0) = H(1) = 0; 
although log(1/p) !1 as p ! 0, limp!0 p log(1/p) ! 0. 

It is easy to verify that the expression for H from Equation (2.2) is always non-negative. 
Moreover, H(p

1

, p
2

, . . . pN )  log N always. 

⌅ 2.2 Source Codes 

We now turn to the problem of source coding, i.e., taking a set of messages that need to be 
sent from a sender and encoding them in a way that is efficient. The notions of information 
and entropy will be fundamentally important in this effort. 

Many messages have an obvious encoding, e.g., an ASCII text file consists of sequence 
of individual characters, each of which is independently encoded as a separate byte. There 
are other such encodings: images as a raster of color pixels (e.g., 8 bits each of red, green 
and blue intensity), sounds as a sequence of samples of the time-domain audio wave­
form, etc. These encodings are ubiquitously produced and consumed by our computer’s 
peripherals—characters typed on the keyboard, pixels received from a digital camera or 
sent to a display, and digitized sound samples output to the computer’s audio chip. 

All these encodings involve a sequence of fixed-length symbols, each of which can be 
easily manipulated independently. For example, to find the 42nd character in the file, one 
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Figure 2-1: H(p) as a function of p, maximum when p = 1/2. 

just looks at the 42nd byte and interprets those 8 bits as an ASCII character. A text file 
containing 1000 characters takes 8000 bits to store. If the text file were HTML to be sent 
over the network in response to an HTTP request, it would be natural to send the 1000 
bytes (8000 bits) exactly as they appear in the file. 

But let’s think about how we might compress the file and send fewer than 8000 bits. If 
the file contained English text, we’d expect that the letter e would occur more frequently 
than, say, the letter x. This observation suggests that if we encoded e for transmission 
using fewer than 8 bits—and, as a trade-off, had to encode less common characters, like x, 
using more than 8 bits—we’d expect the encoded message to be shorter on average than the 
original method. So, for example, we might choose the bit sequence 00 to represent e and 
the code 100111100 to represent x. 

This intuition is consistent with the definition of the amount of information: commonly 
occurring symbols have a higher pi and thus convey less information, so we need fewer 
bits to encode such symbols. Similarly, infrequently occurring symbols like x have a lower 
pi and thus convey more information, so we’ll use more bits when encoding such sym­
bols. This intuition helps meet our goal of matching the size of the transmitted data to the 
information content of the message. 

The mapping of information we wish to transmit or store into bit sequences is referred 
to as a code. Two examples of codes (fixed-length and variable-length) are shown in Fig­
ure 2-2, mapping different grades to bit sequences in one-to-one fashion. The fixed-length 
code is straightforward, but the variable-length code is not arbitrary, and has been care­
fully designed, as we will soon learn. Each bit sequence in the code is called a codeword. 

When the mapping is performed at the source of the data, generally for the purpose 
of compressing the data (ideally, to match the expected number of bits to the underlying 
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entropy), the resulting mapping is called a source code. Source codes are distinct from 
channel codes we will study in later chapters. Source codes remove redundancy and com­
press the data, while channel codes add redundancy in a controlled way to improve the error 
resilience of the data in the face of bit errors and erasures caused by imperfect communi­
cation channels. This chapter and the next are about source codes. 

This insight about encoding common symbols (such as the letter e) more succinctly than 
uncommon symbols can be generalized to produce a strategy for variable-length codes: 

Send commonly occurring symbols using shorter codewords (fewer bits), and 
send infrequently occurring symbols using longer codewords (more bits). 

We’d expect that, on average, encoding the message with a variable-length code would 
take fewer bits than the original fixed-length encoding. Of course, if the message were all 
x’s the variable-length encoding would be longer, but our encoding scheme is designed to 
optimize the expected case, not the worst case. 

Here’s a simple example: suppose we had to design a system to send messages con­
taining 1000 6.02 grades of A, B, C and D (MIT students rarely, if ever, get an F in 6.02 ¨̂ ). 
Examining past messages, we find that each of the four grades occurs with the probabilities 
shown in Figure 2-2. 

Grade Probability Fixed-length Code Variable-length Code 
A 

B 

C 

D 

1/3 

1/2 

1/12 

1/12 

00 

01 

10 

11 

10 

0 

110 

111 

Figure 2-2: Possible grades shown with probabilities, fixed- and variable-length encodings 

With four possible choices for each grade, if we use the fixed-length encoding, we need 
2 bits to encode a grade, for a total transmission length of 2000 bits when sending 1000 
grades. 

Fixed-length encoding for BCBAAB: 01 10 01 00 00 01 (12 bits) 

With a fixed-length code, the size of the transmission doesn’t depend on the actual 
message—sending 1000 grades always takes exactly 2000 bits. 

Decoding a message sent with the fixed-length code is straightforward: take each pair 
of received bits and look them up in the table above to determine the corresponding grade. 
Note that it’s possible to determine, say, the 42nd grade without decoding any other of the 
grades—just look at the 42nd pair of bits. 

Using the variable-length code, the number of bits needed for transmitting 1000 grades 
depends on the grades. 

Variable-length encoding for BCBAAB: 0 110 0 10 10 0 (10 bits) 

If the grades were all B, the transmission would take only 1000 bits; if they were all C’s 
and D’s, the transmission would take 3000 bits. But we can use the grade probabilities 
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given in Figure 2-2 to compute the expected length of a transmission as 

1 1 1 1 2 
1000[( )(2) + ( )(1) + ( )(3) + ( )(3)] = 1000[1 ] = 1666.7 bits 

3 2 12 12 3

So, on average, using the variable-length code would shorten the transmission of 1000 
grades by 333 bits, a savings of about 17%. Note that to determine, say, the 42nd grade, we 
would need to decode the first 41 grades to determine where in the encoded message the 
42

nd grade appears. 
Using variable-length codes looks like a good approach if we want to send fewer bits 

on average, but preserve all the information in the original message. On the downside, 
we give up the ability to access an arbitrary message symbol without first decoding the 
message up to that point. 

One obvious question to ask about a particular variable-length code: is it the best en­
coding possible? Might there be a different variable-length code that could do a better job, 
i.e., produce even shorter messages on average? How short can the messages be on the 
average? We turn to this question next. 

⌅ 2.3 How Much Compression Is Possible? 

Ideally we’d like to design our compression algorithm to produce as few bits as possible: 
just enough bits to represent the information in the message, but no more. Ideally, we 
will be able to use no more bits than the amount of information, as defined in Section 2.1, 
contained in the message, at least on average. 

Specifically, the entropy, defined by Equation (2.2), tells us the expected amount of in­
formation in a message, when the message is drawn from a set of possible messages, each 
occurring with some probability. The entropy is a lower bound on the amount of informa­
tion that must be sent, on average, when transmitting data about a particular choice. 

What happens if we violate this lower bound, i.e., we send fewer bits on average than 
called for by Equation (2.2)? In this case the receiver will not have sufficient information 
and there will be some remaining ambiguity—exactly what ambiguity depends on the 
encoding, but to construct a code of fewer than the required number of bits, some of the 
choices must have been mapped into the same encoding. Thus, when the recipient receives 
one of the overloaded encodings, it will not have enough information to unambiguously 
determine which of the choices actually occurred. 

Equation (2.2) answers our question about how much compression is possible by giving 
us a lower bound on the number of bits that must be sent to resolve all ambiguities at the 
recipient. Reprising the example from Figure 2-2, we can update the figure using Equation 
(2.1). 
Using Equation (2.2) we can compute the expected information content when learning of 
a particular grade: 

N
1 1 1 1 1

X 
pi log

2

( ) = (  )(1.58) + ( )(1) + ( )(3.58) + ( )(3.58) = 1.626 bits 
pi 3 2 12 12

i=1 

So encoding a sequence of 1000 grades requires transmitting 1626 bits on the average. The 
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Grade pi log
2

(1/pi) 
A 

B 

C 

D 

1/3 

1/2 

1/12 

1/12 

1.58 bits 

1 bit 
3.58 bits 

3.58 bits 

Figure 2-3: Possible grades shown with probabilities and information content. 

variable-length code given in Figure 2-2 encodes 1000 grades using 1667 bits on the aver­
age, and so doesn’t achieve the maximum possible compression. It turns out the example 
code does as well as possible when encoding one grade at a time. To get closer to the lower 
bound, we would need to encode sequences of grades—more on this idea below. 

Finding a good code—one where the length of the encoded message matches the infor­
mation content (i.e., the entropy)—is challenging and one often has to think “outside the 
box”. For example, consider transmitting the results of 1000 flips of an unfair coin where 
the probability of a head is given by pH . The expected information content in an unfair 
coin flip can be computed using Equation (2.3): 

pH log
2

(1/pH ) +  (1  - pH ) log
2

(1/(1 - pH )) 

For pH = 0.999, this entropy evaluates to .0114. Can you think of a way to encode 1000 
unfair coin flips using, on average, just 11.4 bits? The recipient of the encoded message 
must be able to tell for each of the 1000 flips which were heads and which were tails. Hint: 
with a budget of just 11 bits, one obviously can’t encode each flip separately! 

In fact, some effective codes leverage the context in which the encoded message is be­
ing sent. For example, if the recipient is expecting to receive a Shakespeare sonnet, then 
it’s possible to encode the message using just 8 bits if one knows that there are only 154 
Shakespeare sonnets. That is, if the sender and receiver both know the sonnets, and the 
sender just wishes to tell the receiver which sonnet to read or listen to, he can do that using 
a very small number of bits, just log

2 154 bits if all the sonnets are equi-probable! 

⌅ 2.4 Why Compression? 

There are several reasons for using compression: 

•	 Shorter messages take less time to transmit and so the complete message arrives 
more quickly at the recipient. This is good for both the sender and recipient since 
it frees up their network capacity for other purposes and reduces their network 
charges. For high-volume senders of data (such as Google, say), the impact of send­
ing half as many bytes is economically significant. 

•	 Using network resources sparingly is good for all the users who must share the 
internal resources (packet queues and links) of the network. Fewer resources per 
message means more messages can be accommodated within the network’s resource 
constraints. 
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•	 Over error-prone links with non-negligible bit error rates, compressing messages be­
fore they are channel-coded using error-correcting codes can help improve through­
put because all the redundancy in the message can be designed in to improve error 
resilience, after removing any other redundancies in the original message. It is better 
to design in redundancy with the explicit goal of correcting bit errors, rather than 
rely on whatever sub-optimal redundancies happen to exist in the original message. 

Compression is traditionally thought of as an end-to-end function, applied as part of the 
application-layer protocol. For instance, one might use lossless compression between a 
web server and browser to reduce the number of bits sent when transferring a collection of 
web pages. As another example, one might use a compressed image format such as JPEG 
to transmit images, or a format like MPEG to transmit video. However, one may also ap­
ply compression at the link layer to reduce the number of transmitted bits and eliminate 
redundant bits (before possibly applying an error-correcting code over the link). When 
applied at the link layer, compression only makes sense if the data is inherently compress­
ible, which means it cannot already be compressed and must have enough redundancy to 
extract compression gains. 

The next chapter describes two compression (source coding) schemes: Huffman Codes 
and Lempel-Ziv-Welch (LZW) compression. 
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⌅ Exercises 

1. Several people at a party are trying to guess a 3-bit binary number. Alice is told that 
the number is odd; Bob is told that it is not a multiple of 3 (i.e., not 0, 3, or 6); Charlie 
is told that the number contains exactly two 1’s; and Deb is given all three of these 
clues. How much information (in bits) did each player get about the number? 

2. After careful data collection, Alyssa P. Hacker observes that the probability of 
“HIGH” or “LOW” traffic on Storrow Drive is given by the following table: 

HIGH traffic level LOW traffic level 
If the Red Sox are playing 

If the Red Sox are not playing 
P (HIGH traffic) = 0.999 P (LOW traffic) = 0.001 
P (HIGH traffic) = 0.25 P (LOW traffic) = 0.75 

(a) If it is known that the Red Sox are playing, then how much information in bits 
is conveyed by the statement that the traffic level is LOW. Give your answer as 
a mathematical expression. 

(b) Suppose it is known that the Red Sox are not playing. What is the entropy 
of the corresponding probability distribution of traffic? Give your answer as a 
mathematical expression. 

3.	 X is an unknown 4-bit binary number picked uniformly at random from the set of 
all possible 4-bit numbers. You are given another 4-bit binary number, Y , and told 
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that X (the unknown number) and Y (the number you know) differ in precisely two 
positions. How many bits of information about X have you been given? 

4. In Blackjack the dealer starts by dealing 2 cards each to himself and his opponent: 
one face down, one face up. After you look at your face-down card, you know a total 
of three cards. Assuming this was the first hand played from a new deck, how many 
bits of information do you have about the dealer’s face down card after having seen 
three cards? 

5. The following table shows the undergraduate and MEng enrollments for the School 
of Engineering: 

Course (Department) # of students % of total 
I (Civil & Env.) 
II (Mech. Eng.) 
III (Mat. Sci.) 
VI (EECS) 
X (Chem. Eng.) 
XVI (Aero & Astro) 
Total 

121 
389 
127 
645 
237 
198 

1717 

7% 
23% 
7% 

38% 
13% 
12% 

100% 

(a) When you learn a randomly chosen engineering student’s department you get 
some number of bits of information. For which student department do you get 
the least amount of information? 

(b)	 After studying Huffman codes in the next chapter, design a Huffman code to 
encode the departments of randomly chosen groups of students. Show your 
Huffman tree and give the code for each course. 

(c) If your code is used to send messages containing only the encodings of the de­
partments for each student in groups of 100 randomly chosen students, what is 
the average length of such messages? 

6. You’re playing an online card game that uses a deck of 100 cards containing 3 Aces, 
7 Kings, 25 Queens, 31 Jacks and 34 Tens. In each round of the game the cards are 
shuffled, you make a bet about what type of card will be drawn, then a single card 
is drawn and the winners are paid off. The drawn card is reinserted into the deck 
before the next round begins. 

(a) How much information do you receive when told that a Queen has been drawn 
during the current round? 

(b) Give a numeric expression for the information content received when learning 
about the outcome of a round. 

(c)	 After you learn about Huffman codes in the next chapter, construct a variable-
length Huffman encoding that minimizes the length of messages that report the 
outcome of a sequence of rounds. The outcome of a single round is encoded as 
A (ace), K (king), Q (queen), J (jack) or X (ten). Specify your encoding for each 
of A, K, Q, J and X. 
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(d)	 Again, after studying Huffman codes, use your code from part (c) to calculate 
the expected length of a message reporting the outcome of 1000 rounds (i.e., a 
message that contains 1000 symbols)? 

(e) The Nevada Gaming Commission regularly receives messages in which the out­
come for each round is encoded using the symbols A, K, Q, J, and X . They dis­
cover that a large number of messages describing the outcome of 1000 rounds 
(i.e., messages with 1000 symbols) can be compressed by the LZW algorithm 
into files each containing 43 bytes in total. They decide to issue an indictment 
for running a crooked game. Why did the Commission issue the indictment? 

7. Consider messages made up entirely of vowels (A, E, I, O, U ). Here’s a table of prob­
abilities for each of the vowels: 

l pl log

2

(1/pl) pl log
2

(1/pl) 
A 0.22 2.18 0.48 
E 0.34 1.55 0.53 
I 0.17 2.57 0.43 
O 0.19 2.40 0.46 
U 0.08 3.64 0.29 

Totals 1.00 12.34 2.19 

(a) Give an expression for the number of bits of information you receive when 
learning that a particular vowel is either I or U . 

(b)	 After studying Huffman codes in the next chapter, use Huffman’s algorithm 
to construct a variable-length code assuming that each vowel is encoded indi­
vidually. Draw a diagram of the Huffman tree and give the encoding for each 
of the vowels. 

(c) Using your code from part (B) above, give an expression for the expected length 
in bits of an encoded message transmitting 100 vowels. 

(d) Ben Bitdiddle spends all night working on a more complicated encoding algo­
rithm and sends you email claiming that using his code the expected length in 
bits of an encoded message transmitting 100 vowels is 197 bits. Would you pay 
good money for his implementation? 
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CHAPTER 3
Compression Algorithms: Hu↵man

and Lempel-Ziv-Welch (LZW)

This chapter discusses two source coding algorithms to compress messages (a message
is a sequence of symbols). The first, Huffman coding, is efficient when one knows the
probabilities of the different symbols making up a message, and each symbol is drawn
independently from some known distribution. The second, LZW (for Lempel-Ziv-Welch),
is an adaptive compression algorithm that does not assume any knowledge of the symbol
probabilities. Both Huffman codes and LZW are widely used in practice, and are a part of
many real-world standards such as GIF, JPEG, MPEG, MP3, and more.

⌅ 3.1 Properties of Good Source Codes

Suppose the source wishes to send a message, i.e., a sequence of symbols, drawn from
some alphabet. The alphabet could be text, it could be pixel intensities corresponding to
a digitized picture or video obtained from a digital or analog source (we will look at an
example of such a source in more detail in the next chapter), or it could be something more
abstract (e.g., “ONE” if by land and “TWO” if by sea, or h for heavy traffic and ` for light
traffic on a road).

A code is a mapping between symbols and codewords. The reason for doing the map-
ping is that we would like to adapt the message into a form that can be manipulated (pro-
cessed), stored, and transmitted over communication channels. For many channels, code-
words made of a binary-valued quantity are a convenient and effective way to achieve this
goal.

For example, if we want to communicate the grades of students in 6.02, we might use
the following encoding:

“A”! 1
“B”! 01
“C”! 000
“D”! 001

19
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Then, if we want to transmit a sequence of grades, we might end up sending a message
such as 0010001110100001. The receiver can decode this received message as the sequence
of grades “DCAAABCB” by looking up the appropriate contiguous and non-overlapping
substrings of the received message in the code (i.e., the mapping) shared by it and the
source.

Instantaneous codes. A useful property for a code to possess is that a symbol correspond-
ing to a received codeword be decodable as soon as the corresponding codeword is re-
ceived. Such a code is called an instantaneous code. The example above is an instanta-
neous code. The reason is that if the receiver has already decoded a sequence and now
receives a “1”, then it knows that the symbol must be “A”. If it receives a “0”, then it looks
at the next bit; if that bit is “1”, then it knows the symbol is “B”; if the next bit is instead
“0”, then it does not yet know what the symbol is, but the next bit determines uniquely
whether the symbol is “C” (if “0”) or “D” (if “1”). Hence, this code is instantaneous.

Non-instantaneous codes are hard to decode, though they could be uniquely decodable.
For example, consider the following encoding:

“A”! 0
“B”! 01
“C”! 011
“D”! 111

This example code is not instantaneous. If we received the string 01111101, we wouldn’t
be able to decode the first symbol as “A” on seeing the first ’0’. In fact, we can’t be sure
that the first symbol is “B” either. One would, in general, have to wait for the end of the
message, and start the decoding from there. In this case, the sequence of symbols works
out to “BDB”.

This example code turns out to be uniquely decodable, but that is not always the case
with a non-instantaneous code (in contrast, all instantaneous codes admit a unique decod-
ing, which is obviously an important property).

As an example of a non-instantaneous code that is not useful (i.e., not uniquely decod-
able), consider

“A”! 0
“B”! 1
“C”! 01
“D”! 11

With this code, there exist many sequences of bits that do not map to a unique symbol
sequence; for example, “01” could be either “AB” or just “C”.

We will restrict our investigation to only instantaneous codes; most lossless compres-
sion codes are instantaneous.

Code trees and prefix-free codes. A convenient way to visualize codes is using a code tree,
as shown in Figure 3-1 for an instantaneous code with the following encoding:

“A”! 10
“B”! 0
“C”! 110
“D”! 111
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When the encodings are binary-valued strings, the code tree is a rooted binary tree with
the symbols at the nodes of the tree. The edges of the tree are labeled with “0” or “1” to
signify the encoding. To find the encoding of a symbol, the encoder walks the path from
the root (the top-most node) to that symbol, emitting the label on the edges traversed.

If, in a code tree, the symbols are all at the leaves, then the code is said to be prefix-free,
because no codeword is a prefix of another codeword. Prefix-free codes (and code trees)
are naturally instantaneous, which makes them attractive.1

Expected code length. Our final definition is for the expected length of a code. Given N
symbols, with symbol i occurring with probability pi, if we have a code in which symbol i
has length `i inPthe code tree (i.e., the codeword is `i bits long), then the expected length of
the code, L, is N

i=1

pi`i.
In general, codes with small expected code length are interesting and useful because

they allow us to compress messages, delivering messages without any loss of information
but consuming fewer bits than without the code. Because one of our goals in designing
communication systems is efficient sharing of the communication links among different
users or conversations, the ability to send data in as few bits as possible is important.

We say that an instantaneous code is optimal if its expected code length, L, is the min-
imum among all possible such codes. The corresponding code tree gives us the optimal
mapping between symbols and codewords, and is usually not unique. Shannon proved
that the expected code length of any uniquely decodable code cannot be smaller than the
entropy, H , of the underlying probability distribution over the symbols. He also showed
the existence of codes that achieve entropy asymptotically, as the length of the coded
messages approaches 1. Thus, an optimal code will have an expected code length that
matches the entropy for long messages.

The rest of this chapter describes two optimal code constructions ; they are optimal
under certain conditions, stated below. First, we present Huffman codes, which are op-
timal instantaneous codes when the symbols are generated independently from a fixed,
given probability distribution, and we restrict ourselves to “symbol-by-symbol” mapping
of symbols to codewords. It is a prefix-free code, satisfying the property H  L  H + 1.
Second, we present the LZW algorithm, which adapts to the actual distribution of symbols
in the message, not relying on any a priori knowledge of symbol probabilities.

⌅ 3.2 Hu↵man Codes

Huffman codes give an efficient encoding for a list of symbols to be transmitted, when
we know their probabilities of occurrence in the messages to be encoded. We’ll use the
intuition developed in the previous chapter: more likely symbols should have shorter en-
codings, less likely symbols should have longer encodings.

If we draw the variable-length code of Figure 2-2 as a code tree, we’ll get some insight
into how the encoding algorithm should work:
To encode a symbol using the tree, start at the root and traverse the tree until you reach
the symbol to be encoded—the encoding is the concatenation of the branch labels in the
order the branches were visited. The destination node, which is always a “leaf” node for

1Somewhat unfortunately, several papers and books use the term “prefix code” to mean the same thing as
a “prefix-free code”. Caveat lector!
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Figure 3-1: Variable-length code from Figure 2-2 shown in the form of a code tree.

an instantaneous or prefix-free code, determines the path, and hence the encoding. So B is
encoded as 0, C is encoded as 110, and so on. Decoding complements the process, in that
now the path (codeword) determines the symbol, as described in the previous section. So
111100 is decoded as: 111! D, 10! A, 0! B.

Looking at the tree, we see that the more probable symbols (e.g., B) are near the root of
the tree and so have short encodings, while less-probable symbols (e.g., C or D) are further
down and so have longer encodings. David Huffman used this observation while writing
a term paper for a graduate course taught by Bob Fano here at M.I.T. in 1951 to devise an
algorithm for building the decoding tree for an optimal variable-length code.

Huffman’s insight was to build the decoding tree bottom up, starting with the least prob-
able symbols and applying a greedy strategy. Here are the steps involved, along with a
worked example based on the variable-length code in Figure 2-2. The input to the algo-
rithm is a set of symbols and their respective probabilities of occurrence. The output is the
code tree, from which one can read off the codeword corresponding to each symbol.

1. Input: A set S of tuples, each tuple consisting of a message symbol and its associated
probability.

Example: S  {(0.333,A), (0.5,B), (0.083,C), (0.083,D)}

2. Remove from S the two tuples with the smallest probabilities, resolving ties arbitrar-
ily. Combine the two symbols from the removed tuples to form a new tuple (which
will represent an interior node of the code tree). Compute the probability of this new
tuple by adding the two probabilities from the tuples. Add this new tuple to S. (If S
had N tuples to start, it now has N � 1, because we removed two tuples and added
one.)

Example: S  {(0.333,A), (0.5,B), (0.167,C ^D)}

3. Repeat step 2 until S contains only a single tuple. (That last tuple represents the root
of the code tree.)

Example, iteration 2: S  {(0.5,B), (0.5,A^ (C ^D))}

Example, iteration 3: S  {(1.0,B ^ (A^ (C ^D)))}

Et voila! The result is a code tree representing a variable-length code for the given symbols
and probabilities. As you’ll see in the Exercises, the trees aren’t always “tall and thin” with
the left branch leading to a leaf; it’s quite common for the trees to be much “bushier.” As
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a simple example, consider input symbols A,B,C,D,E,F,G,H with equal probabilities
of occurrence (1/8 for each). In the first pass, one can pick any two as the two lowest-
probability symbols, so let’s pick A and B without loss of generality. The combined AB
symbol has probability 1/4, while the other six symbols have probability 1/8 each. In the
next iteration, we can pick any two of the symbols with probability 1/8, say C and D.
Continuing this process, we see that after four iterations, we would have created four sets
of combined symbols, each with probability 1/4 each. Applying the algorithm, we find
that the code tree is a complete binary tree where every symbol has a codeword of length
3, corresponding to all combinations of 3-bit words (000 through 111).

Huffman codes have the biggest reduction in the expected length of the encoded mes-
sage (relative to a simple fixed-width encoding using binary enumeration) when some
symbols are substantially more probable than other symbols. If all symbols are equiprob-
able, then all codewords are roughly the same length, and there are (nearly) fixed-length
encodings whose expected code lengths approach entropy and are thus close to optimal.

⌅ 3.2.1 Properties of Hu↵man Codes

We state some properties of Huffman codes here. We don’t prove these properties formally,
but provide intuition about why they hold.

1/8$ 1/8$ 1/8$ 1/8$

1/4$ 1/4$

1/8$ 1/8$ 1/8$ 1/8$

1/4$ 1/4$

Figure 3-2: An example of two non-isomorphic Huffman code trees, both optimal.

Non-uniqueness. In a trivial way, because the 0/1 labels on any pair of branches in a
code tree can be reversed, there are in general multiple different encodings that all have
the same expected length. In fact, there may be multiple optimal codes for a given set of
symbol probabilities, and depending on how ties are broken, Huffman coding can produce
different non-isomorphic code trees, i.e., trees that look different structurally and aren’t just
relabelings of a single underlying tree. For example, consider six symbols with proba-
bilities 1/4,1/4,1/8,1/8,1/8,1/8. The two code trees shown in Figure 3-2 are both valid
Huffman (optimal) codes.

Optimality. Huffman codes are optimal in the sense that there are no other codes with
shorter expected length, when restricted to instantaneous (prefix-free) codes, and symbols
in the messages are drawn in independent fashion from a fixed, known probability distri-
bution.
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We state here some propositions that are useful in establishing the optimality of Huff-
man codes.

Proposition 3.1 In any optimal code tree for a prefix-free code, each node has either zero or two
children.

To see why, suppose an optimal code tree has a node with one child. If we take that node
and move it up one level to its parent, we will have reduced the expected code length, and
the code will remain decodable. Hence, the original tree was not optimal, a contradiction.

Proposition 3.2 In the code tree for a Huffman code, no node has exactly one child.

To see why, note that we always combine the two lowest-probability nodes into a single
one, which means that in the code tree, each internal node (i.e., non-leaf node) comes from
two combined nodes (either internal nodes themselves, or original symbols).

Proposition 3.3 There exists an optimal code in which the two least-probable symbols:

• have the longest length, and

• are siblings, i.e., their codewords differ in exactly the one bit (the last one).

Proof. Let z be the least-probable symbol. If it is not at maximum depth in the optimal code
tree, then some other symbol, call it s, must be at maximum depth. But because pz < ps, if
we swapped z and s in the code tree, we would end up with a code with smaller expected
length. Hence, z must have a codeword at least as long as every other codeword.

Now, symbol z must have a sibling in the optimal code tree, by Proposition 3.1. Call it
x. Let y be the symbol with second lowest probability; i.e., px � py � pz . If px = py, then the
proposition is proved. Let’s swap x and y in the code tree, so now y is a sibling of z. The
expected code length of this code tree is not larger than the pre-swap optimal code tree,
because px is strictly greater than py, proving the proposition. ⌅

Theorem 3.1 Huffman coding produces a code tree whose expected length is optimal, when re-
stricted to symbol-by-symbol coding with symbols drawn independently from a fixed, known sym-
bol probability distribution.

Proof. Proof by induction on n, the number of symbols. Let the symbols be
x
1

, x
2

, . . . , xn 1

, xn and let their respective probabilities of occurrence be p� 1

� p
2

� . . . �
pn 1

� pn. From Proposition 3.3, there exists an optimal code tree in which xn 1

and x� � n

have the longest length and are siblings.
Inductive hypothesis: Assume that Huffman coding produces an optimal code tree on

an input with n� 1 symbols with associated probabilities of occurrence. The base case is
trivial to verify.

Let Hn be the expected cost of the code tree generated by Huffman coding on the n
symbols x

1

, x
2

, . . . , xn. Then, Hn = Hn + p + p , where H is the expected cost of�1 n�1 n n�1
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the code tree generated by Huffman coding on n� 1 input symbols x
1

, x
2

, . . . xn�2

, xn�1,n

with probabilities p
1

, p
2

, . . . , pn�2

, (pn�1

+ pn).
By the inductive hypothesis, Hn�1

= Ln�1

, the expected length of the optimal code tree
over n� 1 symbols. Moreover, from Proposition 3.3, there exists an optimal code tree over
n symbols for which Ln = Ln 1

+ (pn 1

+ pn). Hence, there exists an optimal code tree� �
whose expected cost, Ln, is equal to the expected cost, Hn, of the Huffman code over the n
symbols. ⌅

Huffman coding with grouped symbols. The entropy of the distribution shown in Figure
2-2 is 1.626. The per-symbol encoding of those symbols using Huffman coding produces
a code with expected length 1.667, which is noticeably larger (e.g., if we were to encode
10,000 grades, the difference would be about 410 bits). Can we apply Huffman coding to
get closer to entropy?

One approach is to group symbols into larger “metasymbols” and encode those instead,
usually with some gain in compression but at a cost of increased encoding and decoding
complexity.

Consider encoding pairs of symbols, triples of symbols, quads of symbols, etc. Here’s a
tabulation of the results using the grades example from Figure 2-2:

Size of
grouping

Number of
leaves in tree

Expected length
for 1000 grades

1
2
3
4

Figure 3-3: Results

4
16
64
256

from encoding mo

1667
1646
1637
1633

re than one grade at a time.

We see that we can come closer to the Shannon lower bound (i.e., entropy) of 1.626 bits
by encoding grades in larger groups at a time, but at a cost of a more complex encoding
and decoding process. If K symbols are grouped, then the expected code length L satisfies
H  L  H + 1/K, so as one makes K larger, one gets closer to the entropy bound.

This approach still has two significant problems: first, it requires knowledge of the
individual symbol probabilities, and second, it assumes that the symbol selection is inde-
pendent and from a fixed, known distribution at each position in all messages. In practice,
however, symbol probabilities change message-to-message, or even within a single mes-
sage.

This last observation suggests that it would be useful to create an adaptive variable-
length encoding that takes into account the actual content of the message. The LZW algo-
rithm, presented in the next section, is such a method.

⌅ 3.3 LZW: An Adaptive Variable-length Source Code

Let’s first understand the compression problem better by considering the problem of dig-
itally representing and transmitting the text of a book written in, say, English. A simple
approach is to analyze a few books and estimate the probabilities of different letters of the
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alphabet. Then, treat each letter as a symbol and apply Huffman coding to compress the
document of interest.

This approach is reasonable but ends up achieving relatively small gains compared to
the best one can do. One big reason is that the probability with which a letter appears
in any text is not always the same. For example, a priori, “x” is one of the least frequently
appearing letters, appearing only about 0.3% of the time in English text. But in the sentence
“... nothing can be said to be certain, except death and ta ”, the next letter is almost
certainly an “x”. In this context, no other letter can be more certain!

Another reason why we might expect to do better than Huffman coding is that it is often
unclear at what level of granularity the symbols should be chosen or defined. For English
text, because individual letters vary in probability by context, we might be tempted to use
words as the primitive symbols for coding. It turns out that word occurrences also change
in probability depend on context.

An approach that adapts to the material being compressed might avoid these shortcom-
ings. One approach to adaptive encoding is to use a two pass process: in the first pass,
count how often each symbol (or pairs of symbols, or triples—whatever level of grouping
you’ve chosen) appears and use those counts to develop a Huffman code customized to
the contents of the file. Then, in the second pass, encode the file using the customized
Huffman code. This strategy is expensive but workable, yet it falls short in several ways.
Whatever size symbol grouping is chosen, it won’t do an optimal job on encoding recur-
ring groups of some different size, either larger or smaller. And if the symbol probabilities
change dramatically at some point in the file, a one-size-fits-all Huffman code won’t be
optimal; in this case one would want to change the encoding midstream.

A different approach to adaptation is taken by the popular Lempel-Ziv-Welch (LZW)
algorithm. This method was developed originally by Ziv and Lempel, and subsequently
improved by Welch. As the message to be encoded is processed, the LZW algorithm builds
a string table that maps symbol sequences to/from an N -bit index. The string table has 2N

entries and the transmitted code can be used at the decoder as an index into the string
table to retrieve the corresponding original symbol sequence. The sequences stored in
the table can be arbitrarily long. The algorithm is designed so that the string table can
be reconstructed by the decoder based on information in the encoded stream—the table,
while central to the encoding and decoding process, is never transmitted! This property is
crucial to the understanding of the LZW method.

When encoding a byte stream,2 the first 28 = 256 entries of the string table, numbered 0

through 255, are initialized to hold all the possible one-byte sequences. The other entries
will be filled in as the message byte stream is processed. The encoding strategy works as
follows and is shown in pseudo-code form in Figure 3-4. First, accumulate message bytes
as long as the accumulated sequences appear as some entry in the string table. At some
point, appending the next byte b to the accumulated sequence S would create a sequence
S + b that’s not in the string table, where + denotes appending b to S. The encoder then
executes the following steps:

1. It transmits the N -bit code for the sequence S.
2. It adds a new entry to the string table for S + b. If the encoder finds the table full

when it goes to add an entry, it reinitializes the table before the addition is made.

2A byte is a contiguous string of 8 bits.
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initialize TABLE[0 to 255] = code for individual bytes
STRING = get input symbol
while there are still input symbols:

SYMBOL = get input symbol
if STRING + SYMBOL is in TABLE:

STRING = STRING + SYMBOL
else:

output the code for STRING
add STRING + SYMBOL to TABLE
STRING = SYMBOL

output the code for STRING

Figure 3-4: Pseudo-code for the LZW adaptive variable-length encoder. Note that some details, like dealing
with a full string table, are omitted for simplicity.

initialize TABLE[0 to 255] = code for individual bytes
CODE = read next code from encoder
STRING = TABLE[CODE]
output STRING

while there are still codes to receive:
CODE = read next code from encoder
if TABLE[CODE] is not defined: // needed because sometimes the

ENTRY = STRING + STRING[0] // decoder may not yet have entry!
else:

ENTRY = TABLE[CODE]
output ENTRY
add STRING+ENTRY[0] to TABLE
STRING = ENTRY

Figure 3-5: Pseudo-code for LZW adaptive variable-length decoder.

3. it resets S to contain only the byte b.
This process repeats until all the message bytes are consumed, at which point the en-

coder makes a final transmission of the N -bit code for the current sequence S.
Note that for every transmission done by the encoder, the encoder makes a new entry

in the string table. With a little cleverness, the decoder, shown in pseudo-code form in
Figure 3-5, can figure out what the new entry must have been as it receives each N-bit
code. With a duplicate string table at the decoder constructed as the algorithm progresses
at the decoder, it is possible to recover the original message: just use the received N -bit
code as index into the decoder’s string table to retrieve the original sequence of message
bytes.

Figure 3-6 shows the encoder in action on a repeating sequence of abc. Notice that:

• The encoder algorithm is greedy—it is designed to find the longest possible match
in the string table before it makes a transmission.
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S msg. byte lookup result transmit string table
– a – – – –
a b ab not found index of a table[256] = ab
b c bc not found index of b table[257] = bc
c a ca not found index of c table[258] = ca
a b ab found – –
ab c abc not found 256 table[259] = abc
c a ca found – –
ca b cab not found 258 table[260] = cab
b c bc found – –
bc a bca not found 257 table[261] = bca
a b ab found – –
ab c abc found – –
abc a abca not found 259 table[262] = abca
a b ab found – –
ab c abc found – –
abc a abca found – –
abca b abcab not found 262 table[263] = abcab
b c bc found – –
bc a bca found – –
bca b bcab not found 261 table[264] = bcab
b c bc found – –
bc a bca found – –
bca b bcab found – –
bcab c bcabc not found 264 table[265] = bcabc
c a ca found – –
ca b cab found – –
cab c cabc not found 260 table[266] = cabc
c a ca found – –
ca b cab found – –
cab c cabc found – –
cabc a cabca not found 266 table[267] = cabca
a b ab found – –
ab c abc found – –
abc a abca found – –
abca b abcab found – –
abcab c abcabc not found 263 table[268] = abcabc
c – end – – – index of c –

Figure 3-6: LZW encoding of string “abcabcabcabcabcabcabcabcabcabcabcabc”
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received string table decoding
a – a
b table[256] = ab b
c table[257] = bc c
256 table[258] = ca ab
258 table[259] = abc ca
257 table[260] = cab bc
259 table[261] = bca abc
262 table[262] = abca abca
261 table[263] = abcab bca
264 table[264] = bcab bcab
260 table[265] = bcabc cab
266 table[266] = cabc cabc
263 table[267] = cabca abcab
c table[268] = abcabc c

Figure 3-7: LZW decoding of the sequence a, b, c,256,258,257,259,262,261,264,260,266,263, c

• The string table is filled with sequences actually found in the message stream. No
encodings are wasted on sequences not actually found in the file.

• Since the encoder operates without any knowledge of what’s to come in the message
stream, there may be entries in the string table that don’t correspond to a sequence
that’s repeated, i.e., some of the possible N -bit codes will never be transmitted. This
property means that the encoding isn’t optimal—a prescient encoder could do a bet-
ter job.

• Note that in this example the amount of compression increases as the encoding pro-
gresses, i.e., more input bytes are consumed between transmissions.

• Eventually the table will fill and then be reinitialized, recycling the N-bit codes for
new sequences. So the encoder will eventually adapt to changes in the probabilities
of the symbols or symbol sequences.

Figure 3-7 shows the operation of the decoder on the transmit sequence produced in
Figure 3-6. As each N -bit code is received, the decoder deduces the correct entry to make
in the string table (i.e., the same entry as made at the encoder) and then uses the N -bit
code as index into the table to retrieve the original message sequence.

There is a special case, which turns out to be important, that needs to be dealt with.
There are three instances in Figure 3-7 where the decoder receives an index (262,264,266)
that it has not previously entered in its string table. So how does it figure out what these
correspond to? A careful analysis, which you could do, shows that this situation only
happens when the associated string table entry has its last symbol identical to its first
symbol. To handle this issue, the decoder can simply complete the partial string that it is
building up into a table entry (abc, bac, cab respectively, in the three instances in Figure 3-
7) by repeating its first symbol at the end of the string (to get abca, bacb, cabc respectively,
in our example), and then entering this into the string table. This step is captured in the
pseudo-code in Figure 3-5 by the logic of the “if” statement there.
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We conclude this chapter with some interesting observations about LZW compression:

• A common choice for the size of the string table is 4096 (N = 12). A larger table
means the encoder has a longer memory for sequences it has seen and increases
the possibility of discovering repeated sequences across longer spans of message.
However, dedicating string table entries to remembering sequences that will never
be seen again decreases the efficiency of the encoding.

• Early in the encoding, the encoder uses entries near the beginning of the string table,
i.e., the high-order bits of the string table index will be 0 until the string table starts
to fill. So the N -bit codes we transmit at the outset will be numerically small. Some
variants of LZW transmit a variable-width code, where the width grows as the table
fills. If N = 12, the initial transmissions may be only 9 bits until entry number 511 in
the table is filled (i.e., 512 entries filled in all), then the code expands to 10 bits, and
so on, until the maximum width N is reached.

• Some variants of LZW introduce additional special transmit codes, e.g., CLEAR to
indicate when the table is reinitialized. This allows the encoder to reset the table
pre-emptively if the message stream probabilities change dramatically, causing an
observable drop in compression efficiency.

• There are many small details we haven’t discussed. For example, when sending N -
bit codes one bit at a time over a serial communication channel, we have to specify
the order in the which the N bits are sent: least significant bit first, or most significant
bit first. To specify N , serialization order, algorithm version, etc., most compressed
file formats have a header where the encoder can communicate these details to the
decoder.

⌅ 3.4 Acknowledgments
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⌅ Exercises

1. Huffman coding is used to compactly encode the species of fish tagged by a game
warden. If 50% of the fish are bass and the rest are evenly divided among 15 other
species, how many bits would be used to encode the species when a bass is tagged?

2. Consider a Huffman code over four symbols, A, B, C, and D. Which of these is a
valid Huffman encoding? Give a brief explanation for your decisions.

(a) A : 0,B : 11,C : 101,D : 100.

(b) A : 1,B : 01,C : 00,D : 010.

(c) A : 00,B : 01,C : 110,D : 111
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3. Huffman is given four symbols, A, B, C, and D. The probability of symbol A oc-
curring is pA, symbol B is pB , symbol C is pC , and symbol D is pD, with pA � pB �
pC � pD. Write down a single condition (equation or inequality) that is both nec-
essary and sufficient to guarantee that, when Huffman constructs the code bearing
his name over these symbols, each symbol will be encoded using exactly two bits.
Explain your answer.

4. Describe the contents of the string table created when encoding a very long string
of all a’s using the simple version of the LZW encoder shown in Figure 3-4. In this
example, if the decoder has received E encoded symbols (i.e., string table indices)
from the encoder, how many a’s has it been able to decode?

5. Consider the pseudo-code for the LZW decoder given in Figure 3-4. Suppose that
this decoder has received the following five codes from the LZW encoder (these are
the first five codes from a longer compression run):

97 -- index of ’a’ in the translation table
98 -- index of ’b’ in the translation table
257 -- index of second addition to the translation table
256 -- index of first addition to the translation table
258 -- index of third addition to in the translation table

After it has finished processing the fifth code, what are the entries in the translation
table and what is the cumulative output of the decoder?

table[256]:

table[257]:

table[258]:

table[259]:

cumulative output from decoder:

6. Consider the LZW compression and decompression algorithms as described in this
chapter. Assume that the scheme has an initial table with code words 0 through 255
corresponding to the 8-bit ASCII characters; character “a” is 97 and “b” is 98. The
receiver gets the following sequence of code words, each of which is 10 bits long:

97 97 98 98 257 256

(a) What was the original message sent by the sender?

(b) By how many bits is the compressed message shorter than the original message
(each character in the original message is 8 bits long)?

(c) What is the first string of length 3 added to the compression table? (If there’s no
such string, your answer should be “None”.)

7. Explain whether each of these statements is True or False. Recall that a codeword in
LZW is an index into the string table.
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(a) Suppose the sender adds two strings with corresponding codewords c
1

and c
2

in that order to its string table. Then, it may transmit c
2

for the first time before
it transmits c

1

.

(b) Suppose the string table never gets full. If there is an entry for a string s in the
string table, then the sender must have previously sent a distinct codeword for
every non-null prefix of string s. (If s⌘ p+ s0 where + is the string concatenation
operation and s0 is some non-null string, then p is said to be a prefix of s.)

8. Green Eggs and Hamming. By writing Green Eggs and Ham, Dr. Seuss won a $50 bet
with his publisher because he used only 50 distinct English words in the entire book
of 778 words. The probabilities of occurrence of the most common words in the book
are given in the table below, in decreasing order:

Rank Word Probability of occurrence of word in book
1 not 10.7%
2 I 9.1%
3 them 7.8%
4 a 7.6%
5 like 5.7%
6 in 5.1%
7 do 4.6%
8 you 4.4%

9–50 (all other words) 45.0%

(a) I pick a secret word from the book.

The Bofa tells you that the secret word is one of the 8 most common
words in the book.
Yertle tells you it is not the word “not”.
The Zlock tells you it is three letters long.

Express your answers to the following in log

2

(

100

) form, which will be conve-·
nient; you don’t need to give the actual numerical value. (The 100 is because
the probabilities in the table are shown as percentages.)
How many bits of information about the secret word have you learned from:

The Bofa alone?
Yertle alone?
The Bofa and the Zlock together?
All of them together?

(b) The Lorax decides to compress Green Eggs and Ham using Huffman coding,
treating each word as a distinct symbol, ignoring spaces and punctuation
marks. He finds that the expected code length of the Huffman code is 4.92 bits.
The average length of a word in this book is 3.14 English letters. Assume that in
uncompressed form, each English letter requires 8 bits (ASCII encoding). Recall
that the book has 778 total words (and 50 distinct ones).
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i. What is the uncompressed (ASCII-encoded) length of the book? Show your
calculations.

ii. What is the expected length of the Huffman-coded version of the book?
Show your calculations.

iii. The words “if” and “they” are the two least popular words in the book.
In the Huffman-coded format of the book, what is the Hamming distance
between their codewords?

(c) The Lorax now applies Huffman coding to all of Dr. Seuss’s works. He treats
each word as a distinct symbol. There are n distinct words in all. Curiously, he
finds that the most popular word (symbol) is represented by the codeword 0

in the Huffman encoding.
Symbol i occurs with probability pi;p1 � p

2

� p
3

. . . � pn. Its length in the Huff-
man code tree is `i.

i. Given the conditions above, is it True or False that p
1

� 1/3?
ii. Given the conditions above, is it True or False that p

1

�

Pn
i=3

pi?
iii. The Grinch removes the most-popular symbol (whose probability is p

1

) and
implements Huffman coding over the remaining symbols, retaining the
same probabilities proportionally; i.e., the probability of symbol i (where
i > 1) is now p

i

1 p1
. WhatP is the expected code length of the Grinch’s code�

tree, in terms of L =

n
i=1

pi`i (the expected code length of the original code
tree) and p

1

? Explain your answer.

(d) The Cat in the Hat compresses Green Eggs and Ham with the LZW compression
method described in 6.02 (codewords from 0 to 255 are initialized to the corre-
sponding ASCII characters, which includes all the letters of the alphabet and
the space character). The book begins with these lines:

I am Sam
I am Sam
Sam I am

We have replaced each space with an underscore ( ) for clarity, and eliminated
punctuation marks.

i. What are the strings corresponding to codewords 256 and 257 in the string
table?

ii. When compressed, the sequence of codewords starts with the codeword 73,
which is the ASCII value of I. The initial few codewords in this sequence
will all be  255, and then one codeword > 255 will appear. What string
does that codeword correspond to?

iii. Cat finds that codeword 700 corresponds to the string I do not l. This string
comes from the sentence I do not like them with a mouse in the book. What
are the first two letters of the codeword numbered 701 in the string table?

iv. Thanks to a stuck keyboard (or because Cat is an ABBA fan), the phrase
IdoIdoIdoIdoIdo shows up at the input to the LZW compressor. The decom-
pressor gets a codeword, already in its string table, and finds that it cor-
responds to the string Ido. This codeword is followed immediately by a
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new codeword not in its string table. What string should the decompressor
return for this new codeword?
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CHAPTER 4 
Why Digital? Communication 

Abstractions and Digital Signaling 

This chapter describes analog and digital communication, and the differences between 
them. Our focus is on understanding the problems with analog communication and the 
motivation for the digital abstraction. We then present basic recipes for sending and re­
ceiving digital data mapped to analog signals over communication links; these recipes are 
needed because physical communication links are fundamentally analog in nature at the 
lowest level. After understanding how bits get mapped to signals and vice versa, we will 
present our simple layered communication model: messages → packets → bits → signals. The 
rest of this book is devoted to understanding these different layers and how the interact 
with each other. 

• 4.1 Sources of Data 

The purpose of communication technologies is to empower users (be they humans or ap­
plications) to send messages to each other. We have already seen in Chapters 2 and 3 how 
to quantify the information content in messages, and in our discussion, we tacitly decided 
that our messages would be represented as sequences of binary digits (bits). We now dis­
cuss why that approach makes sense. 

Some sources of data are inherently digital in nature; i.e., their natural and native rep­
resentation is in the form of bit sequences. For example, data generated by computers, 
either with input from people or from programs (“computer-generated data”) is natively 
encoded using sequences of bits. In such cases, thinking of our messages as bit sequences 
is a no-brainer. 

There are other sources of data that are in fact inherently analog in nature. Prominent 
examples are video and audio. Video scenes and images captured by a camera lens encode 
information about the mix of colors (the proportions and intensities) in every part of the 
scene being captured. Audio captured by a microphone encodes information about the 
loudness (intensity) and frequency (pitch), varying in time. In general, one may view 
the data as coming from a continuous space of values, and the sensors capturing the raw 
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data may be thought of as being capable of producing analog data from this continuous 
space. In practice, of course, there is a measurement fidelity to every sensor, so the data 
captured will be quantized, but the abstraction is much closer to analog than digital. Other 
sources of data include sensors gathering information about the environment or device 
(e.g., accelerometers on your mobile phone, GPS sensors on mobile devices, or climate 
sensors to monitor weather conditions); these data sources could be inherently analog or 
inherently digital depending on what they’re measuring. 

Regardless of the nature of a source, converting the relevant data to digital form is the 
modern way; one sees numerous advertisements for “digital” devices (e.g., cameras), with 
the implicit message that somehow “digital” is superior to other methods or devices. The 
question is, why? 

• 4.2 Why Digital? 

There are two main reasons why digital communication (and more generally, building 
systems using the digital abstraction) is a good idea: 

1. The digital abstraction enables the composition of modules to build large systems. 

2. The digital abstaction allows us to us sophisticated algorithms to process data to 
improve the quality and performance of the components of a system. 

Yet, the digital abstraction is not the natural way to communicate data. Physical com­
munication links turn out to be analog at the lowest level, so we are going to have to 
convert data between digital and analog, and vice versa, as it traverses different parts of 
the system between the sender and the receiver. 

• 4.2.1 Why analog is natural in many applications 

To understand why the digital abstraction enables modularity and composition, let us first 
understand how analog representations of data work. Consider first the example of a 
black-and-white analog television image. Here, it is natural to represent each image as a 
sequence of values, one per (x, y) coordinate in a picture. The values represent the lumi­
nance, or “shade of gray”: 0 volts represents “black”, 1 volt represents “white”, and any 
value x between 0 and 1 represents the fraction of white in the image (i.e., some shade of 
gray). The representation of the picture itself is as a sequence of these values in some scan 
order, and the transmission of the picture may be done by generating voltage waveforms 
to represent these values. 

Another example is an analog telephone, which converts sound waves to electrical sig­
nals and back. Like the analog TV system, this system does not use bits (0s and 1s) to 
represent data (the voice conversation) between the communicating parties. 

Such analog representations are tempting for communication applications because they 
map well to physical link capabilities. For example, when transmitting over a wire, we 
can send signals at different voltage levels, and the receiver can measure the voltage to 
determine what the sender transmitted. Over an optical communication link, we can send 
signals at different intensities (and possibly also at different wavelengths), and the receiver 
can measure the intensity to infer what the sender might have transmitted. Over radio 
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Figure 4-1: Errors accumulate in analog systems. 

and acoustic media, the problem is trickier, but we can send different signals at different 
amplitudes “modulated” over a “carrier waveform” (as we will see in later chapters), and 
the receiver can measure the quantity of interest to infer what the sender might have sent. 

• 4.2.2 So why not analog? 

Analog representations seem to map naturally to the inherent capabilities of communica­
tion links, so why not use them? The answer is that there is no error-free communication 
link. Every link suffers from perturbations, which may arise from noise (Chapter 5) or 
other sources of distortion. These perturbations affect the received signal; every time there 
is a transmission, the receiver will not get the transmitted signal exactly, but will get a 
perturbed version of it. 

These perturbations have a cascading effect. For instance, if we have a series of COPY 
blocks that simply copy an incoming signal and re-send the copy, one will not get a perfect 
version of the signal, but a heavily perturbed version. Figure 4-1 illustrates this problem 
for a black-and-white analog picture sent over several COPY blocks. The problem is that 
when an analog input value, such as a voltage of 0.12345678 volts is put into the COPY 
block, the output is not the same, but something that might be 0.12?????? volts, where the 
“?” refers to incorrect values. 

There are many reasons why the actual output differs from the input, including the 
manufacturing tolerance of internal components, environmental factors (temperature, 
power supply voltage, etc.), external influences such as interference from other transmis­
sions, and so on. There are many sources, which we can collectively think of as “noise”, 
for now. In later chapters, we will divide these perturbations into random components 
(“noise”) and other perturbations that can be modeled deterministically. 

These analog errors accumulate, or cascade. If the output value is Vin ± ε for an input 
value of Vin, then placing a number N of such units in series will make the output value 

http://ocw.mit.edu/fairuse


  

38 CHAPTER 4. WHY DIGITAL? COMMUNICATION ABSTRACTIONS AND DIGITAL SIGNALING 
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Figure 4-2: If the two voltages are adequately spaced apart, we can tolerate a certain amount of noise. 

be Vin ± Nε. If  ε = 0.01 and N = 100, the output may be off by 100%! 
As system engineers, we want modularity, which means we want to guarantee output 

values without having to worry about the details of the innards of various components. 
Hence, we need to figure out a way to eliminate, or at least reduce, errors at each processing 
stage. 

The digital signaling abstraction provides us a way to achieve this goal. 

• 4.3 Digital Signaling: Mapping Bits to Signals 

To ensure that we can distinguish signal from noise, we will map bits to signals using 
a fixed set of discrete values. The simplest way to do that is to use a binary mapping (or 
binary signaling) scheme. Here, we will use two voltages, V0 volts to represent the bit “0” 
and V1 volts to represent the bit “1”. 

What we want is for received voltages near V0 to be interpreted as representing a “0”, 
and for received voltages near  to be interpreted as representing a “1”. If we would like 
our mapping to work reliably up to a certain amount of noise, then we need to space V0 

and V1 far enough apart so that even noisy signals are interpreted correctly. An example is 
shown in Figure 4-2. 

At the receiver, we can specify the behavior wih a graph that shows how incoming 
voltages are mapped to bits “0” and “1” respectively (Figure 4-3). This idea is intuitive: 

V0+V1we pick the intermediate value, Vth = and declare received voltages ≤ Vth as bit “0” 2 
and all other received voltage values as bit “1”. In Chapter 5, we will see when this rule is 
optimal and when it isn’t, and how it can be improved when it isn’t the optimal rule. (We’ll 
also see what we mean by “optimal” by relating optimality to the probability of reporting 
the value of the bit wrongly.) 

We note that it would actually be rather difficult to build a receiver that precisely met this 
specification because measuring voltages extremely accurately near Vth will be extremely 
expensive. Fortunately, we don’t need to worry too much about such values if the values 
V0 and V1 are spaced far enough apart given the noise in the system. (See the bottom 
picture in Figure 4-3.) 
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Figure 4-3: Picking a simple threshold voltage. 

• 4.3.1 Signals in this Course 

Each individual transmission signal is conceptually a fixed-voltage waveform held for some 
period of time. So, to send bit “0”, we will transmit a signal of fixed-voltage V0 volts 
for a certain period of time; likewise, V1 volts to send bit “1”. We will represent these 
continuous-time signals using sequences of discrete-time samples. The sample rate is defined 
as the number of samples per second used in the system; the sender and receiver at either 
end of a communication link will agree on this sample rate in advance. (Each link could of 
course have a different sample rate.) The reciprocal of the sample rate is the sample interval, 
which is the time between successive samples. For example, 4 million samples per second 
implies a sample interval o 0.25 microseconds. 

An example of the relation between continuous-time fixed-voltage waveforms (and 
how they relate to individual bits) and the sampling process is shown in Figure 4-4. 

• 4.3.2 Clocking Transmissions 

Over a communication link, the sender and receiver need to agree on a clock rate. The idea 
is that periodic events are timed by a clock signal, as shown in Figure 4-5 (top picture). 
Each new bit is sent when a clock transition occurs, and each bit has many samples, sent 
at a regular rate. We will use the term samples per bit to refer to the number of discrete 
voltage samples sent for any given bit. All the samples for any given bit will of course be 
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Continuous time 

Discrete time 
sample interval 

time 

Figure 4-4: Sampling continuous-time voltage waveforms for transmission. 

sent at the same voltage value. 
How does the receiver recover the data that was sent? If we sent only the samples and 

not the clock, how can the receiver figure out what was sent? 
The idea is for the receiver to infer the presence of a clock edge every time there is 

a transition in the received samples (Figure 4-5, bottom picture). Then, using the shared 
knowledge of the sample rate (or sample interval), the receiver can extrapolate the remain­
ing edges and infer the first and last sample for each bit. It can then choose the middle 
sample to determine the message bit, or more robustly average them all to estimate the bit. 

There are two problems that need to be solved for this approach to work: 

1. How to cope with differences in the sender and receiver clock frequencies? 

2. How to ensure frequent transitions between 0s and 1s? 

The first problem is one of clock and data recovery. The second is solved using line 
coding, of which 8b/10b coding is a common scheme. The idea is to convert groups of 
bits into different groups of bits that have frequent 0/1 transitions. We describe these two 
ideas in the next two sections. We also refer the reader to the two lab tasks in Problem Set 
2, which describe these two issues and their implementation in considerable detail. 

• 4.4 Clock and Data Recovery 

In a perfect world, it would be a trivial task to find the voltage sample in the middle of each 
bit transmission and use that to determine the transmitted bit, or take the average. Just 
start the sampling index at samples per bit/2, then increase the index by samples per bit 
to move to the next voltage sample, and so on until you run out of voltage samples. 

Alas, in the real world things are a bit more complicated. Both the transmitter and 
receiver use an internal clock oscillator running at the sample rate to determine when to 
generate or acquire the next voltage sample. And they both use counters to keep track 
of how many samples there are in each bit. The complication is that the frequencies of 
the transmitter’s and receiver’s clock may not be exactly matched. Say the transmitter is 
sending 5 voltage samples per message bit. If the receiver’s clock is a little slower, the 
transmitter will seem to be transmitting faster, e.g., transmitting at 4.999 samples per bit. 
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Message bits 

Transmit clock 

Transmit samples 

0 1 1 0 1 1 

(Sample interval)(# samples/bit) 

Receive samples 

Inferred clock edges 

Extrapolated clock edges 

(Sample period)(# samples/bit) 

Figure 4-5: Transmission using a clock (top) and inferring clock edges from bit transitions between 0 and 1 

and vice versa at the receiver (bottom). 

Similarly, if the receiver’s clock is a little faster, the transmitter will seem to be transmitting 
slower, e.g., transmitting at 5.001 samples per bit. This small difference accummulates over 
time, so if the receiver uses a static sampling strategy like the one outlined in the previous 
paragraph, it will eventually be sampling right at the transition points between two bits. 
And to add insult to injury, the difference in the two clock frequencies will change over 
time. 

The fix is to have the receiver adapt the timing of it’s sampling based on where it detects 
transitions in the voltage samples. The transition (when there is one) should happen half­
way between the chosen sample points. Or to put it another way, the receiver can look 
at the voltage sample half-way between the two sample points and if it doesn’t find a 
transition, it should adjust the sample index appropriately. 

Figure 4-6 illustrates how the adaptation should work. The examples use a low-to-high 
transition, but the same strategy can obviously be used for a high-to-low transition. The 
two cases shown in the figure differ in value of the sample that’s half-way between the 
current sample point and the previous sample point. Note that a transition has occurred 
when two consecutive sample points represent different bit values. 

•	 Case 1: the half-way sample is the same as the current sample. In this case the half­
way sample is in the same bit transmission as the current sample, i.e., we’re sampling 
too late in the bit transmission. So when moving to the next sample, increment the 
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Figure 4-6: The two cases of how the adaptation should work. 

index by samples per bit - 1 to  move ”back”. 

•	 Case 2: the half-way sample is different than the current sample. In this case the half­
way sample is in the previous bit transmission from the current sample, i.e., we’re 
sampling too early in the bit transmission. So when moving to the next sample, 
increment the index by samples per bit + 1 to  move ”forward” 

If there is no transition, simply increment the sample index by samples per bit to move 
to the next sample. This keeps the sampling position approximately right until the next 
transition provides the information necessary to make the appropriate adjustment. 

If you think about it, when there is a transition, one of the two cases above will be true 
and so we’ll be constantly adjusting the relative position of the sampling index. That’s fine 
– if the relative position is close to correct, we’ll make the opposite adjustment next time. 
But if a large correction is necessary, it will take several transitions for the correction to 
happen. To facilitate this initial correction, in most protocols the transmission of message 
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begins with a training sequence of alternating 0- and 1-bits (remember each bit is actually 
samples per bit voltage samples long). This provides many transitions for the receiver’s 
adaptation circuity to chew on. 

• 4.5 Line Coding with 8b/10b 

Line coding, using a scheme like 8b/10b, was developed to help address the following 
issues: 

•	 For electrical reasons it’s desirable to maintain DC balance on the wire, i.e., that on 
the average the number of 0’s is equal to the number of 1’s. 

•	 Transitions in the received bits indicate the start of a new bit and hence are useful in 
synchronizing the sampling process at the receiver—the better the synchronization, 
the faster the maximum possible symbol rate. So ideally one would like to have 
frequent transitions. On the other hand each transition consumes power, so it would 
be nice to minimize the number of transitions consistent with the synchronization 
constraint and, of course, the need to send actual data! In a signaling protocol where 
the transitions are determined by the message content may not achieve these goals. 

To address these issues we can use an encoder (called the “line coder”) at the transmitter 
to recode the message bits into a sequence that has the properties we want, and use a 
decoder at the receiver to recover the original message bits. Many of today’s high-speed 
data links (e.g., PCI-e and SATA) use an 8b/10b encoding scheme developed at IBM. The 
8b/10b encoder converts 8-bit message symbols into 10 transmitted bits. There are 256 
possible 8-bit words and 1024 possible 10-bit transmit symbols, so one can choose the 
mapping from 8-bit to 10-bit so that the the 10-bit transmit symbols have the following 
properties: 

•	 The maximum run of 0’s or 1’s is five bits (i.e., there is at least one transition every 
five bits). 

•	 At any given sample the maximum difference between the number of 1’s received 
and the number of 0’s received is six. 

•	 Special 7-bit sequences can be inserted into the transmission that don’t appear in any 
consecutive sequence of encoded message bits, even when considering sequences 
that span two transmit symbols. The receiver can do a bit-by-bit search for these 
unique patterns in the incoming stream and then know how the 10-bit sequences are 
aligned in the incoming stream. 

Here’s how the encoder works: collections of 8-bit words are broken into groups of 
words called a packet. Each packet is sent using the following wire protocol: 

•	 A sequence of alternating 0 bits and 1 bits are sent first (recall that each bit is mul­
tiple voltage samples). This sequence is useful for making sure the receiver’s clock 
recovery machinery has synchronized with the transmitter’s clock. These bits aren’t 
part of the message; they’re there just to aid in clock recovery. 
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•	 A SYNC pattern—usually either 0011111 or 1100000 where the least-significant bit 
(LSB) is shown on the left—is transmitted so that the receiver can find the beginning 
of the packet.1 Traditionally, the SYNC patterns are transmitted least-significant bit 
(LSB) first. The reason for the SYNC is that if the transmitter is sending bits contin­
uously and the receiver starts listening at some point in the transmission, there’s no 
easy way to locate the start of multi-bit symbols. By looking for a SYNC, the receiver 
can detect the start of a packet. Of course, care must be taken to ensure that a SYNC 
pattern showing up in the middle of the packet’s contents don’t confuse the receiver 
(usually that’s handled by ensuring that the line coding scheme does not produce 
a SYNC pattern, but it is possible that bit errors can lead to such confusion at the 
receiver). 

•	 Each byte (8 bits) in the packet data is line-coded to 10 bits and sent. Each 10-bit 
transmit symbol is determined by table lookup using the 8-bit word as the index. 
Note that all 10-bit symbols are transmitted least-significant bit (LSB) first. If the 
length of the packet (without SYNC) is s bytes, then the resulting size of the line-
coded portion is 10s bits, to which the SYNC is added. 

Multiple packets are sent until the complete message has been transmitted. Note that 
there’s no particular specification of what happens between packets – the next packet may 
follow immediately, or the transmitter may sit idle for a while, sending, say, training se­
quence samples. 

If the original data in a single packet is s bytes long, and the SYNC is h bits long, then 
the total number of bits sent is equal to 10s + h. The “rate” of this line code, i.e., the ratio 

8sof the number of useful message bits to the total bits sent, is therefore equal to . (We  10s+h 
will properly define the concept of “code rate” in Chapter 6 more.) If the communication 
link is operating at R bits per second, then the rate at which useful message bits arrive is 

8sgiven by · R bits per second with 8b/10b line coding. 10s+h 

• 4.6 Communication Abstractions 

Figure 4-7 shown the overall system context, tying together the concepts of the previous 
chapters with the rest of this book. The rest of this book is about the oval labeled “COM­
MUNICATION NETWORK”. The simplest example of a communication network is a sin­
gle physical communication link, which we start with. 

At either end of the communication link are various modules, as shown in Figure 4­
8. One of these is a Mapper, which maps bits to signals and arranges for samples to be 
transmitted. There is a counterpart Demapper at the receiving end. As shown in Figure 4­
8 is a  Channel coding module, and a counterpart Channel decoding module, which handle 
errors in transmission caused by noise. 

In addition, a message, produced after source coding from the original data source, may 
have to be broken up into multiple packets, and sent over multiple links before reaching 
the receiving application or user. Over each link, three abstractions are used: packets, bits, 
and signals (Figure 4-8 bottom). Hence, it is convenient to think of the problems in data 

1In general any other SYNC pattern could also be sent. 
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Figure 4-7: The “big picture”.

communication as being in one of these three “layers”, which are one on top of the other
(packets, bits, and signals). The rest of this book is about these three important abstrac-
tions and how they work together. We do them in the order bits, signals, and packets, for
convenience and ease of exposition and understanding.
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CHAPTER 5 
Coping with Bit Errors using Error 

Correction Codes 

Recall our main goal in designing digital communication networks: to send information 
reliably and efficiently between nodes. Meeting that goal requires the use of techniques 
to combat bit errors, which are inevitable in both commmunication channels and storage 
media (storage may be viewed as “communication across time”; you store something now 
and usually want to be able to retrieve it later). 

The key idea we will apply to achieve reliable communication is the addition of redun­
dancy to the transmitted data, to improve the probability that the original message can be 
reconstructed from the possibly corrupted data that is received. The sender has an encoder 
whose job is to take the message and process it to produce the coded bits that are then sent 
over the channel. The receiver has a decoder whose job is to take the received (coded) bits 
and to produce its best estimate of the message. The encoder-decoder procedures together 
constitute channel coding; good channel codes provide error correction capabilities that 
reduce the bit error rate (i.e., the probability of a bit error). 

With proper design, full error correction may be possible, provided only a small num­
ber of errors has occurred. Even when too many errors have occurred to permit correction, 
it may be possible to perform error detection. Error detection provides a way for the re­
ceiver to tell (with high probability) if the message was decoded correctly or not. Error 
detection usually works by the sender and receiver using a different code from the one 
used to correct errors; common examples include the cyclic redundancy check (CRC) or hash 
functions. These codes take n-bit messages and produce a compact “signature” of that mes­
sage that is much smaller than the message (e.g., the popular CRC-32 scheme produces a 
32-bit signature of an arbitrarily long message). The sender computes and transmits the 
signature along with the message bits, usually appending it to the end of the message. The 
receiver, after running the decoder to correct errors, then computes the signature over its 
estimate of the message bits and compares that signature to its estimate of the signature 
bits in the received data. If the computed and estimated signatures are not equal, then 
the receiver considers the message to have one or more bit errors; otherwise, it assumes 
that the message has been received correctly. This latter assumption is probabilistic: there 
is some non-zero (though very small, for good signatures) probability that the estimated 
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and computed signatures match, but the receiver’s decoded message is different from the 
sender’s. If the signatures don’t match, the receiver and sender may use some higher-layer 
protocol to arrange for the message to be retransmitted; we will study such schemes later. 
We will not study error detection codes like CRC or hash functions in this course. 

Our plan for this chapter is as follows. To start, we will assume a binary symmetric 
channel (BSC). In a BSC, the probability of any given bit “flipping” (a 0 sent over the 
channel is received as a 1, or vice versa) is ", independent of all other bits. Then, we will 
discuss and analyze an elementary redundancy scheme called a repetition code, which will 
simply make n copies of any given bit. The repetition code has a code rate of 1/n—that 
is, for every useful message bit, we end up transmitting n total bits. The overhead of the 
repetition code of rate n is 1 - 1/n, which is rather high for the error correcting power of 
the code. We will then turn to the key ideas that allow us to build powerful codes capable 
of correcting errors without such a high overhead (or equivalently, capable of correcting 
far more errors at a given code rate compared to the repetition code). 

There are two big, inter-related ideas used in essentially all error correction codes. The 
first is the notion of embedding, where the messages one wishes to send are placed in a 
geometrically pleasing way in a larger space so that the distance between any two valid 
points in the embedding is large enough to enable the correction and detection of errors. 
The second big idea is to use parity calculations, which are linear functions over the bits 
we wish to send, to generate the redundancy in the bits that are actually sent. We will 
study examples of embeddings and parity calculations in the context of two classes of 
codes: linear block codes (which are an instance of the broad class of algebraic codes) 
and convolutional codes (which are perhaps the simplest instance of the broad class of 
graphical codes). 

We start with a brief discussion of bit errors. 

⌅ 5.1 Bit Errors and BSC 

A BSC is characterized by one parameter, ", which we can assume to be < 1/2, the proba­
bility of a bit error. It is a natural discretization of a noise model over signals (a common 
model for noise, as we will see in Chapter 9, is additive Gaussian noise, which is also 
a single-parameter model fully characterized by the variance, (2). We can determine " 
empirically by noting that if we send N bits over the channel, the expected number of 
erroneously received bits is N · ". By sending a long known bit pattern and counting the 
fraction or erroneously received bits, we can estimate ", thanks to the law of large numbers. 
In practice, even when the BSC is a reasonable error model, the range of " could be rather 
large, between 10-2 (or even higher) all the way to 10-10 or even 10-12 . A value of " of 
about 10-2 means that messages longer than a 100 bits will see at least one error on aver­
age; given that the typical unit of communication over a channel (a “packet”) is generally 
between 500 bits and 12000 bits (or more, in some networks), such an error rate is too high. 

But is " of 10-12 small enough that we don’t need to bother about doing any error 
correction? The answer often depends on the data rate of the channel. If the channel has 
a rate of 10 Gigabits/s (available today even on commodity server-class computers), then 
the “low” " of 10-12 means that the receiver will see one error every 10 seconds on average 
if the channel is continuously loaded. Unless we include some mechanisms to mitigate 
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the situation, the applications using the channel may find errors occurring too frequently. 
On the other hand, an " of 10-12 may be fine over a communication channel running at 10 
Megabits/s, as long as there is some way to detect errors when they occur. 

In the BSC model, a transmitted bit b (0 or 1) is interpreted by the receiver as 1 - b 
with probability " and as b with probability 1 - ". In this model, each bit is corrupted 
independently and with equal probability (which makes this an “iid” random process, 
for “independent and identically distributed”). We call " the bit-flip probability or the “error 
probability”, and sometimes abuse notation and call it the “bit error rate” (it isn’t really 
a “rate”, but the term is still used in the literature). Given a packet of size S bits, it is 
straightforward to calculate the probability of the entire packet being received correctly 
when sent over a BSC with bit-flip probability ": 

SP(packet received correctly) = (1- ") . 

The packet error probability, i.e., the probability of the packet being incorrect, is 1 minus 
this quantity, because a packet is correct if and only if all its bits are correct. 

Hence, 
SP(packet error) = 1- (1- ") . (5.1) 

When "  <<  1, a simple first-order approximation of the PER is possible because (1 + 
Nx) ⇡ 1 +Nx  when |x| << 1. That approximation gives the pleasing result that, when 

"  <<  1, 
P(packet error) ⇡ 1- (1- S") = S". (5.2) 

The BSC is perhaps the simplest discrete channel model that is realistic, but real-world 
channels exhibit more complex behaviors. For example, over many wireless and wired 
channels as well as on storage media (like CDs, DVDs, and disks), errors can occur in 
bursts. That is, the probability of any given bit being received wrongly depends on recent 
history: the probability is higher if the bits in the recent past were received incorrectly. Our 
goal is to develop techniques to mitigate the effects of both the BSC and burst errors. We’ll 
start with techniques that work well over a BSC and then discuss how to deal with bursts. 

⌅ 5.2 The Simplest Code: Repetition 

In general, a channel code provides a way to map message words to codewords (analogous 
to a source code, except here the purpose is not compression but rather the addition of 
redundancy for error correction or detection). In a repetition code, each bit b is encoded as 
n copies of b, and the result is delivered. If we consider bit b to be the message word, then 
the corresponding codeword is bn (i.e., bb...b, n times). In this example, there are only two 
possible message words (0 and 1) and two corresponding codewords. The repetition code 
is absurdly simple, yet it’s instructive and sometimes even useful in practice! 

But how well does it correct errors? To answer this question, we will write out the 
probability of overcoming channel errors for the BSC error model with the repetition code. 
That is, if the channel independently corrupts each bit with probability ", what is the prob­
ability that the receiver decodes the received codeword correctly to produce the message 
word that was sent? 

The answer depends on the decoding method used. A reasonable decoding method is 
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Figure 5-1: Probability of a decoding error with the repetition code that replaces each bit b with n copies of 

b. The code rate is 1/n. 

maximum likelihood decoding: given a received codeword, r, which is some n-bit combina­
tion of 0’s and 1’s, the decoder should produce the most likely message that could have 
caused r to be received. Since the BSC error probability, ", is smaller than 1/2, the most 
likely option is the codeword that has the most number of bits in common with r. This 
decoding rule results in the minimum probability of error when all messages are equally 
likely. 

Hence, the decoding process is as follows. First, count the number of 1’s in r. If there are 
more than n/2 1’s, then decode the message as 1. If there are more than n/2 0’s, then decode 
the message as 0. When n is odd, each codeword will be decoded unambiguously. When 
n is even, and has an equal number of 0’s and 1’s, the decoder can’t really tell whether the 
message was a 0 or 1, and the best it can do is to make an arbitrary decision. (We have 
assumed that the a priori probability of sending a message 0 is the same as that of sending 
a 1.) 

We can write the probability of decoding error for the repetition code as follows, taking 
care to write the limits of the summation correctly: 

( Pn (
n
)
"i(1 - ")n-i if n oddi=d n 

2 e iP (decoding error) =  (5.3)Pn 
n 

(
n
)
"i(1 - ")n-i 

+ 1 
( 

n )"n/2(1 - ")n/2 if n eveni= +1 i 2 n/22 

The notation 
(
n
) 

denotes the number of ways of selecting i objects (in this case, bit posi­i 
tions) from n objects. 

When n is even, we add a term at the end to account for the fact that the decoder has a 
fifty-fifty chance of guessing correctly when it receives a codeword with an equal number 
of 0’s and 1’s. 
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Figure 5-1 shows the probability of decoding error as a function of the repetition factor, 
n, for the repetition code, computed using Equation (5.3). The y-axis is on a log scale, and 
the probability of error is more or less a straight line with negative slope (if you ignore 
the flat pieces), which means that the decoding error probability decreases exponentially 
with the code rate. It is also worth noting that the error probability is the same when 
n = 2` as when n = 2` - 1. The reason, of course, is that the decoder obtains no additional 
information that it already didn’t know from any 2` - 1 of the received bits. 

Despite the exponential reduction in the probability of decoding error as n increases, 
the repetition code is extremely inefficient in terms of the overhead it incurs, for a given 
rate, 1/n. As such, it is used only in situations when one is not concerned with the over­
head of communication or storage (i.e., the resources consumed), and/or one is unable to 
implement a more complex decoder in the system. 

We now turn to developing more sophisticated codes. There are two big related ideas: 
embedding messages into spaces in a way that achieves structural separation and parity (linear) 
computations over the message bits. 

⌅ 5.3 Embeddings and Hamming Distance 

Let’s start our investigation into error correction by examining the situations in which 
error detection and correction are possible. For simplicity, we will focus on single-error 
correction (SEC) here. By that we mean codes that are guaranteed to produce the correct 
message word, given a received codeword with zero or one bit errors in it. If the received 
codeword has more than one bit error, then we can make no guarantees (the method might 
return the correct message word, but there is at least one instance where it will return the 
wrong answer). 

nThere are 2 possible n-bit strings. Define the Hamming distance (HD) between two n-
bit words, w

1 and w
2

, as the number of bit positions in which the messages differ. Thus 
0  HD(w

1

,w
2

)  n. 
Suppose that HD(w

1

,w
2

) = 1. Consider what happens if we transmit w
1 and there’s 

a single bit error that inconveniently occurs at the one bit position in which w
1 and w

2 

differ. From the receiver’s point of view it just received w
2

—the receiver can’t detect the 
difference between receiving w

1 with a unfortunately placed bit error and receiving w
2

. 
In this case, we cannot guarantee that all single bit errors will be corrected if we choose a 
code where w

1 and w
2 are both valid codewords. 

What happens if we increase the Hamming distance between any two valid codewords 
to 2? More formally, let’s restrict ourselves to only sending some subset S = {w

1

,w
2

, ...,ws}

of the 2n possible words such that 

HD(wi,wj ) � 2 for all wi,wj 2 S where i 6= j (5.4) 

Thus if the transmission of wi is corrupted by a single error, the result is not an element 
of S and hence can be detected as an erroneous reception by the receiver, which knows 
which messages are elements of S . A simple example is shown in Figure 5-2: 00 and 11 are 
valid codewords, and the receptions 01 and 10 are surely erroneous. 

We define the minimum Hamming distance of a code as the minimum Hamming distance 
between any two codewords in the code. From the discussion above, it should be easy to 
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Figure 5-2: Codewords separated by a Hamming distance of 2 can be used to detect single bit errors. The 

codewords are shaded in each picture. The picture on the left is a (2,1) repetition code, which maps 1-bit 
messages to 2-bit codewords. The code on the right is a (3,2) code, which maps 2-bit messages to 3-bit 
codewords. 

see what happens if we use a code whose minimum Hamming distance is D. We state the 
property formally: 

Theorem 5.1 A code with a minimum Hamming distance of D can detect any error pattern of 
D - 1 or fewer errors. Moreover, there is at least one error pattern with D errors that cannot be 
detected reliably. 

Hence, if our goal is to detect errors, we can use an embedding of the set of messages we 
wish to transmit into a bigger space, so that the minimum Hamming distance between any 
two codewords in the bigger space is at least one more than the number of errors we wish 
to detect. (We will discuss how to produce such embeddings in the subsequent sections.) 

But what about the problem of correcting errors? Let’s go back to Figure 5-2, with S = 
{00,11}. Suppose the received sequence is 01. The receiver can tell that a single error has 
occurred, but it can’t tell whether the correct data sent was 00 or 11—both those possible 
patterns are equally likely under the BSC error model. 

Ah, but we can extend our approach by producing an embedding with more space 
between valid codewords! Suppose we limit our selection of messages in S even further, 
as follows: 

HD(wi,wj ) � 3 for all wi,wj 2 S where i 6 (5.5)= j 

How does it help to increase the minimum Hamming distance to 3? Let’s define one 
more piece of notation: let Ew

i be the set of messages resulting from corrupting wi with a 
single error. For example, E

000 = {001,010,100}. Note that HD(wi,an element of Ew
i ) = 1. 

With a minimum Hamming distance of 3 between the valid codewords, observe that 
there is no intersection between Ew

i and Ew
j when i 6 Why is that? Suppose there = j. 

was a message wk that was in both Ew
i and Ew

j . We know that HD(wi,wk) = 1  and 
HD(wj ,wk) = 1, which implies that wi and wj differ in at most two bits and consequently 
HD(wi,wj )  2. (This result is an application of Theorem 5.2 below, which states that the 
Hamming distance satisfies the triangle inequality.) That contradicts our specification that 
their minimum Hamming distance be 3. So the Ew

i don’t intersect. 
So now we can correct single bit errors as well: the received message is either a member 
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of S (no errors), or is a member of some particular Ew
i (one error), in which case the receiver 

can deduce the original message was wi. Here’s a simple example: let S = {000, 111}. 
So E

000 = {001, 010, 100} and E
111 = {110, 101, 011} (note that E

000 doesn’t intersect E
111

). 
Suppose the received sequence is 101. The receiver can tell there has been a single error 
because 101 2/ S . Moreover it can deduce that the original message was most likely 111 
because 101 2 E

111

. 
We can formally state some properties from the above discussion, and specify the error-

correcting power of a code whose minimum Hamming distance is D. 

Theorem 5.2 The Hamming distance between n-bit words satisfies the triangle inequality. That 
is, HD(x, y) +  HD(y, z) � HD(x, z). 

Theorem 5.3 For a BSC error model with bit error probability < 1/2, the maximum likelihood de­
coding strategy is to map any received word to the valid codeword with smallest Hamming distance 
from the received one (ties may be broken arbitrarily). 

Theorem 5.4 A code with a minimum Hamming distance of D can correct any error pattern of 
b

D-1 
c or fewer errors. Moreover, there is at least one error pattern with bD-1 

c + 1  errors that 
2 2 

cannot be corrected reliably. 

Equation (5.5) gives us a way of determining if single-bit error correction can always 
be performed on a proposed set S of transmission messages—we could write a program 
to compute the Hamming distance between all pairs of messages in S and verify that the 
minimum Hamming distance was at least 3. We can also easily generalize this idea to 
check if a code can always correct more errors. And we can use the observations made 
above to decode any received word: just find the closest valid codeword to the received 
one, and then use the known mapping between each distinct message and the codeword 
to produce the message. The message will be the correct one if the actual number of errors 
is no larger than the number for which error correction is guaranteed. The check for the 
nearest codeword may be exponential in the number of message bits we would like to 
send, making it a reasonable approach only if the number of bits is small. 

But how do we go about finding a good embedding (i.e., good code words)? This task 
isn’t straightforward, as the following example shows. Suppose we want to reliably send 
4-bit messages so that the receiver can correct all single-bit errors in the received words. 
Clearly, we need to find a set of codewords S with 24 elements. What should the members 
of S be? 

The answer isn’t obvious. Once again, we could write a program to search through 
possible sets of n-bit codewords until it finds a set of size 16 with a minimum Hamming 
distance of 3. A tedious and exhaustive search for our 4-bit message example shows that 
the minimum n is 7, and one example of S is: 

0000000 1100001 1100110 0000111 
0101010 1001011 1001100 0101101 
1010010 0110011 0110100 1010101 
1111000 0011001 0011110 1111111 

But such exhaustive searches are impractical when we want to send even modestly 
longer messages. So we’d like some constructive technique for building S . Much of the 
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theory and practice of coding is devoted to finding such constructions and developing 
efficient encoding and decoding strategies. 

Broadly speaking, there are two classes of code constructions, each with an enormous 
number of instances. The first is the class of algebraic block codes. The second is the 
class of graphical codes. We will study two simple examples of linear block codes, which 
themselves are a sub-class of algebraic block codes: rectangular parity codes and Ham­
ming codes. We also note that the repetition code discussed in Section 5.2 is an example of 
a linear block code. 

In the next two chapters, we will study convolutional codes, a sub-class of graphical 
codes. 

⌅ 5.4 Linear Block Codes and Parity Calculations 

Linear block codes are examples of algebraic block codes, which take the set of k-bit mes­
sages we wish to send (there are 2k of them) and produce a set of 2k codewords, each n bits 
long (n � k) using algebraic operations over the block. The word “block” refers to the fact 
that any long bit stream can be broken up into k-bit blocks, which are each then expanded 
to produce n-bit codewords that are sent. 

Such codes are also called (n, k) codes, where k message bits are combined to produce 
n code bits (so each codeword has n - k “redundancy” bits). Often, we use the notation 
(n, k, d), where d refers to the minimum Hamming distance of the block code. The rate of a 
block code is defined as k/n; the larger the rate, the less the redundancy overhead incurred 
by the code. 

A linear code (whether a block code or not) produces codewords from message bits by 
restricting the algebraic operations to linear functions over the message bits. By linear, we 
mean that any given bit in a valid codeword is computed as the weighted sum of one or 
more original message bits. 

Linear codes, as we will see, are both powerful and efficient to implement. They are 
widely used in practice. In fact, all the codes we will study—including convolutional 
codes—are linear, as are most of the codes widely used in practice. We already looked 
at the properties of a simple linear block code: the repetition code we discussed in Sec­
tion 5.2 is a linear block code with parameters (n, 1, n). 

An important and popular class of linear codes are binary linear codes. The computations 
in the case of a binary code use arithmetic modulo 2, which has a special name: algebra 
in a Galois Field of order 2, also denoted F

2

. A field must define rules for addition and 
multiplication, and their inverses. Addition in F

2 is according to the following rules: 0 +  
0 = 1+ 1 = 0;1 + 0 = 0+ 1 = 1. Multiplication is as usual: 0 · 0 = 0 · 1 = 1 · 0 = 0; 1 · 1 = 1. 
We leave you to figure out the additive and multiplicative inverses of 0 and 1. Our focus 
in this book will be on linear codes over F

2

, but there are natural generalizations to fields 
of higher order (in particular, Reed Solomon codes, which are over Galois Fields of order 
2

q). 
A linear code is characterized by the following theorem, which is both a necessary and 

a sufficient condition for a code to be linear: 

Theorem 5.5 A code is linear if, and only if, the sum of any two codewords is another codeword. 
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A useful corollary of this theorem is that the all-zeroes codeword has to be in any linear 
code, because it results from adding a codeword to itself. 

For example, the block code defined by codewords 000,101,011 is not a linear code, 
because 101 + 011 = 110 is not a codeword. But if we add 110 to the set, we get a lin­
ear code because the sum of any two codewords is now another codeword. The code 
000,101,011,110 has a minimum Hamming distance of 2 (that is, the smallest Hamming 
distance between any two codewords in 2), and can be used to detect all single-bit errors 
that occur during the transmission of a code word. You can also verify that the minimum 
Hamming distance of this code is equal to the smallest number of 1’s in a non-zero code-
word. In fact, that’s a general property of all linear block codes, which we state formally 
below: 

Theorem 5.6 Define the weight of a codeword as the number of 1’s in the word. Then, the mini­
mum Hamming distance of a linear block code is equal to the weight of the non-zero codeword with 
the smallest weight. 

To see why, use the property that the Hamming distance between any two bit-strings 
of equal length is equal to the weight of their sum. Hence, the minimum value of the 
Hamming distance over all pairs of codewords, c

1 and c
2

, is equal to the minimum value 
of the weight of the codeword c

1 + c
2

. Because the code is linear, c
1 + c

2 is also a codeword, 
completing the proof. 

The rest of this section shows how to construct linear block codes over F
2

. For sim­
plicity, and without much loss of generality, we will focus on correcting single-bit errors. 
i.e., on single-error correction (SEC) codes.. We will show two ways of building the set S 
of transmission messages to have single-error correction capability, and will describe how 
the receiver can perform error correction on the (possibly corrupted) received messages. 

We will start with the rectangular parity code in Section 5.5, and then discuss the cleverer 
and more efficient Hamming code in Section 5.7. 

⌅ 5.5 Rectangular Parity SEC Code 

We define the parity of bits x
1

, x
2

, . . . , xn as (x
1 + x

2 + . . .+ xn), where the addition is per­
formed modulo 2 (it’s the same as taking the exclusive OR of the n bits). The parity is even 
when the sum is 0 (i.e., the number of ones is even), and odd otherwise. 

Let parity(s) denote the parity of all the bits in the bit-string s. We’ll use a dot, ·, to 
indicate the concatenation (sequential joining) of two messages or a message and a bit. For 
any message M (a sequence of one or more bits), let w = M · parity(M). You should be 
able to confirm that parity(w) = 0. This code, which adds a parity bit to each message, 
is also called the even parity code, because the number of ones in each codeword is even. 
Even parity lets us detect single errors because the set of codewords, {w}, each defined as 
M · parity(M), has a Hamming distance of 2. 

If we transmit w when we want to send some message M , then the receiver can take the 
received word, r, and compute parity(r) to determine if a single error has occurred. The 
receiver’s parity calculation returns 1 if an odd number of the bits in the received message 
has been corrupted. When the receiver’s parity calculation returns a 1, we say there has 
been a parity error. 
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23 d

24 p row(2) 
p col(1) p col(2) p col(3) p col(4) 

Figure 5-3: A 2 ⇥ 4 arrangement for an 8-bit message with row and column parity. 

0 1 1 0 0  
1 1 0 1 1  
1 0 1 1  

(a) 

1 0 0 1 1  
0 0 1 0 1  
1 0 1 0  

(b) 

0 1 1 1 1  
1 1 1 0 1  
1 0 0 0  

(c) 

Figure 5-4: Example received 8-bit messages. Which, if any, have one error? Which, if any, have two? 

This section describes a simple approach to building an SEC code by constructing mul­
tiple parity bits, each over various subsets of the message bits, and then using the resulting 
pattern of parity errors (or non-errors) to help pinpoint which bit was corrupted. 

Rectangular code construction: Suppose we want to send a k-bit message M . Shape the 
k bits into a rectangular array with r rows and c columns, i.e., k = rc. For example, if k = 8, 
the array could be 2 ⇥ 4 or 4 ⇥ 2 (or even 8 ⇥ 1 or 1 ⇥ 8, though those are less interesting). 
Label each data bit with a subscript giving its row and column: the first bit would be d

11

, 
the last bit drc. See Figure 5-3. 

Define p row(i) to be the parity of all the bits in row i of the array and let R be all the 
row parity bits collected into a sequence: 

R = [p row(1),p row(2), . . . ,p row(r)] 

Similarly, define p col(j) to be the parity of all the bits in column j of the array and let C 
be all the column parity bits collected into a sequence: 

C = [p col(1),p col(2), . . . ,p col(c)] 

Figure 5-3 shows what we have in mind when k = 8. 
Let w = M · R · C, i.e., the transmitted codeword consists of the original message M , 

followed by the row parity bits R in row order, followed by the column parity bits C in 
column order. The length of w is n = rc+ r + c. This code is linear because all the parity 
bits are linear functions of the message bits. The rate of the code is rc/(rc+ r+ c). 

We now prove that the rectangular parity code can correct all single-bit errors. 

Proof of single-error correction property: This rectangular code is an SEC code for all 
values of r and c. We will show that it can correct all single bit errors by showing that its 
minimum Hamming distance is 3 (i.e., the Hamming distance between any two codewords 
is at least 3). Consider two different uncoded messages, Mi and Mj . There are three cases 
to discuss: 

•	 If Mi and Mj differ by a single bit, then the row and column parity calculations 
involving that bit will result in different values. Thus, the corresponding codewords, 
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wi and wj , will differ by three bits: the different data bit, the different row parity bit, 
and the different column parity bit. So in this case HD(wi,wj ) = 3. 

•	 If Mi and Mj differ by two bits, then either (1) the differing bits are in the same 
row, in which case the row parity calculation is unchanged but two column parity 
calculations will differ, (2) the differing bits are in the same column, in which case the 
column parity calculation is unchanged but two row parity calculations will differ, 
or (3) the differing bits are in different rows and columns, in which case there will be 
two row and two column parity calculations that differ. So in this case HD(wi,wj ) � 
4. 

•	 If Mi and Mj differ by three or more bits, then HD(wi,wj ) � 3 because wi and wj 

contain Mi and Mj respectively. 

Hence we can conclude that HD(wi,wj ) � 3 and our simple “rectangular” code will be 
able to correct all single-bit errors. 

Decoding the rectangular code: How can the receiver’s decoder correctly deduce M 
from the received w, which may or may not have a single bit error? (If w has more than 
one error, then the decoder does not have to produce a correct answer.) 

Upon receiving a possibly corrupted w, the receiver checks the parity for the rows and 
columns by computing the sum of the appropriate data bits and the corresponding parity 
bit (all arithmetic in F

2

). By definition, this sum will be 1 if there is a parity error. Then: 

•	 If there are no parity errors, then there has not been a single error, so the receiver can 
use the data bits as-is for M . This situation is shown in Figure 5-4(a). 

•	 If there is single row or column parity error, then the corresponding parity bit is in 
error. But the data bits are okay and can be used as-is for M . This situation is shown 
in Figure 5-4(c), which has a parity error only in the fourth column. 

•	 If there is one row and one column parity error, then the data bit in that row and 
column has an error. The decoder repairs the error by flipping that data bit and then 
uses the repaired data bits for M . This situation is shown in Figure 5-4(b), where 
there are parity errors in the first row and fourth column indicating that d

14 should 
be flipped to be a 0. 

•	 Other combinations of row and column parity errors indicate that multiple errors 
have occurred. There’s no “right” action the receiver can undertake because it 
doesn’t have sufficient information to determine which bits are in error. A common 
approach is to use the data bits as-is for M . If they happen to be in error, that will be 
detected by the error detection code (mentioned near the beginning of this chapter). 

This recipe will produce the most likely message, M , from the received codeword if there 
has been at most a single transmission error (and if the bit error probability is less than 
1/2). 

p

In the rectangular code the number of parity bits grows at least as fast as k (it is easy to 
verify that the smallest number of parity bits occurs when the number of rows, r, and the 
number of columns, c, are equal). Given a fixed amount of communication “bandwidth” 
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Figure 5-5: A codeword in systematic form for a block code. Any linear code can be transformed into an 

equivalent systematic code. 

or resource, we’re interested in devoting as much of it as possible to sending message bits, 
not parity bits. Are there other SEC codes that have better code rates than our simple 
rectangular code? A natural question to ask is: how little redundancy can we get away with 
and still manage to correct errors? 

The Hamming code uses a clever construction that uses the intuition developed while 
answering the question mentioned above. We answer this question next. 

⌅ 5.6 How many parity bits are needed in an SEC code? 

Let’s think about what we’re trying to accomplish with an SEC code: the correction of 
transmissions that have a single error. For a transmitted message of length n there are 
n + 1  situations the receiver has to distinguish between: no errors and a single error in 
a specified position along the string of n received bits. Then, depending on the detected 
situation, the receiver can make, if necessary, the appropriate correction. 

Our first observation, which we will state here without proof, is that any linear code 
can be transformed into an equivalent systematic code. A systematic code is one where 
every n-bit codeword can be represented as the original k-bit message followed by the 
n - k parity bits (it actually doesn’t matter how the original message bits and parity bits 
are interspersed). Figure 5-5 shows a codeword in systematic form. 

So, given a systematic code, how many parity bits do we absolutely need? We need 
to choose n so that single error correction is possible. Since there are n - k parity bits, 
each combination of these bits must represent some error condition that we must be able 
to correct (or infer that there were no errors). There are 2n-k possible distinct parity bit 
combinations, which means that we can distinguish at most that many error conditions. 
We therefore arrive at the constraint 

n-k n + 1  2 (5.6) 

i.e., there have to be enough parity bits to distinguish all corrective actions that might 
need to be taken (including no action). Given k, we can determine n - k, the number of 
parity bits needed to satisfy this constraint. Taking the log (to base 2) of both sides, we 
can see that the number of parity bits must grow at least logarithmically with the number 
of message bits. Not all codes achieve this minimum (e.g., the rectangular code doesn’t), 
but the Hamming code, which we describe next, does. 

We also note that the reasoning here for an SEC code can be extended to determine a 
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Figure 5-6: Venn diagrams of Hamming codes showing which data bits are protected by each parity bit. 

lower bound on the number of parity bits needed to correct t > 1 errors. 

⌅ 5.7 Hamming Codes 

Intuitively, it makes sense that for a code to be efficient, each parity bit should protect 
as many data bits as possible. By symmetry, we’d expect each parity bit to do the same 
amount of “work” in the sense that each parity bit would protect the same number of data 
bits. If some parity bit is shirking its duties, it’s likely we’ll need a larger number of parity 
bits in order to ensure that each possible single error will produce a unique combination 
of parity errors (it’s the unique combinations that the receiver uses to deduce which bit, if 
any, had an error). 

The class of Hamming single error correcting codes is noteworthy because they are 
particularly efficient in the use of parity bits: the number of parity bits used by Hamming 
codes grows logarithmically with the size of the codeword. Figure 5-6 shows two examples 
of the class: the (7,4) and (15,11) Hamming codes. The (7,4) Hamming code uses 3 parity 
bits to protect 4 data bits; 3 of the 4 data bits are involved in each parity computation. The 
(15,11) Hamming code uses 4 parity bits to protect 11 data bits, and 7 of the 11 data bits are 
used in each parity computation (these properties will become apparent when we discuss 
the logic behind the construction of the Hamming code in Section 5.7.1). 

Looking at the diagrams, which show the data bits involved in each parity computation, 
you should convince yourself that each possible single error (don’t forget errors in one of 
the parity bits!) results in a unique combination of parity errors. Let’s work through the 
argument for the (7,4) Hamming code. Here are the parity-check computations performed 
by the receiver: 

E
1 = (d

1 + d
2 + d

4 + p
1

) 

E
2 = (d

1 + d
3 + d

4 + p
2

) 

E
3 = (d

2 + d
3 + d

4 + p
3

) 
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where each Ei is called a syndrome bit because it helps the receiver diagnose the “illness” 
(errors) in the received data. For each combination of syndrome bits, we can look for 
the bits in each codeword that appear in all the Ei computations that produced 1; these 
bits are potential candidates for having an error since any of them could have caused the 
observed parity errors. Now eliminate from the candidates those bits that appear in any Ei 

computations that produced 0 since those calculations prove those bits didn’t have errors. 
We’ll be left with either no bits (no errors occurred) or one bit (the bit with the single error). 

For example, if E
1 = 1, E

2 = 0  and E
3 = 1, we notice that bits d

2 and d
4 both appear 

in the computations for E
1 and E

3

. However, d
4 appears in the computation for E

2 and 
should be eliminated, leaving d

2 as the sole candidate as the bit with the error. 
Another example: suppose E

1 = 1, E
2 = 0  and E

3 = 0. Any of the bits appearing in the 
computation for E

1 could have caused the observed parity error. Eliminating those that 
appear in the computations for E

2 and E
3

, we’re left with p
1

, which must be the bit with 
the error. 

Applying this reasoning to each possible combination of parity errors, we can make a 
table that shows the appropriate corrective action for each combination of the syndrome 
bits: 

E
3

E
2

E
1 

000 
001 
010 
011 
100 
101 
110 
111 

Corrective Action 
no errors 
p
1 has an error, flip to correct 

p
2 has an error, flip to correct 

d
1 has an error, flip to correct 

p
3 has an error, flip to correct 

d
2 has an error, flip to correct 

d
3 has an error, flip to correct 

d
4 has an error, flip to correct 

⌅ 5.7.1 Is There a Logic to the Hamming Code Construction? 

So far so good, but the allocation of data bits to parity-bit computations may seem rather 
arbitrary and it’s not clear how to build the corrective action table except by inspection. 

The cleverness of Hamming codes is revealed if we order the data and parity bits in a 
certain way and assign each bit an index, starting with 1: 

index 
binary index 

1 
001 

2 
010 

3 
011 

4 
100 

5 
101 

6 
110 

7 
111 

(7,4) code p
1 p

2 d
1 p

3 d
2 d

3 d
4 

This table was constructed by first allocating the parity bits to indices that are powers 
of two (e.g., 1, 2, 4, . . . ). Then the data bits are allocated to the so-far unassigned indicies, 
starting with the smallest index. It’s easy to see how to extend this construction to any 
number of data bits, remembering to add additional parity bits at indices that are a power 
of two. 

Allocating the data bits to parity computations is accomplished by looking at their re­
spective indices in the table above. Note that we’re talking about the index in the table, not 
the subscript of the bit. Specifically, di is included in the computation of pj if (and only if) 
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the logical AND of binary index(di) and binary index(pj ) is non-zero. Put another way, di 
is included in the computation of pj if, and only if, index(pj ) contributes to index(di) when 
writing the latter as sums of powers of 2. 

So the computation of p
1 (with an index of 1) includes all data bits with odd indices: d

1

, 
d
2 and d

4

. And the computation of p
2 (with an index of 2) includes d

1

, d
3 and d

4

. Finally, 
the computation of p

3 (with an index of 4) includes d
2

, d
3 and d

4

. You should verify that 
these calculations match the Ei equations given above. 

If the parity/syndrome computations are constructed this way, it turns out that E
3

E
2

E
1

, 
treated as a binary number, gives the index of the bit that should be corrected. For exam­
ple, if E

3

E
2

E
1 = 101, then we should correct the message bit with index 5, i.e., d

2

. This 
corrective action is exactly the one described in the earlier table we built by inspection. 

The Hamming code’s syndrome calculation and subsequent corrective action can be ef­
ficiently implemented using digital logic and so these codes are widely used in contexts 
where single error correction needs to be fast, e.g., correction of memory errors when fetch­
ing data from DRAM. 
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⌅ Problems and Questions 

1. Prove that the Hamming distance satisfies the triangle inequality. That is, show that 
HD(x, y) + HD(y, z) � HD(x, z) for any three n-bit binary words. 

2. Consider the following rectangular linear block code: 

D0 D1 D2 D3 D4 | P0
 
D5 D6 D7 D8 D9 | P1
 
D10 D11 D12 D13 D14 | P2
 

P3 P4 P5 P6 P7 | 

Here, D0–D14 are data bits, P0–P2 are row parity bits and P3–P7 are column parity 
bits. What are n, k, and d for this linear code? 

3. Consider a rectangular parity code as described in Section 5.5. Ben Bitdiddle would 
like use this code at a variety of different code rates and experiment with them on 
some channel. 

(a) Is it possible to obtain a rate lower than 1/3 with this code? Explain your an­
swer. 

(b) Suppose he is interested in code rates like 1/2, 2/3, 3/4, etc.; i.e., in general a 
`rate of `+1 , for some integer ` > 1. Is it always possible to pick the parameters of 

the code (i.e, the block size and the number of rows and columns over which to 
`construct the parity bits) so that any such code rate of the form is achievable? l+1 

Explain your answer. 

4. Two-Bit Communications (TBC), a slightly suspect network provider, uses the fol­
lowing linear block code over its channels. All arithmetic is in F

2

. 

P
0 = D

0

, P
1 = (D

0 +D
1

), P
2 = D

1

. 

(a) What are n and k for this code? 

(b) Suppose we want to perform syndrome decoding over the received bits. Write 
out the three syndrome equations for E

0

,E
1

,E
2

. 
(c) For the eight possible syndrome values, determine what error can be detected 

(none, error in a particular data or parity bit, or multiple errors). Make your 
choice using maximum likelihood decoding, assuming a small bit error prob­
ability (i.e., the smallest number of errors that’s consistent with the given syn­
drome). 

(d) Suppose that the the 5-bit blocks arrive at the receiver in the following order: 
D

0

,D
1

, P
0

, P
1

, P
2

. If 11011 arrives, what will the TBC receiver report as the re­
ceived data after error correction has been performed? Explain your answer. 

(e) TBC would like to improve the code rate while still maintaining single-bit error 
correction. Their engineer would like to reduce the number of parity bits by 1. 
Give the formulas for P

0 and P
1 that will accomplish this goal, or briefly explain 

why no such code is possible. 
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5. Pairwise Communications has developed a linear block code over F
2 with three data 

and three parity bits, which it calls the pairwise code: 

P
1 = D

1 + D
2 (Each Di is a data bit; each Pi is a parity bit.) 

P
2 = D

2 + D
3
 

P
3 = D

3 + D
1
 

(a) Fill in the values of the following three attributes of this code: 
(i) Code rate = 

(ii) Number of 1s in a minimum-weight non-zero codeword = 

(iii) Minimum Hamming distance of the code = 

6. Consider the same “pairwise code” as in the previous problem. The receiver com­
putes three syndrome bits from the (possibly corrupted) received data and parity 
bits: E

1 = D
1 + D

2 + P
1

,E
2 = D

2 + D
3 + P

2

, and E
3 = D

3 + D
1 + P

3

. The receiver 
performs maximum likelihood decoding using the syndrome bits. For the combi­
nations of syndrome bits in the table below, state what the maximum-likelihood de­
coder believes has occured: no errors, a single error in a specific bit (state which one), 
or multiple errors. 

E
3

E
2

E
1 Error pattern [No errors / Error in bit ... (specify bit) / Multiple errors] 

0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  

7. Alyssa P. Hacker extends the aforementioned pairwise code by adding an overall par­
ity bit. That is, she computes P

4 = 
P

3 
(Di + Pi), and appends P

4 to each origi­i=1

nal codeword to produce the new set of codewords. What improvement in error 
correction or detection capabilities, if any, does Alyssa’s extended code show over 
Pairwise’s original code? Explain your answer. 

8. For each of the sets of codewords below, determine whether the code is a linear block 
code over F

2 or not. Also give the rate of each code. 

(a) {000,001,010,011}. 

(b) {000, 011, 110, 101}. 

(c) {111, 100, 001, 010}. 

(d) {00000, 01111, 10100, 11011}. 

(e) {00000}. 
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9. For any linear block code over F
2 with minimum Hamming distance at least 2t+ 1  

between codewords, show that: 
✓
n
◆ ✓

n
◆ ✓

n
◆ 

2

n-k 
� 1 +  + + . . .  . 

1 2 t 

Hint: How many errors can such a code always correct? 

10. For each (n,k, d) combination below, state whether a linear block code with those 
parameters exists or not. Please provide a brief explanation for each case: if such a 
code exists, give an example; if not, you may rely on a suitable necessary condition. 

(a) (31,26,3): Yes / No 

(b) (32,27,3): Yes / No 

(c) (43,42,2): Yes / No 

(d) (27,18,3): Yes / No 

(e) (11,5,5): Yes / No 

11. Using the Hamming code construction for the (7,4) code, construct the parity equa­
tions for the (15,11) code. How many equations does this code have? How many 
message bits contribute to each parity bit? 

12. Prove Theorems 5.2 and 5.3. (Don’t worry too much if you can’t prove the latter; we 
will give the proof in the next chapter.) 

13. The weight of a codeword in a linear block code over F
2 is the number of 1’s in 

the word. Show that any linear block code must either: (1) have only even weight 
codewords, or (2) have an equal number of even and odd weight codewords. 
Hint: Proof by contradiction. 

14. There are N people in a room, each wearing a hat colored red or blue, standing in a 
line in order of increasing height. Each person can see only the hats of the people in 
front, and does not know the color of his or her own hat. They play a game as a team, 
whose rules are simple. Each person gets to say one word: “red” or “blue”. If the 
word they say correctly guesses the color of their hat, the team gets 1 point; if they 
guess wrong, 0 points. Before the game begins, they can get together to agree on a 
protocol (i.e., what word they will say under what conditions). Once they determine 
the protocol, they stop talking, form the line, and are given their hats at random. 

Can you develop a protocol that will maximize their score? What score does your 
protocol achieve? 
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CHAPTER 6
Linear Block Codes:

Encoding and Syndrome Decoding

The previous chapter defined some properties of linear block codes and discussed two
examples of linear block codes (rectangular parity and the Hamming code), but the ap-
proaches presented for decoding them were specific to those codes. Here, we will describe
a general strategy for encoding and decoding linear block codes. The decoding procedure
we describe is syndrome decoding, which uses the syndrome bits introduced in the pre-
vious chapter. We will show how to perform syndrome decoding efficiently for any linear
block code, highlighting the primary reason why linear (block) codes are attractive: the
ability to decode them efficiently.

We also discuss how to use a linear block code that works over relatively small block
sizes to protect a packet (or message) made up of a much larger number of bits. Finally,
we discuss how to cope with burst error patterns, which are different from the BSC model
assumed thus far. A packet protected with one or more coded blocks needs a way for
the receiver to detect errors after the error correction steps have done their job, because all
errors may not be corrected. This task is done by an error detection code, which is generally
distinct from the correction code. For completeness, we describe the cyclic redundancy check
(CRC), a popular method for error detection.

⌅ 6.1 Encoding Linear Block Codes

Recall that a linear block code takes k-bit message blocks and converts each such block
into n-bit coded blocks. The rate of the code is k/n. The conversion in a linear block code
involves only linear operations over the message bits to produce codewords. For concrete-
ness, let’s restrict ourselves to codes over F

2

, so all the linear operations are additive parity
computations.

If the code is in systematic form, each codeword consists of the k message bits
D

1

D
2

. . .Dk followed by (or interspersed with) the n− k parity bits P
1

P
2

. . . Pn−k, where
each Pi is some linear combination of the Di’s.

Because the transformation from message bits to codewords is linear, one can represent
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each message-to-codeword transformation succinctly using matrix notation:

D ·G = C, (6.1)

where D is a 1⇥ k matrix (i.e., a row vector) of message bits D
1

D
2

. . .Dk, C is the n-bit
codeword row vector C

1

C
2

. . .Cn, G is the k⇥ n generator matrix that completely charac-
terizes the linear block code, and · is the standard matrix multiplication operation. For a
code over F

2

, each element of the three matrices in the above equation is 0 or 1, and all
additions are modulo 2.

If the code is in systematic form, C has the form D
1

D
2

. . .DkP1

P
2

. . . Pn−k. Substituting
this form into Equation 6.1, we see that G is decomposed into a k ⇥ k identity matrix
“concatenated” horizontally with a k⇥ (n− k) matrix of values that defines the code.

The encoding procedure for any linear block code is straightforward: given the gener-
ator matrix G, which completely characterizes the code, and a sequence of k message bits
D, use Equation 6.1 to produce the desired n-bit codeword. The straightforward way of
doing this matrix multiplication involves k multiplications and k − 1 additions for each
codeword bit, but for a code in systematic form, the first k codeword bits are simply the
message bits themselves and can be produced with no work. Hence, we need O(k) oper-
ations for each of n− k parity bits in C, giving an overall encoding complexity of O(nk)

operations.

⌅ 6.1.1 Examples

To illustrate Equation 6.1, let’s look at some examples. First, consider the simple linear
parity code, which is a (k+ 1, k) code. What is G in this case? The equation for the parity
bit is P = D

1

+D
2

+ . . .Dk, so the codeword is just D
1

D
2

. . .DkP . Hence,

G =

⇣
I T
k⇥k|1

⌘
, (6.2)

where Ik k is the k ⇥ k identity matrix and 1

T is a k-bit column vector of all ones (the⇥
superscript T refers to matrix transposition, i.e., make all the rows into columns and vice
versa). For example, when k = 3,

G =

0
1 0 0 1

0 1 0 1

0 0 1 1

1

@ A .

Now consider the rectangular parity code from the last chapter. Suppose it has r = 2

rows and c = 3 columns, so k = rc = 6. The number of parity bits = r + c = 5, so this
rectangular parity code is a (11,6,3) linear block code. If the data bits are D

1

D
2

D
3

D
4

D
5

D
6

organized with the first three in the first row and the last three in the second row, the parity



SECTION 6.1. ENCODING LINEAR BLOCK CODES 67

equations are

P
1

= D
1

+D
2

+D
3

P
2

= D
4

+D
5

+D
6

P
3

= D
1

+D
4

P
4

= D
2

+D
5

P
5

= D
3

+D
6

Fitting these equations into Equation (6.1), we find that
0

0 0 0 0 1

1

B
1 0 0 1 0 0

G

B C
B

0 1 0 0 0 0 1 0 0 1 0

BB
0 0 1 0 0 0 1 0 0 0 1

=

CC
C

BB
.

0 0 0 1 0 0 0 1 1 0 0

@
0 0 0 0 1 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0 0 1

CCCA

G is a k⇥ n (here, 6⇥ 11) matrix; you can see the k⇥ k identity matrix, followed by the
remaining k ⇥ (n− k) part (we have shown the two parts separated with a vertical line).
Each of the right-most n− k columns corresponds one-to-one with a parity bit, and there is
a “1” for each entry where the data bit of the row contributes to the corresponding parity
equation. This property makes it easy to write G given the parity equations; conversely,
given G for a code, it is easy to write the parity equations for the code.

Now consider the (7,4) Hamming code from the previous chapter. Using the parity
equations presented there, we leave it as an exercise to verify that for this code,

G =

0
1 0 0 0 1 1 0

BB 0 1 0 0 1 0 1

1

C
@ CA . (6.3)

0 0 1 0 0 1 1

0 0 0 1 1 1 1

As a last example, suppose the parity equations for a (6,3) linear block code are

P
1

= D
1

+D
2

P
2

= D
2

+D
3

P
3

= D
3

+D
1

For this code,

G =

0
1 0 0 1 0 1

0 1 0 1 1 0

0 0 1 0 1 1

1

.

We denote the k⇥ (n k

@ A

− ) sub-matrix of G by A, i.e.,

G =

⇣
Ik⇥k|A

⌘
, (6.4)



68

CHAPTER 6. LINEAR BLOCK CODES:

ENCODING AND SYNDROME DECODING

where | represents the horizontal “stacking” (or concatenation) of two matrices with the
same number of rows.

⌅ 6.2 Maximum-Likelihood (ML) Decoding

Given a binary symmetric channel with bit-flip probability ", our goal is to develop a
maximum-likelihood (ML) decoder. For a linear block code, an ML decoder takes n re-
ceived bits as input and returns the most likely k-bit message among the 2

k possible mes-
sages.

The simple way to implement an ML decoder is to enumerate all 2k valid codewords
(each n bits in length). Then, compare the received word, r, to each of these valid code-
words and find the one with smallest Hamming distance to r. If the BSC probability
" < 1/2, then the codeword with smallest Hamming distance is the ML decoding. Note
that " < 1/2 covers all cases of practical interest: if " > 1/2, then one can simply swap all
zeroes and ones and do the decoding, for that would map to a BSC with bit-flip probabil-
ity 1− " < 1/2. If " = 1/2, then each bit is as likely to be correct as wrong, and there is no
way to communicate at a non-zero rate. Fortunately, " << 1/2 in all practically relevant
communication channels.

The goal of ML decoding is to maximize the quantity P(r|c); i.e., to find the codeword
c so that the probability that r was received given that c was sent is maximized. Consider
any codeword c̃. If r and c̃ differ in d bits (i.e., their Hamming distance is d), then P(r|c) =
"d(1− ")N−d, where n is the length of the received word (and also the length of each valid
codeword). It’s more convenient to take the logarithm of this conditional probaility, also
termed the log-likelihood:1

"
logP(r|c̃) = d log "+ (N − d) log(1− ") = d log +N log(1 "). (6.5)

1 "
−

−

If " < 1/2, which is the practical realm of operation, then " < 1

1−" and the log term is
negative. As a result, maximizing the log likelihood boils down to minimizing d, because
the second term on the RHS of Eq. (6.5) is a constant.

ML decoding by comparing a received word, r, with all 2k possible valid n-bit code-
words does work, but has exponential time complexity. What we would like is something
a lot faster. Note that this “compare to all valid codewords” method does not take advan-
tage of the linearity of the code. By taking advantage of this property, we can make the
decoding a lot faster.

⌅ 6.3 Syndrome Decoding of Linear Block Codes

Syndrome decoding is an efficient way to decode linear block codes. We will study it in
the context of decoding single-bit errors; specifically, providing the following semantics:

If the received word has 0 or 1 errors, then the decoder will return the correct
transmitted message.

1The base of the logarithm doesn’t matter.
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If the received word has more than 0 or 1 errors, then the decoder may return the correct
message, but it may also not do so (i.e., we make no guarantees). It is not difficult to extend
the method described below to both provide ML decoding (i.e., to return the message
corresponding to the codeword with smallest Hamming distance to the received word),
and to handle block codes that can correct a greater number of errors.

The key idea is to take advantage of the linearity of the code. We first give an example,
then specify the method in general. Consider the (7,4) Hamming code whose generator
matrix G is given by Equation (6.3). From G, we can write out the parity equations in the
same form as in the previous chapter:

P
1

= D
1

+D
2

+D
4

P
2

= D
1

+D
3

+D
4

P
3

= D
2

+D
3

+D
4

(6.6)

(6.7)

Because the arithmetic is over F
2

, we can rewrite these equations by moving the P ’s to
the same side as the D’s (in modulo-2 arithmetic, there is no difference between a − and a
+ sign!):

D
1

+D
2

+D
4

+ P
1

= 0

D
1

+D
3

+D
4

+ P
2

= 0

D
2

+D
3

+D
4

+ P
3

= 0 (6.8)

(6.9)

There are n− k such equations. One can express these equations, in matrix notation
using a parity check matrix, H , as follows:

H · [D T
1

D
2

. . .DkP1

P
2

. . . Pn−k] = 0. (6.10)

H is the horizontal stacking, or concatenation, of two matrices: AT , where A is the
sub-matrix of the generator matrix of the code from Equation (6.4), and I

(n , the−k)⇥(n−k)

identity matrix. I.e.,
H = AT

|I
(n−k)⇥(n−k), (6.11)

where A is given by Equation (6.4).
H has the property that for any valid codeword c (which we represent as a 1⇥n matrix),

H · cT = 0. (6.12)

Hence, for any received word r without errors, H · rT = 0.
Now suppose a received word r has some errors in it. r may be written as c+ e, where

c is some valid codeword and e is an error vector, represented (like c) as a 1⇥ n matrix. For
such an r,

H · rT = H · (c+ e)T = 0+H · eT .

If r has at most one bit error, then e is made up of all zeroes and at most one “1”. In
this case, there are n+ 1 possible values of H · eT ; n of these correspond to exactly one bit
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error, and one of these is a no-error case (e = 0), for which H · eT = 0. These n+ 1 possible
vectors are precisely the syndromes introduced in the previous chapter: they signify what
happens under different error patterns.

Syndrome decoding pre-computes the syndrome corresponding to each error. As-
sume that the code is in systematic form, so each codeword is of the form
D

1

D
2

. . .D P T
k 1

P
2

. . . Pn is−k. If e = 100 . . .0, then the syndrome H · e the result when the
first data bit, D

1

is in error. In general, if element i of e is 1 and the other elements are
0, the resulting syndrome H · eT corresponds to the case when bit i in the codeword is
wrong. Under the assumption that there is at most one bit error, we care about storing the
syndromes when one of the first k elements of e is 1.

Given a received word, r, the decoder computes H · rT . If it is 0, then there are no
single-bit errors, and the receiver returns the first k bits of the received word as the decoded
message. If not, then it compares that (n−k)-bit value with each of the k stored syndromes.
If syndrome j matches, then it means that data bit j in the received word was in error, and
the decoder flips that bit and returns the first k bits of the received word as the most likely
message that was encoded and transmitted.

If H · rT is not all zeroes, and if it does not match any stored syndrome, then the decoder
concludes that either some parity bit was wrong, or that there were multiple errors. In this
case, it might simply return the first k bits of the received word as the message. This
method produces the ML decoding if a parity bit was wrong, but may not be the optimal
estimate when multiple errors occur. Because we are likely to use single-error correction
in cases when the probability of multiple bit errors is extremely low, we can often avoid
doing anything more sophisticated than just returning the first k bits of the received word
as the decoded message.

The preceding two paragraphs provide the essential steps behind syndrome decoding
for single bit errors, producing an ML estimate of the transmitted message in the case when
zero or one bit errors affect the codeword.

Correcting multiple errors. It is not hard to expand this syndrome decoding idea to the
multiple error case. Suppose we wish to correct all patterns of  t errors. In this case,
we need to pre-compute more syndromes, corresponding to 0,1,2, . . . t bit errors. Each of
these should be stored by the decoder. There will be a total of

✓
n

0

◆
+

✓
n

1

◆
+

✓
n n

+ . . .
2

◆ ✓

t

◆

syndromes to pre-compute and store. If one of these syndromes matches, the decoder
knows exactly which bit error pattern produced the syndrome, and it flips those bits and
returns the first k bits of the codeword as the decoded message. This method requires
the decoder to make O(nt

) syndrome comparisons, and each such comparison involved
comparing two (n− k)-bit strings with each other.

An example. A detailed example may be useful to understand the encoding and de-
coding procedures. Consider the (7,4) Hamming code. The G for this linear block code
is specified in Equation (6.3). Given any k = 4-bit message m, the encoder produces an
n = 7-bit codeword, c by multiplying m ·G. (m is a 1⇥ k matrix, G is a k⇥ n matrix, and c
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is a 1⇥ n matrix.)
The parity check matrix, H , for this code is obtained by applying Equation (6.11):

H =

0
1 1 0 1 1 0 0

@
1 0 1 1 0 1 0

. (6.13)
0 1 1 1 0 0 1

1

A

Suppose codeword c is sent over the channel and is received by the decoder as r =

1010000. What is the most likely transmitted message?
The decoder pre-computes syndromes corresponding to all possible single-bit errors.

(It actually needs to pre-compute only k of them, each corresponding to an error in one of
the first k bit positions of a codeword.) In our case, the k = 4 syndromes of interest are:

H · [1000000]

T
= [110]

T

H · [0100000]

T
= [101]

T

H · [0010000]

T
= [011]

T

H · [0001000]

T
= [111]

T

For completeness, the syndromes for a single-bit error in one of the parity bits are, not
surprisingly:

H · [0000100]

T
= [100]

T

H · [0000010]

T
= [010]

T

H · [0000001]

T
= [001]

T

Although shown as a matrix multiplication for clarity, note that one does not actually
need to multiply the matrices H · e to produce the syndromes: the syndromes are simply the
columns of H .

The decoder implements the following steps to correct single-bit errors:

1. Compute c0 = H · rT (remembering to replace each value with its modulo-2 value).
In this example, c0 = [101]

T .

2. If c0 is 0, then return the first k bits of r as the message. In this example c0 is not 0.

3. If c0 is not 0, then compare c0 with the n pre-computed syndromes, H · ei, where
ei = [00 . . .1 . . .0] is a 1⇥ n matrix with 1 in position i and 0 everywhere else.

4. If there is a match in the previous step for error vector e`, then bit position ` in the
received word is in error. Flip that bit and return the first k elements of r (note that
we need to perform this check only for the first k error vectors because only one of
those may need to be flipped, which is why it is sufficient to only store k single-error
syndromes and not n.

In this example, the syndrome for H · [0100000]

T
= [101]

T , which matches c0 =H · rT .
Hence, the decoder flips the second bit in the received word and returns the first k= 4

bits of r as the ML decoding. In this example, the returned estimate of the message
is [1110].
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Figure 6-1: Dividing a long message into multiple SEC-protected blocks of k bits each, adding parity bits
to each constituent block. The red vertical rectangles refer to bit errors.

5. If there is no match, return the first k bits of r. Doing so is not necessarily ML decod-
ing when multiple bit errors occur, but if the bit error probability is small, then it is a
very good approximation.

⌅ 6.4 Protecting Longer Messages with SEC Codes

SEC codes are a good building block, but they correct at most one error in a block of n
coded bits. As messages get longer, the solution, of course, is to break up a longer message
into smaller blocks of k bits each, and to protect each one with its own SEC code. The result
might look as shown in Figure 6-1. In addition, one would introduce an error detection
code (like a CRC) at the end of the packet, as described in Section 6.6.

⌅ 6.5 Coping with Burst Errors

Over many channels, errors occur in bursts and the BSC error model is invalid. For ex-
ample, wireless channels suffer from interference from other transmitters and from fading,
caused mainly by multi-path propagation when a given signal arrives at the receiver from
multiple paths and interferes in complex ways because the different copies of the signal
experience different degrees of attenuation and different delays. Another reason for fad-
ing is the presence of obstacles on the path between sender and receiver; such fading is
called shadow fading.

The behavior of a fading channel is complicated and beyond our current scope of dis-
cussion, but the impact of fading on communication is that the random process describing
the bit error probability is no longer independent and identically distributed from one bit
to another. The BSC model needs to be replaced with a more complicated one in which
errors may occur in bursts. Many such theoretical models guided by empirical data exist,
but we won’t go into them here. Our goal is to understand how to develop error correction
mechanisms when errors occur in bursts.

But what do we mean by a “burst”? The simplest model is to model the channel as
having two states, a “good” state and a “bad” state. In the “good” state, the bit error
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Figure 6-2: Interleaving can help recover from burst errors: code each block row-wise with an SEC, but
transmit them in interleaved fashion in columnar order. As long as a set of burst errors corrupts some set

thof k bits, the receiver can recover from all the errors in the burst.

probability is pg and in the “bad” state, it is pb > pg. Once in the good state, the channel
has some probability of remaining there (generally > 1/2) and some probability of moving
into the “bad” state, and vice versa. It should be easy to see that this simple model has
the property that the probability of a bit error depends on whether the previous bit (or
previous few bits) are in error or not. The reason is that the odds of being in a “good” state
are high if the previous few bits have been correct.

At first sight, it might seem like the block codes that correct one (or a small number of)
bit errors are poorly suited for a channel experiencing burst errors. The reason is shown in
Figure 6-2 (left), where each block of the message is protected by its SEC parity bits. The
different blocks are shown as different rows. When a burst error occurs, multiple bits in an
SEC block are corrupted, and the SEC can’t recover from them.

Interleaving is a commonly used technique to recover from burst errors on a channel
even when the individual blocks are protected with a code that, on the face of it, is not
suited for burst errors. The idea is simple: code the blocks as before, but transmit them in
a “columnar” fashion, as shown in Figure 6-2 (right). That is, send the first bit of block 1,
then the first bit of block 2, and so on until all the first bits of each block in a set of some
predefined size are sent. Then, send the second bits of each block in sequence, then the
third bits, and so on.

What happens on a burst error? Chances are that it corrupts a set of “first” bits, or a
set of “second” bits, or a set of “third” bits, etc., because those are the bits sent in order

thon the channel. As long as only a set of k bits are corrupted, the receiver can correct all
the errors. The reason is that each coded block will now have at most one error. Thus,
block codes that correct a small number of bit errors per block are still a useful primitive
to correct burst errors, when used in concert with interleaving.

⌅ 6.6 Error Detection

This section is optional reading and is not required for 6.02 in Spring or Fall 2012.
The reason why error detection is important is that no practical error correction schemes

can perfectly correct all errors in a message. For example, any reasonable error correction
scheme that can correct all patterns of t or fewer errors will have some error pattern of t or
more errors that cannot be corrected. Our goal is not to eliminate all errors, but to reduce
the bit error rate to a low enough value that the occasional corrupted coded message is
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not a problem: the receiver can just discard such messages and perhaps request a retrans-
mission from the sender (we will study such retransmission protocols later in the term).
To decide whether to keep or discard a message, the receiver needs a way to detect any
errors that might remain after the error correction and decoding schemes have done their
job: this task is done by an error detection scheme.

An error detection scheme works as follows. The sender takes the message and pro-
duces a compact hash or digest of the message; i.e., a function that takes the message as in-
put and produces a unique bit-string. The idea is that commonly occurring corruptions of
the message will cause the hash to be different from the correct value. The sender includes
the hash with the message, and then passes that over to the error correcting mechanisms,
which code the message. The receiver gets the coded bits, runs the error correction decod-
ing steps, and then obtains the presumptive set of original message bits and the hash. The
receiver computes the same hash over the presumptive message bits and compares the re-
sult with the presumptive hash it has decoded. If the results disagree, then clearly there has
been some unrecoverable error, and the message is discarded. If the results agree, then the
receiver believes the message to be correct. Note that if the results agree, the receiver can
only believe the message to be correct; it is certainly possible (though, for good detection
schemes, unlikely) for two different message bit sequences to have the same hash.

The design of an error detection method depends on the errors we anticipate. If the
errors are adversarial in nature, e.g., from a malicious party who can change the bits as
they are sent over the channel, then the hash function must guard against as many of the
enormous number of different error patterns that might occur. This task requires cryp-
tographic protection, and is done in practice using schemes like SHA-1, the secure hash
algorithm. We won’t study these here, focusing instead on non-malicious, random errors
introduced when bits are sent over communication channels. The error detection hash
functions in this case are typically called checksums: they protect against certain random
forms of bit errors, but are by no means the method to use when communicating over an
insecure channel.

The most common packet-level error detection method used today is the Cyclic Redun-
dancy Check (CRC).2 A CRC is an example of a block code, but it can operate on blocks of
any size. Given a message block of size k bits, it produces a compact digest of size r bits,
where r is a constant (typically between 8 and 32 bits in real implementations). Together,
the k + r = n bits constitute a code word. Every valid code word has a certain minimum
Hamming distance from every other valid code word to aid in error detection.

A CRC is an example of a polynomial code as well as an example of a cyclic code. The
idea in a polynomial code is to represent every code word w = wn−1

wn−2

wn−2

. . .w
0

as a
polynomial of degree n− 1. That is, we write

n−1

w(x) =
X

wix
i. (6.14)

i=0

For example, the code word 11000101 may be represented as the polynomial 1 + x2 +

2Sometimes, the literature uses “checksums” to mean something different from a “CRC”, using checksums
for methods that involve the addition of groups of bits to produce the result, and CRCs for methods that
involve polynomial division. We use the term “checksum” to include both kinds of functions, which are both
applicable to random errors and not to insecure channels (unlike secure hash functions).
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x6 + x7, plugging the bits into Eq.(6.14) and reading out the bits from right to left. We use
the term code polynomial to refer to the polynomial corresponding to a code word.

The key idea in a CRC (and, indeed, in any cyclic code) is to ensure that every valid code
polynomial is a multiple of a generator polynomial, g(x). We will look at the properties of good
generator polynomials in a bit, but for now let’s look at some properties of codes built with
this property. The key idea is that we’re going to take a message polynomial and divide
it by the generator polynomial; the (coefficients of) the remainder polynomial from the
division will correspond to the hash (i.e., the bits of the checksum).

All arithmetic in our CRC will be done in F
2

. The normal rules of polynomial addition,
subtraction, multiplication, and division apply, except that all coefficients are either 0 or 1
and the coefficients add and multiply using the F

2

rules. In particular, note that all minus
signs can be replaced with plus signs, making life quite convenient.

⌅ 6.6.1 Encoding Step

The CRC encoding step of producing the digest is simple. Given a message, construct
the message polynomial m(x) using the same method as Eq.(6.14). Then, our goal is to
construct the code polynomial, w(x) by combining m(x) and g(x) so that g(x) divides
w(x) (i.e., w(x) is a multiple of g(x)).

First, let us multiply m(x) by xn−k. The reason we do this multiplication is to shift the
message left by n− k bits, so we can add the redundant check bits (n− k of them) so that
the code word is in systematic form. It should be easy to verify that this multiplication
produces a polynomial whose coefficients correspond to original message bits followed by
all zeroes (for the check bits we’re going to add in below).

Then, let’s divide xn−km(x) by g(x). If the remainder from the polynomial division is 0,
then we have a valid codeword. Otherwise, we have a remainder. We know that if we sub-
tract this remainder from the polynomial xn−km(x), we will obtain a new polynomial that
will be a multiple of g(x). Remembering that we are in F

2

, we can replace the subtraction
with an addition, getting:

w(x) = xn−km(x) + xn−km(x) mod g(x), (6.15)

where the notation a(x) mod b(x) stands for the remainder when a(x) is divided by b(x).
The encoder is now straightforward to define. Take the message, construct the message

polynomial, multiply by xn−k, and then divide that by g(x). The remainder forms the
check bits, acting as the digest for the entire message. Send these bits appended to the
message.

⌅ 6.6.2 Decoding Step

The decoding step is essentially identical to the encoding step, one of the advantages of
using a CRC. Separate each code word received into the message and remainder portions,
and verify whether the remainder calculated from the message matches the bits sent to-
gether with the message. A mismatch guarantees that an error has occurred; a match
suggests a reasonable likelihood of the message being correct, as long as a suitable generator
polynomial is used.
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Figure 6-3: CRC computations using “long division”.

⌅ 6.6.3 Mechanics of division

There are several efficient ways to implement the division and remaindering operations
needed in a CRC computation. The schemes used in practice essentially mimic the “long
division” strategies one learns in elementary school. Figure 6-3 shows an example to re-
fresh your memory!

⌅ 6.6.4 Good Generator Polynomials

So how should one pick good generator polynomials? There is no magic prescription
here, but ny observing what commonly occuring error patterns do to the received code
words, we can form some guidelines. To develop suitable properties for g(x), first observe
that if the receiver gets a bit sequence, we can think of it as the code word sent added
to a sequence of zero or more errors. That is, take the bits obtained by the receiver and
construct a received polynomial, r(x), from it. We can think of r(x) as being the sum of
w(x), which is what the sender sent (the receiver doesn’t know what the real w was) and
an error polynomial, e(x). Figure 6-4 shows an example of a message with two bit errors
and the corresponding error polynomial. Here’s the key point: If r(x) = w(x) + e(x) is
not a multiple of g(x), then the receiver is guaranteed to detect the error. Because w(x) is
constructed as a multiple of g(x), this statement is the same as saying that if e(x) is not
a multiple of g(x), the receiver is guaranteed to detect the error. On the other hand, if
r(x), and therefore e(x), is a multiple of g(x), then we either have no errors, or we have an
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Figure 6-4: Error polynomial example with two bit errors; the polynomial has two non-zero terms corre-
sponding to the locations where the errors have occurred.

error that we cannot detect (i.e., an erroneous reception that we falsely identify as correct).
Our goal is to ensure that this situation does not happen for commonly occurring error
patterns.

1. First, note that for single error patterns, e(x) = xi for some i. That means we must
ensure that g(x) has at least two terms.

2. Suppose we want to be able to detect all error patterns with two errors. That error
pattern may be written as xi + xj = xi(1 + xj−i

), for some i and j > i. If g(x) does
not divide this term, then the resulting CRC can detect all double errors.

3. Now suppose we want to detect all odd numbers of errors. If (1 + x) is a factor of
g(x), then g(x) must have an even number of terms. The reason is that any polynomial
with coefficients in F

2

of the form (1+x)h(x) must evaluate to 0 when we set x to 1. If
we expand (1+x)h(x), if the answer must be 0 when x= 1, the expansion must have
an even number of terms. Therefore, if we make 1 + x a factor of g(x), the resulting
CRC will be able to detect all error patterns with an odd number of errors. Note, however,
that the converse statement is not true: a CRC may be able to detect an odd number
of errors even when its g(x) is not a multiple of (1+ x). But all CRCs used in practice
do have (1 + x) as a factor because its the simplest way to achieve this goal.

4. Another guideline used by some CRC schemes in practice is the ability to detect
burst errors. Let us define a burst error pattern of length b as a sequence of bits
1"b 2

"b 3

. . . "
1

1: that is, the number of bits is b, the first and last bits are both 1,− −
and the bits "i in the middle could be either 0 or 1. The minimum burst length is 2,
corresponding to the pattern “11”.

Suppose wePwould like our CRC to detect all such error patterns, where e(x) =

xs(1 · xb−1

b 2

+

i
i=1

− "ix +1). This polynomial represents a burst error pattern of size b

starting s bits to the left from the end of the packet. If we pick g(x) to be a polynomial
of degree b, and if g(x) does not have x as a factor, then any error pattern of length
 b is guaranteed to be detected, because g(x) will not divide a polynomial of degree
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Figure 6-5: Commonly used CRC generator polynomials, g(x). From Wikipedia.

smaller than its own. Moreover, there is exactly one error pattern of length b+ 1—
corresponding to the case when the burst error pattern matches the coefficients of
g(x) itself—that will not be detected. All other error patterns of length b+ 1 will be
detected by this CRC.

If fact, such a CRC is quite good at detecting longer burst errors as well, though it
cannot detect all of them.

CRCs are cyclic codes, which have the property that if c is a code word, then any cyclic
shift (rotation) of c is another valid code word. Hence, referring to Eq.(6.14), we find that
one can represent the polynomial corresponding to one cyclic left shift of w as

w(1)

(x) = w 2 n 1

n 1

+w
0

x+w
1

x + . . .w− n−2

x − (6.16)

= xw(x) + (1 + xn)wn−1

(6.17)

Now, because w(1)

(x) must also be a valid code word, it must be a multiple of g(x),
which means that g(x) must divide 1 + xn. Note that 1 + xn corresponds to a double error
pattern; what this observation implies is that the CRC scheme using cyclic code polyno-
mials can detect the errors we want to detect (such as all double bit errors) as long as g(x)
is picked so that the smallest n for which 1 + xn is a multiple of g(x) is quite large. For
example, in practice, a common 16-bit CRC has a g(x) for which the smallest such value of
n is 215 − 1 = 32767, which means that it’s quite effective for all messages of length smaller
than that.

⌅ 6.6.5 CRCs in practice

CRCs are used in essentially all communication systems. The table in Figure 6-5, culled
from Wikipedia, has a list of common CRCs and practical systems in which they are used.
You can see that they all have an even number of terms, and verify (if you wish) that 1+ x

divides most of them.
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⌅ 6.7 Summary

This chapter described syndrome decoding of linear block codes, described how to divide
a packet into one or more blocks and protect each block using an error correction code, and
described how interleaving can handle some burst error patterns. We then showed how
error detection using CRCs can be done.

The next two chapters describe the encoding and decoding of convolutional codes, a
different kind of error correction code that does not require fixed-length blocks.
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⌅ Problems and Questions

1. The Matrix Reloaded. Neo receives a 7-bit string, D
1

D
2

D
3

D
4

P
1

P
2

P
3

from Morpheus,
sent using a code, C, with parity equations

P
1

= D
1

+D
2

+D
3

P
2

= D
1

+D
2

+D
4

P
3

= D
1

+D
3

+D
4

(a) Write down the generator matrix, G, for C.

(b) Write down the parity check matrix, H , for C.

(c) If Neo receives 1000010 and does maximum-likelihood decoding on it, what
would his estimate of the data transmission D

1

D
2

D
3

D
4

from Morpheus be? For
your convenience, the syndrome si corresponding to data bit Di being wrong
are given below, for i = 1,2,3,4:

s T T T T
1

= (111) , s
2

= (110) , s
3

= (101) , s
4

= (011) .

(d) If Neo uses syndrome decoding for error correction, how many syndromes does
he need to compute and store for this code, including the syndrome with no
errors?

2. On Trinity’s advice, Morpheus decides to augment each codeword in C from the
previous problem with an overall parity bit, so that each codeword has an even
number of ones. Call the resulting code C

+.

(a) Explain whether it is True or False that C+ is a linear code.

(b) What is the minimum Hamming distance of C+?

(c) Write down the generator matrix, G+, of code C

+. Express your answer as a
concatenation (or stacking) of G (the generator for code C) and another matrix
(which you should specify). Explain your answer.
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3. Continuing from the previous two problems, Morpheus would like to use a code that
corrects all patterns of 2 or fewer bit errors in each codeword, by adding an appro-
priate number of parity bits to the data bits D

1

D
2

D
3

D
4

. He comes up with a code,
C

++, which adds 5 parity bits to the data bits to produce the required codewords.
Explain whether or not C++ will meet Neo’s error correction goal.
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CHAPTER 7 
Convolutional Codes: Construction 

and Encoding 

This chapter introduces a widely used class of codes, called convolutional codes, which 
are used in a variety of systems including today’s popular wireless standards (such as 
802.11) and in satellite communications. They are also used as a building block in more 
powerful modern codes, such as turbo codes, which are used in wide-area cellular wireless 
network standards such as 3G, LTE, and 4G. Convolutional codes are beautiful because 
they are intuitive, one can understand them in many different ways, and there is a way 
to decode them so as to recover the most likely message from among the set of all possible 
transmitted messages. This chapter discusses the encoding of convolutional codes; the 
next one discusses how to decode convolutional codes efficiently. 

Like the block codes discussed in the previous chapter, convolutional codes involve 
the computation of parity bits from message bits and their transmission, and they are also 
linear codes. Unlike block codes in systematic form, however, the sender does not send the 
message bits followed by (or interspersed with) the parity bits; in a convolutional code, the 
sender sends only the parity bits. These codes were invented by Peter Elias ’44, an MIT EECS 
faculty member, in the mid-1950s. For several years, it was not known just how powerful 
these codes are and how best to decode them. The answers to these questions started 
emerging in the 1960s, with the work of people like John Wozencraft (Sc.D. ’57 and former 
MIT EECS professor), Robert Fano (’41, Sc.D. ’47, MIT EECS professor), Andrew Viterbi 
’57, G. David Forney (SM ’65, Sc.D. ’67, and MIT EECS professor), Jim Omura SB ’63, and 
many others. 

⌅ 7.1 Convolutional Code Construction 

The encoder uses a sliding window to calculate r > 1 parity bits by combining various sub­
sets of bits in the window. The combining is a simple addition in F

2

, as in the previous 
chapter (i.e., modulo 2 addition, or equivalently, an exclusive-or operation). Unlike a block 
code, however, the windows overlap and slide by 1, as shown in Figure 7-1. The size of the 
window, in bits, is called the code’s constraint length. The longer the constraint length, 

81 
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Figure 7-1: An example of a convolutional code with two parity bits per message bit and a constraint length 

(shown in the rectangular window) of three. I.e., r = 2,K  = 3. 

the larger the number of parity bits that are influenced by any given message bit. Because 
the parity bits are the only bits sent over the channel, a larger constraint length generally 
implies a greater resilience to bit errors. The trade-off, though, is that it will take consider­
ably longer to decode codes of long constraint length (we will see in the next chapter that 
the complexity of decoding is exponential in the constraint length), so one cannot increase 
the constraint length arbitrarily and expect fast decoding. 

If a convolutional code produces r parity bits per window and slides the window for­
ward by one bit at a time, its rate (when calculated over long messages) is 1/r. The greater 
the value of r, the higher the resilience of bit errors, but the trade-off is that a propor­
tionally higher amount of communication bandwidth is devoted to coding overhead. In 
practice, we would like to pick r and the constraint length to be as small as possible while 
providing a low enough resulting probability of a bit error. 

In 6.02, we will use K (upper case) to refer to the constraint length, a somewhat un­
fortunate choice because we have used k (lower case) in previous chapters to refer to the 
number of message bits that get encoded to produce coded bits. Although “L” might be 
a better way to refer to the constraint length, we’ll use K because many papers and doc­
uments in the field use K (in fact, many papers use k in lower case, which is especially 
confusing). Because we will rarely refer to a “block” of size k while talking about convo­
lutional codes, we hope that this notation won’t cause confusion. 

Armed with this notation, we can describe the encoding process succinctly. The encoder 
looks at K bits at a time and produces r parity bits according to carefully chosen functions 
that operate over various subsets of the K bits.1 One example is shown in Figure 7-1, 
which shows a scheme with K = 3 and r = 2 (the rate of this code, 1/r = 1/2). The encoder 
spits out r bits, which are sent sequentially, slides the window by 1 to the right, and then 
repeats the process. That’s essentially it. 

At the transmitter, the two princial remaining details that we must describe are: 
1. What are good parity functions and how can we represent them conveniently? 
2. How can we implement the encoder efficiently? 
The rest of this chapter will discuss these issues, and also explain why these codes are 

called “convolutional”. 

1By convention, we will assume that each message has K - 1 “0” bits padded in front, so that the initial 
conditions work out properly. 
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⌅ 7.2 Parity Equations 

The example in Figure 7-1 shows one example of a set of parity equations, which govern 
the way in which parity bits are produced from the sequence of message bits, X . In this 
example, the equations are as follows (all additions are in F

2

)): 

p
0

[n] =  x[n] +  x[n- 1] + x[n- 2]
 

p
1

[n] =  x[n] +  x[n- 1] (7.1)
 

The rate of this code is 1/2. 
An example of parity equations for a rate 1/3 code is 

p
0

[n] =  x[n] +  x[n- 1] + x[n- 2]
 

p
1

[n] =  x[n] +  x[n- 1]
 

p
2

[n] =  x[n] +  x[n- 2] (7.2)
 

In general, one can view each parity equation as being produced by combining the mes­
sage bits, X , and a generator polynomial, g. In the first example above, the generator poly­
nomial coefficients are (1,1,1) and (1,1,0), while in the second, they are (1,1,1), (1,1,0), 
and (1,0,1). 

We denote by gi the K-element generator polynomial for parity bit pi. We can then 
write pi[n] as follows: 

k-1

pi[n] = (

X 
gi[j]x[n- j]). (7.3) 

j=0 

The form of the above equation is a convolution of g and x (modulo 2)—hence the term 
“convolutional code”. The number of generator polynomials is equal to the number of 
generated parity bits, r, in each sliding window. The rate of the code is 1/r if the encoder 
slides the window one bit at a time. 

⌅ 7.2.1 An Example 

Let’s consider the two generator polynomials of Equations 7.1 (Figure 7-1). Here, the gen­
erator polynomials are 

g
0 = 1,1,1
 

g
1 = 1,1,0 (7.4)
 

If the message sequence, X = [1,0,1,1, . . .] (as usual, x[n] = 0  8n <  0), then the parity 
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bits from Equations 7.1 work out to be 

p
0

[0] = (1 + 0+ 0) = 1 

p
1

[0] = (1 + 0) = 1 

p
0

[1] = (0 + 1+ 0) = 1 

p
1

[1] = (0 + 1) = 1 

p
0

[2] = (1 + 0+ 1) = 0 

p
1

[2] = (1 + 0) = 1 

p
0

[3] = (1 + 1+ 0) = 0 

p
1

[3] = (1 + 1) = 0. (7.5) 

Therefore, the bits transmitted over the channel are [1,1,1,1,0,0,0,0, . . .]. 
There are several generator polynomials, but understanding how to construct good 

ones is outside the scope of 6.02. Some examples, found originally by J. Bussgang,2 are 
shown in Table 7-1. 

Constraint length g
0 g

1 

3 110 111 
4 1101 1110 
5 11010 11101 
6 110101 111011 
7 110101 110101 
8 110111 1110011 
9 110111 111001101 
10 110111001 1110011001 

Table 7-1: Examples of generator polynomials for rate 1/2 convolutional codes with different constraint 
lengths. 

⌅ 7.3 Two Views of the Convolutional Encoder 

We now describe two views of the convolutional encoder, which we will find useful in 
better understanding convolutional codes and in implementing the encoding and decod­
ing procedures. The first view is in terms of shift registers, where one can construct the 
mechanism using shift registers that are connected together. This view is useful in devel­
oping hardware encoders. The second is in terms of a state machine, which corresponds 
to a view of the encoder as a set of states with well-defined transitions between them. The 
state machine view will turn out to be extremely useful in figuring out how to decode a set 
of parity bits to reconstruct the original message bits. 
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Figure 7-2: Block diagram view of convolutional coding with shift registers. 

⌅ 7.3.1 Shift-Register View 

Figure 7-2 shows the same encoder as Figure 7-1 and Equations (7.1) in the form of a block 
diagram made up of shift registers. The x[n- i] values (here there are two) are referred to 
as the state of the encoder. This block diagram takes message bits in one bit at a time, and 
spits out parity bits (two per input bit, in this case). 

Input message bits, x[n], arrive from the left. The block diagram calculates the parity 
bits using the incoming bits and the state of the encoder (the k- 1 previous bits; two in this 
example). After the r parity bits are produced, the state of the encoder shifts by 1, with x[n] 
taking the place of x[n-1], x[n-1] taking the place of x[n-2], and so on, with x[n-K+ 1] 
being discarded. This block diagram is directly amenable to a hardware implementation 
using shift registers. 

⌅ 7.3.2 State-Machine View 

Another useful view of convolutional codes is as a state machine, which is shown in Fig­
ure 7-3 for the same example that we have used throughout this chapter (Figure 7-1). 

An important point to note: the state machine for a convolutional code is identical for 
all codes with a given constraint length, K, and the number of states is always 2K-1. Only 
the pi labels change depending on the number of generator polynomials and the values 
of their coefficients. Each state is labeled with x[n- 1]x[n- 2] . . . x[n-K + 1]. Each arc is 
labeled with x[n]/p

0

p
1 . . .. In this example, if the message is 101100, the transmitted bits 

are 11 11 01 00 01 10. 
This state-machine view is an elegant way to explain what the transmitter does, and also 

what the receiver ought to do to decode the message, as we now explain. The transmitter 
begins in the initial state (labeled “STARTING STATE” in Figure 7-3) and processes the 
message one bit at a time. For each message bit, it makes the state transition from the 
current state to the new one depending on the value of the input bit, and sends the parity 
bits that are on the corresponding arc. 

The receiver, of course, does not have direct knowledge of the transmitter’s state transi­
2Julian Bussgang, “Some Properties of Binary Convolutional Code Generators,” IEEE Transactions on In­

formation Theory, pp. 90–100, Jan. 1965. We will find in the next chapter that the (110, 111) code is actually 
inferior to another rate-1/2 K = 3  code, (101, 111). 
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Figure 7-3: State-machine view of convolutional coding. 

tions. It only sees the received sequence of parity bits, with possible bit errors. Its task is to 
determine the best possible sequence of transmitter states that could have produced the 
parity bit sequence. This task is the essence of the decoding process, which we introduce 
next, and study in more detail in the next chapter. 

⌅ 7.4 The Decoding Problem 

As mentioned above, the receiver should determine the “best possible” sequence of trans­
mitter states. There are many ways of defining “best”, but one that is especially appealing 
is the most likely sequence of states (i.e., message bits) that must have been traversed (sent) 
by the transmitter. A decoder that is able to infer the most likely sequence the maximum-
likelihood (ML) decoder for the convolutional code. 

In Section 6.2, we established that the ML decoder for “hard decoding”, in which the 
distance between the received word and each valid codeword is the Hamming distance, 
may be found by computing the valid codeword with smallest Hamming distance, and 
returning the message that would have generated that codeword. The same idea holds 
for convolutional codes. (Note that this property holds whether the code is either block or 
convolutional, and whether it is linear or not.) 

A simple numerical example may be useful. Suppose that bit errors are indepen­
dent and identically distributed with an error probability of 0.001 (i.e., the channel is 
a BSC with " = 0.001), and that the receiver digitizes a sequence of analog samples 
into the bits 1101001. Is the sender more likely to have sent 1100111 or 1100001? The 
first has a Hamming distance of 3, and the probability of receiving that sequence is 
(0.999)4(0.001)3 

= 9.9 ⇥ 10-10 . The second choice has a Hamming distance of 1 and a 
probability of (0.999)6(0.001)1 

= 9.9 ⇥ 10-4, which is six orders of magnitude higher and is 
overwhelmingly more likely. 

Thus, the most likely sequence of parity bits that was transmitted must be the one with 
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Msg Xmit* Rcvd d 

0000 000000000000 7 
0001 000000111110 8 
0010 000011111000 8 
0011 000011010110 4 
0100 001111100000 6 
0101 001111011110 5 
0110 001101001000 7 
0111 
1000 

001100100110 
111110000000 111011000110 

6 
4 

1001 111110111110 5 
1010 111101111000 7 
1011 111101000110 2 
1100 110001100000 5 
1101 110001011110 4 
1110 110010011000 6 
1111 110010100110 3 

22 Most likely: 1011 

Figure 7-4: When the probability of bit error is less than 1/2, maximum-likelihood decoding boils down

to finding the message whose parity bit sequence, when transmitted, has the smallest Hamming distance

to the received sequence. Ties may be broken arbitrarily. Unfortunately, for an N -bit transmit sequence,

there are 2N possibilities, which makes it hugely intractable to simply go through in sequence because

of the sheer number. For instance, when N = 256 bits (a really small packet), the number of possibilities

rivals the number of atoms in the universe!

the smallest Hamming distance from the sequence of parity bits received. Given a choice
of possible transmitted messages, the decoder should pick the one with the smallest such
Hamming distance. For example, see Figure 7-4, which shows a convolutional code with
K = 3 and rate 1/2. If the receiver gets 111011000110, then some errors have occurred,
because no valid transmitted sequence matches the received one. The last column in the
example shows d, the Hamming distance to all the possible transmitted sequences, with
the smallest one circled. To determine the most-likely 4-bit message that led to the parity
sequence received, the receiver could look for the message whose transmitted parity bits
have smallest Hamming distance from the received bits. (If there are ties for the smallest,
we can break them arbitrarily, because all these possibilities have the same resulting post-
coded BER.)

Determining the nearest valid codeword to a received word is easier said than done for
convolutional codes. For block codes, we found that comparing against each valid code-
word would take time exponential in k, the number of valid codewords for an (n,k) block
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Figure 7-5: The trellis is a convenient way of viewing the decoding task and understanding the time evo­
lution of the state machine. 

code. We then showed how syndrome decoding takes advantage of the linearity property 
to devise an efficient polynomial-time decoder for block codes, whose time complexity 
was roughly O(nt

), where t is the number of errors that the linear block code can correct. 
For convolutional codes, syndrome decoding in the form we described is impossible 

because n is infinite (or at least as long as the number of parity streams times the length of 
the entire message times, which could be arbitrarily long)! The straightforward approach 
of simply going through the list of possible transmit sequences and comparing Hamming 
distances is horribly intractable. We need a better plan for the receiver to navigate this 
unbelievable large space of possibilities and quickly determine the valid message with 
smallest Hamming distance. We will study a powerful and widely applicable method for 
solving this problem, called Viterbi decoding, in the next chapter. This decoding method 
uses a special structure called the trellis, which we describe next. 

⌅ 7.5 The Trellis 

The trellis is a structure derived from the state machine that will allow us to develop an 
efficient way to decode convolutional codes. The state machine view shows what happens 
at each instant when the sender has a message bit to process, but doesn’t show how the 
system evolves in time. The trellis is a structure that makes the time evolution explicit. 
An example is shown in Figure 7-5. Each column of the trellis has the set of states; each 
state in a column is connected to two states in the next column—the same two states in 
the state diagram. The top link from each state in a column of the trellis shows what gets 
transmitted on a “0”, while the bottom shows what gets transmitted on a “1”. The picture 
shows the links between states that are traversed in the trellis given the message 101100. 



89 SECTION 7.5. THE TRELLIS 

We can now think about what the decoder needs to do in terms of this trellis. It gets a 
sequence of parity bits, and needs to determine the best path through the trellis—that is, 
the sequence of states in the trellis that can explain the observed, and possibly corrupted, 
sequence of received parity bits. 

The Viterbi decoder finds a maximum-likelihood path through the trellis. We will 
study it in the next chapter. 

Problems and exercises on convolutional coding are at the end of the next chapter, after we 
discuss the decoding process. 
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CHAPTER 8 
Viterbi Decoding of Convolutional 

Codes 

This chapter describes an elegant and efficient method to decode convolutional codes, 
whose construction and encoding we described in the previous chapter. This decoding 
method avoids explicitly enumerating the 2N possible combinations of N -bit parity bit 
sequences. This method was invented by Andrew Viterbi ’57 and bears his name. 

⌅ 8.1 The Problem 

At the receiver, we have a sequence of voltage samples corresponding to the parity bits 
that the transmitter has sent. For simplicity, and without loss of generality, we will assume 
that the receiver picks a suitable sample for the bit, or averages the set of samples corre­
sponding to a bit, digitizes that value to a “0” or “1” by comparing to the threshold voltage 
(the demapping step), and propagates that bit decision to the decoder. 

Thus, we have a received bit sequence, which for a convolutionally-coded stream cor­
responds to the stream of parity bits. If we decode this received bit sequence with no 
other information from the receiver’s sampling and demapper, then the decoding pro­
cess is termed hard-decision decoding (“hard decoding”). If, instead (or in addition), the 
decoder is given the stream of voltage samples and uses that “analog” information (in 
digitized form, using an analog-to-digital conversion) in decoding the data, we term the 
process soft-decision decoding (“soft decoding”). 

The Viterbi decoder can be used in either case. Intuitively, because hard-decision de­
coding makes an early decision regarding whether a bit is 0 or 1, it throws away infor­
mation in the digitizing process. It might make a wrong decision, especially for voltages 
near the threshold, introducing a greater number of bit errors in the received bit sequence. 
Although it still produces the most likely transmitted sequence given the received bit se­
quence, by introducing additional errors in the early digitization, the overall reduction in 
the probability of bit error will be smaller than with soft decision decoding. But it is con­
ceptually easier to understand hard decoding, so we will start with that, before going on 
to soft decoding. 

91 
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Figure 8-1: The trellis is a convenient way of viewing the decoding task and understanding the time evo­
lution of the state machine. 

As mentioned in the previous chapter, the trellis provides a good framework for under­
standing the decoding procedure for convolutional codes (Figure 8-1). Suppose we have 
the entire trellis in front of us for a code, and now receive a sequence of digitized bits (or 
voltage samples). If there are no errors, then there will be some path through the states 
of the trellis that would exactly match the received sequence. That path (specifically, the 
concatenation of the parity bits “spit out” on the traversed edges) corresponds to the trans­
mitted parity bits. From there, getting to the original encoded message is easy because the 
top arc emanating from each node in the trellis corresponds to a “0” bit and the bottom 
arrow corresponds to a “1” bit. 

When there are bit errors, what can we do? As explained earlier, finding the most likely 
transmitted message sequence is appealing because it minimizes the probability of a bit 
error in the decoding. If we can come up with a way to capture the errors introduced by 
going from one state to the next, then we can accumulate those errors along a path and 
come up with an estimate of the total number of errors along the path. Then, the path with 
the smallest such accumulation of errors is the path we want, and the transmitted message 
sequence can be easily determined by the concatenation of states explained above. 

To solve this problem, we need a way to capture any errors that occur in going through 
the states of the trellis, and a way to navigate the trellis without actually materializing the 
entire trellis (i.e., without enumerating all possible paths through it and then finding the 
one with smallest accumulated error). The Viterbi decoder solves these problems. It is 
an example of a more general approach to solving optimization problems, called dynamic 
programming. Later in the course, we will apply similar concepts in network routing, an 
unrelated problem, to find good paths in multi-hop networks. 
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Figure 8-2: The branch metric for hard decision decoding. In this example, the receiver gets the parity bits 

00. 

⌅ 8.2 The Viterbi Decoder 

The decoding algorithm uses two metrics: the branch metric (BM) and the path metric 
(PM). The branch metric is a measure of the “distance” between what was transmitted and 
what was received, and is defined for each arc in the trellis. In hard decision decoding, 
where we are given a sequence of digitized parity bits, the branch metric is the Hamming 
distance between the expected parity bits and the received ones. An example is shown in 
Figure 8-2, where the received bits are 00. For each state transition, the number on the arc 
shows the branch metric for that transition. Two of the branch metrics are 0, corresponding 
to the only states and transitions where the corresponding Hamming distance is 0. The 
other non-zero branch metrics correspond to cases when there are bit errors. 

The path metric is a value associated with a state in the trellis (i.e., a value associated 
with each node). For hard decision decoding, it corresponds to the Hamming distance with 
respect to the received parity bit sequence over the most likely path from the initial state to 
the current state in the trellis. By “most likely”, we mean the path with smallest Hamming 
distance between the initial state and the current state, measured over all possible paths 
between the two states. The path with the smallest Hamming distance minimizes the total 
number of bit errors, and is most likely when the BER is low. 

The key insight in the Viterbi algorithm is that the receiver can compute the path metric 
for a (state, time) pair incrementally using the path metrics of previously computed states 
and the branch metrics. 

⌅ 8.2.1 Computing the Path Metric 

Suppose the receiver has computed the path metric PM[s, i] for each state s at time step 
i (recall that there are 2K-1 states, where K is the constraint length of the convolutional 
code). In hard decision decoding, the value of PM[s, i] is the total number of bit errors 
detected when comparing the received parity bits to the most likely transmitted message, 
considering all messages that could have been sent by the transmitter until time step i 
(starting from state “00”, which we will take to be the starting state always, by convention). 



94 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES 

Among all the possible states at time step i, the most likely state is the one with the 
smallest path metric. If there is more than one such state, they are all equally good possi­
bilities. 

Now, how do we determine the path metric at time step i + 1, PM[s, i + 1], for each 
state s? To answer this question, first observe that if the transmitter is at state s at time step 
i +1, then it must have been in only one of two possible states at time step i. These two predecessor 
states, labeled ↵ and (, are always the same for a given state. In fact, they depend only on 
the constraint length of the code and not on the parity functions. Figure 8-2 shows the 
predecessor states for each state (the other end of each arrow). For instance, for state 00, 
↵ = 00 and ( = 01; for state 01, ↵ = 10 and ( = 11. 

Any message sequence that leaves the transmitter in state s at time i + 1  must have left 
the transmitter in state ↵ or state ( at time i. For example, in Figure 8-2, to arrive in state 
’01’ at time i + 1, one of the following two properties must hold: 

1. The transmitter was in state ‘10’ at time i and the ith message bit was a 0. If that is 
the case, then the transmitter sent ‘11’ as the parity bits and there were two bit errors, 
because we received the bits 00. Then, the path metric of the new state, PM[‘01’, i +1] 
is equal to PM[‘10’, i] + 2, because the new state is ‘01’ and the corresponding path 
metric is larger by 2 because there are 2 errors. 

2. The other (mutually exclusive) possibility is that the transmitter was in state ‘11’ at 
time i and the ith message bit was a 0. If that is the case, then the transmitter sent 
01 as the parity bits and there was one bit error, because we received 00. The path 
metric of the new state, PM[‘01’, i + 1] is equal to PM[‘11’, i] + 1.
 

Formalizing the above intuition, we can see that
 

PM[s, i + 1] = min(PM[↵, i] + BM[↵ ! s], PM[(, i] + BM[( ! s]), (8.1) 

where ↵ and ( are the two predecessor states. 
In the decoding algorithm, it is important to remember which arc corresponds to the 

minimum, because we need to traverse this path from the final state to the initial one 
keeping track of the arcs we used, and then finally reverse the order of the bits to produce 
the most likely message. 

⌅ 8.2.2 Finding the Most Likely Path 

We can now describe how the decoder finds the maximum-likelihood path. Initially, state 
‘00’ has a cost of 0 and the other 2K-1 

- 1 states have a cost of 1. 
The main loop of the algorithm consists of two main steps: first, calculating the branch 

metric for the next set of parity bits, and second, computing the path metric for the next 
column. The path metric computation may be thought of as an add-compare-select proce­
dure: 

1.	 Add the branch metric to the path metric for the old state. 
2.	 Compare the sums for paths arriving at the new state (there are only two such paths 

to compare at each new state because there are only two incoming arcs from the 
previous column). 

3.	 Select the path with the smallest value, breaking ties arbitrarily. This path corre­
sponds to the one with fewest errors. 
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Figure 8-3 shows the decoding algorithm in action from one time step to the next. This 
example shows a received bit sequence of 11 10 11 00 01 10 and how the receiver processes 
it. The fourth picture from the top shows all four states with the same path metric. At this 
stage, any of these four states and the paths leading up to them are most likely transmitted 
bit sequences (they all have a Hamming distance of 2). The bottom-most picture shows 
the same situation with only the survivor paths shown. A survivor path is one that has 
a chance of being the maximum-likelihood path; there are many other paths that can be 
pruned away because there is no way in which they can be most likely. The reason why 
the Viterbi decoder is practical is that the number of survivor paths is much, much smaller 
than the total number of paths in the trellis. 

Another important point about the Viterbi decoder is that future knowledge will help it 
break any ties, and in fact may even cause paths that were considered “most likely” at a 
certain time step to change. Figure 8-4 continues the example in Figure 8-3, proceeding un­
til all the received parity bits are decoded to produce the most likely transmitted message, 
which has two bit errors. 

⌅ 8.3 Soft-Decision Decoding 

Hard decision decoding digitizes the received voltage signals by comparing it to a thresh­
old, before passing it to the decoder. As a result, we lose information: if the voltage was 
0.500001, the confidence in the digitization is surely much lower than if the voltage was 
0.999999. Both are treated as “1”, and the decoder now treats them the same way, even 
though it is overwhelmingly more likely that 0.999999 is a “1” compared to the other value. 

Soft-decision decoding (also sometimes known as “soft input Viterbi decoding”) builds 
on this observation. It does not digitize the incoming samples prior to decoding. Rather, it uses 
a continuous function of the analog sample as the input to the decoder. For example, if the 
expected parity bit is 0 and the received voltage is 0.3 V, we might use 0.3 (or 0.32, or some 
such function) as the value of the “bit” instead of digitizing it. 

For technical reasons that will become apparent later, an attractive soft decision metric 
is the square of the difference between the received voltage and the expected one. If the 
convolutional code produces p parity bits, and the p corresponding analog samples are 
v = v

1

, v
2

, . . . , vp, one can construct a soft decision branch metric as follows 

pX
(ui - vi)

2 , (8.2)BMsoft[u, v] =  
i=1 

where u = u
1

, u
2

, . . . , up are the expected p parity bits (each a 0 or 1). Figure 8-5 shows the 
soft decision branch metric for p = 2 when u is 00. 

With soft decision decoding, the decoding algorithm is identical to the one previously 
described for hard decision decoding, except that the branch metric is no longer an integer 
Hamming distance but a positive real number (if the voltages are all between 0 and 1, then 
the branch metric is between 0 and 1 as well). 

It turns out that this soft decision metric is closely related to the probability of the decoding 
being correct when the channel experiences additive Gaussian noise. First, let’s look at the 
simple case of 1 parity bit (the more general case is a straightforward extension). Suppose 
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the receiver gets the ith parity bit as vi volts. (In hard decision decoding, it would decode 
- as 0 or 1 depending on whether vi was smaller or larger than 0.5.) What is the probability 
that vi would have been received given that bit ui (either 0 or 1) was sent? With zero-mean 
additive Gaussian noise, the PDF of this event is given by 

-d2/2 2 
ie 

f(vi|ui) =  p , (8.3)
2⇡ 2 

2where di = v if ui = 0  and di = (vi - 1)

2 if ui = 1.i 

The log likelihood of this PDF is proportional to -d2. Moreover, along a path, the PDF i 

of the sequence V = v
1

, v
2

, . . . , vp being received given that a code word U = ui, u2, . . . , up 

was sent, is given by the product of a number of terms each resembling Eq. (8.3). The 
logarithm of this PDF for the path is equal to the sum of the individual log likelihoods, 
and is proportional to -

P
d2 
i . But that’s precisely the negative of the branch metric we i 

defined in Eq. (8.2), which the Viterbi decoder minimizes along the different possible 
paths! Minimizing this path metric is identical to maximizing the log likelihood along 
the different paths, implying that the soft decision decoder produces the most likely path 
that is consistent with the received voltage sequence. 

This direct relationship with the logarithm of the probability is the reason why we chose 
the sum of squares as the branch metric in Eq. (8.2). A different noise distribution (other 
than Gaussian) may entail a different soft decoding branch metric to obtain an analogous 
connection to the PDF of a correct decoding. 

⌅ 8.4 Achieving Higher and Finer-Grained Rates: Puncturing 

As described thus far, a convolutional code achieves a maximum rate of 1/r, where r is 
the number of parity bit streams produced by the code. But what if we want a rate greater 
than 1/2, or a rate between 1/r and 1/(r+ 1) for some r? 

A general technique called puncturing gives us a way to do that. The idea is straight­
forward: the encoder does not send every parity bit produced on each stream, but “punc­
tures” the stream sending only a subset of the bits that are agreed-upon between the en­
coder and decoder. For example, one might use a rate-1/2 code along with the puncturing 
schedule specified as a vector; for example, we might use the vector (101) on the first par­
ity stream and (110) on the second. This notation means that the encoder sends the first 
and third bits but not the second bit on the first stream, and sends the first and second bits 
but not the third bit on the second stream. Thus, whereas the encoder would have sent 
two parity bits for every message bit without puncturing, it would now send four parity 
bits (instead of six) for every three message bits, giving a rate of 3/4. 

In this example, suppose the sender in the rate-1/2 code, without puncturing, emitted 
bits p

0

[0]p
1

[0]p
0

[1]p
1

[1]p
0

[2]p
1

[2] . . .. Then, with the puncturing schedule given, the bits 
emitted would be p

0

[0]p
1

[0] - p
1

[1]p
0

[2] - . . ., where each - refers to an omitted bit. 
At the decoder, when using a punctured code, missing parity bits don’t participate in 

the calculation of branch metrics. Otherwise, the procedure is the same as before. We can 
think of each missing parity bit as a blank (’-’) and run the decoder by just skipping over 
the blanks. 



97 SECTION 8.5. ENCODER AND DECODER IMPLEMENTATION COMPLEXITY 

⌅ 8.5 Encoder and Decoder Implementation Complexity 

There are two important questions we must answer concerning the time and space com­
plexity of the convolutional encoder and Viterbi decoder. 

1. How much state and space does the encoder need? 

2. How much time does the decoder take? 

The first question is easy to answer: at the encoder, the amount of space is linear in K, 
the constraint length; the time required is linear in the message length, n. The encoder is 
much easier to implement than the Viterbi decoder. The decoding time depends both on 
K and the length of the coded (parity) bit stream (which is linear in n). At each time step, 
the decoder must compare the branch metrics over two state transitions into each state, for 
each of 2(K - 1) states. The number of comparisons required is 2K in each step, giving us 
a total time complexity of O(n · 2K 

) for decoding an n-bit message. 
Moreover, as described thus far, we can decode the first bits of the message only at the 

very end. A little thought will show that although a little future knowledge is useful, it is 
unlikely that what happens at bit time 1000 will change our decoding decision for bit 1, if 
the constraint length is, say, 6. In fact, in practice the decoder starts to decode bits once it 
has reached a time step that is a small multiple of the constraint length; experimental data 
suggests that 5 · K message bit times (or thereabouts) is a reasonable decoding window, 
regardless of how long the parity bit stream corresponding to the message is. 

⌅ 8.6 Designing Good Convolutional Codes 

At this stage, a natural question one might wonder about is, “What makes a set of parity 
equations a good convolutional code?” In other words, is there a systematic method to 
generate good convolutional codes? Or, given two convolutional codes, is there a way to 
analyze their generators and determine how they might perform relative to each other in 
their primary task, which is to enable communication over a noisy channel at as high a 
rate as they can? 

In principle, many factors determine the effectiveness of a convolutional code. One 
would expect the ability of a convolutional code to correct errors depends on the con­
straint length, K, because the larger the constraint length, the greater the degree to which 
any given message bit contributes to some parity bit, and the greater the resilience to bit 
errors. One would also expect the resilience to errors to be higher as the number of gen­
erators (parity streams) increases, because that corresponds to a lower rate (more redun­
dancy). And last but not least, the coefficients of the generators surely have a role to play 
in determining the code’s effectiveness. 

Fortunately, there is one metric, called the free distance of the convolutional code, 
which captures these different axes and is a primary determinant of the error-reducing 
capability of a convolutional code, when hard-decision decoding is used. 

⌅ 8.6.1 Free Distance 

Because convolutional codes are linear, everything we learned about linear codes applies 
here. In particular, the Hamming distance of any linear code, i.e., the minimum Hamming 
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distance between any two valid codewords, is equal to the number of ones in the smallest 
non-zero codeword with minimum weight, where the weight of a codeword is the number of 
ones it contains. 

In the context of convolutional codes, the smallest Hamming distance between any two 
valid codewords is called the free distance. Specifically, the free distance of a convolutional 
code is the difference in path metrics between the all-zeroes output and the path with 
the smallest non-zero path metric going from the initial 00 state to some future 00 state. 
Figure 8-6 illustrates this notion with an example. In this example, the free distance is 4, 
and it takes 8 output bits to get back to the correct state, so one would expect this code 
to be able to correct up to b(4 - 1)/2c = 1  bit error in blocks of 8 bits, if the block starts at 
the first parity bit. In fact, this error correction power is essentially the same as an (8, 4, 3) 
rectangular parity code. Note that the free distance in this example is 4, not 5: the smallest 
non-zero path metric between the initial 00 state and a future 00 state goes like this: 00 ! 
10 ! 11 ! 01 ! 00 and the corresponding path metrics increase as 0 ! 2 ! 2 ! 3 ! 4. 
In the next section, we will find that a small change to the generator—replacing 110 with 
101—makes a huge difference in the performance of the code. 

Why do we define a “free distance”, rather than just call it the Hamming distance, if it 
is defined the same way? The reason is that any code with Hamming distance D (whether 
linear or not) can correct all patterns of up to bD-1 

c errors. If we just applied the same 
2 

notion to convolutional codes, we will conclude that we can correct all single-bit errors in 
the example given, or in general, we can correct some fixed number of errors. 

Now, convolutional coding produces an unbounded bit stream; these codes are 
markedly distinct from block codes in this regard. As a result, the bD-1 

c formula is not 
2 

too instructive because it doesn’t capture the true error correction properties of the code. 
A convolutional code (with Viterbi decoding) can correct t = bD-1 

c errors as long as these 
2 

errors are “far enough apart”. So the notion we use is the free distance because, in a sense, 
errors can keep occurring and as long as no more than t of them occur in a closely spaced 
burst, the decoder can correct them all. 

⌅ 8.6.2 Selecting Good Convolutional Codes 

The free distance concept also provides a way to construct good convolutional codes. 
Given a decoding budget (e.g., hardware resources), one first determines an appropri­
ate bound on K. Then, one picks an upper bound on r depending on the maximum rate. 
Given a specific K and r, there is a finite number of generators that are feasible. One can 
write a program to exhaustively go through all feasible combinations of generators, com­
pute the free distance, and pick the code (or codes) with the largest free distance. The 
convolutional code is specified completely by specifying the generators (both K and r are 
implied if one lists the set of generators). 

⌅ 8.7 Comparing the Error-Correction Performance of Codes 

This section discusses how to compare the error-correction performance of different codes 
and discusses simulation results obtained by implementing different codes and evaluat­
ing them under controlled conditions. We have two goals in this section: first, to describe 
the “best practices” in comparing codes and discuss common pitfalls, and second, to com­
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pare some specific convolutional and block codes and discuss the reasons why some codes 
perform better than others. 

There are two metrics of interest. The first is the bit error rate (BER) after decoding, 
which is sometimes also known as the probability of decoding error. The second is the rate 
achieved by the code. For both metrics, we are interested in how they vary as a function 
of the channel’s parameters, such as the value of " in a BSC (i.e., the channel’s underlying 
bit error probability) or the degree of noise on the channel (for a channel with additive 
Gaussian noise, which we will describe in detail in the next chapter). 

Here, we focus only on the post-decoding BER of a code. 

⌅ 8.7.1 Post-decoding BER over the BSC 

For the BSC, the variable is ", and one can ask how different codes perform (in terms of the 
BER) as we vary ". Figure 8-7 shows the post-decoding BER of a few different linear block 
codes and convolutional codes as a function of the BSC error rate, ". From this graph, it 
would appear that the rate-1/3 repetition code (3, 1) with a Hamming distance of 3 is the 
most robust code at high BSC error probabilities (right-side of the picture), and that the 
two rate-1/2 convolutional codes are very good ones at other BERs. It would also appear 
from this curve that the (7, 4) and (15, 11) Hamming codes are inferior to the other codes. 

The problem with these conclusions is that they don’t take the rate of the code into 
account; some of these codes incur much higher overhead than the others. As such, on a 
curve such as Figure 8-7 that plots the post-decoding BER against the BSC error probability, 
it is sensible only to compare codes of the same rate. Thus, one can compare the (8, 4) block 
code to the three other convolutional code, and form the following conclusions: 

1. The two best convolutional codes,	 (3, (7, 5)) (i.e., with generators (111, 101)) and 
(4, (14, 13)) (i.e., with generators (1110, 1101)), perform the best. Both these codes 
handily beat the third convolutional code, (3, (7, 6)), which we picked from Buss­
gang’s paper on generating good convolutional codes.1 

The reason for the superior performance of the (3, (7, 5)) and (4, (14, 13)) codes is 
that they have a greater free distance (5 and 6 respectively) than the (3, (7, 6)) code 
(whose free distance is 4). The greater free distance allows for a larger number of 
closely-spaced errors to be corrected. 

2. Interestingly,	 these results show that the (3, (7, 5)) code with free distance 5 is 
stronger than the (4, (14, 13)) code with free distance 6. The reason is that the num­
ber of trellis edges to go from state 00 back to state 00 in the (3, (7, 5)) case is only 
3, corresponding to a group of 6 consecutive coded bits. The relevant state transi­
tions are 00 ! 10 ! 01 ! 00 and the corresponding path metrics are 0 ! 2 ! 3 ! 5. 
In contrast, the (1110, 1101) code has a slightly bigger free distance, but it takes 7 
trellis edges to achieve that (000 ! 100 ! 010 ! 001 ! 000), meaning that the code 
can correct up to 2 bit errors in sliding windows of length 2 · 4 = 8  bits. Moreover, 
an increase in the free distance from 5 to 6 (an even number) does not improve the 
error-correcting power of the code. 

1Julian Bussgang, “Some Properties of Binary Convolutional Code Generators,” IEEE Transactions on In­
formation Theory, pp. 90–100, Jan. 1965. 
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3. The post-decoding BER is roughly the same for the (8, 4) rectangular parity code and 
the (3, (111, 110)) convolutional code. The reason is that the free distance of the K = 3  
convolutional code is 4, which means it can correct one bit error over blocks that are 
similar in length to the rectangular parity code we are comparing with. Intuitively, 
both schemes essentially produce parity bits that are built from similar amounts of 
history. In the rectangular parity case, the row parity bit comes from two succes­
sive message bits, while the column parity comes from two message bits with one 
skipped in between. But we also send the message bits, so we’re mimicking a similar 
constraint length (amount of memory) to the K = 3  convolutional code. The bottom 
line is that (3, (111, 110)) is not such a good convolutional code. 

4. The (7, 4) Hamming code performs similarly to the (8, 4) rectangular parity code, 
but it has a higher code rate (4/7 versus 1/2), which means it provides the same 
correction capabilities with lower overhead. One may therefore conclude that it is a 
better code than the (8, 4) rectangular parity code. 

But how does one go about comparing the post-decoding BER of codes with different 
rates? We need a way to capture the different amounts of redundancy exhibited by codes 
of different rates. To do that, we need to change the model to account for what happens 
at the physical (analog) level. A standard way of handling this issue is to use the signal-
to-noise ratio (SNR) as the control variable (on the x-axis) and introduce Gaussian noise 
to perturb the signals sent over the channel. The next chapter studies this noise model 
in detail, but here we describe the basic intuition and results obtained when comparing 
the performance of codes under this model. This model is also essential to understand 
the benefits of soft-decision decoding, because soft decoding uses the received voltage 
samples directly as input to the decoder without first digitizing each sample. The question 
is how much gain we observe by doing soft-decision decoding compared to hard-decision 
decoding. 

⌅ 8.7.2 Gaussian Noise Model and the Eb/N0 Concept 

Consider a message k bits long. We have two codes: C
1 has rate k/n

1 and C
2 has rate k/n

2

, 
and suppose n

2 > n
1

. Hence, for the k-bit message, when encoded with C
1

, we transmit 
n
1 bits, and when encoded with C

2

, we transmit n
2 bits. Clearly, using C

2 consumes more 
resources because it uses the channel more often than C

1

. 
An elegant way to account for the greater resource consumption of C

1 is to run an 
experiment where each “1” bit is mapped to a certain voltage level, V

1

, and each “0” is 
mapped to a voltage V

0

. For reasons that will become apparent in the next chapter, what 
matters for decoding is the difference in separation between the voltages, V

1 - V
0

, and 
not their actual values, so we can assume that the two voltages are centered about 0. For 

p p

convenience, assume V
1 = Es and V

0 = - Es, where Es is the energy per sample. The 
energy, or power, is proportional to the square of the voltage of used. 

Now, when we use code C
1

, k message bits get tranformed to n
1 coded bits. Assum­

ing that each coded bit is sent as one voltage sample (for simplicity), the energy per bit is 
equal to n

1

/k · Es. Similarly, for code C
2

, it is equal to n
2

/k · Es. Each voltage sample in 
the additive Gaussian noise channel model (see the next chapter) is perturbed according 
to a Gaussian distribution with some variance; the variance is the amount of noise (the 
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greater the variance, the greater the noise, and the greater the bit-error probability of the 
equivalent BSC). Hence, the correct “scaled” x-axis for comparing the post-decoding BER 
of codes of different rates is Eb/N0

, the ratio of the energy-per-message-bit to the channel 
Gaussian noise. 

Figure 8-8 shows some representative performance results of experiments done over a 
simulated Gaussian channel for different values of Eb/N0

. Each data point in the experi­
ment is the result of simulating about 2 million message bits being encoded and transmit­
ted over a noisy channel. The top-most curve shows the uncoded probability of bit error. 
The x axis plots the Eb/N0 on the decibel (dB) scale, defined in Chapter 9 (lower noise is 
toward the right). The y axis shows the probability of a decoding error on a log scale. 

Some observations from these results are noteworthy: 

1. Good convolutional codes are noticeably superior to the Hamming and rectangular 
parity codes. 

2. Soft-decision decoding is a significant win over hard-decision decoding; for the same 
post-decoding BER, soft decoding has a 2 to 2.3 db gain; i.e., with hard decoding, you 
would have to increase the signal-to-noise ratio by that amount (which is a factor of 
1.6⇥, as explained in Chapter 9) to achieve the same post-decoding BER. 

⌅ 8.8 Summary 

From its relatively modest, though hugely impactful, beginnings as a method to decode 
convolutional codes, Viterbi decoding has become one of the most widely used algorithms 
in a wide range of fields and engineering systems. Modern disk drives with “PRML” 
technology to speed-up accesses, speech recognition systems, natural language systems, 
and a variety of communication networks use this scheme or its variants. 

In fact, a more modern view of the soft decision decoding technique described in this 
lecture is to think of the procedure as finding the most likely set of traversed states in 
a Hidden Markov Model (HMM). Some underlying phenomenon is modeled as a Markov 
state machine with probabilistic transitions between its states; we see noisy observations 
from each state, and would like to piece together the observations to determine the most 
likely sequence of states traversed. It turns out that the Viterbi decoder is an excellent 
starting point to solve this class of problems (and sometimes the complete solution). 

On the other hand, despite its undeniable success, Viterbi decoding isn’t the only way 
to decode convolutional codes. For one thing, its computational complexity is exponential 
in the constraint length, K, because it does require each of these states to be enumerated. 
When K is large, one may use other decoding methods such as BCJR or Fano’s sequential 
decoding scheme, for instance. 

Convolutional codes themselves are very popular over both wired and wireless links. 
They are sometimes used as the “inner code” with an outer block error correcting code, 
but they may also be used with just an outer error detection code. They are also used 
as a component in more powerful codes like turbo codes, which are currently one of the 
highest-performing codes used in practice. 
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⌅ Problems and Exercises 

1. Consider a convolutional code whose parity equations are 

p
0

[n] =  x[n] +  x[n - 1] + x[n - 3] 

p
1

[n] =  x[n] +  x[n - 1] + x[n - 2] 

p
2

[n] =  x[n] +  x[n - 2] + x[n - 3] 

(a) What is the rate of this code? How many states are in the state machine repre­
sentation of this code? 

(b) Suppose the decoder reaches the state “110” during the forward pass of the 
Viterbi algorithm with this convolutional code. 

i. How many predecessor states (i.e., immediately preceding states) does state 
“110” have? 

ii. What are the bit-sequence representations of the predecessor states of state 
“110”? 

iii. What are the expected parity bits for the transitions from each of these pre­
decessor states to state “110”? Specify each predecessor state and the ex­
pected parity bits associated with the corresponding transition below. 

(c) To increase the rate of the given code, Lem E. Tweakit punctures the p
0 parity 

stream using the vector (1 0 1 1 0), which means that every second and fifth bit 
produced on the stream are not sent. In addition, she punctures the p

1 parity 
stream using the vector (1 1 0 1 1). She sends the p

2 parity stream unchanged. 
What is the rate of the punctured code? 

2. Let conv encode(x) be the resulting bit-stream after encoding bit-string x with a 
convolutional code, C. Similarly, let conv decode(y) be the result of decoding y 
to produce the maximum-likelihood estimate of the encoded message. Suppose we 
send a message M using code C over some channel. Let P = conv encode(M) and 
let R be the result of sending P over the channel and digitizing the received samples 
at the receiver (i.e., R is another bit-stream). Suppose we use Viterbi decoding on 
R, knowing C, and find that the maximum-likelihood estimate of M is Mˆ . During 
the decoding, we find that the minimum path metric among all the states in the final 
stage of the trellis is D

min

. 

D
min is the Hamming distance between and . Fill in the 

blanks, explaining your answer. 

3. Consider the trellis in Figure 8-9 showing the operation of the Viterbi algorithm us­
ing a hard branch metric at the receiver as it processes a message encoded with a 
convolutional code, C. Most of the path metrics have been filled in for each state at 
each time and the predecessor states determined by the Viterbi algorithm are shown 
by a solid transition arrow. 
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(a) What is the code rate of C?

(b) What is the constraint length of C?

(c) What bits would be transmitted if the message 1011 were encoded using C?
Note this is not the message being decoding in the example above.

(d) Compute the missing path metrics in the top two boxes of rightmost column
and enter their value in the appropriate boxes in the trellis diagram (Figure 8-
9). Remember to draw the solid transition arrow showing the predecessor state
for each metric you compute.

(e) The received parity bits for time 5 are missing from the trellis diagram. What
values for the parity bits are consistent with the other information in the trellis?
Note that there may be more than one set of such values.

(f) In the trellis diagram shown (Figure 8-9), circle the states along the most-likely
path through the trellis. Determine the decoded message that corresponds to
that most-likely path.

(g) Based on your answer to the previous part, how many bit errors were detected
in the received transmission and at what time(s) did those error(s) occur?

4. Convolutionally yours. Dona Ferentes is debugging a Viterbi decoder for her client,
The TD Company, which is building a wireless network to send gifts from mobile
phones. She picks a rate-1/2 code with constraint length 4, no puncturing. Parity
stream p

0

has the generator g
0

= 1110. Parity stream p
1

has the generator g
1

= 1xyz,
but she needs your help determining x, y, z, as well as some other things about the
code. In these questions, each state is labeled with the most-recent bit on the left and
the least-recent bit on the right.

These questions are about the state transitions and generators.

(a) From state 010, the possible next states are and .

From state 010, the possible predecessor states are and .

(b) Given the following facts, find g
1

, the generator for parity stream p
1

. g
1

has the
form 1xyz, with the standard convention that the left-most bit of the generator
multiplies the most-recent input bit.

Starting at state 011, receiving a 0 produces p
1

= 0.
Starting at state 110, receiving a 0 produces p

1

= 1.
Starting at state 111, receiving a 1 produces p

1

= 1.

(c) Dona has just completed the forward pass through the trellis and has figured
out the path metrics for all the end states. Suppose the state with smallest path
metric is 110. The traceback from this state looks as follows:

000 100 010 001 100 110

What is the most likely transmitted message? Explain your answer, and if there
is not enough information to produce a unique answer, say why.



104 CHAPTER 8. VITERBI DECODING OF CONVOLUTIONAL CODES

(d) During the decoding process, Dona observes the voltage pair (0.9,0.2) volts for
the parity bits p

0

p
1

, where the sender transmits 1.0 volts for a “1” and 0.0 volts
for a “0”. The threshold voltage at the decoder is 0.5 volts. In the portion of the
trellis shown below, each edge shows the expected parity bits p

0

p
1

. The number
in each circle is the path metric of that state.

i. See Figure 8-10. With hard-decision decoding, give the branch metric near
each edge and the path metric inside the circle.

ii. See Figure 8-10. Timmy Dan (founder of TD Corp.) suggests that Dona use
soft-decision decoding using the squared Euclidean distance metric. Give
the branch metric near each edge and the path metric inside the circle.

iii. If we used a puncturing schedule of (1 1 0 1) on the first parity stream and
(0 1 1 0) on the second parity stream, then what is the rate of the resulting
punctured code?

(e) The real purpose behind Dona Ferentes decoding convolutionally is some awful
wordplay with Virgil’s classical Latin. What does Timeo Danaos et dona ferentes
mean?

i. Timmy Dan and Dona are friends.
ii. It’s time to dance with Dona Ferentes.

iii. I fear the Greeks, even those bearing gifts.
iv. I fear the Greeks, especially those bearing debt.
v. You *#@$*@!#s. This is the last straw; I’m reporting you to the Dean. If I’d

wanted to learn this, I’d have gone to that school up the Charles!
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Figure 8-3: The Viterbi decoder in action. This picture shows four time steps. The bottom-most picture is
the same as the one just before it, but with only the survivor paths shown.
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Figure 8-4: The Viterbi decoder in action (continued from Figure 8-3. The decoded message is shown. To
produce this message, start from the final state with smallest path metric and work backwards, and then
reverse the bits. At each state during the forward pass, it is important to remeber the arc that got us to this
state, so that the backward pass can be done properly.
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Figure 8-5: Branch metric for soft decision decoding.

00 

01 

10 

11 

0/00 
1/11 

0/10 

1/01 

1/00 
0/11 

0/01 
1/10 

t time 

x[n-1]x[n-2] 

x[n] 0 0 0 0 0 0 

0/00 
1/11 

0/10 

1/01 

1/00 
0/11 

0/01 
1/10 

0/00 
1/11 

0/10 

1/01 

1/00 
0/11 

0/01 
1/10 

0/00 
1/11 

0/10 

1/01 

1/00 
0/11 

0/01 
1/10 

0/00 
1/11 

0/10 

1/01 

1/00 
0/11 

0/01 
1/10 

0/00 
1/11 

0/10 

1/01 

1/00 
0/11 

0/01 
1/10 

1/01 

1/00 1/ 01/00
0/11 0/

0/000/00 0/00
1/11 1/111

0/1000/1000/100 0

1/00 01/000 1/00

0/0100/01 00
1/10 1/101/10

0/10 0

1/01 /0

/00 1/001/1/1/01/001
0/11 0/

0/010/01 
1/10 1/10

0/000/000/00
1/11 1/111

0/1000/10 0

00
2 

00 00 00 

2 

3 

4 
00 

The free distance is the difference in path metrics between the all-zeroes output  
and the path with the smallest non-zero path metric going from the initial 00 state  
to some future 00 state.  It is 4 in this example.  The path 00 � 10 �01 � 00 has 

a shorter length, but a higher path metric (of 5), so it is not the free distance. 

Figure 8-6: The free distance of a convolutional code.
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Figure 8-7: Post-decoding BER v. BSC error probability " for different codes. Note that not all codes have
the same rate, so this comparison is misleading. One should only compare curves of the same rate on a
BER v. BSC error probability curve such as this one; comparisons between codes of different rates on the
x-axis given aren’t meaningful because they don’t account for the different overhead amounts.

Figure 8-8: Post-decoding BER of a few different linear block codes and convolutional codes as a function
of E

b

/N0 in the additive Gaussian noise channel model.
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Figure 8-9: Figure for Problem 3.
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Figure 8-10: Figure for Problem 4.
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CHAPTER 9 
Noise 

Liars, d—–d liars, and experts. 
—possibly Judge George Bramwell (quoted in 1885), expressing his opinion of 
witnesses 

There are three kinds of lies: lies, damned lies, and statistics. 
—definitely Mark Twain (writing in 1904), in a likely misattribution to Ben­
jamin Disraeli 

God does not play dice with the universe. 
—Albert Einstein, with probability near 1 

In general, many independent factors affect a signal received over a channel. Those 
that have a repeatable, deterministic effect from one transmission to another are generally 
referred to as distortion. We shall examine a very important class of distortions—those 
induced by linear, time-invariant channels—in later chapters. Other factors have effects that 
are better modeled as random, and we collectively refer to them as noise. Communication 
systems are no exception to the general rule that any system in the physical world must 
contend with noise. In fact, noise is a fundamental aspect of all communication systems. 

In the simplest binary signaling scheme—which we will invoke for most of our pur­
poses in this course—a communication system transmits one of two voltages, mapping a 
“0” to the voltage V0 and mapping a “1” to V1. The appropriate voltage is held steady over 
a fixed-duration time slot that is reserved for transmission of this bit, then moved to the 
appropriate voltage for the bit associated with the next time slot, and so on. We assume 
in this chapter that any distortion has been compensated for at the receiver, so that in an 
ideal noise-free case the receiver ends up measuring V0 in any time slot corresponding to 
a “0”, and V1 in any slot corresponding to a “1”. 

In this chapter we focus on the case where V1 = Vp > 0 and V0 = −Vp, where Vp is 
some fixed positive voltage, typically the peak voltage magnitude that the transmitter is 
capable of imposing on the communication channel. This scheme is sometimes referred 
to as bipolar signaling or bipolar keying. Other choices of voltage levels are possible, of 
course. 

111 
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In the presence of noise, the receiver measures a sequence of voltage samples y[k] that 
is unlikely to be exactly V0 or V1. To deal with this variation, we described in the previous 
chapter a simple and intuitively reasonable decision rule, for the receiver to infer whether 
the bit transmitted in a particular time slot was a “0” or a “1”. The receiver first chooses a 
single voltage sample from the sequence of received samples within the appropriate time 
slot, and then compares this sample to a threshold voltage Vt. Provided “0” and “1” are 
equally likely to occur in the sender’s binary stream, it seems reasonable that we should 
pick as our threshold the voltage that “splits the difference”, i.e., use Vt = (V0 + V1)/2. 
Then, assuming V0 < V1, return “0” as the decision if the received voltage sample is smaller 
than Vt, otherwise return “1”. 

The receiver could also do more complicated things; for example, it could form an av­
erage or a weighted average of all the voltage samples in the appropriate time slot, and 
then compare this average with the threshold voltage Vt. Though such averaging leads in 
general to improved performance, we focus on the simpler scheme, where a single well-
selected sample in the time slot is compared with Vt. In this chapter we will analyze the 
performance of this decision rule, in terms of the probability of an incorrect decision at the 
receiver, an event that would manifest itself as a bit error at the receiver. 

The key points of this chapter are as follows: 

1. A simple model—and often a good model—for the net effect at the receiver of noise 
in the communication system is to assume additive, Gaussian noise. In this model, 
each received signal sample is the sum of two components. The first component is 
the deterministic function of the transmitted signal that would be obtained in the ab­
sence of noise. (Throughout this chapter, we will assume no distortion in the chan­
nel, so the deterministic function referred to here will actually produce at the receiver 
exactly the same sample value transmitted by the sender, under the assumption of 
no noise.) The second component is the noise term, and is a quantity drawn from 
a Gaussian probability distribution with mean 0 and some variance, independent of 
the transmitted signal. The Gaussian distribution is described in more detail in this 
chapter. 

If this Gaussian noise variable is also independent from one sample to another, we 
describe the underlying noise process as white Gaussian noise, and refer to the noise 
as additive white Gaussian noise (AWGN); this is the case we will consider. The origin 
of the term “white” will become clearer when we examine signals in the frequency 
domain, later in this course. The variance of the zero-mean Gaussian noise variable 
at any sample time for this AWGN case reflects the power or intensity of the un­
derlying white-noise process. (By analogy with what is done with electrical circuits 
or mechanical systems, the term “power” is generally used for the square of a signal 
magnitude. In the case of a random signal, the term generally denotes the expected or 
mean value of the squared magnitude.) 

2. If the sender transmitted a signal corresponding to some bit, b, and the receiver mea­
sured its voltage as being on the correct side of the threshold voltage Vt, then the bit 
would be received correctly. Otherwise, the result is a bit error. The probability of 
a bit error is an important quantity, which we will analyze. This probability, typi­
cally called the bit error rate (BER), is related to the probability that a Gaussian ran­
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dom variable exceeds some level; we will calculate it using the probability density 
function (PDF) and cumulative distribution function (CDF) of a Gaussian random 
variable. We will find that, for the bipolar keying scheme described above, when 
used with the simple threshold decision rule that was also specified above, the BER 
is determined by the ratio of two quantities: (i) the power or squared magnitude, V 2 ,p 
of the received sample voltage in the noise-free case; and (ii) the power of the noise 
process. This ratio is an instance of a signal-to-noise ratio (SNR), and such ratios are 
of fundamental importance in understanding the performance of a communication 
system. 

3. At the signal abstraction, additive white Gaussian noise is often a good noise model. 
At the bit abstraction, this model is inconvenient because we would have to keep 
going to the signal level to figure out exactly how it affects every bit. Fortunately, the 
BER allows us to think about the impact of noise in terms of how it affects bits. In 
particular, a simple, but powerful, model at the bit level is that of a binary symmetric 
channel (BSC). Here, a transmitted bit b (0 or 1) is interpreted by the receiver as 
1 − b with probability pe and interpreted as b with probability 1 − pe, where pe is the 
probability of a bit error (i.e., the bit error rate). In this model, each bit is corrupted 
independently of the others, and the probability of corruption is the same for all bits 
(so the noise process is an example of an “iid” random process: “independent and 
identically distributed”). 

• 9.1 Origins of noise 
A common source of noise in radio and acoustic communications arises from interfer­
ers who might individually or collectively make it harder to pick out the communication 
that the receiver is primarily interested in. For example, the quality of WiFi communi­
cation is affected by other WiFi communications in the same frequency band (later in the 
course we will develop methods to mitigate such interference), an example of intereference 
from other users or nodes in the same network. In addition, interference could be caused 
by sources external to the network of interest; WiFi, for example, if affected by cordless 
phones, microwave ovens, Bluetooth devices, and so on that operate at similar radio fre­
quencies. Microwave ovens are doubly troublesome if you’re streaming music over WiFi, 
which in the most common mode runs in the 2.4 GHz frequency band today—not only 
do microwave ovens create audible disturbances that affect your ability to listen to music, 
but they also radiate power in the 2.4 GHz frequency band. This absorption is good for 
heating food, but leakage from ovens interferes with WiFi receptions! In addition, wireless 
communication networks like WiFi, long-range cellular networks, short-range Bluetooth 
radio links, and cordless phones all suffer from fading, because users often move around 
and signals undergo a variety of reflections that interfere with each other (a phenomenon 
known as “multipath fading”). All these factors cause the received signal to be different 
from what was sent. 

If the communication channel is a wire on an integrated circuit, the primary source of 
noise is capacitive coupling between signals on neighboring wires. If the channel is a wire 
on a printed circuit board, signal coupling is still the primary source of noise, but coupling 
between wires is largely inductive or carried by unintended electromagnetic radiation. 
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In both these cases, one might argue that the noise is not truly random, as the signals 
generating the noise are under the designer’s control. However, a signal on a wire in an 
integrated circuit or on a printed circuit board will frequently be affected by signals on 
thousands of other wires, so approximating the interference using a random noise model 
turns out to work very well. 

Noise may also arise from truly random physical phenomena. For example, electric 
current in an integrated circuit is generated by electrons moving through wires and across 
transistors. The electrons must navigate a sea of obstacles (atomic nuclei), and behave 
much like marbles traveling through a Pachinko machine. They collide randomly with 
nuclei and have transit times that vary randomly. The result is that electric currents have 
random noise. In practice, however, the amplitude of the noise is typically several orders 
of magnitude smaller than the nominal current. Even in the interior of an integrated cir­
cuit, where digital information is transported on micron-wide wires, the impact of electron 
transit time fluctuations is negligible. By contrast, in optical communication channels, fluc­
tuations in electron transit times in circuits used to convert between optical and electronic 
signals at the ends of the fiber are the dominant source of noise. 

To summarize: there is a wide variety of mechanisms that can be the source of noise; 
as a result, the bottom line is that it is physically impossible to construct a noise-free channel. 
By understanding noise and analyzing its effects (bit errors), we can develop approaches 
to reducing the probability of errors caused by noise and to combat the errors that will 
inevitably occur despite our best efforts. We will also learn in a later chapter about a cele­
brated and important result of Shannon: provided the information transmission rate over 
a channel is kept below a limit referred to as the channel capacity (determined solely by the 
distortion and noise characteristics of the channel), we can transmit in a way that makes 
the probability of error in decoding the sender’s message vanish asymptotically as the 
message size goes to ∞. This asymptotic performance is attained at the cost of increas­
ing computational burden and increasing delay in deducing the sender’s message at the 
receiver. Much research and commercial development has gone into designing practical 
methods to come close to this “gold standard”. 

•	 9.2 Additive White Gaussian Noise: A Simple but Powerful 
Model 

We will posit a simple model for how noise affects the reception of a signal sent over a 
channel and processed by the receiver. In this model, noise is: 

1.	 Additive: Given a received sample value y[k] at the kth sample time, the receiver 
interprets it as the sum of two components: the first is the noise-free component y0[k], 
i.e., the sample value that would have been received at the kth sample time in the 
absence of noise, as a result of the input waveform being passed through the channel 
with only distortion present; and the second is the noise component w[k], assumed 
independent of the input waveform. We can thus write 

y[k] = y0[k] +w[k] .	 (9.1) 
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In the absence of distortion, which is what we are assuming here, y0[k] will be either 
V0 or V1. 

2.	 Gaussian: The noise component w[k] is random, but we assume it is drawn at each 
sample time from a fixed Gaussian distribution; for concreteness, we take this to be 
the distribution of a Gaussian random variable W , so that each w[k] is distributed 
exactly as W is. The reason why a Gaussian makes sense is because noise is often 
the result of summing a large number of different and independent factors, which 
allows us to apply an important result from probability and statistics, called the cen­
tral limit theorem. This states that the sum of independent random variables is well 
approximated (under rather mild conditions) by a Gaussian random variable, with 
the approximation improving as more variables are summed in. 

The Gaussian distribution is beautiful from several viewpoints, not least because it is 
characterized by just two numbers: its mean μ, and its variance σ2 or standard deviation 
σ. In our noise model, we will assume that the mean of the noise distribution is 0. 
This assumption is not a huge concession: any consistent non-zero perturbation is 
easy to compensate for. For zero-mean Gaussian noise, the variance, or equivalently 
the standard deviation, completely characterizes the noise. The standard deviation σ 
may be thought of as a measure of the expected “amplitude” of the noise; its square 
captures the expected power. 

For noise not to corrupt the digitization of a bit detection sample, the distance be­
tween the noise-free value of the sample and the digitizing threshold should be suf­
ficiently larger than the expected amplitude—or standard deviation—of the noise. 

3.	 White: This property concerns the temporal variation in the individual noise sam­
ples that affect the signal. If these Gaussian noise samples are independent from 
one sample to another, the underlying noise process is referred to as white Gaussian 
noise. “White” refers to the frequency decomposition of the sequence of noise sam­
ples, and essentially says that the noise signal contains components of equal expected 
power at all frequencies. This statement will become clearer later in the course when 
we talk about the frequency content of signals. 

This noise model is generally given the term AWGN, for additive white Gaussian noise. 
We will use this term. 

• 9.2.1 Estimating the Noise Parameters 

It is often of interest to estimate the noise parameters from measurements; in our Gaussian 
model, these are the parameters μ and σ2 . If we simply transmit a sequence of “0” bits, 
i.e., hold the voltage V0 at the transmitter, and observe the received samples y[k] for k = 
0,1, . . . ,K  − 1, we can process these samples to obtain the statistics of the noise process 
for additive noise. Under the assumption of no distortion, and constant (or “stationary”) 
noise statistics, and noise samples w[k] = y[k]− V0 that are independent from one sampling 
instant to another, we can use the sample mean m to estimate μ, where 

K−1 1 
m = w[k] .	 (9.2)

K 
k=0 
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The law of large numbers from probability and statistics ensures that as K tends to ∞, the 
sample mean m converges to μ, which we have assumed is 0. 

With μ = 0, the quantity that is more indicative of the power of the noise is the variance 
σ2, which can be estimated by the sample variance s2, given by 

K−1
12 2 s = (w[k]− m) . (9.3)
K 

k=0 

Again, this converges to σ2 as K tends to ∞. 

• 9.2.2 The Gaussian Distribution 

Let us now understand the Gaussian distribution in the context of our physical commu­
nication channel and signaling process. In our context, the receiver and sender both deal 
with voltage samples. The sample y[k] at the receiver has a noise term, w[k], contributing 
to it additively, where w[k] is obtained from the following probability density function (PDF), 
which specifies a Gaussian distribution: 

(w−μ)21 −fW (w) = √ e 2σ2 . (9.4) 
2πσ2 

For zero-mean noise, μ = 0. 
The PDF fW (w), which is assumed to govern the distribution of all the noise samples 

w[k], specifies the probability that W , or equivalently w[k], takes values in the vicinity of 
w. Specifically, 

P(w ≤ w[k] ≤ w + dw) ≈ fW (w) dw . 

More generally, the probability that w[k] is between two values w1 and w2 is given by 

w2 

P(w1 < w[k] ≤ w2) =  fW (w) dw . 
w1 

The reason we use the PDF rather than a discrete histogram is that our noise model is 
inherently “analog”, taking on any real value in (−∞, ∞). For a noise sample that can take 
on any value in a continuous range, the natural mathematical tool to use is a continuous-
domain random variable, described via its PDF, or via the integral of the PDF, which is 
called the cumulative distribution function (CDF). 

It will be helpful to review the basic definitions and properties of continuous-domain 
random variables, especially if you aren’t comfortable with these tools. We have provided 
a brief recap and tutorial in the appendix near the end of this chapter (§9.6). 

• 9.3 Bit Errors 
Noise disrupts the quality of communication between sender and receiver because the re­
ceived noisy voltage samples can cause the receiver to incorrectly identify the transmitted 
bit, thereby generating a bit error. If we transmit a long stream of known bits and count 
the fraction of received bits that are in error, we obtain a quantity that—by the law of large 
numbers—asymptotically approaches the bit error rate (BER), which is the probability that 

X
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any given bit is in error, P(error). This is the probability that noise causes a transmitted “1” 
to be reported as “0” or vice versa. 

Communication links exhibit a wide range of bit error rates. At one end, high-speed 
(multiple gigabits per second) fiber-optic links implement various mechanisms that reduce 
the bit error rates to be as low as 1 in 1012 . This error rate looks exceptionally low, but a 
link that can send data at 10 gigabits per second with such an error rate will encounter a bit 
error every 100 seconds of continuous activity, so it does need ways of masking errors that 
occur. Wireless communication links usually have errors anywhere between 1 in 103 for 
relatively noisy environments, down to to 1 in 107, and in fact allow the communication to 
occur at different bit rates; higher bit rates are usually also associated with higher bit error 
rates. In some applications, very noisy links can still be useful even if they have bit error 
rates as high as 1 in 103 or 102 . 

We now analyze the BER of the simple binary signaling scheme. Recall the receiver 
thresholding rule, assuming that the sender sends V0 volts for “0” and V1 > V0 volts for 
“1” and that there is no channel distortion (so in the absence of noise, the receiver would 
see exactly what the sender transmits): 

If the received voltage sample y < Vt = (V0 + V1)/2 then the received bit is 
reported as “0”; otherwise, it is reported as “1”. 

For simplicity, we will assume that the prior probability of a transmitted bit being a “0” 
is the same as it being a “1”, i.e., both probabilities are 0.5. We will find later that when 
these two prior probabilities are equal, the choice of threshold Vt specified above is the one 
that minimizes the overall probability of bit error for the decision rule that the receiver is 
using. When the two priors are unequal, one can either stick to the same threshold rule 
and calculate the bit error probability, or one could calculate the threshold that minimizes 
the error probability and then calculate the resulting bit error probability. We will deal 
with that case in the next section. 

The noise resilience of the binary scheme turns out to depend only on the difference 
V1 − V0, because the noise is additive. It follows that if the transmitter is constrained to 
a peak voltage magnitude of Vp, then the best choice of voltage levels is V1 = Vp > 0 and 
V0 = −Vp, which corresponds to binary keying. The associated threshold is Vt = 0. This is 
the case that we analyze now. 

As noted earlier, it is conventional to refer to the square of a magnitude as the power, so  
V 2 is the power associated with each voltage sample at the receiver, under the assumption p 
of no distortion, and in the ideal case of no noise. Summing the power of these samples 
over all T samples in the time slot associated with a particular bit sent over the link yields 
the energy per transmitted bit , T · V 2 . It is thus reasonable to also think of V 2 as the p p 
sample energy, which we shall denote by Es. With this notation, the voltage levels in √ √ 
bipolar keying can be written as V1 = +  Es and V0 = − Es. 

Now consider in what cases a bit is incorrectly decided at the receiver. There are two 
mutually exclusive possibilities: 

√ 
1. The sender sends b = 0  at voltage − Es and the value received is > 0; or  

√ 
2. The sender sends b = 1  at voltage + Es and the value received is < 0. 

For a source that is equally likely to send 0’s and 1’s, and given the symmetry of a zero-
mean Gaussian about the value 0, the two events mentioned above have exactly the same proba­
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bilities. Each one of the events has a probability that is half the probability of a zero-mean √ 
Gaussian noise variable W taking values larger than Es (the “half” is because the prob­
ability of b = 0 is 0.5, and similarly for b = 1). Hence the probability of one or the other 
of these mutually exclusive events occurring, i.e., the probability of a bit error, is simply 
the sum of these two probabilities, i.e., the BER is given by the probability of a zero-mean √ 
Gaussian noise variable W taking values larger than Es. The BER is therefore 

∞1 −wBER = P(error) = √ e 
2/(2σ2) dw . (9.5)√

2πσ2 Es 

We will denote 2σ2 by N0. It has already been mentioned that σ2 is a measure of the 
expected power in the underlying AWGN process. However, the quantity N0 is also often 
referred to as the noise power, and we shall use this term for N0 too.1 

After a bit of algebra, Equation (9.5) simplifies to 

∞1 2−vBER = P(error) = √ · √ e dv . (9.6)
π Es/N0 

This equation specifies the tail probability of a Gaussian distribution, which turns out to 
be important in many scientific and engineering applications. It’s important enough to be 
tabulated using two special functions called the error function and the complementary error 
function, denoted erf(z) and erfc(z) = 1− erf(z) respectively, and defined thus: 

z2 2−verf(z) = √ · e dv , (9.7)
π 0 

and ∞2 2−verfc(z) = 1− erf(z) = √ · e dv . (9.8)
π z 

One can now easily write the following important (and pleasingly simple) equation for 
the BER of our simple binary signaling scheme over an AWGN channel: 

f
1 EsBER = P(error) =  erfc( ). (9.9)
2 N0 

Equation (9.9) is worth appreciating and perhaps even committing to memory (at least 
for the duration of the course!). But it is more important to understand how we arrived 
at it and why it makes sense. The BER for our bipolar keying scheme with the specified 
decision rule at the receiver is determined entirely by the ratio Es . The numerator of this N0 
ratio is the power of the signal used to send a bit, or equivalently the power or energy 
Es of the voltage sample selected from the corresponding time slot at the receiver in the 
noise-free case, assuming no distortion (as we are doing throughout this chapter). The 
denominator of the ratio is the noise power N0 encountered during the reception of the 
signal. This ratio is also commonly referred to as the signal-to-noise ratio (SNR) of the 

1The factor of 2 between the two uses of the term arises from the fact that under one notational convention 
the distribution of expected noise power over frequency is examined over both negative and positive frequen­
cies, while under the other convention it is examined over just positive frequencies—but this difference is 
immaterial for us. 

Z

Z

Z

Z
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Source: http://www.dsplog.com/2007/08/05/bit-error-probability-for-bpsk-modulation/.
Courtesy of Krishna Sankar Madhavan Pillai. Used with permission.

Figure 9-1: The BER of the simple binary signaling scheme in terms of the erfc function. The chart shows 
the theoretical prediction and simulation results.   

communication scheme. 
The greater the SNR, the lower the BER, and vice versa. Equation (9.9) tells us how the 

two quantities relate to one another for our case, and is plotted in Figure 9-1. The shape of 
this curve is characteristic of the BER v. SNR curves for many signaling and channel coding 
schemes, as we will see in the next few chapters. More complicated signaling schemes will 
have different BER-SNR relationships, but the BER will almost always be a function of the 
SNR. 

• 9.4 BER: The Case of Unequal Priors 
When the prior probability of the sender transmitting a “0” is the same as a “1”, the optimal √ 
digitizing threhold is indeed 0 volts, by symmetry, if a “0” is sent at − Es and a “1” at √ 
+ Es volts. But what happens when a “0” is more likely than a “1”, or vice versa? 

If the threshold remains at 0 volts, then the probability of a bit error is the same as 
Equation (9.9). To see why, suppose the prior probability of a “0” is p0 and a “1” is p1 = 
1− p0. Then, the probability of bit error can be simplified using a calculation similar to the 
previous section to give us 

p0 J p1 J 1 J
P(error) = erfc( Es/N0) + erfc( Es/N0) =  erfc( Es/N0). (9.10)

2 2 2 

This equation is the same as Equation (9.9). It should make intuitive sense: when the 
threshold is 0 volts, the channel has the property that the probability of a “0” becoming a 
“1” is the same as the opposite flip. The probability of a “0” flipping depends only on the 
threshold used and the signal-to-noise ratio, and not on p0 in this case. 

http://www.dsplog.com/2007/08/05/bit-error-probability-for-bpsk-modulation/
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Note, however, that when p0   = p1 = 1/2, the optimal digitizing threshold is not 0 (or, 
in general, not half-way between the voltage levels used for a “0” and a “1”). Intuitively, 
if zeroes are more likely than ones, the threshold should actually be greater than 0 volts, 
because the odds of any given bit being 0 are higher, so one might want to “guess” that a 
bit is a “0” even if the voltage level were a little larger than 0 volts. Similarly, if the prior 
probability of a “1” were larger, then the optimal threshold will be lower than 0 volts. 

So what is the optimal digitizing threshold, assuming the receiver uses a single thresh­
old to decide on a bit? Let’s assume it is Vt, then write an equation for the error probability 
(BER) in terms of Vt, differentiate it with respect to Vt, set the derivative to 0, and determine 
the optimal value. One can then also verify the sign of the second derivative to establish 
that the optimal value is indeed a minimum. 

Fortunately, this calculation is not that difficult or cumbersome, because Vt will show 
up in the limit of the integration, so differentiation is straightforward. We will use the 
property that 

∞d d 2 2 2 2−v −zerfc(z) =  √ e dv = −√ e . (9.11)
dz dz π πz 

The equation for the BER is a direct extension of what we wrote earlier in Equation 
(9.10) to the case where we use a threshold Vt instead of 0 volts: 

√ √ (Vt + ) ( )p0 Es p1 Es − Vt
P(error) = erfc √ + erfc √ . (9.12)

2 N0 2 N0 

Using Equation (9.11) to differentiate the RHS of Equation (9.12) and setting it to 0, we 
get the following equation for Vt: 

√ √ −(Vt+ Es)2/N0 + p1e −(Vt− Es)2/N0−p0e = 0. (9.13) 

Solving Equation (9.13) gives us 

N0 p0
Vt = √ · log . (9.14)e

4 Es p1 

It is straightforward to verify by taking the second derivative that this value of Vt does 
indeed minimize the BER. 

One can sanity check a few cases of Equation (9.14). When p0 = p1, we know the answer 
is 0, and we get that from this equation. When p0 increases, we know that the threshold 
should shift toward the positive side, and vice versa, both of which follow from the equa­
tion. Also, when the noise power N0 increases, we expect the receiver to pay less atten­
tion to the received measurement and more attention to the prior (because there is more 
uncertainty in any received sample), and the expression for the threshold does indeed ac­
complish that, by moving the threshold further away from the origin and towards the side 
associated with the less likely bit. 

Note that Equation (9.14) is for the case when a “0” and “1” are sent at voltages sym­
metric about 0. If one had a system where different voltages were used, say V0 and V1, 
then the threshold calculation would have to be done in analogous fashion. In this case, 
the optimal value would be offset from the mid-point, (V0 + V1)/2. 

Z
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10 ���10 α� α� 
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70 10000000 

60 1000000 
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-90 0.0000000001 

-100 0.00000000001 

Figure 9-2: The dB scale is a convenient log scale; α is the absolute ratio between two energy or power 
quantities in this table. 

• 9.5 Understanding SNR 
The SNR of a communication link is important because it determines the bit error rate; 
later, we will find that an appropriate SNR also determines the capacity of the channel 
(the maximum possible rate at which communication can occur reliably). Because of the 
wide range of energy and power values observed over any communication channel (and 
also in other domains), it is convenient to represent such quantities on a log scale. When 
measured as the ratio of two energy or power quantities, the SNR is defined on a decibel 
scale according to the following formula. 

Let α denote the ratio of two energy or power quantities, such as the energy per sample, 
Es, and the noise power, N0 = 2σ2. Then, we say that the decibel separation corresponding 
to this ratio α is 

SNRdb = 10  · log10 α. (9.15) 

Figure 9-2 shows some values on the dB scale. A convenient rule to remember is that 3 
dB is equivalent to a ratio of about 2, because log10 2 = 0.301. 

The decibel (or dB) scale is widely used in many applications. It goes between −∞ and 
∞, and succinctly captures ratios that may be multiple powers of ten apart. The online 
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Figure 9-3: Histograms become smoother and more continuous when they are made from an increasing

number of samples. In the limit when the number of samples is infinite, the resulting curve is a probability

density function.

problem set has some simple calculations to help you get comfortable with the dB scale.

� 9.6 Appendix: A Brief Recap of Continuous Random Vari-

ables

To understand what a PDF is, let us imagine that we generate 100 or 1000 independent
noise samples and plot each one on a histogram. We might see pictures that look like the
ones shown in Figure 9-3 (the top two pictures), where the horizontal axis is the value of the
noise sample (binned) and the vertical axis is the frequency with which values showed up
in each noise bin. As we increase the number of noise samples, we might see pictures as in
the middle and bottom of Figure 9-3. The histogram is increasingly well approximated by
a continuous curve. Considering the asymptotic behavior as the number of noise samples
becomes very large leads to the notion of a probability density function (PDF).

Formally, let X be the random variable of interest, and suppose X can take on any
value in (−∞,∞). Then, if the PDF of the underlying random variable is the non-negative
function fX(x) ≥ 0, it means that the probability the random variable X takes on a value
between x and x+dx, where dx is a small increment around x, is fX(x) dx. More generally,
the probability that a random variable X lies in the range (x1, x2] is given by

∫ x2

P (x1 < X ≤ x2) = fX(x) dx . (9.16)
x1



SECTION 9.6. APPENDIX: A BRIEF RECAP OF CONTINUOUS RANDOM VARIABLES 123

An example of a PDF fX(x) is shown in Figure 9-5.
The PDF is by itself not a probability; the area under any portion of it is a probability.

Though fX(x) itself may exceed 1, the area under any part of it is a probability, and can
never exceed 1. Also, the PDF is normalized to reflect the fact that the probability X takes
some value is always 1, so ∫ ∞

fX(x) dx = 1 .
−∞

Mean The mean μX of a random variable X can be computed from its PDF as follows:

μX =

∫ ∞
xfX(x) dx. (9.17)

−∞

If you think of the PDF as representing a “probability mass” distribution on the real axis,
then the mean is the location of its center of mass; pivoting the real axis at this point will
allow the mass distribution to remain in balance, without tipping to one side or the other.

The law of large numbers states that if x[k] is an iid random process with the underlying
PDF at each time being fX(x), then the sample mean converges to the the mean μX as the
number of samples approaches ∞:

1
lim

K→∞

K−1∑
x[k] = μX . (9.18)

K
k=0

Variance The variance is a measure of spread around the mean, and is defined by

∞
σ2
X =

∫
(x− μX)2fX(x) dx . (9.19)

−∞

(To continue the mass analogy, the variance is analogous to the moment of inertia of the
probability mass. Probability mass that is further away from the center of mass on either
side, i.e., further away from the mean, contributes significantly more to the variance than
mass close to the mean.) Again, under appropriate conditions, the sample variance for an
iid process x[k] converges to the variance. The standard deviation is defined as the square
root of the variance, namely σX .

Cumulative distribution function The integral of the PDF from −∞ to x,

x

FX(x) =

∫
fX(α) dα ,

−∞

is called the cumulative distribution function (CDF), because it represents the cumulative
probability that the random variable takes on a value ≤ x. The CDF increases monotoni-
cally (or, more precisely, is monotonically non-decreasing) from 0 when x=−∞ to 1 when
x = ∞.

Example: Uniform distribution This simple example may help illustrate the idea of a
PDF better, especially for those who haven’t see this notion before. Suppose that a random
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Figure 9-4: PDF of a uniform distribution.

Figure 9-5: PDF of a Gaussian distribution, aka a “bell curve”.

variable X can take on any value between 0 and 2 with equal probability, and always lies
in that range. What is the corresponding PDF?

Because the probability of X being in the range (x,x+ dx) is independent of x as long
as x is in [0,2], it must be the case that the PDF fX(x) is some constant, h, for x ∈ [0,2].
Moreover, it must be 0 for any x outside this range. We need to determine h. To do so,
observe that the PDF must be normalized, so

∫ ∞
fX(x) dx =

∫ 2

h dx = 1, (9.20)
−∞ 0

which implies that h= 0.5. Hence, fX(x) = 0.5 when 0≤ x≤ 2 and 0 otherwise. Figure 9-4
shows this uniform PDF.

One can easily calculate the probability that an x chosen from this distribution lies in
the range (0.3,0.7). It is equal to

∫ 0.7
(0.5) dx = 0.20.3 .

A uniform PDF also provides a simple example that shows how the PDF, fX(x), could
easily exceed 1. A uniform distribution whose values are always between 0 and δ, for some
δ < 1, has fX(x) = 1/δ, which is always larger than 1. To reiterate a point made before: the
PDF fX(x) is not a probability, it is a probability density, and as such, could take on any non-
negative value. The only constraint on it is that the total area under its curve (the integral
over the possible values it can take) is 1.

As an exercise, you might try to determine the PDF, mean and variance of a random
variable that is uniformly distributed in the arbitrary (but finite-length) interval [a, b].
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Figure 9-6: Changing the mean of a Gaussian distribution merely shifts the center of mass of the distribu-

tion because it just shifts the location of the peak. Changing the variance widens the curve.

Example: Gaussian distribution The PDF for a Gaussian random variable X is given by

1
fW (w) = √ 2

e−(x−μX) /(2σ2 )X . (9.21)
2πσ2

X

This equation is plotted in Figure 9-5, which makes evident why a Gaussian distribution
is colloquially referred to as a “bell curve”. The curve tapers off to 0 rapidly because of
the e−x2

dependence. The form of the expression makes clear that the PDF is symmetric
about the value μX , which suffices to deduce that this parameter is indeed the mean of
the distribution. It is an exercise in calculus (which we leave you to carry out, if you are
sufficiently interested in the details) to verify that the area under the PDF is indeed 1 (as it
has to be, for any PDF), and that the variance is in fact the parameter labeled as σ2

X in the
above expression. Thus the Gaussian PDF is completely characterized by the mean and
the variance of the distribution.

Changing the mean simply shifts the distribution to the left or right on the horizontal
axis, as shown in the pictures on the left of Figure 9-6. Increasing the variance is more
interesting from a physical standpoint; it widens (or fattens) the distribution and makes it
more likely for values further from the mean to be selected, compared to a Gaussian with
a smaller variance. A Gaussian random variable with a wider distribution (i.e., a larger
variance) has more “power” compared to a narrower one.
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� Problems and Exercises

1. The cable television signal in your home is poor. The receiver in your home is con-
nected to the distribution point outside your home using two coaxial cables in series,
as shown in the picture below. The power of the cable signal at the distribution point
is P . The power of the signal at the receiver is R.

P 1st cable 
Signal attenuation = 7 dB 

R 2nd cable 
Signal attenuation = 13 dB 

Distribution  
point 

Receiver 

The first cable attenuates (i.e., reduces) the signal power by 7 dB. The second cable
attenuates the signal power by an additional 13 dB. Calculate P

R as a numeric ratio.

2. Ben Bitdiddle studies the bipolar signaling scheme from 6.02 and decides to extend
it to a 4-level signaling scheme, which he calls Ben’s Aggressive Signaling Scheme,
or BASS. In BASS, the transmitter can send four possible signal levels, or voltages:
(−3A,−A,+A,+3A), where A is some positive value. To transmit bits, the sender’s
mapper maps consecutive pairs of bits to a fixed voltage level that is held for some
fixed interval of time, creating a symbol. For example, we might map bits “00” to
−3A, “01” to −A, “10” to +A, and “11” to +3A. Each distinct pair of bits corresponds
to a unique symbol. Call these symbols s minus3, s minus1, s plus1, and s plus3.
Each symbol has the same prior probability of being transmitted.

The symbols are transmitted over a channel that has no distortion but does have ad-
ditive noise, and are sampled at the receiver in the usual way. Assume the samples at
the receiver are perturbed from their ideal noise-free values by a zero-mean additive
white Gaussian noise (AWGN) process with noise intensity N0 = 2σ2, where σ2 is
the variance of the Gaussian noise on each sample. In the time slot associated with
each symbol, the BASS receiver digitizes a selected voltage sample, r, and returns
an estimate, s, of the transmitted symbol in that slot, using the following intuitive
digitizing rule (written in Python syntax):

def digitize(r):
if r < -2A: s = s_minus3
elif r < 0: s = s_minus1
elif r < 2A: s = s_plus1
else: s = s_plus3
return s

Ben wants to calculate the symbol error rate for BASS, i.e., the probability that the
symbol chosen by the receiver was different from the symbol transmitted. Note: we
are not interested in the bit error rate here. Help Ben calculate the symbol error rate
by answering the following questions.

(a) Suppose the sender transmits symbol s plus3. What is the conditional sym-
bol error rate given this information; i.e., what is P(symbol error | s plus3
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sent)? Express your answer in terms of A, N0, and the erfc function, defined
as erfc(z) = 2√ ∞

π

∫
ez
−x2

dx.

(b) Now suppose the sender transmits symbol s plus1. What is the conditional

symbol error rate given this information, in terms of A, N0, and the erfc func-
tion?

(c) The conditional symbol error rates for the other two symbols don’t need to be
calculated separately.

i. The symbol error rate when the sender transmits symbol s minus3 is the
same as the symbol error rate of which of these symbols?

A. s minus1.

B. s plus1.

C. s plus3.

ii. The symbol error rate when the sender transmits symbol s minus1 is the
same as the symbol error rate of which of these symbols?

A. s minus3.

B. s plus1.

C. s plus3.

(d) Combining your answers to the previous parts, what is the symbol error rate in
terms of A, N0, and the erfc function? Recall that all symbols are equally likely
to be transmitted.

3. Bit samples are transmitted with amplitude ATX = ±1 (i.e.bipolar signaling). The
channel attenuation is 20 dB, so the power of any transmitted signal is reduced by
this factor when it arrives at the receiver.

(a) What receiver noise standard deviation value (σ) corresponds to a signal-to-
noise ratio (SNR) of 20 dB at the receiver? (Note that the SNR at the receiver is
defined as the ratio of the received signal power to σ2.)

(b) Express the bit error rate at the receiver in terms of the erfc() function when the
SNR at the receiver is 20 dB.
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(c) Under the conditions of the previous parts of this question, suppose an ampli-
fier with gain of 10 dB is added to the receiver after the signal has been corrupted
with noise. Explain how this amplification affects the bit error rate.

4. Due to inter-symbol interference (ISI), which we will study in the next chapter, the
received signal distribution (probability mass function) without noise looks like in
the diagram below.

(a) Determine the value p marked on the graph above.

(b) Determine the optimal decision threshold Vthreshold, assuming that the prior
probabilities of sending a “0” and a “1”, and the noise standard deviations on
sending a “0” and a “1” are also equal (σ0 = σ1).

(c) Derive the expression for the bit error rate in terms of the erfc() function if σ =

0.025.
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CHAPTER 10
Models for Physical Communication

Channels

To preview what this chapter is about, it will be helpful first to look back briefly at the
territory we have covered. The previous chapters have made the case for a digital (versus
analog) communication paradigm, and have exposed us to communication at the level of
bits or, more generally, at the level of the discrete symbols that encode messages.

We showed, in Chapters 2 and 3, how to obtain compressed or non-redundant repre-
sentations of a discrete set of messages through source coding, which produced codewords
that reflected the inherent information content or entropy of the source. In Chapter 4 we
examined how the source transmitter might map a bit sequence to clocked signals that are
suited for transmission on a physical channel (for example, as voltage levels).

Chapter 5 introduced the binary symmetric channel (BSC) abstraction for bit errors on
a channel, with some associated probability of corrupting an individual bit on passage
through the channel, independently of what happens to every other bit in the sequence.
That chapter, together with Chapters 6, 7, and 8, showed how to re-introduce redundancy,
but in a controlled way using parity bits. This resulted in error-correction codes, or channel
codes, that provide some level of protection against the bit-errors introduced by the BSC.

Chapter 9 considered the challenges of “demapping” back from the received noise-
corrupted signal to the underlying bit stream, assuming that the channel introduced no
deterministic distortion, only additive white noise on the discrete-time samples of the re-
ceived signal. A key idea from Chapter 9 was showing how Gaussian noise experienced
by analog signals led to the BSC bit-flip probability for the discrete version of the channel.

The present chapter begins the process—continued through several subsequent
chapters—of representing, modeling, analyzing, and exploiting the characteristics of the
physical transmission channel. This is the channel seen between the signal transmitted
from the source and the signal captured at the receiver. Referring back to the “single-link
view” in the upper half of Figure 4-8 in Chapter 4, our intent is to study in more detail the
portion of the communication channel represented by the connection between “Mapper +
Xmit samples” at the source side, and “Recv samples + Demapper” at the receiver side.

129
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Figure 10-1: Elements of a communication channel between the channel coding step at the transmitter and

channel decoding at the receiver.
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Figure 10-2: Digitized samples of the baseband signal.

� 10.1 Getting the Message Across

� 10.1.1 The Baseband Signal

In Figure 10-1 we see an expanded version of what might come between the channel cod-
ing operation at the transmitter and the channel decoding operation at the receiver (as
described in the upper portion of Figure 4-8). At the source, the first stage is to convert
the input bit stream to a digitized and discrete-time (DT) signal, represented by samples pro-
duced at a certain sample rate fs samples/s. We denote this signal by x[n], where n is the
integer-valued discrete-time index, ranging in the most general case from −∞ to +∞.

In the simplest case, which we will continue to use for illustration, each bit is repre-
sented by a signal level held for a certain number of samples, for instance a voltage level
of V0 = 0 held for 8 samples to indicate a 0 bit, and a voltage level of V1 = 1 held for 8
samples to indicate a 1 bit, as in Figure 10-2. The sample clock in this example operates
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at 8 times the rate of the bit clock, so the bi
referred to as the baseband signal.

t rate is fs/8 bits/s. Such a signal is usually

� 10.1.2 Modulation

The DT baseband signal shown in Figure 10-2 is typically not ready to be transmitted on
the physical transmission channel. For one thing, physical channels typically operate in
continuous-time (CT) analog fashion, so at the very least one needs a digital-to-analog
converter (DAC) to produce a continuous-time signal that can be applied to the channel.
The DAC is usually a simple zero-order hold, which maintains or holds the most recent
sample value for a time interval of 1/fs. With such a DAC conversion, the DT “rectangular-
wave” in Figure 10-2 becomes a CT rectangular wave, each bit now corresponding to a
signal value that is held for 8/fs seconds.

Conversion to an analog CT signal will not suffice in general, because the physical
channel is usually not well suited to the transmission of rectangular waves of this sort.
For instance, a speech signal from a microphone may, after appropriate coding for digital
transmission, result in 64 kilobits of data per second (a consequence of sampling the micro-
phone waveform at 8 kHz and 8-bit resolution), but a rectangular wave switching between
two levels at this rate is not adapted to direct radio transmission. The reasons include the
fact that efficient projection of wave energy requires antennas of dimension comparable
with the wavelength of the signal, typically a quarter wavelength in the case of a tower an-
tenna. At 32 kHz, corresponding to the waveform associated with alternating 1’s and 0’s in
the coded microphone output, and with the electromagnetic waves propagating at 3× 108

meters/s (the speed of light), a quarter-wavelength antenna would be a rather unwieldy
3× 108/(4× 32× 103) = 2344 meters long!

Even if we could arrange for such direct transmission of the baseband signal (after
digital-to-analog conversion), there would be issues related to the required transmitter
power, the attenuation caused by the atmosphere at this frequency, interference between
this transmission and everyone else’s, and so on. Regulatory organizations such as the
U.S. Federal Communications Commission (FCC), and equivalent bodies in other coun-
tries, impose constraints on transmissions, which further restrict what sort of signal can be
applied to a physical channel.

In order to match the baseband signal to the physical and regulatory specifications of a
transmission channel, one typically has to go through a modulation process. This process
converts the digitized samples to a form better suited for transmission on the available
channel. Consider, for example, the case of direct transmission of digital information on
an acoustic channel, from the speaker on your computer to the microphone on your com-
puter (or another computer within “hearing” distance). The speaker does not respond
effectively to the piecewise-constant voltages that arise from our baseband signal. It is in-
stead designed to respond to oscillatory voltages at frequencies in the appropriate range,
producing and projecting a wave of oscillatory acoustic pressure. Excitation by a sinu-
soidal wave produces a pure acoustic tone. With a speaker aperture dimension of about 5
cm (0.05 meters), and a sound speed of around 340 meters/s, we anticipate effective pro-
jection of tones with frequencies in the low kilohertz range, which is indeed in (the high
end of) the audible range.

A simple way to accomplish the desired modulation in the acoustic wave exam-



132 CHAPTER 10. MODELS FOR PHYSICAL COMMUNICATION CHANNELS

ple above is to apply—at the output of the digital-to-analog converter, which feeds the
loudspeaker—a voltage V0 cos(2πfct) for some duration of time to signal a 0 bit, and a
voltage of the form V1 cos(2πfct) for the same duration of time to signal a 1 bit.1 Here
cos(2πfct) is referred to as the carrier signal and fc is the carrier frequency, chosen to be ap-
propriately matched to the channel characteristics. This particular way of imprinting the
baseband signal on a carrier by varying its amplitude is referred to as amplitude modulation
(AM), which we will study in more detail in Chapter 14. The choice V0 = 0 and V1 = 1 is
also referred to as on-off keying, with a burst of pure tone (“on”) signaling a 1 bit, and an
interval of silence (“off”) signaling a 0.

One could also choose V0 =−1 and V1 =+1, which would result in a sinusoidal voltage
that switches phase by π/2 each time the bit stream goes from 0 to 1 or from 1 to 0. This
approach may be referred to as polar keying (particularly when it is thought of as an instance
of amplitude modulation), but is more commonly termed binary phase-shift keying (BPSK).
Yet another modulation possibility for this acoustic example is frequency modulation (FM),
where a tone burst of a particular frequency in the neighborhood of fc is used to signal a 0
bit, and a tone burst at another frequency to signal a 1 bit. All these schemes are applicable
to radio frequency (RF) transmissions as well, not just acoustic transmissions, and are in
fact commonly used in practice for RF communication.

� 10.1.3 Demodulation

We shall have more to say about demodulation later, so for now it suffices to think of it
as a process that is inverse to modulation, aimed at extracting the baseband signal from
the received signal. While part of this process could act directly on the received CT analog
signal, the block diagram in Figure 10-1 shows it all happening in DT, following conversion
of the received signal using an analog-to-digital converter (ADC). The block diagram also
indicates that a filtering step may be involved, to separate the channel noise as much as
possible from the signal component of the received signal, as well as to compensate for
deterministic distortion introduced by the channel. These ideas will be explored further in
later chapters.

� 10.1.4 The Baseband Channel

The result of the demodulation step and any associated filtering is a DT signal y[n], com-
prising samples arriving at the rate fs used for transmission at the source. We assume
issues of clock synchronization are taken care of separately. We also neglect the effects of
any signal attenuation, as this can be simply compensated for at the receiver by choosing
an appropriate amplifier gain.

In the ideal case of no distortion, no noise on the channel, and insignificant propagation
delay, y[n] would exactly equal the modulating baseband signal x[n] used at the source, for
all n. If there is a fixed and known propagation delay on the channel, it can be convenient
to simply set the clock at the receiver that much later than the clock at the sender. If this
is done, then again we would find that in the absence of distortion and random noise, we
get y[n] = x[n] for all n.

1A zero-order-hold DAC will produce only an approximation of a pure sinusoid, but if the sample rate fs
is sufficiently high, the speaker may not sense the difference.
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Signal x[n] from digitized samples at transmitter 

Example of distorted noise-free signal y[n] at receiver 

Figure 10-3: Channel distortion example. The distortion is deterministic.

More realistically, the channel does distort the baseband signal, so the output DT signal
may look (in the noise-free case) as the lower waveform in Figure 10-3. Our objective in
what follows is to develop and analyze an important class of models, namely linear and
time-invariant (LTI) models, that are quite effective in accounting for such distortion, in a
vast variety of settings. The models would be used to represent the end-to-end behavior
of what might be called the baseband channel, whose input is x[n] and output is y[n], as in
Figure 10-3.

� 10.2 Linear Time-Invariant (LTI) Models

� 10.2.1 Baseband Channel Model

Our baseband channel model, as represented in the block diagram in Figure 10-4 takes the
DT sequence or signal x[.] as input and produces the sequence or signal y[.] as output. We
will often use the notation x[.]—or even simply just x—to indicate the entire DT signal
or function. Another way to point to the entire signal, though more cumbersome, is by
referring to “x[n] for −∞ < n <∞”; this often gets abbreviated to just “the signal x[n]”, at
the risk of being misinterpreted as referring to just the value at a single time n.

Figure 10-4 shows x[n] at the input and y[n] at the output, but that is only to indicate
that this is a snapshot of the system at time n, so indeed we see x[n] at the input and y[n]
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S x[n] y[n] 

input response 

Figure 10-4: Input and output of baseband channel.

Figure 10-5: A unit step. In the picture on the left the unit step is unshifted, switching from 0 to 1 at index

(time) 0. On the right, the unit step is shifted forward in time by 3 units (shifting forward in time means

that we use the − sign in the argument because we want the switch to occur with n− 3 = 0).

at the output of the system. What the diagram should not be interpreted as indicating is
that the value of the output signal y[.] at time n depends exclusively on the value of the
input signal at that same time n. In general, the value of the output y[.] at time n, namely
y[n], could depend on the values of the input x[.] at all times. We are most often interested
in causal models, however, and those are characterized by y[n] only depending on past and
present values of x[.], i.e., x[k] for k ≤ n.

� 10.2.2 Unit Sample Response h[n] and Unit Step Response s[n]

There are two particular signals that will be very useful in our description and study of
LTI channel models. The unit step signal or function u[n] is defined as

u[n] = 1 if n ≥ 0

u[n] = 0 otherwise (10.1)

It takes the value 0 for negative values of its argument, and 1 everywhere else, as shown
in Figure 10-5. Thus u[1− n], for example, is 0 for n > 1 and 1 elsewhere.

The unit sample signal or function δ[n], also called the unit impulse function, is defined
as

δ[n] = 1 if n = 0

δ[n] = 0 otherwise. (10.2)

It takes the value 1 when its argument is 0, and 0 everywhere else, as shown in Figure 10-6.
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Figure 10-6: A unit sample. In the picture on the left the unit sample is unshifted, with the spike occurring

at index (time) 0. On the right, the unit sample is shifted backward in time by 5 units (shifting backward

in time means that we use the + sign in the argument because we want the switch to occur with n+5 = 0).

Figure 10-7: Time-invariance: if for all possible sequences x[.] and integers D, the relationship between

input and output is as shown above, then S is said to be “time-invariant” (TI).

Thus δ[n− 3] is 1 where n = 3 and 0 everywhere else. One can also deduce easily that

δ[n] = u[n]− u[n− 1] , (10.3)

where addition and subtraction of signals such as u[n] and u[n − 1] are defined “point-
wise”, i.e., by adding or subtracting the values at each time instant. Similarly, the multipli-
cation of a signal by a scalar constant is defined as pointwise multiplication by this scalar,
so for instance 2u[n− 3] has the value 0 for n < 3, and the value 2 everywhere else.

The response y[n] of the system in Figure 10-4 when its input x[n] is the unit sample
signal δ[n] is referred to as the unit sample response, or sometimes the unit impulse re-

sponse. We denote the output in this special case by h[n]. Similarly, the response to the
unit step signal u[n] is referred to as the unit step response, and denoted by s[n].

A particularly valuable use of the unit step function, as we shall see, is in representing
a rectangular-wave signal as an alternating sum of delayed (and possibly scaled) unit step
functions. An example is shown in Figure 10-9. We shall return to this decomposition later.

� 10.2.3 Time-Invariance

Consider a DT system with input signal x[.] and output signal y[.], so x[n] and y[n] are the
values seen at the input and output at time n. The system is said to be time-invariant if
shifting the input signal x[.] in time by an arbitrary positive or negative integer D to get
a new input signal xD[n] = x[n−D] produces a corresponding output signal yD[n] that is
just y[n−D], i.e., is the result of simply applying the same shift D to the response y[.] that
was obtained with the original unshifted input signal. The shift corresponds to delaying
the signal by D if D > 0, and advancing it by |D| if D < 0. In particular, for a TI system,
a shifted unit sample function at the input generates an identically shifted unit sample
response at the output. Figure 10-7 illustrates time-invariance.

S y[n-D] x[n-D] 

rsha10
Line

rsha10
Line

rsha10
Rectangle
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a1x1[n]+ a2x2[n] S a1y1[n]+ a2y2[n]

Figure 10-8: Linearity: if the input is the weighted sum of several signals, the response is the corresponding

superposition (i.e., weighted sum) of the response to those signals.

The key to recognizing time-invariance in a given system description is to ask whether
the rules or equations by which the input values x[.] are combined, to create the output
y[n], involve knowing the value of n itself (or something equivalent to knowing n), or just
time differences from the time n. If only the time differences from n are needed, the system is
time-invariant. In this case, the same behavior occurs whether the system is run yesterday
or today, in the following sense: if yesterday’s inputs are applied today instead, then the
output today is what we would have obtained yesterday, just occurring a day later.

Another operational way to recognize time-invariance is to ask whether shifting the
pair of signals x[.] and y[.] by the arbitrary but identical amount D results in new signals
xD[.] and yD[.] that still satisfy the equations defining the system. More generally, a set
of signals that jointly satisfies the equations defining a system, such as x[.] and y[.] in our
input-output example, is referred to as a behavior of the system. And what time-invariance
requires is that time-shifting any behavior of the system by an arbitrary amount D results
in a set of signals that is still a behavior of the system.

Consider a few examples. A system defined by the relation

y[n] = 0.5y[n− 1] + 3x[n] + x[n− 1] for all n (10.4)

is time-invariant, because to construct y[.] at any time instant n, we only need values of y[.]
and x[.] at the same time step and one time step back, no matter what n is — so we don’t
need to know n itself. To see this more concretely, note that the above relation holds for all
n, so we can write

y[n−D] = 0.5y[(n−D)− 1] + 3x[n−D] + x[(n−D)− 1] for all n

or
yD[n] = 0.5yD[n− 1] + 3xD[n] + xD[n− 1] for all n .

In other words, the time-shifted input and output signals, xD[.] and yD[.] respectively, also
satisfy the equation that defines the system.

The system defined by
y[n] = n3x[n] for all n (10.5)

is not time-invariant, because the value of n is crucial to defining the output at time n. A
little more subtle is the system defined by

y[n] = x[0] + x[n] for all n . (10.6)

This again is not time-invariant, because the signal value at the absolute time 0 is needed,
rather than a signal value that is offset from n by an amount that doesn’t depend on n. We
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Figure 10-9: A rectangular-wave signal can be represented as an alternating sum of delayed (and possibly

scaled) unit step functions. In this example, x[n] = u[n]− u[n− 4] + u[n− 12]− u[n− 24].

have yD[n] = x[0] + xD[n] rather than what would be needed for time-invariance, namely
yD[n] = xD[0] + xD[n].

� 10.2.4 Linearity

Before defining the concept of linearity, it is useful to recall two operations on signals
or time-functions that were defined in connection with Equation (10.3) above, namely (i)
addition of signals, and (ii) scalar multiplication of a signal by a constant. These operations
were defined as pointwise (i.e., occurring at each time-step), and were natural definitions.
(They are completely analogous to vector addition and scalar multiplication of vectors,
the only difference being that instead of the finite array of numbers that we think of for
a vector, we have an infinite array, corresponding to a signal that can take values for all
integer n.)

With these operations in hand, one can talk of weighted linear combinations of signals.
Thus, if x1[.] and x2[.] are two possible input signals to a system, for instance the signals
associated with experiments numbered 1 and 2, then we can consider an experiment 3 in
which the input x3[.] a weighted linear combination of the inputs in the other two experi-
ments:

x3[n] = a1x1[n] + a2x2[n] for all n ,
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where a1 and a2 are scalar constants.
The system is termed linear if the response to this weighted linear combination of the

two signals is the same weighted combination of the responses to the two signals, for all possible
choices of x1[.], x2[.] a1 and a2, i.e., if

y3[n] = a1y1[n] + a2y2[n] for all n ,

where yi[.] denotes the response of the system to input xi[.] for i = 1,2,3.
This relationship is shown in Figure 10-8. If this property holds, we say that the results

of any two experiments can be superposed to yield the results of other experiments; a linear
system is said to have the superposition property. (In terms of the notion of behaviors
defined earlier, what linearity requires is that weighted linear combinations, or superposi-
tions, of behaviors are again behaviors of the system.)

We can revisit the examples introduced in Equations (10.4), (10.5), (10.6) to apply this
definition, and recognize that all three systems are linear. The following are examples of
systems that are not linear:

y[n] = x[n] + 3 ;

y[n] = x[n] + x2[n− 1] ;

y[n] = cos
( x2[n]

.
x2[n] + 1

)

All three examples here are time-invariant.

� 10.2.5 Linear, Time-Invariant (LTI) Models

Models that are both linear and time-invariant, or LTI models, are hugely important in en-
gineering and other domains. We will mention some of the reasons in the next chapter. We
will develop insights into their behavior and tools for their analysis, and then return to ap-
ply what we have learned, to better understand signal transmission on physical channels.

In the context of audio communication using a computer’s speaker and microphone,
transmissions are done using bursts at the loudspeaker of a computer, and receptions by
detecting the response at a microphone. The input x[n] in this case is a baseband signal
of the form in Figure 10-3, but alternating regularly between high and low values. This
was converted through a modulation process into the tone bursts that you heard. The
signal received at the microphone is then demodulated to reconstruct an estimate y[n] of
the baseband input.

With the microphone in a fixed position, responses have some consistency from one
transition to the next (between tone and no-tone), despite the presence of random fluctua-
tions riding on top of things. The deterministic or repeatable part of the response y[n] does
show distortion, i.e., deviation from x[n], though more “real-world” than what is shown
in the synthetic example in Figure 10-3. However, when the microphone is very close to
the speaker, the distortion is low.

There were features of the system response in this communication system to suggest
that it may not be unreasonable to model the baseband acoustic channel as LTI. Time-
invariance (at least over the time-horizon of the demo!) is suggested by the repeatability
of the transient responses to the various transitions. Linearity is suggested by the fact that
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the downward transients caused by negative (i.e., downward) steps at the input look like
reflections of the upward transients caused by positive (i.e., upward) steps of the same
magnitude at the input, and is also suggested by the appropriate scaling of the response
when the input is scaled.
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CHAPTER 11
LTI Models and Convolution

This chapter will help us understand what else besides noise (which we studied in Chapter
9) perturbs or distorts a signal transmitted over a communication channel, such as a volt-
age waveform on a wire, a radio wave through the atmosphere, or a pressure wave in an
acoustic medium. The most significant feature of the distortion introduced by a channel is
that the output of the channel typically does not instantaneously respond to or follow the
input. The physical reason is ultimately some sort of inertia effect in the channel, requiring
the input to supply energy in order to generate a response, and therefore requiring some
time to respond, because the input power is limited. Thus, a step change in the signal at
the input of the channel typically causes a channel output that rises more gradually to its
final value, and perhaps with a transient that oscillates or “rings” around its final value
before settling. A succession of alternating steps at the input, as would be produced by
on-off signaling at the transmitter, may therefore produce an output that displays inter-

symbol interference (ISI): the response to the portion of the input signal associated with a
particular bit slot spills over into other bit slots at the output, making the output waveform
only a feeble representation of the input, and thereby complicating the determination of
what the input message was.

To understand channel response and ISI better, we will use linear, time-invariant (LTI)

models of the channel, which we introduced in the previous chapter. Such models provide
very good approximations of channel behavior in a range of applications (they are also
widely used in other areas of engineering and science). In an LTI model, the response
(i.e., output) of the channel to any input depends only on one function, h[·], called the unit

sample response function. Given any input signal sequence, x[·], the output y[·] of an
LTI channel can be computed by combining h[·] and x[·] through an operation known as
convolution.

Knowledge of h[·] will give us guidance on choosing the number of samples to associate
with a bit slot in order to overcome ISI, and will thereby determine the maximum bit
rate associated with the channel. In simple on-off signaling, the number of samples that
need to be allotted to a bit slot in order to mitigate the effects of ISI will be approximately
the number of samples required for the unit sample response h[·] to essentially settle to
0. In this connection, we will also introduce a tool called an eye diagram, which allows

141



142 CHAPTER 11. LTI MODELS AND CONVOLUTION

Figure 11-1: On-off signaling at the channel input produces a channel output that takes a non-zero time to

rise or fall, and to settle at 1 or 0.

a communication engineer to determine whether the number of samples per bit is large
enough to permit reasonable communication quality in the face of ISI.

� 11.1 Distortions on a Channel

Even though communication technologies come in enormous variety, they generally all
exhibit similar types of distorting behavior in response to inputs. To gain some intution
on the basic nature of the problem, we first look at some simple examples. Consider a
transmitter that does on-off signaling, sending voltage samples that are either set to V0 = 0

volts or to V1 = 1 volt for all the samples in a bit period. Let us assume an LTI channel, so
that

1. the superposition property applies, and

2. if the response to a unit step u[n] at the input is unit-step response s[n] at the output,
then the response to a shifted unit step u[n−D] at the input is the identically shifted
unit-step response s[n−D], for any (integer) D.

Let us also assume that the channel and receiver gain are such that the unit step response
s[n] eventually settles to 1.

In this setting, the output waveform will typically have two notable deviations from the
input waveform:
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Figure 11-2: A channel showing “ringing”.

1. A slower rise and fall. Ideally, the voltage samples at the receiver should be iden-
tical to the voltage samples at the transmitter. Instead, as shown in Figure 11-1, one
usually finds that the nearly instantaneous transition from V0 volts to V1 volts at the
transmitter results in an output voltage at the receiver that takes longer to rise from
V0 volts to V1 volts. Similarly, when there is a nearly instantaneous transition from
V1 volts to V0 volts at the transmitter, the voltage at the receiver takes longer to fall. It
is important to note that if the time between transitions at the transmitter is shorter
than the rise and fall times at the receiver, the receiver will struggle (and/or fail!) to
correctly infer the value of the transmitted bits using the voltage samples from the
output.

2. Oscillatory settling, or “ringing”. In some cases, voltage samples at the receiver
will oscillate before settling to a steady value. In cables, for example, this effect can
be due to a “sloshing” back and forth of the energy stored in electric and magnetic
fields, or it can be the result of signal reflections at discontinuities. Over radio and
acoustic channels, this behavior arises usually from signal reflections. We will not
try to determine the physical source of ringing on a channel, but will instead observe
that it happens and deal with it. Figure 11-2 shows an example of ringing.

Figure 11-3 shows an example of non-ideal channel distortions. In the example, the
transmitter converted the bit sequence ...0101110... to voltage samples using ten 1 volt
samples to represent a “1” and ten 0 volt samples to represent a “0” (with sample values
of 0 before and after). In the example, the settling time at the receiver is longer than the
reciprocal of the bit period, and therefore bit sequences with frequent transitions, like 010,
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Figure 11-3: The effects of rise/fall time and ringing on the received signal.

are not received faithfully. In Figure 11-3, at sample number 21, the output voltage is still
ringing in response to the rising input transition at sample number 10, and is also respond-
ing to the input falling transition at sample number 20. The result is that the receiver may
misidentify the value of one of the transmitted bits. Note also that the the receiver will
certainly correctly determine that the the fifth and sixth bits have the value ’1’, as there is
no transition between the fourth and fifth, or fifth and sixth, bit.

As this example demonstrates, the slow settling of the channel output implies that the
receiver is more likely to wrongly identify a bit that differs in value from its immediate
predecessors. This example should also provide the intuition that if the number of samples
per bit is large enough, then it becomes easier for the receiver to correctly identify bits
because each sequence of samples has enough time to settle to the correct value (in the
absence of noise, which is of course a random phenomenon that can still confound the
receiver).

There is a formal name given to the impact of rise/fall times and settling times that
are long compared to a bit slot: we say that the channel output displays inter-symbol

interference, or ISI. ISI is a fancy way of saying that the received samples corresponding to the
current bit depend on the values of samples corresponding to preceding bits. Figure 11-4 shows
four examples: two for channels with a fast rise/fall compared to the duration of the bit
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Long Bit Period (slow rate) Short Bit Period (Fast Rate) 

Figure 11-4: Examples of ISI.

slot, and two for channels with a slower rise/fall.
We now turn to a more detailed study of LTI models, which will allow us to understand

channel distortion and ISI more fundamentally. The analysis tools we develop, in this
chapter and the next two, will also be very valuable in the context of signal processing,
filtering, modulation and demodulation, topics that are addressed in the next few chapters.

� 11.2 Convolution for LTI Models

Consider a discrete-time (DT) linear and time-invariant (LTI) system or channel model
that maps an input signal x[.] to an output signal y[.] (Figure 10-4), which shows what the
input and output values are at some arbitrary integer time instant n. We will also use other
notation on occasion to denote an entire time signal such as x[.], either simply writing x,
or sometimes writing x[n] (but with the typically unstated convention that n ranges over
all integers!).

A discrete-time (DT) LTI system is completely characterized by its response to a unit
sample function (or unit pulse function, or unit “impulse” function) δ[n] at the input. Recall
that δ[n] takes the value 1 where its argument n = 0, and the value 0 for all other values of
the argument. An alternative notation for this signal that is sometimes useful for clarity is
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δ0[.], where the subscript indicates the time instant for which the function takes the value
1; thus δ[n− k], when described as a function of n, could also be written as the signal δk[.].

Figure 11-5: A discrete-time signal can be decomposed into a sum of time-shifted, scaled unit-sample func-

tions: x[n] =
∑∞

k= x[k]δ[n−∞ − k].

The unit sample response h[n], with n taking all integer values, is simply the sequence
of values that y[n] takes when we set x[n] = δ[n], i.e., x[0] = 1 and x[k] = 0 for k = 0. The
response h[n] to the elementary input δ[n] can be used to characterize the response of an
LTI system to any input, for the following two reasons:

• An arbitrary signal x[.] can be written as a sum of scaled (or weighted) and shifted
unit sample functions, as shown in Figure 11-5. This is expressed in two ways below:

x[.] = · · ·+ x[−1]δ 1[.] + x[0]δ0[.] + · · ·+ x[k]δ− k[.] + · · ·
x[n] = · · ·+ x[−1]δ[n+ 1] + x[0]δ[n] + · · ·+ x[k]δ[n− k] + · · · (11.1)

• The response of an LTI system to an input that is the scaled and shifted combina-
tion of other inputs is the same scaled combination—or superposition—of the corre-
spondingly shifted responses to these other inputs, as shown in Figure 11-6.

Since the response at time n to the input signal δ[n] is h[n], it follows from the two obser-

�
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��x[n]= x[k]δ[n− k]
k=−∞

∞

∑ y[n]= x[k]h[n− k]
k=−∞

∞

∑

�����x[n] y[n] 

CONVOLUTION SUM 

Figure 11-6: Illustrating superposition: If S is an LTI system, then we can use the unit sample response h

to predict the response to any waveform x by writing x as a sum of shifted, scaled unit sample functions,

and writing the output as a sum of shifted, scaled, unit sample responses, with the same scale factors.

vations above that the response at time n to the input x[.] is

y[n] = · · ·+ x[−1]h[n+ 1] + x[0]h[n] + · · ·+ x[k]h[n− k] + · · ·
∞

=
∑

x[k]h[n− k] . (11.2)
k=−∞

This operation on the time functions or signals x[.] and h[.] to generate a signal y[.] is called
convolution. The standard symbol for the operation of convolution is ∗, and we use it
to write the prescription in Equation (11.2) as y[n] = (x ∗ h)[n]. We will also simply write

∗ when that suffices. 1y = x h

A simple change of variables in Equation (11.2), setting n− k = m, shows that we can
also write ∞

y[n] =
∑

h[m]x[n
m=

−m] = (h ∗ x)[n] . (11.3)
−∞

The preceding calculation establishes that convolution is commutative, i.e.,

x ∗ h = h ∗ x .

We will mention other properties of convolution later, in connection with series and paral-
lel combinations (or compositions) of LTI systems.

Example 1 Suppose h[n] = (0.5)nu[n], where u[n] denotes the unit step function defined
previously (taking the value 1 where its argument n is non-negative, and the value 0 when

1A common (but illogical, confusing and misleading!) notation for convolution in much or most of the
engineering literature is to write y[n] = x[n] ∗ h[n]. The index n here is doing triple duty: in y[n] it marks
the time instant at which the result of the convolution is desired; in x[n] and h[n] it is supposed to denote
the entire signals x[.] and h[.] respectively; and finally its use in x[n] and h[n] is supposed to convey the time
instant at which the result of the convolution is desired. The defect of this notation is made apparent if one
substitutes a number for n, so for example y[0] = x[0] ∗ h[0]—where does one go next with the right hand
side? The notation y[0] = (x ∗ h)[0] has no such difficulty. Similarly, the defective notation might encourage
one to “deduce” from y[n] = x[n] ∗ h[n] that, for instance, y[n− 3] = x[n− 3] ∗ h[n− 3], but there is no natural
interpretation of the right hand side that can covert this into a correct statement regarding convolution.
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the argument is strictly negative). If x[n] = 3δ[n]− δ[n− 1], then

y[n] = 3(0.5)nu[n]− (0.5)n−1u[n− 1] .

From this we deduce, for instance, that y[n] = 0 for n < 0, and y[0] = 3, y[1] = 0.5, y[2] =
(0.5)2, and in fact y[n] = (0.5)n for all n > 0.

The above example illustrates that if h[n] = 0 for n < 0, then the system output cannot
take nonzero values before the input takes nonzero values. Conversely, if the output never
takes nonzero values before the input does, then it must be the case that h[n] = 0 for n < 0.
In other words, this condition is necessary and sufficient for causality of the system.

The summation in Equation (11.2) that defines convolution involves an infinite number
of terms in general, and therefore requires some conditions in order to be well-defined.
One case in which there is no problem defining convolution is when the system is causal
and the input is zero for all times less than some finite start time sx, i.e., when the input is
right-sided. In that case, the infinite sum

∞∑
x[k]h[n− k]

k=−∞

reduces to the finite sum
n∑

x[k]h[n− k] ,
k=sx

because x[k] = 0 for k < sx and h[n− k] = 0 for k > n.
The same reduction to a finite sum occurs if h[n] is just right-sided rather than causal,

i.e., is 0 for all times less than some finite start time sh, where sh can be negative (if it isn’t,
then we’re back to the case of a causal system). In that case the preceding sum will run
from sx to n− 2sh . Yet another case in this vein involves an input signal or unit sample
response that is nonzero over only a finite interval of time, in which case it almost doesn’t
matter what the characteristics of the other function are, because the convolution yet again
reduces to running over the terms in a finite time-window.

When there actually are an infinite number of nonzero terms in the convolution sum,
the situation is more subtle. You may recall from discussion of infinite series in your calcu-
lus course that such a sum is well-defined—independently of the order in which the terms
are added—precisely when the sum of absolute values (or magnitudes) of the terms in the
infinite series is finite. In this case we say that the series is absolutely summable. In the case
of the convolution sum, what this requires is the following condition:

∞∑
|h[m]|.|x[n−m]

m=

| < ∞ (11.4)
−∞

An important set of conditions under which this constraint is satisfied is when

1. the magnitude or absolute value of the input at each instant is bounded for all time

2The infinite sum also reduces to a finite sum when both x[.] and h[.] are left-sided, i.e., are each zero for
times greater than some finite time; this case is not of much interest in our context.
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by some fixed (finite) number, i.e.,

|x[n]| ≤ μ < ∞ for all n ,

and

2. the unit sample response h[n] is absolutely summable:

∞∑
|h[n]| = α < .

n=

∞ (11.5)
−∞

With this, it follows that

∞∑
n

m=

|h[m]|.|x[ −m]| ≤ μα < ∞ ,
−∞

so it’s clear that the convolution sum is well-defined in this case.

Furthermore, taking the absolute value of the output y[n] in Equation (11.3) shows that

∞ ∞
|y[n]| =

∣∣ ∑
h[m]x[n−m]

∣

m=

∣ ≤ μ
∣∣ ∑

h[m]
∣

∣
−∞

∣ ∣
m=

∣
−∞

∣
∞

≤ μ
∑

m=

|h[m]| = μα . (11.6)
−∞

Thus absolute summability of the unit sample response suffices to ensure that, with a
bounded input, we not only have a well-defined convolution sum but that the output
is bounded too.

It turns out the converse is true also: absolute summability of the unit sample response
is necessary to ensure that a bounded input yields a bounded output. One way to see this is
to pick x[n] = sgn{h[−n]} for |n| ≤ N and x[n] = 0 otherwise, where the function sgn{·} is
takes the sign of its argument, i.e., is +1 or −1 when its argument is respectively positive
or negative. With this choice, the convolution sum shows that

N

y[0] =
∑

|h[n]|
n=−N

If h[·] is not absolutely summable, then y[0] is unbounded as N → ∞.
The above facts motivate the name that’s given to an LTI system with absolutely

summable unit sample response h[n], i.e., satisfying Equation (11.5): the system is termed
bounded-input bounded-output (BIBO) stable. As an illustration, the system in Example
1 above is evidently BIBO stable, because

∑
n |h[n]| = 1/(1− 0.5) = 2.

Note that because convolution is commutative, the roles of x and h can be interchanged.
It follows that convolution is well-defined if the input x[.] is absolutely summable and the
unit sample response h[.] is bounded, rather than the other way around; and again, the
result of this convolution is bounded.
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w[n] 
x[n] ������ ������ y[n] 

y = h2 ∗w = h2 ∗( )h1 ∗ x = ( )h2 ∗h1 ∗ x

x[n] y[n]�� �� ��	����

x[n] y[n]�� �� ��	����

x[n] ������ ������ y[n] 

Figure 11-7: LTI systems in series.

� 11.2.1 Series and Parallel Composition of LTI Systems

We have already noted that convolution is commutative, i.e., x ∗ h = h ∗ x. It turns out that
it is also associative, i.e.,

(h2 ∗ h1) ∗ x = h2 ∗ (h1 ∗ x) ,
provided each of the involved convolutions is well-behaved. Thus the convolutions—
each of which involves two functions—can be done in either sequence. The direct proof is
essentially by tedious expansion of each side of the above equation, and we omit it.

These two algebraic properties have immediate implications for the analysis of systems
composed of series or cascade interconnections of LTI subsystems, as in Figure 11-7. The fig-
ure shows three LTI systems that are equivalent, in terms of their input-output properties,
to the system represented at the top. The proof of equivalence simply involves invoking
associativity and commutativity.

A third property of convolution, which is very easy to prove from the definition of
convolution, is that it is distributive over addition, i.e.,

(h1 + h2) ∗ x = (h1 ∗ x) + (h2 ∗ x) ,

provided each of the individual convolutions on the right of the equation is well-defined.
Recall that the addition of two time-functions, as with h1 + h2 in the preceding equation,
is done pointwise, component by component. Once more, there is an immediate applica-
tion to an interconnection of LTI subsystems, in this case a parallel interconnection, as in
Figure 11-8.
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y1[n] 
������

x[n] 
 y[n] 

������ y2[n] 

y = y1 + y2 = (h1 ∗ x)+ (h2 ∗ x) = ( )h1 + h2 ∗ x

x[n] y[n] ���
��	����

Figure 11-8: LTI systems in parallel.

x[n] y[n]=Ax[n-D] S 

Figure 11-9: Scale-and-delay LTI system.

Example 2 (Scale-&-Delay System) Consider the system S in Figure 11-9 that scales its
DT input by A and delays it by D > 0 units of time (or, if D is negative, advances it by
|D|). This system is linear and time-invariant (as is seen quite directly by applying the
definitions from Chapter 10). It is therefore characterized by its unit sample response,
which is

h[n] = Aδ[n−D] .

We already know from the definition of the system that if the input at time n is x[n], the
output is y[n] = Ax[n−D], but let us check that the general expression in Equation (11.2)
gives us the same answer:

∞ ∞
y[n] =

∑
x[k]h[n− k] =

∑
x[k]Aδ[n− k−D] .

k=−∞ k=−∞

As the summation runs over k, we look for the unique value of k where the argument of
the unit sample function goes to zero, because this is the only value of k for which the unit
sample function is nonzero (and in fact equal to 1). Thus k = n−D, so y[n] = Ax[n−D],
as expected.

A general unit sample response h[.] can be represented as a sum—or equivalently, a
parallel combination—of scale-&-delay systems:

h[n] = · · ·+ h[−1]δ[n+ 1] + h[0]δ[n] + · · ·+ h[k]δ[n− k] + · · · . (11.7)

An input signal x[n] to this system gets scaled and delayed by each of these terms, with the
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results added to form the output. This way of looking at the LTI system response yields
the expression

y[n] = · · ·+ h[−1]x[n+ 1] + h[0]x[n] + · · ·+ h[m]x[n−m] + · · ·
∞

=
∑

h[m]x[n
m=

−m] .
−∞

This is the alternate form of convolution sum we obtained in Equation (11.3).

� 11.2.2 Flip-Slide-Dotting Away: Implementing Convolution

The above descriptions of convolution explain why we end up with the expressions in
Equations (11.2) and (11.3) to describe the output of an LTI system in terms of its input
and unit sample response. We will now describe a graphical construction that helps to
visualize and implement these computations, and that is often the simplest way to think
about the effects of convolution.

Let’s examine the expression in Equation (11.2), but the same kind of reasoning works
for Equation (11.3). Our task is to implement the computation in the summation below:

∞
y[n0] =

∑
x[k]h[n0 − k] . (11.8)

k=−∞

We’ve written n0 rather than the n we used before just to emphasize that this computation
involves summing over the dummy index k, with the other number being just a parameter,
fixed throughout the computation.

We first plot the time functions x[k] and h[k] on the k axis (with k increasing to the right,
as usual). How do we get h[n0− k] from this? First note that h[−k] is obtained by reversing
h[k] in time, i.e., a flip of the function across the time origin. To get h[n0 − k], we now slide

this reversed time function, h[−k], to the right by n0 steps if n0 ≥ 0, or to the left by |n0|
steps if n0 < 0. To confirm that this prescription is correct, note that h[n0 − k] should take
the value h[0] at k = n0.

With these two steps done, all that remains is to compute the sum in Equation (11.8).
This sum takes the same form as the familiar dot product of two vectors, one of which has
x[k] k h[n k] kas its th component, and the other of which has 0 − as its th component. The
only twist here is that the vectors could be infinitely long. So what this steps boils down
to is taking an instant-by-instant product of the time function x[k] and the time function
h[n0 − k] that your preparatory “flip and slide” step has produced, then summing all the
products.

At the end of all this (and it perhaps sounds more elaborate than it is, till you get a
little practice), what you have computed is the value of the convolution for the single value
n0. To compute the convolution for another value of the argument, say n1, you repeat the
process, but sliding by n1 instead of n0.

To implement the computation in Equation (11.3), you do the same thing, except that
now it’s h[m] that stays as it is, while x[m] gets flipped and slid by n to produce x[n−m],
after which you take the dot product. Either way, the result is evidently the same.
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Example 1 revisited Suppose again that h[m] = (0.5)mu[m] and x[m] = 3δ[m]− δ[m− 1].
Then

x[−m] = −δ[−m− 1] + 3δ[−m] ,

which is nonzero only at m=−1 and m= 0. (Sketch this!) As a consequence, sliding x[−m]

to the left, to get x[n−m] when n < 0, will mean that the nonzero values of x[n−m] have
no overlap with the nonzero values of h[m], so the dot product will yield 0. This establishes
that y[n] = (x ∗ h)[n] = 0 for n < 0, in this example.

For n = 0, the only overlap of nonzero values in h[m] and x[n−m] is at m = 0, and we
get the dot product to be (0.5)0 × 3 = 3, so y[0] = 3.

For n > 0, the only overlap of nonzero values in h[m] and x[n−m] is at m = n− 1 and
m = n, and the dot product evaluates to

y[n] = −(0.5)n−1 + 3(0.5)n = (0.5)n−1(−1 + 1.5) = (0.5)n .

So we have completely recovered the answer we obtained in Example 1. For this example,
our earlier approach—which involved directly thinking about superposition of scaled and
shifted unit sample responses—was at least as easy as the graphical approach here, but in
other situations the graphical construction can yield more rapid or direct insights.

� 11.2.3 Deconvolution

We’ve seen in the previous chapter how having an LTI model for a channel allows us to
predict or analyze the distorted output y[n] of the channel, in response to a superposition
of alternating positive and negative steps at the input x[n], corresponding to a rectangular-
wave baseband signal. That analysis was carried out in terms of the unit step response,
s[n], of the channel.

We now briefly explore one plausible approach to undoing the distortion of the channel,
assuming we have a good LTI model of the channel. This discussion is most naturally
phrased in terms of the unit sample response of the channel rather than the unit step re-
sponse. The idea is to process the received baseband signal y[n] through an LTI system, or
LTI filter, that is designed to cancel the effect of the channel.

Consider a simple channel that we model as LTI with unit sample function

h1[n] = δ[n] + 0.8δ[n− 1] .

This is evidently a causal model, and we might think of the channel as one that transmits
perfectly and instantaneously along some direct path, and also with a one-step delay and
some attenuation along some echo path.

Suppose our receiver filter is to be designed as a causal LTI system with unit sample
response

h2[n] = h2[0]δ[n] + h2[1]δ[n− 1] + · · ·+ h2[k]δ[n− k] + · · · . (11.9)

Its input is y[n], and let us label its output as z[n]. What conditions must h2[n] satisfy
if we are to ensure that z[n] = x[n] for all inputs x[n], i.e., if we are to undo the channel
distortion?

An obvious place to start is with the case where x[n] = δ[n]. If x[n] is the unit sample
function, then y[n] is the unit sample response of the channel, namely h1[n], and z[n] will
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then be given by z[n] = (h2 ∗ h1)[n]. In order to have this be the input that went in, namely
x[n] = δ[n], we need

(h2 ∗ h1)[n] = δ[n] . (11.10)

And if we satisfy this condition, then we will actually have z[n] = x[n] for arbitrary x[n],
because

z = h2 ∗ (h1 ∗ x) = (h2 ∗ h1) ∗ x = δ0 ∗ x = x ,

where δ0[.] is our alternative notation for the unit sample function δ[n]. The last equality
above is a consequence of the fact that convolving any signal with the unit sample function
yields that signal back again; this is in fact what Equation (11.1) expresses.

The condition in Equation (11.10) ensures that the convolution carried out by the chan-
nel is inverted or undone, in some sense, by the filter. We might say that the filter de-

convolves the output of the system to get the input (but keep in mind that it does this by
a further convolution!). In view of Equation (11.10), the function h2[.] is also termed the
convolutional inverse of h1[.], and vice versa.

So how do we find h2[n] to satisfy Equation (11.10)? It’s not by a simple division of any
kind (though when we get to doing our analysis in the frequency domain shortly, it will
indeed be as simple as division). However, applying the “flip–slide–dot product” mantra
for computing a convolution, we find the following equations for the unknown coefficients
h2[k]:

1 · h2[0] = 1

0.8 · h2[0] + 1 · h2[1] = 0

0.8 · h2[1] + 1 · h2[2] = 0

...

0.8 · h2[k− 1] + 1 · h2[k] = 0

... ,

from which we get h2[0] = 1, h2[1] = −0.8, h2[2] = −0.8h2[1] = (−0.8)2, and in general
h2[k] = (−0.8)ku[k].

Deconvolution as above would work fine if our channel model was accurate, and if
there were no noise in the channel. Even assuming the model is sufficiently accurate, note
that any noise process w[.] that adds in at the output of the channel will end up adding
v[n] = (h2 ∗w)[n] to the noise-free output, which is z[n] = x[n]. This added noise can com-
pletely overwhelm the solution. For instance, if both x[n] and w[n] are unit samples, then
the output of the receiver’s deconvolution filter has a noise-free component of δ[n] and
an additive noise component of (−0.8)nu[n] that dwarfs the noise-free part. After we’ve
understood how to think about LTI systems in the frequency domain, it will become much
clearer why such deconvolution can be so sensitive to noise.
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� 11.3 Relating the Unit Step Response to the Unit Sample

Response

Since
δ[n] = u[n]− u[n− 1]

it follows that for an LTI system the unit sample response h[n] and the unit step response
s[n] are simply related:

h[n] = s[n]− s[n− 1] .

This relation is a consequence of applying superposition and invoking time-invariance.
Hence, for a causal system that has h[k] = 0 and s[k] = 0 for k < 0, we can invert this
relationship to write

n

s[n] =
∑

h[k] . (11.11)
0

We can therefore very simply determine the unit step response from the unit sample re-
sponse. It is also follows from Equation (11.11) that the time it takes for the unit step
response s[n] to settle to its final value is precisely the time it takes for the unit sample
response h[n] to settle back down to 0 and stay there.

When the input to an LTI system is a sum of scaled and delayed unit steps, there is no
need to invoke the full machinery of convolution to determine the system output. Instead,
knowing the unit step response s[n], we can again simply apply superposition and invoke
time-invariance.

We describe next a tool for examining the channel response under this ISI, and for set-
ting parameters at the transmitter and receiver.

� 11.4 Eye Diagrams

On the face of it, ISI is a complicated effect because the magnitude of bit interference and
the number of interfering bits depend both on the channel properties and on how bits are
represented on the channel. Figure 11-11 shows an example of what the receiver sees (bot-
tom) in response to what the transmitter sent (top) over a channel with ISI but no noise.
Eye diagrams (or “eye patterns”) are a useful graphical tool in the toolkit of a communi-
cations system designer or engineer to understand ISI. We will use this tool to determine
whether the number of samples per bit is large enough to enable the receiver to determine
“0”s and “1”s reliably from the demodulated (and filtered) sequence of received voltage
samples.

To produce an eye diagram, one begins with the channel output that results from a long
stretch of on-off signaling, as in the bottom part of Figure 11-11, then essentially slices this
up into smaller segments, say 3 bit-slots long, and overlays all the resulting segments. The
result spans the range of waveform variations one is likely to see over any 3 bit-slots at the
output. A more detailed prescription follows.

Take all the received samples and put them in an array of lists, where the number of
lists in the array is equal to the number of samples in k bit periods. In practice, we want k
to be a small positive integer like 3. If there are s samples per bit, the array is of size k · s.

Each element of this array is a list, and element i of the array is a list of the received
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Figure 11-10: Eye diagrams for a channel with a slow rise/fall for 33 (top) and 20 (bottom) samples per bit.

Notice how the eye is wider when the number of samples per bit is large, because each step response has

time to settle before the response to the next step appears.

samples y[i], y[i+ ks], y[i+ 2ks], . . .. Now suppose there were no ISI at all (and no noise).
Then all the samples in the ith list corresponding to a transmitted “0” bit would have
the same voltage value, and all the samples in the ith list corresponding to a transmitted
“1” would have the same value. Consider the simple case of just a little ISI, where the
previous bit interferes with the current bit, and there’s no further impact from the past.
Then the samples in the ith list corresponding to a transmitted “0” bit would have two
distinct possible values, one value associated with the transmission of a “10” bit sequence,
and one value associated with a “00” bit sequence. A similar story applies to the samples
in the ith list corresponding to a transmitted “1” bit, for a total of four distinct values for
the samples in the ith list. If there is more ISI, there will be more distinct values in the ith

list of samples. For example, if two previous bits interfere, then there will be eight distinct
values for the samples in the ith list. If three bits interfere, then the ith list will have 16
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Figure 11-11: Received signals in the presence of ISI. Is the number of samples per bit “just right”? And

what threshold should be used to determine the transmitted bit? It’s hard to answer these question from

this picture. An eye diagram sheds better light.

distinct values, and so on.
Without knowing the number of interfering bits, to capture all the possible interactions,

we must produce the above array of lists for every possible combination of bit sequences
that can ever be observed. If we were to plot this array on a graph, we will see a picture
like the one shown in Figure 11-10. This picture is an eye diagram.

In practice, we can’t produce every possible combination of bits, but what we can do is
use a long random sequence of bits. We can take the random bit sequence, convert it in to
a long sequence of voltage samples, transmit the samples through the channel, collect the
received samples, pack the received samples in to the array of lists described above, and
then plot the result. If the sequence is long enough, and the number of interfering bits is
small, we should get an accurate approximation of the eye diagram.

But what is “long enough”?
We can answer this question and develop a less ad hoc procedure by using the proper-

ties of the unit sample response, h[n]. The idea is that the sequence h[0], h[1], . . . , h[n], . . .

captures the complete noise-free response of the channel. If h[k] ≈ 0 for k > �, then we
don’t have to worry about samples more than � in the past. Now, if the number of samples
per bit is s, then the number of bits in the past that can affect the present bit is no larger
than �/s, where � is the length of the non-zero part of h[·]. Hence, it is enough to generate
all bit patterns of length B = �/s, and send them through the channel to produce the eye
diagram. In practice, because noise can never be eliminated, one might be a little conser-
vative and pick B = (�/n) + 2, slightly bigger than what a noise-free calculation would
indicate. Because this approach requires 2B bit patterns to be sent, it might be unreason-



158 CHAPTER 11. LTI MODELS AND CONVOLUTION

able for large values of B; in those cases, it is likely that s is too small, and one can find
whether that is so by sending a random subset of the 2B possible bit patterns through the
channel.

Figure 11-10 shows the width of the eye, the place where the diagram has the largest dis-
tinction between voltage samples associated with the transmission of a ’0’ bit and those
associated with the transmission of a ’1’ bit. Another point to note about the diagrams
is the “zero crossing”, the place where the upward rising and downward falling curves
cross. Typically, as the degree of ISI increases (i.e., the number of samples per bit is re-
duced), there is a greater degree of “fuzziness” and ambiguity about the location of this
zero crossing.

The eye diagram is an important tool, useful for verifying some key design and opera-
tional decisions:

1. Is the number of samples per bit large enough? If it is large enough, then at the center
of the eye, the voltage samples associated with transmission of a ’1’ are clearly above
the digitization threshold and the voltage samples associated with the transmission
of a ’0’ are clearly below. In addition, the eye must be “open” enough that small
amounts of noise will not lead to errors in converting bit detection samples to bits.
As will become clear later, it is impossible to guarantee that noise will never cause
errors, but we can reduce the likelihood of error.

2. Has the value of the digitization threshold been set correctly? The digitization thresh-
old should be set to the voltage value that evenly divides the upper and lower halves
of the eye, if 0’s and 1’s are equally likely. We didn’t study this use of eye diagrams,
but mention it because it is used in practice for this purpose as well.

3. Is the sampling instant at the receiver within each bit slot appropriately picked? This
sampling instant should line up with where the eye is most open, for robust detection
of the received bits.

� Problems and Questions

1. Each of the following equations describes the relationship that holds between the
input signal x[.] and output signal y[.] of an associated discrete-time system, for all
integers n. In each case, explain whether or not the system is (i) causal , (ii) linear,
(iii) time-invariant.

(a) y[n] = 0.5x[n] + 0.5x[n− 1].

(b) y[n] = x[n+ 1] + 7.

(c) y[n] = cos(3n)x[n− 2].

(d) y[n] = x[n]x[n− 1].

(e) ny[n] = k=13

(f) y[n] = x[−n].

x[k] for n 13, otherwise y[n] = 0.
∑ ≥
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2. Suppose the unit step response s[n] of a particular linear, time-invariant (LTI) commu-
nication channel is given by

s[n] =
(
1−

(1
2

)n)
u[n] ,

where u[n] denotes the unit step function: u[n] = 1 for n ≥ 0, and u[n] = 0 for n < 0.

(a) Draw a labeled sketch of the above unit step response s[n] for 0 ≤ n ≤ 4.

(b) Suppose the input x[n] to this channel is given by

x[n] = 2 for n = 0,1,2,

= 0 for all other n.

Draw a labeled sketch of this x[n] for n in the range −1 to 5.

(c) With the x[.] from Part (b), determine the value of the output y[n] at times n = 1

and n = 4. Explain your reasoning.

(d) Determine the unit sample response h[n] of the channel, explaining how you
arrived at it.
Also draw a labeled sketch of h[n] for 0 ≤ n ≤ 4.

(e) Is this channel bounded-input bounded-output stable? Explain your answer.

3. (By Vladimir Stojanovic) A line-of-sight channel can be represented as an LTI system
with a unit sample response:

h[n] = aδ[n−M ] ,

where M is the channel delay, and M > 0.

(a) Is this channel causal? Explain.

(b) Write an expression for the unit step response s[n] of this system.

4. (By Vladimir Stojanovic) A channel with echo can be represented as an LTI system with
a unit sample response:

h[n] = aδ[n−M ] + bδ[n−N ] , (11.12)

where M is the channel delay, N is the echo delay, and N > M .

(a) Derive the unit step response s[n] of this channel with echo.

(b) Two such channels, with unit sample responses

h1[n] = δ[n] + 0.1δ[n− 2] and h2[n] = δ[n− 1] + 0.2δ[n− 2],

are cascaded in series.

i. Derive the unit sample response h12[n] of the cascaded system.
ii. Derive the unit step response s12[n] of the cascaded system.
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(c) The transmitter maps each bit to Nb samples using bipolar signaling (bit 0 maps
to Nb samples of value −1, and bit 1 maps to Nb samples of value +1). The
mapped samples are sent over the channel with echo, with unit sample response
given by Equation (11.12), with a > b > 0, Nb = 4, N = Nb, and M = 0.
Sketch the output of the channel for the input bit sequence 01. The initial condi-
tion before the 01 bit sequence is that the input to the channel was a long stream
of zeroes. Clearly mark the signal levels on the y-axis, as well as sample indices
on the x-axis.

5. (By Yury Polyanskiy.) Explain whether each of the following statements is true or
false.

(a) Let S be the LTI system that delays signal by D. Then h ∗ S(x) = S(h) ∗ x for
any signals h and x.

(b) Adding a delay by D after LTI system h[n] is equivalent to replacing h[n] with
h[n−D].

(c) if h ∗ x[n] = 0 for all n then necessarily one of signals h[·] or x[·] is zero.

(d) LTI system is causal if and only if h[n] = 0 for n < 0.

(e) LTI system is causal if and only if u[n] = 0 for n < 0.

(f) For causal LTI h[n] is zero for all large enough n if and only if u[n] becomes
constant for all large enough n.

(g) s[n] is zero for all n ≤ n0 and then monotonically grows for n > n0 if and only if
h[n] is zero for all n ≤ n0 and then non-negative for n > n0.

6. (By Yury Polyanskiy.) If h[n] is non-zero only inside interval [−10,10] and x[n] is
non-zero only on [20,35], which samples of y[] may be non zero if y[n] = (h ∗ x)[n]?
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CHAPTER 12 
Frequency Response of LTI Systems
 

Sinusoids—and their close relatives, the complex exponentials—play a distinguished role 
in the study of LTI systems. The reason is that, for an LTI system, a sinusoidal input gives 
rise to a sinusoidal output again, and at the same frequency as the input. This property is not 
obvious from anything we have said so far about LTI systems. Only the amplitude and 
phase of the sinusoid might be, and generally are, modified from input to output, in a way 
that is captured by the frequency response of the system, which we introduce in this chapter. 

• 12.1 Sinusoidal Inputs 

Before focusing on sinusoidal inputs, consider an input that is periodic but not necessarily 
sinusoidal. A signal x[n] is periodic if 

x[n+ P ] = x[n] for all n ,  

where P is some fixed positive integer. The smallest positive integer P for which this 
condition holds is referred to as the period of the signal (though the term is also used at 
times for positive integer multiples of P ), and the signal is called P -periodic. 

While it may not be obvious that sinusoidal inputs to LTI systems give rise to sinusoidal 
outputs, it’s not hard to see that periodic inputs to LTI systems give rise to periodic outputs 
of the same period (or an integral fraction of the input period). The reason is that if the P -
periodic input x[.] produces the output y[.], then time-invariance of the system means that 
shifting the input by P will shift the output by P . But shifting the input by P leaves the 
input unchanged, because it is P -periodic, and therefore must leave the output unchanged, 
which means the output must be P -periodic. (This argument actually leaves open the 
possibility that the period of the output is P/K  for some integer K, rather than actually 
P -periodic, but in any case we will have y[n+ P ] = y[n] for all n.) 

161 
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• 12.1.1 Discrete-Time Sinusoids 

A discrete-time (DT) sinusoid takes the form 

x[n] = cos(Ω0n + θ0) , (12.1) 

We refer to Ω0 as the angular frequency of the sinusoid, measured in radians/sample; Ω0 is 
the number of radians by which the argument of the cosine increases when n increases by 
1. (It should be clear that we can replace the cos with a sin in Equation (12.1), because cos 
and sin are essentially equivalent except for a pi/2 phase shift.) 

Note that the lowest rate of variation possible for a DT signal is when it is constant, 
and this corresponds, in the case of a sinusoidal signal, to setting the frequency Ω0 to 
0. At the other extreme, the highest rate of variation possible for a DT signal is when it 
alternates signs at each time step, as in (−1)n . A sinusoid with this property is obtained 
by taking Ω0 = ±π, because cos(±πn) = (−1)n . Thus all the action of interest with DT 
sinusoids happens in the frequency range [−π,π]. Outside of this interval, everything 
repeats periodically in Ω0, precisely because adding any integer multiple of 2π to Ω0 does 
not change the value of the cosine in Equation (12.1). 

It can be helpful to consider this DT sinusoid as derived from an underlying continuous-
time (CT) sinusoid cos(ω0t + θ0) of period 2π/ω0, by sampling it at times t = nT that are 
integer multiples of some sampling interval T . Writing 

cos(Ω0n + θ0) = cos(ω0nT + θ0) 

then yields the relation Ω0 = ω0T (with the constraint |ω0| ≤ π/T , to reflect |Ω0| ≤ π). It is 
now natural to think of 2π/(ω0T ) = 2π/Ω0 as the period of the DT sinusoid, measured in 
samples. However, 2π/Ω0 may not be an integer! 

Nevertheless, if 2π/Ω0 = P/Q  for some integers P and Q, i.e., if 2π/Ω0 is rational, 
then indeed x[n + P ] =  x[n] for the signal in Equation (12.1), as you can verify quite eas­
ily. On the other hand, if 2π/Ω0 is irrational, the DT sequence in Equation (12.1) will 
not actually be periodic: there will be no integer P such that x[n + P ] =  x[n] for all n. 
For example, cos(3πn/4) has frequency 3π/4 radians/sample and a period of 8, because 
2π/3π/4 = 8/3 =  P/Q, so the period, P , is  8. On the other hand, cos(3n/4) has frequency 
3/4 radians/sample, and is not periodic as a discrete-time sequence because 2π/3/4 = 8π/3 
is irrational. We could still refer to 8π/3 as its “period”, because we can think of the se­
quence as arising from sampling the periodic continuous-time signal cos(3t/4) at integral 
values of t. 

With all that said, it turns out that the response of an LTI system to a sinusoid of the 
form in Equation (12.1) is a sinusoid of the same (angular) frequency Ω0, whether or not 
the sinusoid is actually DT periodic. The easiest way to demonstrate this fact is to rewrite 
sinusoids in terms of complex exponentials. 

• 12.1.2 Complex Exponentials 

The relation between complex exponentials and sinusoids is captured by Euler’s famous 
identity: 

ejφ = cos  φ + j sin φ .  (12.2) 
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√ 
where j = −1. ejφ represents a complex number (or a point in the complex plane) that has 
a real component of cos φ and an imaginary component of sin φ. It therefore has magnitude 
1 (because cos2 φ + sin2 φ = 1), and makes an angle of φ with the positive real axis. In other 
words, ejφ is the point on the unit circle in the complex plane (i.e., at radius 1 from the 
origin) and at an angle of φ relative to the positive real axis. 

A short refresher on complex numbers may be worthwhile. 
The complex number c = a + jb can be thought of as the point (a, b) in the plane, √ 

and accordingly has magnitude |c| = a2 + b2 and angle with the positive real axis of 
∠c = arctan(b/a). Note that a = |c| cos(∠c) and b = |c| sin(∠c). Hence, in view of Euler’s 
identity, we can also write the complex number in so-called polar form, c = |c|.ej∠c; this 
represents a point at distance |c| from the origin, at an angle of ∠c. 

The extra thing you can do with complex numbers, which you cannot do with just 
points in the plane, is multiply them. And the polar representation shows that the product 
of two complex numbers c1 and c2 is 

j∠c1 j∠c2 j(∠c1+∠c2)c1.c2 = |c1|.e .|c2|.e = |c1|.|c2|.e , 

i.e., the magnitude of the product is the product of the individual magnitudes, and the 
angle of the product is the sum of the individual angles. It also follows that the inverse of a 
complex number c has magnitude 1/|c| and angle −∠c. 

Several other identities follow from Euler’s identity above. Most importantly, 

( ) ( ) ( )1 1 jjφ −jφ jφ − e −jφ −jφ − ejφcos φ = e + e sin φ = e = e . (12.3)
2 2j 2 

Also, writing 
jA jB j(A+B)e e = e , 

and then using Euler’s identity to rewrite all three of these complex exponentials, and 
finally multiplying out the left hand side, generates various useful identities, of which we 
only list two: 

( )
1cos(A) cos(B) =  cos(A + B) + cos(A − B) ;2 

cos(A ∓ B) = cos(A) cos(B) ± sin(A) sin(B) . (12.4) 

• 12.2 Frequency Response 

We are now in a position to determine what an LTI system does to a sinusoidal input. 
The streamlined approach to this analysis involves considering a complex input of the form 
x[n] =  ej(Ω0n+θ0) rather than x[n] = cos(Ω0n + θ0). The reasoning and mathematical calcu­
lations associated with convolution work as well for complex signals as they do for real 
signals, but the complex exponential turns out to be somewhat easier to work with (once 
you are comfortable working with complex numbers)—and the results for the real sinu­
soidal signals we are interested in can then be extracted using identities such as those in 
Equation (12.3). 

It may be helpful, however, to first just plough in and do the computations directly, 
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substituting the real sinusoidal x[n] from Equation (12.1) into the convolution expression 
from the previous chapter, and making use of Equation (12.4). The purpose of doing this is 
to (i) convince you that it can be done entirely with calculations involving real signals; and 
(ii) help you appreciate the efficiency of the calculations with complex exponentials when 
we get to them. 

The direct approach mentioned above yields 

∞ f 
y[n] =  h[m]x[n− m] 

m=−∞ 
∞ f ( )

= h[m] cos Ω0(n− m) +  θ0
m=−∞ ( ∞ )f

= h[m] cos(Ω0m) cos(Ω0n+ θ0) 
m=−∞ ( ∞ )f

+ h[m] sin(Ω0m) sin(Ω0n+ θ0) 
m=−∞ 

= C(Ω0) cos(Ω0n+ θ0) +  S(Ω0) sin(Ω0n+ θ0) , (12.5) 

where we have introduced the notation 

∞ ∞ f f 
C(Ω) = h[m] cos(Ωm) , S(Ω) = h[m] sin(Ωm) . (12.6) 

m=−∞ m=−∞ 

Now define the complex quantity 

H(Ω) = C(Ω) − jS(Ω) = |H(Ω)|. exp{j∠H(Ω)} , (12.7) 

which we will call the frequency response of the system, for a reason that will emerge 
immediately below. Then the result in Equation (12.5) can be rewritten, using the second 
identity in Equation (12.4), as 

[ ]
y[n] =  |H(Ω0)|. cos ∠H(Ω0). cos(Ω0n+ θ0) − sin ∠H(Ω0) sin(Ω0n+ θ0)( )

= |H(Ω0)|. cos Ω0n+ θ0 + ∠H(Ω0) . (12.8) 

The result in Equation (12.8) is fundamental and important! It states that the entire effect 
of an LTI system on a sinusoidal input at frequency Ω0 can be deduced from the (com­
plex) frequency response evaluated at the frequency Ω0. The amplitude or magnitude of 
the sinusoidal input gets scaled by the magnitude of the frequency response at the input 
frequency, and the phase gets augmented by the angle or phase of the frequency response 
at this frequency. 

Now consider the same calculation as earlier, but this time with complex exponentials. 
Suppose 

j(Ω0n+θ0)x[n] =  A0e for all n .  (12.9) 
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Convolution then yields
 

∞ f 
y[n] =  h[m]x[n − m] 

m=−∞ 

= 
∞ f 

h[m]A0e 
j

(
Ω0(n−m)+θ0

) 

m=−∞ 
∞ 

= 
( f 

m=−∞ 

h[m]e −jΩ0m
) 
A0e

j(Ω0n+θ0) . (12.10) 

Thus the output of the system, when the input is the (everlasting) exponential in Equation 
(12.9), is the same exponential, except multiplied by the following quantity evaluated at 
Ω = Ω0: 

∞ f 
h[m]e −jΩm = C(Ω) − jS(Ω) = H(Ω) . (12.11) 

m=−∞ 

The first equality above comes from using Euler’s equality to write e−jΩm = cos(Ωm) − 
j sin(Ωm), and then using the definitions in Equation (12.6). The second equality is simply 
the result of recognizing the frequency response from the definition in Equation (12.7). 

To now determine was happens to a sinusoidal input of the form in Equation (12.1), use 
Equation (12.3) to rewrite it as 

( )A0 j(Ω0n+θ0) −j(Ω0n+θ0)A0 cos(Ω0n + θ0) =  e + e ,
2 

and then superpose the responses to the individual exponentials (we can do that because 
of linearity), using the result in Equation (12.10). The result (after algebraic simplification) 
will again be the expression in Equation (12.8), except scaled now by an additional A0, 
because we scaled our input by this additional factor in the current derivation. 

To succinctly summarize the frequency response result explained above: 

If the input to an LTI system is a complex exponential, ejΩn, then the output is 
H(Ω)ejΩn, where H(Ω) is the frequency response of the LTI system. 

Example 1 (Moving-Average Filter) Consider an LTI system with unit sample response 

h[n] =  h[0]δ[n] +  h[1]δ[n − 1] + h[2]δ[n − 2] . 

By convolving this h[·] with the input signal x[·], we see that 

y[n] = (h ∗ x)[n] =  h[0]x[n] +  h[1]x[n − 1] + h[2]x[n − 2] . (12.12) 

The system therefore produces an output signal that is the “3-point weighted moving 
average” of the input. The example in Figure 12-1 is of this form, with equal weights of 
h[0] = h[1] = h[2] = 1/3, producing the actual (moving) average. 
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Figure 12-1: Three-point weighted moving average: h and the frequency response, H . 

The frequency response of the system, from the definition in Equation (12.11), is thus 

−jΩ −j2ΩH(Ω) = h[0] + h[1]e + h[2]e . 

Considering the case where h[0] = h[1] = h[2] = 1/3, the frequency response can be rewrit­
ten as 

( )
−jΩ −jΩH(Ω) = 

1 
e ejΩ + 1+  e 

3 

=
1 
e −jΩ(1 + 2cosΩ) . (12.13)

3 

Noting that |e−jΩ| = 1, it follows from the preceding equation that the magnitude of H(Ω) 
is 

1 |H(Ω)| = |1 + 2cosΩ| ,
3

which is consistent with the plot on the right in Figure 12-1: it takes the value 1 at Ω = 0, 
the value 0 at Ω = arccos(−1 ) =  2π , and the value 1 at Ω =  ±π. The frequencies at which 2 3 3 
|H(Ω)| = 0  are referred to as the zeros of the frequency response; in this moving-average 
example, they are at Ω =  ± arccos(−1 ) =  ±2π .2 3 

From Equation (12.13), we see that the angle of H(Ω) is −Ω for those values of Ω where 
1 + 2cosΩ > 0; this is the angle contributed by the term e−jΩ . For frequencies where 1 +  
2 cos Ω < 0, we need to add or subtract (it doesn’t matter which) π radians to −Ω, because 
−1 =  e±jπ. Thus { −Ω for |Ω| < 2π/3∠H(Ω) = −Ω ± π for (2π/3) < |Ω| < π  

Example 2 (The Effect of a Time Shift) What does shifting h[n] in time do to the fre­
quency response H(Ω)? Specifically, suppose 

hD[n] =  h[n − D] , 

so hD[n] is a time-shifted version of h[n]. How does the associated frequency response 
HD(Ω) relate to H(Ω)? 

From the definition of frequency response in Equation (12.11), we have 

∞ ∞ ∞ f f f −jΩm −jΩm −jΩD −jΩnHD(Ω) = hD[m]e = h[m − D]e = e h[n]e , 
m=−∞ m=−∞ n=−∞ 
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where the last equality is simply the result of the change of variables m−D = n, so  m = 
n+ D. It follows that 

HD(Ω) = e −jΩDH(Ω) . 

Equivalently, 
|HD(Ω)| = |H(Ω)| 

and 
∠HD(Ω) = −ΩD+ ∠H(Ω) , 

so the frequency response magnitude is unchanged, and the phase is modified by an addi­
tive term that is linear in Ω, with slope −D. 

Although we have introduced the notion of a frequency response in the context of what 
an LTI system does to a single sinusoidal input, superposition will now allow us to use 
the frequency response to describe what an LTI system does to any input made up of a 
linear combination of sinusoids at different frequencies. You compute the (sinusoidal) response 
to each sinusoid in the input, using the frequency response at the frequency of that sinusoid. 
The system output will then be the same linear combination of the individual sinusoidal 
responses. 

As we shall see in the next chapter, when we use Fourier analysis to introduce the 
notion of the spectral content or frequency content of a signal, the class of signals that can be 
represented as a linear combination of sinusoids at assorted frequencies is very large. So 
this superposition idea ends up being extremely powerful. 

Example 3 (Response to Weighted Sum of Two Sinusoids) Consider an LTI system with 
frequency response H(Ω), and assume its input is the signal 

π π 
x[n] = 5 sin( n+ 0.2) + 11cos( n− 0.4) . 

4 7 

The system output is then
 

(π ) (π )π π π π 
y[n] =  |H( )|.5 sin n+ 0.2 +  ∠H( ) + |H( )|.11 cos n− 0.4 +  ∠H( ) . 

4 4 4 7 7 7 

• 12.2.1 Properties of the Frequency Response 

Existence The definition of the frequency response in terms of h[m] and sines and cosines 
in Equation (12.7), or equivalently in terms of h[m] and complex exponentials in Equation 
(12.11), generally involves summing an infinite number of terms, so again (just as with 
convolution) one needs conditions to guarantee that the sum is well-behaved. One case, 
of course, is where h[m] is nonzero at only a finite number of time instants, in which case 
there is no problem with the sum. Another case is when the function h[·] is absolutely 
summable, 

∞ f 
|h[n]| ≤ μ < ∞ , 

n=−∞ 
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as this ensures that the sum defining the frequency response is itself absolutely summable. 
The absolute summability of h[·] is the condition for bounded-input bounded-output 
(BIBO) stability of an LTI system that we obtained in the previous chapter. It turns out 
that under this condition the frequency response is actually a continuous function of Ω. 

Various other important properties of the frequency response follow quickly from the 
definition. 

Periodicity in Ω Note first that H(Ω) repeats periodically on the frequency (Ω) axis, with 
period 2π, because a sinusoidal or complex exponential input of the form in Equation (12.1) 
or (12.9) is unchanged when its frequency is increased by any integer multiple of 2π. This 
can also be seen from Equation (12.11), the defining equation for the frequency response. 
It follows that only the interval |Ω| ≤  π is of interest. 

Lowest Frequency An input at the frequency Ω = 0  corresponds to a constant (or “DC”, 
which stands for direct current, but in this context just means “constant”) input, so 

∞ f 
H(0) = h[n] (12.14) 

n=−∞ 

is the DC gain of the system, i.e., the gain for constant inputs. 

Highest Frequency At the other extreme, a frequency of Ω =  ±π corresponds to an input 
of the form (−1)n, which is the highest-frequency variation possible for a discrete-time 
signal, so 

∞ f 
H(π) =  H(−π) =  (−1)nh[n] (12.15) 

n=−∞ 

is the high-frequency gain of the system. 

Symmetry Properties for Real h[n] We will only be interested in the case where the unit 
sample response h[·] is a real (rather than complex) function. Under this condition, the 
definition of the frequency response in Equations (12.7), (12.6) shows that the real part of 
the frequency response, namely C(Ω), is an  even function of frequency, i.e., has the same value 
when Ω is replaced by −Ω. This is because each cosine term in the sum that defines C(Ω) 
is an even function of Ω. 

Similarly, for real h[n], the imaginary part of the frequency response, namely −S(Ω), is  an  
odd function of frequency, i.e., gets multiplied by −1 when Ω is replaced by −Ω. This is 
because each sine term in the sum that defines S(Ω) is an odd function of Ω. 

In this discussion, we have used the property that h[·] is real, so C and S are also both 
real, and correspond to the real and imaginary parts of the frequency response, respec­
tively. 

It follows from the above facts that for a real h[n] the magnitude |H(Ω)| of the frequency 
response is an even function of Ω, and the angle ∠H(Ω) is an odd function of Ω. 

You should verify that the claimed symmetry properties indeed hold for the h[·] in Ex­
ample 1 above. 
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Real and Even h[n] Equations (12.7) and (12.6) also directly show that if the real unit 
sample response h[n] is an even function of time, i.e., if h[− n] =  h[n], then the associated 
frequency response must be purely real. The reason is that the summation defining S (Ω), 
which yields the imaginary part of H(Ω), involves the product of the even function h[m] 
with the odd function sin(Ωm), which is thus an odd function of m, and hence sums to 0. 

Real and Odd h[n] Similarly if the real unit sample response h[n] is an odd function of time, 
i.e., if h[− n] =  − h[n], then the associated frequency response must be purely imaginary. 

Frequency Response of LTI Systems in Series We have already seen that a cascade or 
series combination of two LTI systems, the first with unit sample response h1[· ] and the 
second with unit sample response h2[· ], results in an overall system that is LTI, with unit 
sample response (h2 ∗ h1)[· ] = (h1 ∗ h2)[· ]. 

To determine the overall frequency response of the system, imagine applying an (ever­
lasting) exponential input of the form x[n] =  AejΩn to the first subsystem. Its output will 
then be w[n] =  H1(Ω) · AejΩn, which is again an exponential of the same form, just scaled 
by the frequency response of the first system. Now with w[n] as the input to the second 
system, the output of the second system will be y[n] =  H2(Ω) · H1(Ω) · AejΩn . It follows 
that the overall frequency response H(Ω) is given by 

H(Ω) = H2(Ω)H1(Ω) = H1(Ω)H2(Ω) . 

This is the first hint of a more general result, namely that convolution in time corresponds 
to multiplication in frequency: 

h[n] = (h1 ∗ h2)[n] ←→ H(Ω) = H1(Ω)H2(Ω) . (12.16) 

This result makes frequency-domain methods compelling in the analysis of LTI systems— 
simple multiplication, frequency by frequency, replaces the more complicated convolution 
of two complete signals in the time-domain. We will see this in more detail in the next 
chapter, after we introduce Fourier analysis methods to describe the spectral content of 
signals. 

Frequency Response of LTI Systems in Parallel Using the same sort of argument as 
in the previous paragraph, the frequency response of the system obtained by placing the 
two LTI systems above in parallel rather than in series results in an overall system with 
frequency response H(Ω) = H1(Ω) + H2(Ω), so  

h[n] = (h1 + h2)[n] ←→ H(Ω) = H1(Ω) + H2(Ω) . (12.17) 

Getting h[n] From H(Ω) As a final point, we examine how h[n] can be determined from 
H(Ω). The relationship we obtain here is crucial to designing filters with a desired or 
specified frequency response. It also points the way to the results we develop in the next 
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chapter, showing how time-domain signals — in this case h[·] — can be represented as 
weighted combinations of exponentials, the key idea in Fourier analysis. 

Begin with Equation (12.11), which defines the frequency response H(Ω) in terms of the 
signal h[·]: 

∞ f −jΩmH(Ω) = h[m]e . 
m=−∞ 

Multiply both sides of this equation by ejΩn, and integrate the result over Ω from −π to π:

 ∞  π f ( π )
−jΩ(m−n) dΩH(Ω)ejΩn dΩ =  h[m] e 

−π −πm=−∞ 

where we have assumed h[·] is sufficiently well-behaved to allow interchange of the sum­
mation and integration operations. 

The integrals above can be reduced to ordinary real integrals by rewriting each complex 
exponential ejkΩ as cos(kΩ) + j sin(kΩ), which shows that the result of each integration will 
in general be a complex number that has a real and imaginary part. However, for all k  = 0, 
the integral of cos(kΩ) or sin(kΩ) from −π to π will yield 0, because it is the integral over 
an integer number of periods. For k = 0, the integral of cos(kΩ) from −π to π yields 2π, 
while the integral of sin(kΩ) from −π to π yields 0. Thus every term for which m  = n on the 
right side of the preceding equation will evaluate to 0. The only term that survives is the 
one for which n = m, so the right side simplifies to just 2πh[n]. Rearranging the resulting 
equation, we get  π1 

h[n] =  H(Ω)ejΩn dΩ . (12.18)
2π −π 

Since the integrand on the right is periodic with period 2π, we can actually compute the 
integral over any contiguous interval of length 2π, which we indicate by writing 

 
h[n] =  

1 
H(Ω)ejΩn dΩ . (12.19)

2π <2π> 

Note that this equation can be interpreted as representing the signal h[n] as a weighted 
combination of a continuum of exponentials of the form ejΩn, with frequencies Ω in a 2π 
range, and associated weights H(Ω) dΩ. 

• 12.2.2 Illustrative Examples 

Example 4 (More Moving-Average Filters) The unit sample responses in Figure 12-2 all 
correspond to causal moving-average LTI filters, and have the form 

( )1 
hL[n] =  δ[n] +  δ[n − 1] + · · ·+ δ[n − (L − 1)] . 

L

The corresponding frequency response, directly from the definition in Equation (12.11), is 
given by ( )1 −jΩ −j(L−1)ΩHL(Ω) = 1 +  e + · · ·+ e . 

L
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Figure 12-2: Unit sample response and frequency response of different moving average filters. 

To examine the magnitude and phase of HL(Ω) as we did in the special case of L = 3  in 
Example 1, it is helpful to rewrite the preceding expression. In the case of odd L, we can 
write 

( )1 −j(L−1)Ω/2 j(L−1)Ω/2 j(L−3)Ω/2 −j(L−1)Ω/2HL(Ω) = e e + e + · · ·+ e 
L (1 )2 −j(L−1)Ω/2= e + cos(Ω) + cos(2Ω) + · · ·+ cos((L − 1)Ω/2) . 
L 2 

For even L, we get a similar expression: 

( )1 −j(L−1)Ω/2 j(L−1)Ω/2 j(L−3)Ω/2 −j(L−1)Ω/2HL(Ω) = e e + e + · · ·+ e 
L ( )2 −j(L−1)Ω/2= e cos(Ω/2) + cos(3Ω/2) + · · ·+ cos((L − 1)Ω/2) . 
L 

For both even and odd L, the single complex exponential in front of the parentheses con­
tributes −(L − 1)Ω/2 to the phase, but its magnitude is 1 for all Ω. For both even and odd 
cases, the sum of cosines in parentheses is purely real, and is either positive or negative 
at any specific Ω, hence contributing only 0 or ±π to the phase. So the magnitude of the 
frequency response, which is plotted on Slide 13.12 for these various examples, is simply 
the magnitude of the sum of cosines given in the above expressions. 

Example 5 (Cascaded Filter Sections) We saw in Example 1 that a 3-point moving aver­
age filter ended up having frequency-response zeros at Ω = arccos(−1 ) =  ±2π/3. Review­2 
ing the derivation there, you might notice that a simple way to adjust the location of the 
zeros is to allow h[1] to be different from h[0] = h[2]. Take, for instance, h[0] = h[2] = 1  and 
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H�/4(Ω)x[n] H�/2(Ω) H3�/4(Ω) H�(Ω) y[n] 

Figure 12-3: A “10-cent” low-pass filter obtained by cascading a few single-zero-pair filters. 

h[1] = α. Then ( )
−j2Ω −jΩH(Ω) = 1+  αe−jΩ + e = e α + 2 cos(Ω) . 

It follows that 
|H(Ω)| = |α + 2 cos(Ω)| , 

and the zeros of this occur at Ω =  ±arccos(−α/2). In order to have the zeros at the pair of 
frequencies Ω =  ±φo, we would pick h[1] = α = −2 cos(φo). 

If we now cascade several such single-zero-pair filter sections, as in the top part of 
Figure 12-3, the overall frequency response is the product of the individual ones, as noted 
in Equation (12.16). Thus, the overall frequency response will have zero pairs at those 
frequencies where any of the individual sections has a zero pair, and therefore will have all 
the zero-pairs of the constituent sections. This is evident in curves on Figure 12-3, where 
the zeros have been selected to produce a filter that passes low frequencies (approximately 
in the range |Ω| ≤ π/8) preferentially to higher frequencies. 

Example 6 (Nearly Ideal Low-Pass Filter) Figure 12-4 shows the unit sample response 
and frequency response of an LTI filter that is much closer to being an ideal low-pass filter. 
Such a filter would have H(Ω) = 1 in the band |Ω| < Ωc, and H(Ω) = 0 for Ωc < |Ω| ≤ π; 
here Ωc is referred to as the cut-off (or cutoff) frequency. Equation (12.18) shows that the 
corresponding h[n] must then be given by 

h[n] =

1
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Figure 12-4: A more sophisticated low-pass filter that passes low frequencies ≤ π/8 and blocks higher 

frequencies. 

This unit sample response is plotted on the left curve in Figure 12-4, for n ranging from 
−300 to 300. The fact that H(Ω) is real should have prepared us for the fact that h[n] is 
an even function of h[n], i.e., h[−n] =  h[n]. The slow decay of this unit sample response, 
falling off as 1/n, is evident in the plot. In fact, it turns out that the ideal lowpass filter is not 
bounded-input bounded-output stable, because its unit sample response is not absolutely 
summable. 

The frequency response plot on the right in Figure 12-4 actually shows two different 
frequency responses: one is the ideal lowpass characteristic that we used in determining 
h[n], and the other is the frequency response corresponding to the truncated h[n], i.e., the 
one given by using Equation (12.20) for |n| ≤ 300, and setting h[n] = 0  for |n| > 300. To  
compute the latter frequency response, we simply substitute the truncated unit sample 
response in the expression that defines the frequency response, namely Equation (12.11); 
the resulting frequency response is again purely real. The plots of frequency response 
show that truncation still yields a frequency response characteristic that is close to ideal. 

One problem with the truncated h[n] above is that it corresponds to a noncausal system. 
To obtain a causal system, we can simply shift h[n] forward by 300 steps. We have already 
seen in Example 2 that such shifting does not affect the magnitude of the frequency re­
sponse. The shifting does change the phase from being 0 at all frequencies to being linear 
in Ω, taking the value −300Ω. 

We see in Figure 12-5 the frequency response magnitudes and unit sample responses 
of some other near-ideal filters. A good starting point for the design of the unit sample 
responses of these filters is again Equation (12.18) to generate the ideal versions of the fil­
ters. Subsequent truncation and time-shifting of the corresponding unit sample responses 
yields causal LTI systems that are good approximations to the desired frequency responses. 

Example 7 (Autoregressive Filters) Figure 12-6 shows the unit sample responses and 
frequency response magnitudes of some other LTI filters. These can all be obtained as the 

Not  
causal 

   h[n] H[Ω] 

–300                0                 300 
                                           n 

–�               0                 
                                       

�
Ω
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Figure 12-5: The frequency response and h[·] for some useful near-ideal filters. 

input-output behavior of causal systems whose output at time n depends on some previ­
ous values of y[·], along with the input value x[n] at time n; these are termed autoregressive 
systems. The simplest example is a causal system whose output and input are related by 

y[n] = λy[n− 1] + βx[n] (12.20) 

for some constant parameters λ and β. This is termed a first-order autoregressive model, 
because y[n] depends on the value of y[·] just one time step earlier. The unit sample re­
sponse associated with this system is 

nh[n] = βλ u[n] , (12.21) 

where u[n] is the unit step function. To deduce this result, set x[n] = δ[n] with y[k] = 0 for 
k < 0 since the system is causal (and therefore cannot tell the difference between an all-
zero input and the unit sample input till it gets to time k = 0), then iteratively use Equation 
(12.20) to compute y[n] for n ≥ 0. This y[n] will be the unit sample response, h[n]. 

For a system with the above unit sample response to be bounded-input bounded-output 
(BIBO) stable, i.e., for h[n] to be absolutely summable, we require |λ| < 1. If  0 < λ < 1, the 
unit sample has the form shown in the top left plot in Figure 12-6. The associated frequency 
response in the BIBO-stable case, from the definition in Equation (12.11), is 

∞ f βm −jΩmH(Ω) = β λ e = −jΩ . (12.22)
1− λe

m=0 

The magnitude of this is what is shown in the top right plot in Figure 12-6, for the case 
0 < λ < 1. 
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Figure 12-6: h[·] and the frequency response for some other useful ideal auto-regressive filters. 

Another way to derive the unit sample response and frequency response is to start with 
the frequency domain. Suppose that the system in Equation (12.20) gets the input x[n] =  
jΩn jΩne . Then, by the definition of the frequency response, the output is y[n] =  H(Ω)e . 

Substituting ejΩn for x[n] and H(Ω)ejΩn for y[n] in Equation (12.20), we get 

jΩn jΩ(n−1)H(Ω)e = λH(Ω)e + βejΩn . 

Moving the H(Ω) terms to one side and canceling out the ejΩn factor on both sides (we can 
do that because ejΩn is on the unit circle in the complex plane and cannot be equal to 0), 
we get 

β 
H(Ω) = . 

1 − λe−jΩ 

This is the same answer as in Equation (12.22). 
βTo obtain h, one can then expand as a power series, using the property that 

1−λe−jΩ
 

1 2 −jΩ −j2Ω −j3Ω
= 1 +  z + z + . . .. The expansion has terms of the form e , e , e , . . ., and 1−z 
their coefficients form the unit sample response sequence. 

Whether one starts with the time-domain, setting x[n] =  δ[n], or the frequency-domain, 
setting x[n] =  ejΩn, depends on one’s preference and the problem at hand. Both methods 
are generally equivalent, though in some cases one approach may be mathematically less 
cumbersome than the other. 

The other two systems in Figure 12-6 correspond to second-order autoregressive models, 
for which the defining difference equation is 

y[n] =  −a1y[n− 1] − a2y[n− 2] + bx[n] (12.23) 

for some constants a1, a2 and b. 
To take one concrete example, consider the system whose output and input are related 
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according to 
y[n] = 6y[n− 1] − 8y[n− 2] + x[n] (12.24) 

We want to determine h[·] and H(Ω). We can approach this task either by first setting 
x[n] =  δ[n], finding h[·], and then applying Equation (12.11) to find H(Ω), or by first calcu­
lating H(Ω). Let us consider the latter approach here. 

Setting x[n] =  ejΩn in Equation (12.24), we get 

ejΩnH(Ω) = 6ejΩ(n−1)H(Ω) − 8ejΩ(n−2)H(Ω) + ejΩn . 

Solving this equation for H(Ω) yields 

1 
H(Ω) = . 

(1 − 2e−jΩ)(1 − 4e−jΩ) 

One can now work out h by expanding H as a power series of terms involving various 
powers of e−jΩ, and also derive conditions on BIBO-stability and conditions under which 
H(Ω) is well-defined. 

Coming back to the general second-order auto-regressive model, it can be shown (fol­
lowing a development analogous to what you may be familiar with from the analysis of 
LTI differential equations) that in this case the unit sample response takes the form 

h[n] = (β1λ
n 
1 + β2λ

n 
2 )u[n] , 

where λ1 and λ2 are the roots of the characteristic polynomial associated with this system: 

a(λ) =  λ2 + a1λ+ a2 , 

and β1, β2 are some constants. The second row of plots of Figure 12-6 corresponds to the 
case where both λ1 and λ2 are real, positive, and less than 1 in magnitude. The third row 

∗corresponds to the case where these roots form a complex conjugate pair, λ2 = λ (and1 

correspondingly β2 = β∗), and have magnitude less than 1, i.e., lie within the unit circle in 1 

the complex plane. 

Example 8 (Deconvolution Revisited) Consider the LTI system with unit sample re­
sponse 

h1[n] =  δ[n] + 0.8δ[n− 1] 

from the previous chapter. As noted there, you might think of this channel as being ideal, 
which would imply a unit sample response of δ[n], apart from a one-step-delayed echo, 
which accounts for the additional 0.8δ[n− 1]. The corresponding frequency response is 

−jΩH1(Ω) = 1+ 0.8e , 

immediately from the definition of frequency response, Equation (12.11). 
We introduced deconvolution in the last chapter as aimed at undoing—at the receiver— 

the convolution carried out on the input signal x[·] by the channel. Thus, from the channel 
output y[·], we wish to reconstruct the input x[·] using an LTI deconvolution filter with 

http:H1(�)=1+0.8e
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Channel, 
H1(Ω) 

Receiver 
filter, H2(Ω) 

x[n] y[n] z[n] 

Noise w[n] 

Figure 12-7: Noise at the channel output. 

unit sample response h2[n] and associated frequency response H2(Ω). We want the output 
z[n] of the deconvolution filter at each time n to equal the channel input x[n] at that time.1 

Therefore, the overall unit sample response of the channel followed by the deconvolution 
filter must be δ[n], so  

(h2 ∗ h1)[n] =  δ[n] . 

We saw in the last chapter how to use this relationship to determine h2[n] for all n, given 
h1[·]. Here h2[·] serves as the “convolutional inverse” to h1[·]. 

In the frequency domain, the analysis is much simpler. We require the frequency re­
sponse of the cascade combination of channel and deconvolution filter, H2(Ω)H1(Ω) to be 
1. This condition immediately yields the frequency response of the deconvolution filter as 

H2(Ω) = 1/H1(Ω) , (12.25) 

so in the frequency domain deconvolution is simple multiplicative inversion, frequency 
by frequency. We thus refer to the deconvolution filter as the inverse system for the channel. 
For our example, therefore, 

H2(Ω) = 1/(1 + 0.8e −jΩ) . 

This is identical to the form seen in Equation (12.22) in Example 7, from which we find that 

h2[n] = (−0.8)n u[n] , 

in agreement with our time-domain analysis in the previous chapter. 
The frequency-domain treatment of deconvolution brings out an important point that 

is much more hidden in the time-domain analysis. From Equation (12.25), we note that 
|H2(Ω)| = 1/|H1(Ω)| so the deconvolution filter has high frequency response magnitude 
in precisely those frequency ranges where the channel has low frequency response magni­
tude. In the presence of the inevitable noise at the channel output (Figure 12-7), we would 
normally and reasonably want to discount these frequency ranges, as the channel input x[n] 
produces little effect at the output in these frequency ranges, relative to the noise power 
at the output in these frequency ranges. However, the deconvolution filter does the ex­
act opposite of what is reasonable here: it emphasizes and amplifies the channel output in 
these frequency ranges. Deconvolution is therefore not a good approach to determine the 
channel input in the presence of noise. 

1We might also be content to have z[n] = x[n− D] for some integer D> 0, but this does not change anything 
essential in the following development. 
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• Problems and Questions 

1. Ben Bitdiddle designs a simple causal LTI system characterized by the following unit 
sample response: 

h[0] = 1  

h[1] = 2  

h[2] = 1  

h[n] = 0 ∀n >  2 

(a) What is the frequency response, H(Ω)? 

(b) What is the magnitude of H at Ω = 0, π/2, π? 

(c) If this LTI system is used as a filter, what is the set of frequencies that are re­
moved? 

2. Suppose a causal linear time invariant (LTI) system with frequency response H is 
described by the following difference equation relating input x[·] to output y[·]: 

y[n] = x[n] + αx[n − 1] + βx[n − 2] + γx[n − 3]. (12.26) 

Here, α,β, and γ are constants independent of Ω. 

(a) Determine the values of α, β and γ so that the frequency response of system H 
is H(Ω) = 1− 0.5e−j2Ω cosΩ. 

(b) Suppose that y[·], the output of the LTI system with frequency response H , is  
used as the input to a second causal LTI system with frequency response G, 
producing W , as shown below. 

(c) If H(ejΩ) = 1− 0.5e−j2Ω cosΩ, what should the frequency response, G(ejΩ), be  
so that w[n] = x[n] for all n? 

(d) Suppose α = 1 and γ = 1 in the above equation for an H with a different fre­
quency response than the one you obtained in Part (a) above. For this different 
H , you are told that y[n] = A (−1)n when x[n] = 1.0 + 0.5 (−1)n for all n. Using 
this information, determine the value of β in Eq. (12.26) and the value of A in 
the formula for y[n]. 
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3. Consider an LTI filter with input signal x[n], output signal y[n], and unit sample 
response 

h[n] =  aδ[n] +  bδ[n − 1] + bδ[n − 2] + aδ[n − 3] , 

where a and b are positive parameters, with b > a >  0. Thus h[0] = h[3] = a and 
h[1] = h[2] = b, while h[n] at all other times is 0. Your answers in this problem should 
be in terms of a and b. 

(a) Determine the frequency response H(Ω) of the filter. 
(b) Suppose x[n] = (−1)n for all integers n from −∞ to ∞. Use your expression for 

H(Ω) in Part (a) above to determine y[n] at all times n. 
(c) As a time-domain check on your answer from Part (a), use convolution to de­

termine the values of y[5] and y[6] when x[n] = (−1)n for all integers n from −∞ 
to ∞. 

(d) The frequency response H(Ω) = |H(Ω)|ej∠H(Ω) that you found in Part (a) for 
this filter can be written in the form 

−j3Ω/2H(Ω) = G(Ω)e , 

where G(Ω) is a real function of Ω that can be positive or negative, depending 
on the values of a, b, and Ω. Determine G(Ω), writing it in a form that makes 
clear it is a real function of Ω. 

(e) Suppose the input to the filter is x[n] = (−1)n + cos(π n+ θ0) for all n from −∞ to2 
∞, where θ0 is some constant. Use the frequency response H(Ω) to determine 
the output y[n] of the filter (writing it in terms of a, b, and θ0). 
Depending on how you solve the problem, it may help you to recall that √ √ 
cos(π/4) = 1/ 2 and cos(3π/4) = −1/ 2. Also keep in mind our assumption 
that b > a >  0. 

4. Consider the following three plots of the magnitude of three frequency responses, 
|HI(e

jΩ)|, |HII(e
jΩ)|, and |HIII(e

jΩ)|, shown in Figure 12-8. 

Suppose a linear time-invariant system has a frequency response HA(e
jΩ) given by 

the formula 
1 

HA(e
jΩ) =  ( )( )

−j(Ω− π ) −j(Ω+ π )1 − 0.95e 2 1 − 0.95e 2 

(a) Which frequency response plot (I, II, or III) best corresponds to HA(e
jΩ) above? 

What is the numerical value of M in the plot you selected? 

(b) For what values of a1 and a2 will the system described by the difference equa­
tion 

y[n] +  a1y[n − 1] + a2y[n − 2] = x[n] 

have a frequency response given by HA(e
jΩ) above? 

5. Suppose the input to a linear time invariant system is the sequence 

5π π 
x[n] = 2 + cos  n + cos  n + 3(−1)n 

6 6 
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M-

M-

M-

Figure 12-8: Channel frequency response curves for Problems 4 through 6. 

(a) What is the maximum value of the sequence x, and what is the smallest positive 
value of n for which x achieves its maximum? 

(b) Suppose the above sequence x is the input to a linear time invariant system 
described by one of the three frequency response plots in Figure 12-8 (I, II, or 
III). If y is the resulting output and is given by 

y[n] = 8 + 12(−1)n , 

which frequency response plot best describes the system? What is the value of 
M in the plot you selected? 

6. Suppose the unit sample response of an LTI system has only three nonzero real val­
ues, h[0], h[1], and h[2]. In addition, suppose these three real values satisfy these three 
equations: 

h[0] + h[1] + h[2] = 5  
−jπ/2 −j2π/2h[0] + h[1]e + h[2]e = 0  

jπ/2 j2π/2h[0] + h[1]e + h[2]e = 0  

(a) Without doing any algebra, simply by inspection, you should be able to write 
down the frequency response H(Ω) for some frequencies. Which frequencies 
are these? And what is the value of H at each of these frequencies? 
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(b) Which of the above plots in Figure 12-8 (I, II, or III) is a plot of the magnitude 
of the frequency response of this system, and what is the value of M in the plot 
you selected? Be sure to justify your selection and your computation of M. 

(c) Suppose the input to this LTI system is 

jπ/6n x[n] = e . 

What is the value of y[n]/x[n]? 

7. A channel with echo can be represented as an LTI system with a unit sample response: 

h[n] = aδ[n − M ] + bδ[n − M − kNb] , 

where a is a positive real constant, M is the channel delay, k is an integer greater than 
0, Nb is the number of samples per bit, and M + kNb is the echo delay. 

(a) Derive the expression for the frequency response of this channel, H(Ω), as  a  
function of a, b, M , k, and Nb. 

(b) If b =−a, k = 1, and Nb = 4, find the values of Ω ∈ [−π,+π] for which H(Ω) = 0. 

(c) For b = −a, M = 4, and kNb = 12, derive the expression for the output of the 
channel (time sequence y[n]) for the input x[n] when 

i. x[n] = 1, for all n. 

ii. x[n] = 2cos(π n), for all n.4 
πiii. For x[n] = 3 sin(π n + ), for all n, derive y[n].8 4 

8. A wireline channel has unit sample response h1[n] = e−an for n ≥ 0, and 0 otherwise, 
where a >  0 is a real number. (As an aside, a = Ts/τ , where Ts is the sampling 
rate and τ is the wire time constant. The wire resistance and capacitance prevent 
fast changes at the end of the wire regardless of how fast the input is changing. We 
capture this decay in time with exponential unit sample response e−an). 

Ben Bitdiddle, an MIT student who recently got a job at WireSpeed Inc., is trying 
to convince his manager that he can significantly improve the signaling speed (and 
hence transfer the bits faster) over this wireline channel, by placing a filter with unit 
sample response 

h2[n] = Aδ[n] +Bδ[n − D], 

at the receiver, so that 
(h1 ∗ h2)[n] = δ[n]. 

(a) Derive the values of A, B and D that satisfy Ben’s goal. 

(b) Sketch the frequency response of H2(Ω) and mark the values at 0 and ±π. 

(c) Suppose a = 0.1. Then, does H2(Ω) behave like a (1) low-pass filter, (2) high-
pass filter, (3) all-pass filter? Explain your answer. 
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(d) Under what noise conditions will Ben’s idea work reasonably well? Give a brief, 
qualitative explantion for your answer; there’s no need to calculate anything 
here. 
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CHAPTER 13 
Fourier Analysis and Spectral 

Representation of Signals 

We have seen in the previous chapter that the action of an LTI system on a sinusoidal or 
complex exponential input signal can be represented effectively by the frequency response 
H(Ω) of the system. By superposition, it then becomes easy—again using the frequency 
response—to determine the action of an LTI system on a weighted linear combination of si­
nusoids or complex exponentials (as illustrated in Example 3 of the preceding chapter). The 
natural question now is how large a class of signals can be represented in this manner. The 
short answer to this question: most signals you are likely to be interested in! 

The tool for exposing the decomposition of a signal into a weighted sum of sinusoids 
or complex exponentials is Fourier analysis. We first discuss the Discrete-Time Fourier 
Transform (DTFT), which we have actually seen hints of already and which applies to the 
most general classes of signals. We then move to the Discrete-Time Fourier Series (DTFS), 
which constructs a similar representation for the special case of periodic signals, or for sig­
nals of finite duration. The DTFT development provides some useful background, context 
and intuition for the more special DTFS development, but may be skimmed over on an 
initial reading (i.e., understand the logical flow of the development, but don’t struggle too 
much with the mathematical details). 

• 13.1 The Discrete-Time Fourier Transform 

We have in fact already derived an expression in the previous chapter that has the flavor 
of what we are looking for. Recall that we obtained the following representation for the 
unit sample response h[n] of an LTI system: 

h[n] =  
1 
2π

 
<2π> 

H(Ω)ejΩn dΩ , (13.1) 
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where the frequency response, H(Ω), was defined by
 

∞ 
H(Ω) = h[m]e −jΩm . (13.2) 

m=−∞ 

Equation (13.1) can be interpreted as representing the signal h[n] by a weighted combina­
tion of a continuum of exponentials, of the form ejΩn, with frequencies Ω in a 2π-range, 
and associated weights H(Ω) dΩ. 

As far as these expressions are concerned, the signal h[n] is fairly arbitrary; the fact that 
we were considering it as the unit sample response of a system was quite incidental. We 
only required it to be a signal for which the infinite sum on the right of Equation (13.2) 
was well-defined. We shall accordingly rewrite the preceding equations in a more neutral 
notation, using x[n] instead of h[n]: 

x[n] =  
1 
2π <2π> 

X(Ω)ejΩn dΩ , (13.3) 

where X(Ω) is defined by 
∞ 

X(Ω) = x[m]e −jΩm . (13.4) 
m=−∞ 

For a general signal x[·], we refer to the 2π-periodic quantity X(Ω) as the discrete-time 
Fourier transform (DTFT) of x[·]; it would no longer make sense to call it a frequency 
response. Even when the signal is real, the DTFT will in general be complex at each Ω. 

The DTFT synthesis equation, Equation (13.3), shows how to synthesize x[n] as a 
weighted combination of a continuum of exponentials, of the form ejΩn, with frequen­
cies Ω in a 2π-range, and associated weights X(Ω) dΩ. From now on, unless mentioned 
otherwise, we shall take Ω to lie in the range [−π,π]. 

The DTFT analysis equation, Equation (13.4), shows how the weights are determined. 
We also refer to X(Ω) as the spectrum or spectral distribution or spectral content of x[·]. 

Example 1 (Spectrum of Unit Sample Function) Consider the signal x[n] =  δ[n], the unit 
sample function. From the definition in Equation (13.4), the spectral distribution is given 
by X(Ω) = 1, because x[n] = 0  for all n �= 0, and x[0] = 1. The spectral distribution is thus 
constant at the value 1 in the entire frequency range [−π,π]. What this means is that it takes 
the addition of equal amounts of complex exponentials at all frequencies in a 2π-range to 
synthesize a unit sample function, a perhaps surprising result. What’s happening here is 
that all the complex exponentials reinforce each other at time n = 0, but effectively cancel 
each other out at every other time instant. 

Example 2 (Phase Matters) What if X(Ω) has the same magnitude as in the previous 
example, so |X(Ω)| = 1, but has a nonzero phase characteristic, ∠X(Ω) = −αΩ for some 
α �= 0? This phase characteristic is linear in Ω. With this, 

−jαΩ −jαΩX(Ω) = 1.e = e . 

Z



�

185 SECTION 13.1. THE DISCRETE-TIME FOURIER TRANSFORM 

To find the corresponding time signal, we simply carry out the integration in Equation 
(13.3). If α is an integer, the integral 

yields the value 0 for all n = α. To see this, note that 
( ) ( )

j(n−α)Ωe = cos (n − α)Ω + j sin (n − α)Ω , 

and the integral of this expression over any 2π-interval is 0, when n − α is a nonzero inte­
ger. However, if n − α = 0, i.e., if n = α, the cosine evaluates to 1, the sine evaluates to 0, 
and the integral above evaluates to 1. We therefore conclude that when α is an integer, 

x[n] =  δ[n − α] . 

The signal is just a shifted unit sample (delayed by α if α >  0, and advanced by |α| other­
wise). The effect of adding the phase characteristic to the case in Example 1 has been to 
just shift the unit sample in time. 

For non-integer α, the answer is a little more intricate: 

This time-function is referred to as a “sinc” function. We encountered this function when 
determining the unit sample response of an ideal lowpass filter in the previous chapter. 

Example 3 (A Bandlimited Signal) Consider now a signal whose spectrum is flat but 
band-limited: { 

1 for |Ω| < ΩcX(Ω) = 
0 for Ωc ≤ |Ω| ≤ π 

The corresponding signal is again found directly from Equation (13.3). For n = 0, we get  

x[n] =
1

2⇡

Z

<2⇡>
e�j↵⌦ej⌦n d⌦ =

1

2⇡

Z

<2⇡>
ej(n�↵)⌦ d⌦

x[n] =

1

2⇡

Z ⇡

�⇡
e�j↵⌦ej⌦n d⌦

=

1

2⇡

ej(n�↵)⌦

j(n� ↵)

���
⇡

�⇡

=

sin

⇣
⇡(n� ↵)

⌘

⇡(n� ↵)

x[n] =

1

2⇡

Z

�⌦

c

ej⌦n d⌦

=

1

2⇡

ej⌦

jn

���
⌦

c

�⌦

c

=

sin(⌦cn)

⇡n
, (13.5)

⌦

c
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which is again a sinc function. For n = 0, Equation (13.3) yields
 

(This is exactly what we would get from Equation (13.5) if n was treated as a continuous 
variable, and the limit of the sinc function as n → 0 was evaluated by L’Hôpital’s rule—a 
useful mnemonic, but not a derivation!) 

From our study of the analogous equations for h[·] in the previous chapter, we know 
that the DTFT of x[·] is well-defined when this signal is absolutely summable, 

for some μ. However, the DTFT is in fact well-defined for signals that satisfy less demand­
ing constraints, for instance square summable signals, 

The sinc function in the examples above is actually not absolutely summable because it 
follows off too slowly—only as 1/n—as |n| → ∞. However, it is square summable. 

A digression: One can also define the DTFT for signals x[n] that do not converge to 0 as 
|n| → ∞, provided they grow no faster than polynomially in n as |n| → ∞. An example 
of such a signal of slow growth would be x[n] = ejΩ0n for all n, whose spectrum must be 
concentrated at Ω = Ω0. However, the corresponding X(Ω) turns out to no longer be an 
ordinary function, but is a (scaled) Dirac impulse in frequency, located at Ω = Ω0: 

X(Ω) = 2πδ(Ω−Ω0) . 

You may have encountered the Dirac impulse in other settings. The unit impulse at Ω=Ω0 

can be thought of as a “function” that has the value 0 at all points except at Ω=Ω0, and has 
unit area. This is an instance of a broader result, namely that signals of slow growth possess 
transforms that are generalized functions (e.g., impulses), which have to be interpreted in 
terms of what they do under an integral sign, rather than as ordinary functions. It is 
partly in order to avoid having to deal with impulses and generalized functions in treating 
sinusoidal and periodic signals that we shall turn to the Discrete-Time Fourier Series rather 
than the DTFT. End of digression! 

We make one final observation before moving to the DTFS. As shown in the previous 
chapter, if the input x[n] to an LTI system with frequency response H(Ω) is the (everlasting) 
exponential signal ejΩn, then the output is y[n] = H(Ω)ejΩn. By superposition, if the input 
is instead the weighted linear combination of such exponentials that is given in Equation 
(13.3), then the corresponding output must be the same weighted combination of responses, 
so 

x[n] =
1

2⇡

Z
⌦

c

�⌦

1d⌦ =

⌦c

⇡
.

1X

m=�1

���x[m]

���  µ < 1

1X

m=�1

���x[m]

���
2

 µ < 1 .

y[n] =
1

2⇡

Z

<2⇡>
H(⌦)X(⌦)ej⌦n d⌦ . (13.6)
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However, we also know that the term H(Ω)X(Ω) multiplying the complex exponential in 
this expression must be the DTFT of y[·], so  

Y (Ω) = H(Ω)X(Ω) . (13.7) 

Thus, the time-domain convolution relation y[n] = (h∗ x)[n] has been converted to a simple 
multiplication in the frequency domain. This is a result we saw in the previous chapter 
too, when discussing the frequency response of a series or cascade combination of two LTI 
systems: the relation h[n] = (h1 ∗ h2)[n] in the time domain mapped to an overall frequency 
response of H(Ω) = H1(Ω)H2(Ω) that was simply the product of the individual frequency 
responses. This is a major reason for the power of frequency-domain analysis; the more 
involved operation of convolution in time is replaced by multiplication in frequency. 

• 13.2 The Discrete-Time Fourier Series 

The DTFT synthesis expression in Equation (13.3) expressed x[n] as a weighted sum of a 
continuum of complex exponentials, involving all frequencies Ω in [−π,π]. Suppose now 
that x[n] is a periodic signal of (integer) period P , so  

x[n+ P ] =  x[n] 

for all n. This signal is completely specified by the P values it takes in a single period, for 
instance the values x[0], x[1], . . . , x[P − 1]. It would seem in this case as though we should 
be able to get away with using a smaller number of complex exponentials to construct x[n] 
on the interval [0, P  − 1] and thereby for all n. The discrete-time Fourier series (DTFS) 
shows that this is indeed the case. 

Before we write down the DTFS, a few words of reassurance are warranted. The expres­
sions below may seem somewhat bewildering at first, with a profusion of symbols and 
subscripts, but once we get comfortable with what the expressions are saying, interpret 
them in different ways, and do some examples, they end up being quite straightforward. 
So don’t worry if you don’t get it all during the first pass through this material—allow 
yourself some time, and a few visits, to get comfortable! 

• 13.2.1 The Synthesis Equation 

The essence of the DTFS is the following statement: 

Any P -periodic signal x[n] can be represented (or synthesized) as a weighted lin­

ear combination of P complex exponentials (or spectral components), where the fre­

quencies of the exponentials are located evenly in the interval [−π,π], starting in the 
middle at the frequency Ω0 = 0  and increasing outwards in both directions in steps of 
Ω1 = 2π/P . 

kn 

More concretely, the claim is that any P -periodic DT signal x[n] can be represented in the
form

x[n] =
X

k=hP i

Ake
j⌦

k

n , (13.8)
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Figure 13-1: When P is even, the end frequencies are at ±π and the Ωk values are as shown in the pictures 

on the left for P = 6. When P is odd, the end frequencies are at ±(π − Ω
2 
1 ), as shown on the right for P = 3. 

where we write k = (P ) to indicate that k runs over any set of P consecutive integers. The 
Fourier series coefficients or spectral weights Ak in this expression are complex numbers in 
general, and the spectral frequencies Ωk are defined by 

2π 
Ωk = kΩ1 , where Ω1 = . (13.9)

P 

We refer to Ω1 as the fundamental frequency of the periodic signal, and to Ωk as the k-th 
harmonic. Note that Ω0 = 0. 

Note that the expression on the right side of Equation (13.8) does indeed repeat period­
ically every P time steps, because each of the constituent exponentials 

2π 2πjΩkn jkΩ1n e = e = ejkn(2π/P ) = cos(k n) + j sin(k n) (13.10)
P P 

repeats when n changes by an integer multiple of P . 
It also follows from Equation (13.10) that changing the frequency index k by P — or more 

generally by any positive or negative integer multiple of P — brings the exponential in that 
equation back to the same point on the unit circle, because the corresponding frequency 
Ωk has then changed by an integer multiple of 2π. This is why it suffices to choose k = (P ) 
in the DTFS representation. 

Putting all this together, it follows that the frequencies of the complex exponentials 
used to synthesize a P -periodic signal x[n] via the DTFS are located evenly in the interval 
[−π,π], starting in the middle at the frequency Ω0 = 0  and increasing outwards in both 
directions in steps of Ω1 = 2π/P . In the case of an even value of P , such as the case P = 6 in 
Figure 13-1 (left), the end frequencies will be at ±π (we need only one of these frequencies, 
not both, as they translate to the same point on the unit circle when we write ejΩkn). In 
the case of an odd value of P , such as the case P = 3 shown in Figure 13-1 (right), the end 
points are ±(π − Ω1 ).2 

The weights {Ak} collectively constitute the spectrum of the periodic signal, and we 
typically plot them as a function of the frequency index k, as in Figure 13-2 The spectral 
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Figure 13-2: The spectrum of two periodic signals, plotted as a function of the frequency index, k, showing 

the real and imaginary parts for each case. P = 11 (odd). 

weights in these simple sinusoidal examples have been determined by inspection, through 
direct application of Euler’s identity. We turn next to a more general and systematic way 
of determining the spectrum for an arbitrary real P -periodic signal. 

• 13.2.2 The Analysis Equation 

We now address the task of computing the spectrum of a P -periodic x[n], i.e., determining 
the Fourier coefficients Ak. Note first that the {Ak} comprise P coefficients that in general 
can be complex numbers, so in principle we have 2P real numbers that we can choose 
to match the P real values that a P -periodic real signal x[n] takes in a period. It would 
therefore seem that we have more than enough degrees of freedom to choose the Fourier 
coefficients to match a P -periodic real signal. (If the signal x[n] was an arbitrary complex 
P -periodic signal, hence specified by 2P real numbers, we would have exactly the right 
number of degrees of freedom.) 

It turns out—and we shall prove this shortly—that for a real signal x[n] the Fourier 
coefficients satisfy certain symmetry properties, which end up reducing our degrees of 
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freedom to precisely P rather than 2P . Specifically, we can show that 

Ak = A ∗ (13.11)−k , 

so the real part of Ak is an even function of k, while the imaginary part of Ak is an odd 
function of k. This also implies that A0 is purely real, and also that in the case of even 
P , the values AP/2 = A−P/2 are purely real. (These properties should remind you of the 
symmetry properties we exposed in connection with frequency responses in the previous 
chapter — but that’s no surprise, because the DTFS is a similar kind of object.) 

Making a careful count now of the actual degrees of freedom, we find that it takes 
precisely P real parameters to specify the spectrum {Ak} for a real P -periodic signal. So 
given the P real values that x[n] takes over a single period, we expect that Equation (13.8) 
will give us precisely P equations in P unknowns. (For the case of a complex signal, we 
will get 2P equations in 2P unknowns.) 

To determine the mth Fourier coefficient Am in the expression in Equation (13.8), where 
m is one of the values that k can take, we first multiply both sides of Equation (13.8) by 
e−jΩmn and sum over P consecutive values of n. This results in the equality 

The summation over n in the last equality involves summing P consecutive terms of a 
geometric series. Using the fact that for r = 1  

P1− r2 P −11 + r + r + · · ·+ r = ,
1− r 

it is not hard to show that the above summation over n ends up evaluating to 0 for k = m. 
The only value of k for which the summation over n survives is the case k = m, for which 
each term in the summation reduces to 1, and the sum ends up equal to P . We therefore 
arrive at 

or, rearranging and going back to writing k instead of m, 

This DTFS analysis equation — which holds whether x[n] is real or complex — looks very 
similar to the DTFS synthesis equation, Equation (13.8), apart from e−jΩkn replacing ejΩkn , 
and the scaling by P . 
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Two particular observations that follow directly from the analysis formula:
 

1 
A0 = x[n] , (13.13)

P 
n=(P ) 

and, for the case of even P , where ΩP/2 = π, 

AP/2 = A−P/2 =
1 

(−1)n x[n] . (13.14)
P 

n=(P ) 

The symmetry properties of Ak that we stated earlier in the case of a real signal follow 
directly from this analysis equation, as we leave you to verify. Also, since A−k = A∗ for a k 
real signal, we can combine the terms 

−jΩkn jΩknAke + Ake

into the single term 
2|Ak| cos(Ωkn + ∠Ak) . 

Thus, for even P , 
P/2 

x[n] =  A0 + 2|Ak| cos(Ωkn + ∠Ak) , 
k=1 

while for odd P the only change is that the upper limit becomes (P − 1)/2. 

• 13.2.3 The Aperiodic Limit, P →∞  

There is a slightly modified form in which the DTFS is sometimes written: 

1 jΩk n x[n] =  Xke , (13.15)
P 

k=(P ) 

which just corresponds to working with a scaled version of the Ak that we have used so 
far, namely 

−jΩknXk = PAk = x[n]e . (13.16) 
n=(P ) 

This form of the DTFS is useful when one considers the limiting case of aperiodic signals 
by letting P → ∞, (2π/P ) → dΩ, and Ωk → Ω. In this limiting case, it is easy to deduce 
from Equation (13.12) that Xk → X(Ω), precisely the DTFT of the aperiodic signal that we 
defined in Equation (13.4). Correspondingly, the DTFS synthesis equation, Equation (13.8), 
in this limiting case becomes precisely the expression in Equation (13.3). 

• 13.2.4 Action of an LTI System on a Periodic Input 

Suppose the input x[·] to an LTI system with frequency response H(Ω) is P -periodic. This 
signal can be represented as a weighted sum of exponentials, by the DTFS in Equation 

X

X

X

X

X
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Figure 13-3: Effect of band-limiting a transmission, showing what happens when a periodic signal goes 

through a lowpass filter. 

(13.8). It follows immediately that the output of the system is given by 

1jΩkn jΩkn y[n] =  H(Ωk)Ake = H(Ωk)Xke . 
P 

k=(P ) k=(P ) 

This immediately shows that the output y[·] is again P -periodic, with (scaled) spectral 
coefficients given by 

Yk = H(Ωk)Xk . (13.17) 

So knowledge of the input spectrum and of the system’s frequency response suffices to 
determine the output spectrum. This is precisely the DTFS version of the DTFT result in 
Equation (13.7). 

As an illustration of the application of this result, Figure 13-3 shows what happens 
when a periodic signal goes through an ideal lowpass filter, for which H(Ω) = 1 only for 
|Ω| < Ωc < π, with H(Ω) = 0  everywhere else in [−π,π]. The result is that all spectral 
components of the input at frequencies above the cutoff frequency Ωc are no longer present 
in the output. The corresponding output signal is thus more slowly varying—a “blurred” 
version of the input—because it does not have the higher-frequency components that allow 
it to vary more rapidly. 

X X
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• 13.2.5 Application of the DTFS to Finite-Duration Signals 

The DTFS turns out to be useful in settings that do not involve periodic signals, but rather 
signals of finite duration. Suppose a signal x[n] takes nonzero values only on some finite 
interval, say [0, P  − 1] for example. We are not forbidding x[n] from taking the value 0 for 
n within this interval, but are saying that x[n] = 0  for all n outside this interval. If we now 
compute the DT Fourier transform of this signal, according to the definition in Equation 
(13.4), we get 

P −1 

X(Ω) = x[n]e −jΩn . (13.18) 
n=0 

The corresponding representation of x[n] by a weighted combination of complex exponen­
tials would then be the expression in Equation (13.3), involving a continuum of frequencies. 
However, it is possible to get a more economical representation of x[n] by using the DT 
Fourier series. 

In order to do this, consider the new signal xP [·] obtained by taking the portion of x[·] 
that lies in the interval [0, P  − 1] and replicating it periodically outside this interval, with 
period P . This results in xP [n+ P ] =  xP [n] for all n, with xP [n] =  x[n] for n in the interval 
[0, P  − 1]. We can represent this periodic signal by its DTFS: 

xP [n] =  
1 

Xke
jΩkn , (13.19)

P 
k=<P > 

where 
P −1 

−jΩkn −jΩknXk = xP [n]e = x[n]e . (13.20) 
n=<P> n=0 

(For consistency, we should perhaps have used the notation XPk  instead of Xk, but we are 
trying to keep our notation uncluttered.) 

We can now represent x[n] by the expression in Equation (13.19), in terms of just P 
complex exponentials at the frequencies Ωk defined earlier (in our development of the 
DTFS), rather than complex exponentials at a continuum of frequencies. However, this 
representation only captures x[n] in the interval [0, P  − 1]. Outside of this interval, we have 
to ignore the expression, instead invoking our knowledge that x[n] is actually 0 outside. 

Another observation worth making from Equations (13.18) and (13.20) is that the 
(scaled) DTFS coefficients Xk are actually simply related to the DTFT X(Ω) of the finite-
duration signal x[n]: 

Xk = X(Ωk) , (13.21) 

so the (scaled) DTFS coefficients Xk are just P samples of the DTFT X(Ω). Thus any method 
for computing the DTFS for (the periodic extension of) a finite-duration signal will yield 
samples of the DTFT of this finite-duration signal (keep track of our use of DTFS versus 
DTFT here!). And if one wants to evaluate the DTFT of this finite-duration signal at a 
larger number of sample points, all that needs to be done is to consider x[n] to be of finite-
duration on a larger interval, of length P i > P , where of course the additional signal values 
in the larger interval will all be 0; this is referred to a zero-padding. Then computing the 
DTFS of (the periodic extension of) x[n] for this longer interval will yield P i samples of the 

X

X

X X
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underlying DTFT of the signal. 
As an application of the above results on finite-duration signals, consider the case of 

an LTI system whose unit sample response h[n] is known to be 0 for all n outside of some 
interval [0, nh], and whose input x[n] is known to be 0 for all n outside some interval [0, nx]. 
It follows that the earliest time instant at which a nonzero output value can appear is 
n = 0, while the latest such time instant is n = nx + nh. In other words, the response 
y[n] = (h ∗ x)[n] is guaranteed to be 0 for all n outside of the interval [0, nx + nh]. All the 
interesting input/output action of the system therefore takes place for n in this interval. 
Outside of this interval we know that x[·] and y[·] are both 0. We can therefore take all the 
signals of interest to have finite duration, being 0 outside of the interval [0, P  − 1], where  
P = nx + nh + 1. A DTFS representation of x[·] and y[·] on this interval, with this choice of 
P , can then be used to carry out a frequency-domain analysis of the system. In particular, 
the kth (scaled) Fourier coefficients of the input and output will be related as in Equation 
(13.17). 

• 13.2.6 The FFT 

Implementing either the DTFS synthesis computation or the DTFS analysis computation, 
as defined earlier, would seem to require on the order of P 2 multiply/add operations: 
we have to do P multiply/adds for each of P frequencies. This can quickly lead to pro­
hibitively expensive computations in large problems. 

Happily, in 1965 Cooley and Tukey published a fast method for computing these DTFS 
expressions (rediscovering a technique known to Gauss!). Their algorithm is termed the 
Fast Fourier Transform or FFT, and takes on the order of P log P operations, which is a big 
saving. (Note that the FFT is not a new kind of transform, despite its name! — it’s a fast 
algorithm for computing a familiar transform, namely the DTFS.) 

The essence of the idea is to recursively split the computation into a DTFS computation 
involving the signal values at the even time instants and another DTFS computation in­
volving the signal values at the odd time instants. One then cleverly uses the nice algebraic 
properties of the P complex exponentials involved in these computations to stitch things 
back together and obtain the desired DTFS. 

The FFT has become a (or maybe the) workhorse of practical numerical computation. Its 
most common application is to computing samples of the DTFT of finite-duration signals, 
as described in the previous subsection. It can also be applied, of course, to computing the 
DTFS of a periodic signal. 

• Acknowledgments 
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• Problems and Questions 

1. Let x[·] be a signal that is periodic with period P = 12. For each of the following x[.], 
give the corresponding spectral coefficients Ak for the discrete-time Fourier series 
for x[·], for k in the range −6 ≤ k ≤ 6. (Hint: In most of the following cases, all you 
need to do is express the signal as the sum of appropriate complex exponentials, by 
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inspection—this is much easier than cranking through the formal definition of the 
spectral coefficient.) 

(a) Determine Ak when x[0  : 11] = [0,0,1,0,0,0,0,0,0,0,0,0]. 

(b) Determine Ak when x[n] = 1  for all n. 

(c) Determine Ak when x[n] =  sin(r(2π/12)n) for the following two choices of r: 

i. r = 3; and 

ii. r = 8. 

(d) Determine Ak when x[n] =  sin(3(2π/12)n + φ) where φ is some specified phase 
offset. 

2. Consider a lowpass LTI communication channel with input x[n], output y[n], and 
frequency response H(Ω) given by 

−j3ΩH(Ω)	 = e for 0 ≤ |Ω| < Ωm , 

= 0  for Ωm ≤ |Ω| ≤ π .  

Here Ωm denotes the cutoff frequency of the channel; the output y[n] will contain no 
frequency components in the range Ωm ≤ |Ω| ≤ π. The different parts of this problem 
involve different choices for Ωm. 

(a) Picking Ωm = π/4, provide separate and properly labeled sketches of the mag­
nitude |H(Ω)| and phase ∠H(Ω) of the frequency response, for Ω in the interval 
0 ≤ |Ω| ≤ π. (Sketch the phase only in the frequency ranges where |H(Ω)| > 0.) 

(b) Suppose Ωm = π, so  H(Ω) = e−j3Ω for all Ω in [−π,π], i.e., all frequency com­
ponents make it through the channel. For this case, y[n] can be expressed quite 
simply in terms of x[.]; find the relevant expression. 

(c) Suppose the input x[n] to this channel is a periodic “rectangular-wave” signal 
with period 12. Specifically: 

x[−1] = x[0] = x[1] = 1  

and these values repeat every 12 steps, so 

x[11] = x[12] = x[13] = 1  

and more generally 

x[12r − 1] = x[12r] =  x[12r + 1]  

for all integers r from −∞ to ∞. At  all other times n, we have x[n] = 0. (You  
might find it helpful to sketch this signal for yourself, e.g., for n ranging from 
−2 to 13.) 
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Find explicit values for the Fourier coefficients in the discrete-time Fourier series 
(DTFS) for this input x[n], i.e., the numbers Ak in the representation 

5 
jΩkn x[n] =  Ake , 

k=−6 

where Ωk = k(2π/12). Recall that 

1 −jΩk nAk = x[n]e ,
12 (n) 

where the summation is over any 12 consecutive values of n (as indicated by 
writing (n)), so all you need to do is evaluate this expression for the particular 
x[n] that we have. 
Since x[n] is an even function of n, all the Ak should be purely real, so be sure your 
expression for Ak makes clear that it is real. (Depending on how you proceed, 

−j11(2π/12) j(2π/12).)you may or may not find it helpful to note that e = e

Check that your values for A0 and A−6 = A6 are correct, and be explicit about 
how you are checking. 

(d) Suppose the cutoff frequency of the channel is Ωm = π/4 (which is the case you 
sketched in part (a), and the input is the x[n] specified in part (c). Compute the 
values of all the nonzero Fourier coefficients of the channel output y[n], i.e., find 
the values of the nonzero numbers Bk in the representation 

5 
jΩkn y[n] =  Bke , 

k=−6 

where Ωk = k(2π/12). Don’t forget that H(Ω) = e−j3Ω in the passband of the 
filter, 0 ≤ |Ω| < Ωm. 

(e) Express the y[n] in part (d) as an explicit and real function of time n. (If you were 
to sketch y[n], you would discover that it is a low-frequency approximation to 
the y[n] that would have been obtained if Ωm = π.) 

3. The figure below shows the real and imaginary parts of all	 non-zero Fourier se­
ries coefficients X[k] of a real periodic discrete-time signal x[n], for frequencies 
Ωk ∈ [0, π]. Here Ωk = k(2π/N) for some fixed even integer N , as in all our anal­
ysis of the discrete-time Fourier series (DTFS), but the plots below only show the 
range 0 ≤ k ≤ N/2. 

(a) Find all non-zero Fourier series coefficients of x[n] at Ωk in the interval [−π,0), 
i.e., for −(N/2) ≤ k <  0. Give your answer in terms of careful and fully labeled 
plots of the real and imaginary parts of X[k] (following the style of the figure 
above). 

(b) Find the period of x[n], i.e., the smallest integer T for which x[n + T ] =  x[n], for 
all n. 

X

X

X
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Re(X[k])
 

+ 

� 

Ωk 

   1 

0 π/3 2π/3 π 

 0.5 

Im(X[k])
 

+ 

� 

Ωk

 1 

0 π/2 π

(c) For the frequencies Ωk ∈ [0, π], find all non-zero Fourier series coefficients of the 
signal x[n − 6] obtained by delaying x[n] by 6 samples. 

4. Consider an audio channel with a sampling rate of 8000 samples/second. 

(a) What is the angular frequency of the piano note A (in radians/sample), given 
that its continuous time frequency is 880 Hz? 

(b) What is the smallest number of samples, P , needed to represent the note A as a 
2πspectral component at Ωk = k, for integer k? And what is the value of k?P 
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CHAPTER 14 
Modulation and Demodulation 

This chapter describes the essential principles behind modulation and demodulation, which 
we introduced briefly in Chapter 10. Recall that our goal is to transmit data over a commu­
nication link, which we achieve by mapping the bit stream we wish to transmit onto analog 
signals because most communication links, at the lowest layer, are able to transmit ana­
log signals, not binary digits. The signals that most simply and directly represent the bit 
stream are called the baseband signals. We discussed in Chapter 10 why it is generally un­
tenable to directly transmit baseband signals over communication links. We reiterate and 
elaborate on those reasons in Section 14.1, and discuss the motivations for modulation of 
a baseband signal. In Section 14.2, we describe a basic principle used in many modulation 
schemes, called the heterodyne principle. This principle is at the heart of amplitude modulation 
(AM), the scheme we study in detail. Sections 14.3 and 14.4 describe the “inverse” process 
of demodulation, to recover the original baseband signal from the received version. Fi­
nally, Section 14.5 provides a brief overview of more sophisticated modulation schemes. 

• 14.1 Why Modulation? 
There are two principal motivating reasons for modulation. We described the first in Chap­
ter 10: matching the transmission characteristics of the medium, and considerations of 
power and antenna size, which impact portability. The second is the desire to multiplex, or  
share, a communication medium among many concurrently active users. 

• 14.1.1 Portability 

Mobile phones and other wireless devices send information across free space using electro­
magnetic waves. To send these electromagnetic waves across long distances in free space, 
the frequency of the transmitted signal must be quite high compared to the frequency of 
the information signal. For example, the signal in a cell phone is a voice signal with a 
bandwidth of about 4 kHz. The typical frequency of the transmitted and received signal is 
several hundreds of megahertz to a few gigahertz (for example, the popular WiFi standard 
is in the 2.4 GHz or 5+ GHz range). 

199 
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Wi-Fi 

Figure 14-1: Top: Spectrum allocation in the United States (3 kHz to 300 GHz). Bottom: a portion of the to­

tal allocation, highlighting the 2.4 GHz ISM (Industrial, Scientific, and Medical) band, which is unlicensed 
spectrum that can be used for a variety of purposes, including 802.11b/g (WiFi), various cordless tele­

phones, baby monitors, etc.

One important reason why high-frequency transmission is attractive is that the size of 
the antenna required for efficient transmission is roughly one-quarter the wavelength of 
the propagating wave, as discussed in Chapter 10. Since the wavelength of the (electro­
magnetic) wave is inversely proportional to the frequency, the higher the frequency, the 
smaller the antenna. For example, the wavelength of a 1 GHz electromagnetic wave in free 
space is 30 cm, whereas a 1 kHz electromagnetic wave is one million times larger, 300 km, 
which would make for an impractically huge antenna and transmitter power to transmit 
signals of that frequency! 

• 14.1.2 Sharing using Frequency-Division 

Figure 14-1 shows the electromagnetic spectrum from 3 kHz to 300 GHz; it depicts how 
portions of spectrum have been allocated by the U.S. Federal Communications Commis­

This image was created by the US Department of Commerce, and is in the public domain.

http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf
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Figure 14-2: An analog waveform corresponding to someone saying “Hello”. Picture from http:// 
electronics.howstuffworks.com/analog-digital2.htm. The frequency content and spectrum of 
this waveform is inherently band-limited to a few kilohertz. 

sion (FCC), which is the government agency that allocates this “public good” (spectrum). 
What does “allocation” mean? It means that the FCC has divided up frequency ranges 
and assigned them for different uses and to different entities, doing so because one can be 
assured that concurrent transmissions in different frequency ranges will not interfere with 
each other. 

The reason why this approach works is that when a sinusoid of some frequency is sent 
through a linear, time-invariant (LTI) channel, the output is a sinusoid of the same frequency, 
as we discovered in Chapter 12. Hence, if two different users send pure sinusoids at dif­
ferent frequencies, their intended receivers can extract the transmitted sinusoid by simply 
applying the appropriate filter, using the principles explained in Chapter 12. 

Of course, in practice one wants to communicate a baseband signal rather than a sinu­
soid over the channel. The baseband signal will often have been produced from a digital 
source. One can, as explained in Chapters 9 and 10, map each “1” to a voltage V1 held 
for some interval of time, and each “0” to a voltage V0 held for the same duration (let’s 
assume for convenience that both V1 and V0 are non-negative). The result is some wave­
form that might look like the picture shown in Figure 10-2.1 Alternatively, the baseband 
signal may come from an analog source, such as a microphone in an analog telephone, 
whose waveform might look like the picture shown in Figure 14-2; this signal is inherently 
“band-limited” to a few kilohertz, since it is produced from human voice. Regardless of 
the provenance of the input baseband signal, the process of modulation involves preparing 
the signal for transmission over a channel. 

If multiple users concurrently transmitted their baseband signals over a shared 

1We will see in the next section that we will typically remove its higher frequencies by lowpass filtering, to 
obtain a “band-limited” baseband signal. 

© HowStuffWorks, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://electronics.howstuffworks.com/analog-digital2.htm
http://electronics.howstuffworks.com/analog-digital2.htm
http://ocw.mit.edu/fairuse
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medium, it would be difficult for their intended receivers to extract the signals reliably 
because of interference. One approach to reduce this interference, known as frequency-

division multiplexing, allocates different carrier frequencies to different users (or for dif­
ferent uses, e.g., one might separate out the frequencies at which police radios or emer­
gency responders communicate from the frequencies at which you make calls on your 
mobile phone). In fact, the US spectrum allocation map shown in Figure 14-1 is the result 
of such a frequency-division strategy. It enables users (or uses) that may end up with sim­
ilar looking baseband signals (those that will interfere with each other) to be transmitted 
on different carrier frequencies, eliminating interference. 

There are two reasons why frequency-division multiplexing works: 

1. Any baseband signal can be broken up into a weighted sum of sinusoids using 
Fourier decomposition (Chapter 13). If the baseband signal is band-limited, then 
there is a finite maximum frequency of the corresponding sinusoids. One can take 
this sum and modulate it on a carrier signal of some other frequency in a simple 
way: by just multiplying the baseband and carrier signal (also called “mixing”). The 
result of modulating a band-limited baseband signal on to a carrier is a signal that is 
band-limited around the carrier, i.e., limited to some maximum frequency deviation from 
the carrier frequency. 

2. When transmitted over a linear, time-invariant (LTI) channel, and if noise is negli­
gible, each sinusoid shows up at the receiver as a sinusoid of the same frequency, as  
we saw in Chapter 12. The reason is that an LTI system preserves the sinusoids. If  we  
were to send a baseband signal composed of a sum of sinusoids over the channel, 
the output will be the sum of sinuoids of the same frequencies. Each receiver can 
then apply a suitable filter to extract the baseband signal of interest to it. This insight 
is useful because the noise-free behavior of real-world communication channels is 
often well-characterized as an LTI system. 

• 14.2 Amplitude Modulation with the Heterodyne Principle 
The heterodyne principle is the basic idea governing several different modulation 
schemes. The idea is simple, though the notion that it can be used to modulate signals 
for transmission was hardly obvious before its discovery! 

Heterodyne principle: The multiplication of two sinusoidal waveforms may 
be written as the sum of two sinusoidal waveforms, whose frequencies are 
given by the sum and the difference of the frequencies of the sinusoids being 
multiplied. 

This result may be seen from standard high-school trigonometric identities, or by (per­
haps more readily) writing the sinusoids as complex exponentials and performing the mul­
tiplication. For example, using trigonometry, 

  1 
cos(Ωsn) · cos(Ωcn) =  cos(Ωs +Ωc)n + cos(Ωs − Ωc)n . (14.1)

2

http:sinusoids.If
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We apply the heterodyne principle by treating the baseband signal —think of it as periodic 
with period 2π for now—as the sum of different sinusoids of frequencies Ωs1 = k1Ω1,Ωs2 = Ω1 
k2Ω1,Ωs3 = k3Ω1 . . . and treating the carrier as a sinusoid of frequency Ωc = kcΩ1. Here, Ω1 
is the fundamental frequency of the baseband signal. 

×x[n] t[n] 

cos(kcΩ1n) 

Figure 14-3: Modulation involved “mixing”, or multiplying, the input signal x[n] with a carrier signal 
(cos(Ωcn) = cos(kcΩ1n) here) to produce t[n], the transmitted signal. 

The application of the heterodyne principle to modulation is shown schematically in 
Figure 14-3. Mathematically, we will find it convenient to use complex exponentials; with 
that notation, the process of modulation involves two important steps: 

1.	 Shape the input to band-limit it. Take the input baseband signal and apply a low-
pass filter to band-limit it. There are multiple good reasons for this input filter, but 
the main one is that we are interested in frequency division multiplexing and wish 
to make sure that there is no interference between concurrent transmissions. Hence, 
if we limit the discrete-time Fourier series (DTFS) coefficients to some range, call it 
[−kx,−kx], then we can divide the frequency spectrum into non-overlapping ranges 
of size 2kx to ensure that no two transmissions interfere. Without such a filter, the 
baseband could have arbitrarily high frequencies, making it hard to limit interference 
in general. Denote the result of shaping the original input by x[n]; in effect, that is 
the baseband signal we wish to transmit. An example of the original baseband signal 
and its shaped version is shown in Figure 14-4. 

We may express x[n] in terms of its discrete-time Fourier series (DTFS) representation 
as follows, using what we learned in Chapter 13: 

kx L 
jkΩ1n x[n] =  Ake .	 (14.2) 

k=−kx 

Notice how applying the input filter ensures that high-frequency components are 
zero; the frequency range of the baseband is now [−kxΩ1, kxΩ1] radians/sample. 

2.	 Mixing step. Multiply x[n] (called the baseband modulating signal) by a carrier, 
cos(kcΩ1n), to produce the signal ready for transmission, t[n]. Using the DTFS form, 
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Baseband input x[n]: shaped pulses to band-limit signal 

Carrier signal 

Transmitted signal t[n]: “mix” (multiply x[n] and carrier) 

Figure 14-4: The two modulation steps, input filtering (shaping) and mixing, on an example signal. 

we get 

Equation (14.3) makes it apparent (see the underlined terms) that the process of mix­
ing produces, for each DTFS component, two frequencies of interest: one at the sum 
and the other at the difference of the mixed (multiplied) frequencies, each scaled to be 
one-half in amplitude compared to the original. 

We transmit t[n] over the channel. The heterodyne mixing step may be explained math­
ematically using Equation (14.3), but you will rarely need to work out the math from 
scratch in any given problem: all you need to know and appreciate is that the (shaped) 
baseband signal is simply replicated in the frequency domain at two different frequencies, 
±kc, which are the nonzero DTFS coefficients of the carrier sinusoidal signal, and scaled by 
1/2. We show this outcome schematically in Figure 14-5. 

The time-domain representation shown in Figure 14-4 is not as instructive as the 
frequency-domain picture to gain intuition about what modulation does and why frequency-
division multiplexing avoids interference. Figure 14-6 shows the same information as Fig­
ure 14-4, but in the frequency domain. The caption under that figure explains the key 
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For band-limited signal I.e., just replicate baseband  
Ak are nonzero only for signal at ±kc, and scale 
small range of ±k by ½. 
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Figure 14-5: Illustrating the heterodyne principle. 

insights. 
This completes our discussion of the modulation process, at least for now (we’ll revisit 

it in Section 14.5), bringing us to the question of how to extract the (shaped) baseband 
signal at the receiver. We turn to this question next. 

• 14.3 Demodulation: The Simple No-Delay Case 
Assume for simplicity that the receiver captures the transmitted signal, t[n], with no distor­
tion, noise, or delay; that’s about as perfect as things can get. Let’s see how to demodulate 
the received signal, r[n] =  t[n], to extract x[n], the shaped baseband signal. 

The trick is to apply the heterodyne principle once again: multiply the received signal 
by a local sinusoidal signal that is identical to the carrier! An elegant way to see what would 
happen is to start with Figure 14-6, rather than the time-domain representation. We now 
can pretend that we have a “baseband” signal whose frequency components are as shown 
in Figure 14-6, and what we’re doing now is to “mix” (i.e., multiply) that with the carrier. 
We can accordingly take each of the two (i.e., real and imaginary) pieces in the right-most 
column of Figure 14-6 and treat each in turn. 

The result is shown in Figure 14-7. The left column shows the frequency components 
of the original (shaped) baseband signal, x[n]. The middle column shows the frequency 
components of the modulated signal, t[n], which is the same as the right-most column of 
Figure 14-6. The carrier (cos(35Ω1n), so the DTFS coefficients of t[n] are centered around 
k = −35 and k = 35  in the middle column. Now, when we mix that with a local signal 
identical to the carrier, we will shift each of these two groups of coefficients by ±35 once 
again, to see a cluster of coefficients at −70 and 0 (from the −35 group) and at 0 and +70 
(from the +35 group). Each piece will be scaled by a further factor of 1/2, so the left and 
right clusters on the right-most column in Figure 14-7 will be 1/4 as large as the original 
baseband components, while the middle cluster centered at 0, with the same spectrum as the 
original baseband signal, will be scaled by 1/2. 

What we are interested in recovering is precisely this middle portion, centered at 0, be­
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Band-limited x[n] cos(35Ω1n) t[n] 

Figure 14-6: Frequency-domain representation of Figure 14-4, showing how the DTFS components (real 
and imaginary) of the real-valued band-limited signal x[n] after input filtering to produce shaped pulses 
(left), the purely cosine sinusoidal carrier signal (middle), and the heterodyned (mixed) baseband and 
carrier at two frequency ranges whose widths are the same as the baseband signal, but that have been 
shifted ±kc in frequency, and scaled by 1/2 each (right). We can avoid interference with another signal 
whose baseband overlaps in frequency, by using a carrier for the other signal sufficiently far away in 
frequency from kc. 

cause in the absence of any distortion, it is exactly the same as the original (shaped) baseband, 
except that is scaled by 1/2. 

How would we recover this middle piece alone and ignore the left and right clusters, 
which are centered at frequencies that are at twice the carrier frequency in the positive and 
negative directions? We have already studied a technique in Chapter 12: a low-pass filter. 
By applying a low-pass filter whose cut-off frequency lies between kx and 2kc − kx, we can 
recover the original signal faithfully. 

We can reach the same conclusions by doing a more painstaking calculation, similar to 
the calculations we did for the modulation, leading to Equation (14.3). Let z[n] be the sig­
nal obtained by multiplying (mixing) the local replica of the carrier cos(kcΩ1n) and the re­
ceived signal, r[n] =  t[n], which is of course equal to x[n] cos(kcΩ1n). Using Equation 14.3, 
we can express z[n] in terms of its DTFS coefficients as follows: 
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x[n] t[n] z[n] 

Figure 14-7: Applying the heterodyne principle in demodulation: frequency-domain explanation. The left 
column is the (shaped) baseband signal spectrum, and the middle column is the spectrum of the modu­

lated signal that is transmitted and received. The portion shown in the vertical rectangle in the right-most 
column has the DTFS coefficients of the (shaped) baseband signal, x[n], scaled by a factor of 1/2, and may 
be recovered faithfully using a low-pass filter. This picture shows the simplified ideal case when there is 
no channel distortion or delay between the sender and receiver. 

The middle term, underlined, is what we want to extract. The first term is at twice the 
carrier frequency above the baseband, while the third term is at twice the carrier frequency 
below the baseband; both of those need to be filtered out by the demodulator. 

• 14.3.1 Handling Channel Distortions 

Thus far, we have considered the ideal case of no channel distortions or delays. We relax 
this idealization and consider channel distortions now. If the channel is LTI (which is very 
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� y[n] z[n]t[n] Channel 
H(Ω) 

cos(kcΩ1n) 

Figure 14-8: Demodulation in the presence of channel distortion characterized by the frequency response 
of the channel. 

often the case), then one can extend the approach described above. The difference is that 
each of the Ak terms in Equation (14.4), as well as Figure 14-7, will be multiplied by the 
frequency response of the channel, H(Ω), evaluated at a frequency of kΩ1. So each DTFS 
coefficient will be scaled further by the value of this frequency response at the relevant 
frequency. 

Figure 14-8 shows the model of the system now. The modulated input, t[n], traverses 
the channel en route to the demodulator at the receiver. The result, z[n], may be written as 
follows: 

Of these three terms in the RHS of Equation (14.5), the first term contains the baseband 
signal that we want to extract. We can do that as before by applying a lowpass filter to get 
rid of the ±2kc components. To then recover each Ak, we need to pass the output of the 
lowpass filter to another LTI filter that undoes the distortion by multiplying the kth Fourier 
coefficient by the inverse of H((k + kc)Ω1) +  H((k − kc)Ω1). Doing so, however, will also 
amplify any noise at frequencies where the channel attenuated the input signal t[n], so a  
better solution is obtained by omitting the inversion at such frequencies. 

For this procedure to work, the channel must be relatively low-noise, and the receiver 
needs to know the frequency response, H(Ω), at all the frequencies of interest in Equation 
(14.5); i.e., in the range [−kc − kx,−kc + kx] and [kc − kx, kc + kx]. To estimate H(Ω), a com­
mon approach is to send a known preamble at the beginning of each packet (or frame) 
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×t[n] z[n] LPF y[n] 

Cutoff @ ±kx 
Filter gain depends on H values 

cos(k Ω1n) 

Figure 14-9: Demodulation steps: the no-delay case (top). LPF is a lowpass filter. The graphs show the 
time-domain representations before and after the LPF. 

of transmission. The receiver looks for this known preamble to synchronize the start of 
reception, and because the transmitted signal pattern is known, the receiver can deduce 
channel’s the unit sample response, h[·], from it, using an approach similar to the one out­
lined in Chapter 11. One can then apply the frequency response equation from Chapter 
12, Equation (2.2), to estimate H(Ω) and use it to approximately undo the distortion intro­
duced by the channel. 

Ultimately, however, our interest is not in accurately recovering x[n], but rather the 
underlying bit stream. For this task, what is required is typically not an inverse filtering 
operation. We instead require a filtering that produces a signal whose samples, obtained at 
the bit rate, allow reliable decisions regarding the corresponding bits, despite the presence 
of noise. The optimal filter for this task is called the matched filter. We leave the discussion 
of the matched filter to more advanced courses in communication. 

• 14.4 Handling Channel Delay: Quadrature Demodulation 
We now turn to the case of channel delays between the sender and receiver. This delay 
matters in demodulation because we have thus far assumed that the sender and receiver 
have no phase difference with respect to each other. That assumption is, of course, not 
true, and one needs to somehow account for the phase delays. 

Let us first consider the illustrative case when there is a phase error between the sender 
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Time delay of D samples 

X
t[n] z[n] 

LPF y[n] 

Cutoff @ ±kx 

Xx[n] D 
tD[n] 

Gain depends on Hcos(kcΩ1n) cos(kcΩ1n) 

Figure 14-10: Model of channel with a delay of D samples. 

and receiver. We will then show that a non-zero delay on the channel may be modeled 
exactly like a phase error. By “phase error”, we mean that the demodulator, instead of 
multiplying (heterodyning) by cos(kcΩ1n), multiplies instead by cos(kcΩ1n − ϕ), where ϕ 
is some constant value. Let us understand what happens to the demodulated output in 
this case. 

Working out the algebra, we can write 

z[n] =  t[n] cos(kcΩ1n − ϕ) 
= x[n] cos(kcΩ1n) cos(kcΩ1n − ϕ) (14.6) 

But noting that 

it follows that the demodulated output, after the LPF step with the suitable gains, is 

y[n] =  x[n] cos  ϕ. 

Hence, a phase error of ϕ radians results in the demodulated amplitude being scaled 
by cos ϕ. This scaling is problematic: if we were unlucky enough to have the error close 
to π/2, then we would see almost no output at all! And if x[n] could take on both positive 
and negative values, then cos ϕ going negative would cause further confusion. 

A channel delay between sender and receiver manifests itself as a phase error using the 
demodulation strategy we presented in Section 14.3. To see why, consider Figure 14-10, 
where we have inserted a delay of D samples between sender and receiver. The algebra is 
very similar to the phase error case: with a sample delay of D samples, we find that 

y[n] =  t[n − D] cos(kcΩ1n) =  x[n − D] cos(kcΩ1(n − D)) cos(kcΩ1n). 

The first cos factor in effect looks like it has a phase error of kcΩ1D, so the output is attenu­
ated by cos(kcΩ1D). 

So how do we combat phase errors? One approach is to observe that in situations 
where cos ϕ is 0, sin ϕ is close to 1. So, in those cases, multiplying (heterodyning) at the 
demodulator by sin(kcΩ1n) = cos(π − kcΩ1n) corrects for the phase difference. Notice,2 
however, that if the phase error were non-existent, then multiplying by sin(kcΩ1n) would 

cos(kc⌦1

n) cos(kc⌦1
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× LPF I[n] = x[n-D]·cos(θ) 
tD[n]=t[n-D] 

Cutoff @ ±kin
From Gain = 2 θ = ΩcD - φcos(Ωcn-ϕ)
channel 

× LPF Q[n] = x[n-D]·sin(θ) 

Cutoff @ ±kin 
Gain = 2sin(Ωcn-ϕ) 

Figure 14-11: Quadrature demodulation to handle D-sample channel delay. 

lead to no baseband signal—you should verify this fact by writing 

and expanding t[n] using its DTFS. Hence, multiplying by the sin when the carrier is a cos 
will not always work; it will work only when the phase error is a fortunate value (≈ π/2). 

This observation leads us to a solution to this problem, called quadrature demodula­

tion, depicted in Figure 14-11 for the case of channel delay but no channel distortion (so 
we can apply a gain of 2 on the LPFs rather than factors dependent on H(Ω)). The idea is 
to multiply the received signal by both cos(Ωcn) (where Ωc = kcΩ1 is the carrier frequency), 
and sin(Ωcn). This method is a way of “hedging” our bet: we cannot be sure which term, 
cos or sin would work, but we can be sure that they will not be 0 at the same time! We can 
use this fact to recover the signal reliably always, as explained below. 

For simplicity (and convenience), suppose that x[n] ≥ 0 always (at the input). Then, 
using the notation from Figure 14-11, define w[n] =  I[n] +  jQ[n] (the I term is generally 
called the in-phase term and the Q term is generally called the quadrature term). Then, 

J
|w[n]| = (I[n])2 + (Q[n])2 

 
= |x[n − D]| (cos2θ + sin2 θ) 
= |x[n − D]| (14.7) 
= x[n − D] becausex[·] ≥ 0 (14.8) 

Hence, the quadrature demodulator performs the following step, in addition to the 
ones for the no-delay case explained before: compute I[n] and Q[n], and calculate |w[n]|
using Equation (14.8). Return this value, thresholding (to combat noise) at the mid-point 
between the voltage levels corresponding to a “0” and a “1”. With quadrature demodula­
tion, suppose the sender sends 0 volts for a “0” and 1 volt for a “1”, the receiver would, 
in general, demodulate a rotated version in the complex plane, as shown in Figure 14-12. 
However, the magnitude will still be 1, and quadrature demodulation can successfully 
recover the input. 

Figure 14-13 summarizes the various steps of the quadrature demodulator that we de­
scribed in this section. 

This concludes our discussion of the basics of demodulation. We turn next to briefly 
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jQ 


x[n-D]sin(θ) 

θ 

Constellation diagrams: 

x[n-D] = { 0, 1 } 

I 
x[n-D]cos(θ) I 

Q 

I 

Q 

transmitter receiver 


Figure 14-12: Quadrature demodulation. The term “constellation diagram” refers to the values that the 
sender can send, in this case just 0 and 1 volts. The receiver’s steps are shown in the picture. 

survey more sophisticated modulation/demodulation schemes. 

• 14.5 More Sophisticated (De)Modulation Schemes 
We conclude this chapter by briefly outlining three more sophisticated (de)modulation 
schemes. 

• 14.5.1 Binary Phase Shift Keying (BPSK) 

In BPSK, as shown in Figure 14-14, the transmitter selects one of two phases for the carrier, 
e.g. −π/2 for “0” and π/2 for “1”. The transmitter does the same mixing with a sinusoid 
as explained earlier. The receiver computes the I and Q components from its received 
waveform, as before. This approach “almost” works, but in the presence of channel delays 
or phase errors, the previous strategy to recover the input does not work because we had 
assumed that x[n] ≥ 0. With BPSK, x[n] is either +1 or −1, and the two levels we wish to 
distinguish have the same magnitude on the complex plane after quadrature demodula­
tion! 

The solution is to think of the phase encoding as a differential, not absolute: a change in 
phase corresponds to a change in bit value. Assume that every message starts with a “0” 
bit. Then, the first phase change represents a 0 → 1 transition, the second phase change a 
1 → 0 transition, and so on. One can then recover all the bits correctly in the demodulator 
using this idea, assuming no intermediate glithces (we will not worry about such glitches 
here, which do occur in practice and must be dealt with). 

• 14.5.2 Quadrature Phase Shift Keying (QPSK) 

Quadrature Phase Shift Keying is a clever idea to add a “degree of freedom” to the system 
(and thereby extracting higher performance). This method, shown in Figure 14-15, uses a 
quadrature scheme at both the transmitter and the receiver. When mapping bits to voltage 
values in QPSK, we would choose the values so that the amplitude of t[n] is constant. 
Moreover, because the constellation now involves four symbols, we map two bits to each 
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Figure 14-13: Quadrature demodulation: overall system view. The “alternative representation” shown 
implements the quadrature demodulator using a single complex exponential multiplication, which is a 
more compact representation and description. 

symbol. So 00 might map to (A, A), 01 to (−A, A), 11 to (−A, −A), and 10 to (A, −A)√ 
(the amplitude is therefore 2A). There is some flexibility in this mapping, but it is not 
completely arbitrary; for example, we were careful here to not map 11 to (A, −A) and 00 to 
(A, A). The reason is that any noise is more likely to cause (A, A) to be confused fo (A, −A), 
compared to (−A, −A), so we would like a symbol error to corrupt as few bits as possible. 

• 14.5.3 Quadrature Amplitude Modulation (QAM) 

QAM may be viewed as a generalization of QPSK (in fact, QPSK is sometimes called QAM­
4). One picks additional points in the constellation, varying both the amplitude and the 
phase. In QAM-16 (Figure 14-16), we map four bits per symbol. Denser QAM constella­
tions are also possible; practical systems today use QAM-4 (QPSK), QAM-16, and QAM­
64. Quadrature demodulation with the adjustment for phase is the demodulation scheme 
used at the receiver with QAM. 

For a given transmitter power, the signal levels corresponding to different bits at the 
input get squeezed closer together in amplitude as one goes to constellations with more 
points. The resilience to noise reduces because of this reduced separation, but sophisti­
cated coding and signal processing techniques may be brought to bear to deal with the 
effects of noise to achieve higher communication bit rates. In many real-world commu­
nication systems, the physical layer provides multiple possible constellations and choice 
of codes; for any given set of channel conditions (e.g., the noise variance, if the channel 
is well-described using the AWGN model), there is some combination of constellation, 
coding scheme, and code rate, which maximizes the rate at which bits can be received 

�

cos(Ωcn-φ)

LPF

I[n] = x[n-D]·cos(θ)

Cutoff @ �kin

�

sin(Ωcn-φ)

LPF

Q[n] = x[n-D]·sin(θ)

Cutoff @ �kin

θ = ΩcD - φ 

| |2

| |2

+ sqrt()

y[n]=|x[n-D]|
Q[n]2

I[n]2

y[n] = sqrt(I[n]2+Q[n]2)

t[n]

�

cos(Ωcn)

x[n]
D

tD[n]

Transmitter

Channel

Receiver

Decimate & 
slice

Received 
bitsy[n]

I[n] 

Q[n] 

Delay

Bits to 
samples

Transmit
bits

tD[n] = t[n-D] 

Alternative 
representation � LPF

Cutoff @ �kin

| |

|y[n]|=|x[n-D]|

tD[n]

Receiver

Decimate & 
slice

Received 
bits

Quadrature demodulator

)( ϕ−Ω nj ce

)(][][ ϕ−Ω−= Dj ceDnxny

Quadrature demodulator



i6.02 Spring 2012 

 

 

214 CHAPTER 14. MODULATION AND DEMODULATION 

In binary phase-shift keying (BPSK), the message bit selects one of 
I two phases for the carrier, e.g., T/2 for 0 and –T/2 for 1. 

Q 

× 

sin(Ωcn) 

(-1,1)x[n] 

× 
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sin(Ωcn) 

LPF 

 

LPF 

phase[n] 
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I[n] 

Q[n] 

Figure 14-14: Binary Phase Shift Keying (BPSK). 

and decoded reliably. Higher-layer “bit rate selection” protocols use information about 
the channel quality (signal-to-noise ratio, packet loss rate, or bit error rate) to make this 
decision. 
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Still need band limiting at transmitter 

(-A,A) LPF Qmsg[0::2] × 
cos(Ωcn) 
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sin(Ωcn) + 

I[n] 
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(-A,A) (A,A) 

Even bits It[n] 
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Figure 14-15: Quadrature Phase Shift Keying (QPSK). 

Still need band-limiting at transmitter 
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Figure 14-16: Quadrature Amplitude Modulation (QAM). 

•
 

Problems

 
and

 
Questions

 

1. The Boston sports radio station WEEI AM (“amplitude modulation”) broadcasts on a 
carrier frequency of 850 kHz, so its continuous-time (CT) carrier signal can be taken 
to be cos(2π × 850 × 103t), where t is measured in seconds. Denote the CT audio 
signal that’s modulated onto this carrier by x(t), so that the CT signal transmitted by 
the radio station is 

y(t) =  x(t) cos(2π × 850 × 103t) , (14.9) 

as indicated schematically on the left side of the figure below. 
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We use the symbols y[n] and x[n] to denote the discrete-time (DT) signals that would 
have been obtained by respectively sampling y(t) and x(t) in Equation (14.9) at fs 
samples/sec; more specifically, the signals are sampled at the discrete time instants 
t = n(1/fs). Thus 

y[n] =  x[n] cos(Ωcn) (14.10) 

for an appropriately chosen value of the angular frequency Ωc. Assume that x[n] is  
periodic with some period N , and that fs = 2  × 106 samples/sec.  

Answer the following questions, explaining your answers in the space provided.  

(a) Determine the value of Ωc in Equation (14.10), restricting your answer to a value 
in the range [−π,π]. (You can assume in what follows that the period N of x[n] is 
such that Ωc = 2kcπ/N for some integer kc; this is a detail, and needn’t concern 
you unduly.) 

(b) Suppose the Fourier series coefficients X[k] of the DT signal x[n] in Equation 
(14.10) are purely real, and are as shown in the figure below, plotted as a function 
of Ωk = 2kπ/N . (Note that the figure is not drawn to scale. Also, the different 
values of Ωk are so close to each other that we have just interpolated adjacent 
values of X[k] with a straight line, rather than showing you a discrete “stem” 
plot.) Observe that the Fourier series coefficients are non-zero for frequencies 
Ωk in the interval [−.005π, .005π], and 0 at all other Ωk in the interval [−π,π]. 

Draw a carefully labeled sketch below (though not necessarily to scale) to show 
the Fourier series coefficients of the DT modulated signal y[n]. However, rather 
than labeling your horizontal axis with the Ωk, as we have done above, you 
should label the axis with the appropriate frequency fk in Hz. 

Assume now that the receiver detects the CT signal w(t) = 10−3y(t − t0), where t0 = 
3 × 10−6 sec, and that it samples this signal at fs samples/sec, thereby obtaining the 



217 SECTION 14.5. MORE SOPHISTICATED (DE)MODULATION SCHEMES 

for an appropriately chosen integer M . 

C.	 Determine the value of M in Equation (14.11). 

D.	 Noting your answer from part B, determine for precisely which intervals of the 
frequency axis the Fourier series coefficients of the signal y[n − M ] in Equation 
(14.11) are non-zero. You need not find the actual coefficients, only the fre­
quency range over which these coefficients will be non-zero. Also state whether 
or not the Fourier coefficients will be real. Explain your answer. 

E.	 The demodulation step to obtain the DT signal x[n − M ] from the received signal 
w[n] now involves multiplying w[n] by a DT carrier-frequency signal, followed 
by appropriate low-pass filtering (with the gain of the low-pass filter in its pass-
band being chosen to scale the signal to whatever amplitude is desired). Which 
one of the following six DT carrier-frequency signals would you choose to mul­
tiply the received signal by? Circle your choice and give a brief explanation. 

i. cos ⌦cn .

ii. cos

⇣
⌦c(n�M)

⌘
.

iii. cos

⇣
⌦c(n+M)

⌘
.

iv. sin

⇣
⌦cn

⌘
.

v. sin

⇣
⌦c(n�M)

⌘
.

vi. sin ⌦c(n+M) .

⇣ ⌘

⇣ ⌘

DT signal
w[n] = 10

�3y[n M ] = 10

�3x[n M ] cos ⌦c(n M) (14.11)� �

⇣
�

⌘

.
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M-sample 
delay 

x1[n] 

x2[n] 

y[n] 

w[n] 

v[n] 

-1000 1000 

-500500 -250 250 500 

Figure 14-17: System for problem 2. 

2. All parts of this question pertain to the following modulation-demodulation system 
shown in Figure 14-17, where all signals are periodic with period P = 10000. Please 
also assume that the sample rate associated with this system is 10000 samples per 
second, so that k is both a coefficient index and a frequency. In the diagram, the 
modulation frequency, km, is  500. 

(a) Suppose the DFT coefficients for the signal y[n] in the modula­
tion/demodulation diagram are as plotted in Figure 14-17.  
Assuming that M = 0  for the M -sample delay (no delay), plot the coefficients  
for the signals w and v in the modulation/demodulation diagram. Be sure to  
label key features such as values and coefficient indices for peaks.  

(b) Assuming the coefficients for the signal y[n] are the same as in part (a), please 
plot the DTFS coefficients for the signal x1 in the modulation/demodulation 
diagram. Be sure to label key features such as values and coefficient indices for 
peaks. 
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(c) If the M -sample delay in the modulation/demodulation diagram has the right 
number of samples of delay, then it will be possible to nearly perfectly recover 
x2[n] by low-pass filtering w[n]. Determine the smallest positive number of sam­
ples of delay that are needed and the cut-off frequency for the low-pass filter. 
Explain your answer, using pictures if appropriate. 

3. Figure 14-18 shows a standard modulation/demodulation scheme where N = 100. 

Figure 14-18: System for problem 3. 

(a) Figure 14-19 shows a plot of the input, x[n]. Please draw the approximate time-
domain waveform for y[n], the signal that is the input to the low-pass filter in 
the demodulator. Don’t bother drawing dots for each sample, just use a line 
plot to indicate the important timing characteristics of the waveform. 

Figure 14-19: Plot for problem 3(a). 

(b) Building on the scheme shown in Part (a), suppose there are multiple modu­
lators and demodulators all connected to a single shared channel, with each 
modulator given a different modulation frequency. If the low-pass filter in each 
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modulator is eliminated, briefly describe what the effect will be on signal z[n], 
the output of a demodulator tuned to the frequency of a particular transmitter. 

4. The plot on the left of Figure 14-20 shows ak, the DTFS coefficients of the signal at 
the output of a transmitter with N = 36. If the channel introduces a 3-sample delay, 
please plot the Fourier series coefficients of the signal entering the receiver. 

Figure 14-20: System for problem 4. 
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5. Figure 14-21 shows an image rejection mixer. The frequency responses of the two 
filter components (the 90-degree phase shift and the low-pass filter) are as shown. 
The spectral plot to the left in figure above shows the spectrum of the input sig­
nal, x[n]. Using the same icon representation of a spectrum, draw the spectrum for 
signals p[n], q[n], r[n], and s[n] below, taking care to label the center frequency and 
magnitude of each spectral component. If two different icons overlap, simply draw 
them on top of one another. If identical icons overlap, perform the indicated addi­
tion/subtraction, showing the net result with a bold line. 

Figure 14-21: Problem 5: image rejection mixer. 
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CHAPTER 15 
Sharing a Channel: 

Media Access (MAC) Protocols 

There are many communication channels, including radio and acoustic channels, and 
certain kinds of wired links (coaxial cables), where multiple nodes can all be connected 
and hear each other’s transmissions (either perfectly or with some non-zero probability). 
This chapter addresses the fundamental question of how such a common communication 
channel—also called a shared medium—can be shared between the different nodes. 

There are two fundamental ways of sharing such channels (or media): time sharing and 
frequency sharing.1 The idea in time sharing is to have the nodes coordinate with each other 
to divide up the access to the medium one at a time, in some fashion. The idea in frequency 
sharing is to divide up the frequency range available between the different transmitting 
nodes in a way that there is little or no interference between concurrently transmitting 
nodes. The methods used here are the same as in frequency division multiplexing, which 
we described in the previous chapter. 

This chapter focuses on time sharing. We will investigate two common ways: time 
division multiple access, or  TDMA, and contention protocols. Both approaches are used in 
networks today. 

These schemes for time and frequency sharing are usually implemented as communica­
tion protocols. The term protocol refers to the rules that govern what each node is allowed 
to do and how it should operate. Protocols capture the “rules of engagement” that nodes 
must follow, so that they can collectively obtain good performance. Because these sharing 
schemes define how multiple nodes should control their access to a shared medium, they 
are termed media access (MAC) protocols or multiple access protocols. 

Of particular interest to us are contention protocols, so called because the nodes contend 
with each other for the medium without pre-arranging a schedule that determines who 
should transmit when, or a frequency reservation that guarantees little or no interference. 
These protocols operate in laissez faire fashion: nodes get to send according to their own 

1There are other ways too, involving codes that allow multiple concurrent transmissions in the same fre­
quency band, with mechanisms to decode the individual communications. We won’t study these more ad­
vanced ideas here. These ideas are sometimes used in practice, but all real-world systems use a combination 
of time and frequency sharing. 

223 
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Figure 15-1: The locations of some of the Alohanet’s original ground stations are shown in light blue 

markers. 

volition without any external agent telling them what to do. These contention protocols 
are well-suited for data networks, which are characterized by nodes transmitting data in 
bursts and at variable rates (we will describe the properties of data networks in more detail 
in a later chapter on packet switching). 

In this chapter and the subsequent ones, we will assume that any message is broken up 
into a set of one or more packets, and a node attempts to send each packet separately over 
the shared medium. 

• 15.1 Examples of Shared Media 

Satellite communications. Perhaps the first example of a shared-medium network de­
ployed for data communication was a satellite network: the Alohanet in Hawaii. The Alo­
hanet was designed by a team led by Norm Abramson in the 1960s at the University of 
Hawaii as a way to connect computers in the different islands together (Figure 15-1). A 
computer on the satellite functioned as a switch to provide connectivity between the nodes 
on the islands; any packet between the islands had to be first sent over the uplink to the 
switch,2 and from there over the downlink to the desired destination. Both directions used 
radio communication and the medium was shared. Eventually, this satellite network was 
connected to the ARPANET (the precursor to today’s Internet). 

Such satellite networks continue to be used today in various parts of the world, and 
they are perhaps the most common (though expensive) way to obtain connectivity in the 
high seas and other remote regions of the world. Figure 15-2 shows the schematic of such 
a network connecting islands in the Pacific Ocean and used for teleconferencing. 

In these satellite networks, the downlink usually runs over a different frequency band 
from the uplinks, which all share the same frequency band. The different uplinks, however, 
need to be shared by different concurrent communications from the ground stations to the 
satellite. 

2We will study switches in more detail in later lectures. 

É Europa Technologies, TerraMetrics, Google, and NASA. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Figure 15-2: A satellite network. The “uplinks” from the ground stations to the satellite form a shared 

medium. 

Wireless networks. The most common example of a shared communication medium to­
day, and one that is only increasing in popularity, uses radio. Examples include cellular 
wireless networks (including standards like EDGE, 3G, and 4G), wireless LANs (such as 
802.11, the WiFi standard), and various other forms of radio-based communication. An­
other example of a communication medium with similar properties is the acoustic channel 
explored in the 6.02 labs. Broadcast is an inherent property of radio and acoustic communi­
cation, especially with so-called omni-directional antennas, which radiate energy in all (or 
many) different directions. However, radio and acoustic broadcasts are not perfect because 
of interference and the presence of obstacles on certain paths, so different nodes may cor­
rectly receive different parts of any given transmission. This reception is probabilistic and 
the underlying random processes that generate bit errors are hard to model. 

Shared bus networks. An example of a wired shared medium is Ethernet, which when 
it was first developed (and for many years after) used a shared cable to which multiple 
nodes could be connected. Any packet sent over the Ethernet could be heard by all stations 
connected physically to the network, forming a perfect shared broadcast medium. If two 
or more nodes send packets that overlap in time, both packets ended up being garbled and 
received in error. 

Over-the-air radio and television. Even before data communication, many countries in 
the world had (and still have) radio and television broadcast stations. Here, a relatively 
small number of transmitters share a frequency range to deliver radio or television content. 
Because each station was assumed to be active most of the time, the natural approach to 
sharing is to divide up the frequency range into smaller sub-ranges and allocate each sub-
range to a station (frequency division multiplexing). 

Given the practical significance of these examples, and the sea change in network access 
brought about by wireless technologies, developing methods to share a common medium 

É International Telecommunication Union. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
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is an important problem. 

• 15.2 Model and Goals 

Before diving into the protocols, let’s first develop a simple abstraction for the shared 
medium and more rigorously model the problem we’re trying to solve. This abstraction is 
a reasonable first-order approximation of reality. 

We are given a set of N nodes sharing a communication medium. We will assume N 
is fixed, but the protocols we develop will either continue to work when N varies, or can 
be made to work with some more effort. Depending on the context, the N nodes may 
or may not be able to hear each other; in some cases, they may not be able to at all, in 
some cases, they may, with some probability, and in some cases, they will always hear 
each other. Each node has some source of data that produces packets. Each packet may 
be destined for some other node in the network. For now, we will assume that every node 
has packets destined to one given “master” node in the network. Of course, the master 
must be capable of hearing every other node, and receiving packets from those nodes. We 
will assume that the master perfectly receives packets from each node as long as there are 
no “collisions” (we explain what a “collision” is below). 

The model we consider has the following rules: 

1. Time is divided into slots of equal length, τ . 

2. Each node can send a packet only at the beginning of a slot. 

3. All packets are of the same size, and equal to an integral multiple of the slot length. In  
practice, packets will of course be of varying lengths, but this assumption simplifies 
our analysis and does not affect the correctness of any of the protocols we study. 

4. Packets arrive for transmission according to some random process; the protocol 
should work correctly regardless of the process governing packet arrivals. If two 
or more nodes send a packet in the same time slot, they are said to collide, and none 
of the packets are received successfully. Note that even if only part of a packet en­
counters a collision, the entire packet is assumed to be lost. This “perfect collision” 
assumption is an accurate model for wired shared media like Ethernet, but is only a 
crude approximation of wireless (radio) communication. The reason is that it might 
be possible for multiple nodes to concurrently transmit data over radio, and depend­
ing on the positions of the receivers and the techniques used to decode packets, for 
the concurrent transmissions to be received successfully. 

5. The sending node can discover that a packet transmission collided and may choose 
to retransmit such a packet. 

6. Each node has a queue; any packets waiting to be sent are in the queue. A node with 
a non-empty queue is said to be backlogged. 

Performance goals. An important goal is to provide high throughput, i.e., to deliver 
packets successfully at as high a rate as possible, as measured in bits per second. A mea­

http:length.In
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sure of throughput that is independent of the rate of the channel is the utilization, which 
is defined as follows: 

Definition. The utilization that a protocol achieves is defined as the ratio of the total 
throughput to the maximum data rate of the channel. 

For example, if there are 4 nodes sharing a channel whose maximum bit rate is 10 
Megabits/s,3 and they get throughputs of 1, 2, 2, and 3 Megabits/s, then the utilization 
is (1 + 2+ 2+ 3)/10 = 0.8. Obviously, the utilization is always between 0 and 1. Note that 
the utilization may be smaller than 1 either because the nodes have enough offered load 
and the protocol is inefficient, or because there isn’t enough offered load. By offered load, 
we mean the load presented to the network by a node, or the aggregate load presented to 
the network by all the nodes. It is measured in bits per second as well. 

But utilization alone isn’t sufficient: we need to worry about fairness as well. If we 
weren’t concerned about fairness, the problem would be quite easy because we could ar­
range for a particular backlogged node to always send data. If all nodes have enough load 
to offer to the network, this approach would get high utilization. But it isn’t too useful in 
practice because it would also starve one or more other nodes. 

A number of notions of fairness have been developed in the literature, and it’s a topic 
that continues to generate activity and interest. For our purposes, we will use a simple, 
standard definition of fairness: we will measure the throughput achieved by each node 
over some time period, T , and say that an allocation with lower standard deviation is 
“fairer” than one with higher standard deviation. Of course, we want the notion to work 
properly when the number of nodes varies, so some normalization is needed. We will use 
the following simplified fairness index: 

�N( i=1 xi)
2 

F = � , (15.1)2N xi 

where xi is the throughput achieved by node i and there are N backlogged nodes in all. 
Clearly, 1/N ≤ F ≤ 1; F = 1/N implies that a single node gets all the throughput, while 

F = 1  implies perfect fairness. We will consider fairness over both the long-term (many 
thousands of “time slots”) and over the short term (tens of slots). It will turn out that in 
the schemes we study, some schemes will achieve high utilization but poor fairness, and 
that as we improve fairness, the overall utilization will drop. 

The next section discusses Time Division Multiple Access, or TDMA, a scheme that 
achieves high fairness, but whose utilization may be low when the offered load is non­
uniform between the nodes, and is not easy to implement in a fully distributed way with­
out a central coordinator when nodes join and leave dynamically. However, there are 
practical situations when TDMA works well, and such protocols are used in some cellular 
wireless networks. Then, we will discuss a variant of the Aloha protocol, the first con­
tention MAC protocol that was invented. Aloha forms the basis for many widely used 
contention protocols, including the ones used in the IEEE 802.11 (WiFi) standard. 

3In this course, and in most, if not all, of the networking and communications world, “kilo” = 103, “mega” 
= 106 and “giga” = 109, when talking about network rates, speeds, or throughput. When referring to storage 
units, however, one needs to be more careful because “kilo”, “mega” and “giga” often (but not always) refer 
to 210 , 220, and 230, respectively. 



228 
CHAPTER 15. SHARING A CHANNEL: 

MEDIA ACCESS (MAC) PROTOCOLS 

• 15.3 Time Division Multiple Access (TDMA) 

If one had a centralized resource allocator, such as a base station in a cellular network, and 
a way to ensure some sort of time synchronization between nodes, then a “time division” 
is not hard to develop. As the name suggests, the goal is to divide time evenly between 
the N nodes. One way to achieve this goal is to divide time into slots starting from 0 
and incrementing by 1, and for each node to be given a unique identifier (ID) in the range 
[0,N  − 1]. 

A simple TDMA protocol uses the following rule: 

If the current time slot is t, then the node with ID i transmits if, and only if, it is 
backlogged and tmodN = i. 

If the node whose turn it is to transmit in time slot t is not backlogged, then that time 
slot is “wasted”. 

This TDMA scheme has some good properties. First, it is fair: each node gets the same 
number of transmission attempts because the protocol provides access to the medium in 
round-robin fashion among the nodes. The protocol also incurs no packet collisions (as­
suming it is correctly implemented!): exactly one node is allowed to transmit in any time 
slot. And if the number of nodes is static, and there is a central coordinator (e.g., a master 
nodes), this TDMA protocol is simple to implement. 

This TDMA protocol does have some drawbacks. First and foremost, if the nodes send 
data in bursts, alternating between periods when they are backlogged and when they are 
not, or if the amount of data sent by each node is different, then TDMA under-utilizes the 
medium. The degree of under-utilization depends on how skewed the traffic pattern; the 
more the imbalance, the lower the utilization. An “ideal” TDMA scheme would provide 
equal access to the medium only among currently backlogged nodes, but even in a sys­
tem with a central master, knowing which nodes are currently backlogged is somewhat 
challenging. Second, if each node sends packets that are of different sizes (as is the case in 
practice, though the model we specified above did not have this wrinkle), making TDMA 
work correctly is more involved. It can still be made to work, but it takes more effort. An 
important special case is when each node sends packets of the same size, but the size is 
bigger than a single time slot. This case is not hard to handle, though it requires a little 
more thinking, and is left as an exercise for the reader.) Third, making TDMA work in a 
fully distributed way in a system without a central master, and in cases when the number 
of nodes changes dynamically, is tricky. It can be done, but the protocol quickly becomes 
more complex than the simple rule stated above. 

Contention protocols like Aloha and CSMA don’t suffer from these problems, but un­
like TDMA, they encounter packet collisions. In general, burst data and skewed work­
loads favor contention protocols over TDMA. The intuition in these protocols is that we 
somehow would like to allocate access to the medium fairly, but only among the back­
logged nodes. Unfortunately, only each node knows with certainty if it is backlogged or 
not. Our solution is to use randomization, a simple but extremely powerful idea; if each 
backlogged node transmits data with some probability, perhaps we can arrange for the 
nodes to pick their transmission probabilities to engineer an outcome that has reasonable 
utilization (throughput) and fairness! 

The rest of this chapter describes such randomized contention protocols, starting with 
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the ancestor of them all, Aloha. 

• 15.4 Aloha 

The basic variant of the Aloha protocol that we’re going to start with is simple, and as 
follows: 

If a node is backlogged, it sends a packet from its queue with probability p.
 

From here, until Section 15.6, we will assume that each packet is exactly one slot in length. Such 
a system is also called slotted Aloha. 

We have not specified what p is; we will figure that out later, once we analyze the 
protocol as a function of p. Suppose there are N backlogged nodes and each node uses 
the same value of p. We can then calculate the utilization of the shared medium as a 
function of N and p by simply counting the number of slots in which exactly one node sends 
a packet. By definition, a slot with 0 or greater than 1 transmissions does not correspond to 
a successfully delivered packet, and therefore does not contribute toward the utilization. 

If each node sends with probability p, then the probability that exactly one node sends in 
any given slot is Np(1 − p)N−1. The reason is that the probability that a specific node sends 
in the time slot is p, and for its transmission to be successful, all the other nodes should 
not send. That combined probability is p(1 − p)N−1 . Now, we can pick the successfully 
transmitting node in N ways, so the probability of exactly one node sending in a slot is 
Np(1 − p)N−1 . 

This quantity is the utilization achieved by the protocol because it is the fraction of slots 
that count toward useful throughput. Hence, 

. (15.2)USlotted Aloha(p) =  Np(1 − p)N −1 

Figure 15-3 shows Eq.(15.2) for N = 8  as a function of p. The maximum value of U 
4occurs when p = 1/N , and is equal to (1 − 1 )N−1. As  N → ∞,U  → 1/e ≈ 37%. ThisN 

result is an important one: the maximum utilization of slotted Aloha for a large number of 
backlogged nodes is roughly 1/e. 

37% might seem like a small value (after all, the majority of the slots are being wasted), 
but notice that the protocol is extremely simple and has the virtue that it is hard to botch 
its implementation! It is fully distributed and requires no coordination or other specific 
communication between the nodes. That simplicity in system design is worth a lot— 
oftentimes, it’s a very good idea to trade simplicity off for high performance, and worry 
about optimization only when a specific part of the system is likely to become (or already 
has become) a bottleneck. 

That said, the protocol as described thus far requires a way to set p. Ideally, if each node 
knew the value of N , setting p = 1/N achieves the maximum. Unfortunately, this isn’t 
as simple as it sounds because N here is the number of backlogged nodes that currently 
have data in their queues. The question then is: how can the nodes pick the best p? We  

4Here, we use the fact that limN →∞(1 − 1/N)N = 1/e. To see why this limit holds, expand the log of the 

left hand side using a Taylor series: log(1 − x) =  −x− x 
2 

2 3 − . . . . for |x| < 1.− x 
3 
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Figure 15-3: The utilization of slotted Aloha as a function of p for N = 10. The maximum occurs at p = 

1/N and the maximum utilization is U = (
N )

N −1. As  N → ∞
e ≈ 37%. N doesn’t have to 1 − 1 , U → 1 

be particularly large for the 1/e approximation to be close—for instance, when N = 10, the maximum 

utilization is 0.387. 

turn to this important question next, because without such a mechanism, the protocol is 
impractical. 

• 15.5 Stabilizing Aloha: Binary Exponential Backoff 

We use a special term for the process of picking a good “p” in Aloha: stabilization. In  
general, in distributed protocols and algorithms, “stabilization” refers to the process by 
which the method operates around or at a desired operating point. In our case, the desired 
operating point is around p = 1/N , where N is the number of backlogged nodes. 

Stabilizing a protocol like Aloha is a difficult problem because the nodes may not be able 
to directly communicate with each other (or even if they could, the overhead involved in 
doing so would be significant). Moreover, each node has bursty demands for the medium, 
and the set of backlogged nodes could change quite rapidly with time. What we need is a 
“search procedure” by which each node converges toward the best “p”. 

Fortunately, this search for the right p can be guided by feedback: whether a given 
packet transmission has been successful or not is invaluable information. In practice, this 
feedback may be obtained either using an acknowledgment for each received packet from 
the receiver (as in most wireless networks) or using the ability to directly detect a collision 
by listening on one’s own transmission (as in wired Ethernet). In either case, the feed­
back has the same form: “yes” or “no”, depending on whether the packet was received 
successfully or not. 

Given this feedback, our stabilization strategy at each node is conceptually simple: 

1. Maintain the current estimate of p, pest, initialized to some value. (We will talk about 
initialization later.) 

http:stabilization.In
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2. If “no”, then consider decreasing p. 

3. If “yes”, then consider increasing p. 

This simple-looking structure is at the core of a wide range of distributed network pro­
tocols that seek to operate around some desired or optimum value. The devil, of course, 
is in the details, in that the way in which the increase and decrease rules work depend on 
the problem and dynamics at hand. 

Let’s first talk about the decrease rule for our protocol. The intuition here is that because 
there was a collision, it’s likely that the node’s current estimate of the best p is too high 
(equivalently, its view of the number of backlogged nodes is too small). Since the actual 
number of nodes could be quite a bit larger, a good strategy that quickly gets to the true 
value is multiplicative decrease: reduce p by a factor of 2. Akin to binary search, this method 
can reach the true probability within a logarithmic number of steps from the current value; 
absent any other information, it is also the most efficient way to do so. 

Thus, the decrease rule is: 
p ← p/2 (15.3) 

This multiplicative decrease scheme has a special name: binary exponential backoff. The 
reason for this name is that if a packet has been unsuccessful k times, the probability with 
which it is sent decays proportional to 2−k . The “2” is the “binary” part, the k in the 
exponent is the “exponential” part, and the “backoff” is what the sender is doing in the 
face of these failures. 

To develop an increase rule upon a successful transmission, observe that two factors 
must be considered: first, the estimate of the number of other backlogged nodes whose 
queues might have emptied during the time it took us to send our packet successfully, and 
second, the potential waste of slots that might occur if the increased value of p is too small. 
In general, if n backlogged nodes contended with a given node x, and x eventually sent 
its packet, we can expect that some fraction of the n nodes also got their packets through. 
Hence, the increase in p should at least be multiplicative. pmax is a parameter picked by 
the protocol designer, and must not exceed 1 (obviously). 

Thus, one possible increase rule is: 

p ← min(2p, pmax). (15.4) 

Another possible rule is even simpler: 

p ← pmax. (15.5) 

The second rule above isn’t unreasonable; in fact, under burst traffic arrivals, it is quite 
possible for a much smaller number of other nodes to continue to remain backlogged, and 
in that case resetting to a fixed maximum probability would be a good idea. 

For now, let’s assume that pmax = 1  and use (15.4) to explore the performance of the 
protocol; one can obtain similar results with (15.5) as well. 
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• 15.5.1 Performance 

Let’s look at how this protocol works in simulation using WSim, a shared medium simula­
tor that you will use in the lab. Running a randomized simulation with N = 6 nodes, each 
generating traffic in a random fashion in such a way that in most slots many of the nodes 
are backlogged, we see the following result: 

Node 0 attempts 335 success 196 coll 139
 
Node 1 attempts 1691 success 1323 coll 367
 
Node 2 attempts 1678 success 1294 coll 384
 
Node 3 attempts 114 success 55 coll 59
 
Node 4 attempts 866 success 603 coll 263
 
Node 5 attempts 1670 success 1181 coll 489
 

Time 10000 attempts 6354 success 4652 util 0.47 
Inter-node fairness: 0.69 

Each line starting with “Node” above says what the total number of transmission 
attempts from the specified node was, how many of them were successes, and how 
many of them were collisions. The line starting with “Time” says what the total number 
of simulated time slots was, and the total number of packet attempts, successful packets 
(i.e., those without collisions), and the utilization. The last line lists the fairness. 

A fairness of 0.69 with six nodes is actually quite poor (in fact, even a value of 0.8 would 
be considered poor for N = 6). Figure 15-4 shows two rows of dots for each node; the top 
row corresponds to successful transmissions while the bottom one corresponds to colli­
sions. The bar graph in the bottom panel is each node’s throughput. Observe how nodes 
3 and 0 get very low throughput compared to the other nodes, a sign of significant long-
term unfairness. In addition, for each node there are long periods of time when both nodes 
send no packets, because each collision causes their transmission probability to reduce by 
two, and pretty soon both nodes are made to starve, unable to extricate themselves from 
this situation. Such “bad luck” tends to happen often because a node that has backed off 
heavily is competing against a successful backlogged node whose p is a lot higher; hence, 
the “rich get richer”. 

How can we overcome this fairness problem? One approach is to set a lower bound on 
p, something that’s a lot smaller than the reciprocal of the largest number of backlogged 
nodes we expect in the network. In most networks, one can assume such a quantity; for 
example, we might set the lower bound to 1/128 or 1/1024. 

Setting such a bound greatly reduces the long-term unfairness (Figure 15-5) and the 
corresponding simulation output is as follows: 

Node 0 attempts 1516 success 1214 coll 302
 
Node 1 attempts 1237 success 964 coll 273
 
Node 2 attempts 1433 success 1218 coll 215
 
Node 3 attempts 1496 success 1207 coll 289
 
Node 4 attempts 1616 success 1368 coll 248
 
Node 5 attempts 1370 success 1115 coll 254
 

Time 10000 attempts 8668 success 7086 util 0.71 
Inter-node fairness: 0.99 
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Figure 15-4: For each node, the top row (blue) shows the times at which the node successfully sent a packet, 

while the bottom row (red) shows collisions. Observe how nodes 3 and 0 are both clobbered getting almost 

no throughput compared to the other nodes. The reason is that both nodes end up with repeated collisions, 

and on each collision the probability of transmitting a packet reduces by 2, so pretty soon both nodes are 

completely shut out. The bottom panel is a bar graph of each node’s throughput. 

The careful reader will notice something fishy about the simulation output shown 
above (and also in the output from the simulation where we didn’t set a lower bound 
on p): the reported utilization is 0.71, considerably higher than the “theoretical maximum” 
of (1 − 1/N )N−1 = 0.4 when N = 6. What’s going on here is more apparent from Fig­
ure 15-5, which shows that there are long periods of time where any given node, though 
backlogged, does not get to transmit. Over time, every node in the experiment encounters 
times when it is starving, though over time the nodes all get the same share of the medium 
(fairness is 0.99). If pmax is 1 (or close to 1), then a backlogged node that has just succeeded 
in transmitting its packet will continue to send, while other nodes with smaller values of 
p end up backing off. This phenomenon is also sometimes called the capture effect, man­
ifested by unfairness over time-scales on the order several packets. This behavior is not 
desirable. 

Setting pmax to a more reasonable value (less than 1) yields the following:5 

Node 0 attempts 941 success 534 coll 407 
Node 1 attempts 1153 success 637 coll 516 
Node 2 attempts 1076 success 576 coll 500 
Node 3 attempts 1471 success 862 coll 609 

5We have intentionally left the value unspecified because you will investigate how to set it in the lab. 
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Figure 15-5: Node transmissions and collisions when backlogged v. slot index and each node’s throughput 

(bottom row) when we set a lower bound on each backlogged node’s transmission probability. Note the 

“capture effect” when some nodes hog the medium for extended periods of time, starving others. Over 

time, however, every node gets the same throughput (fairness is 0.99), but the long periods of inactivity 

while backlogged is undesirable. 

Node 4 attempts 1348 success 780 coll 568 
Node 5 attempts 1166 success 683 coll 483 

Time 10000 attempts 7155 success 4072 util 0.41 
Inter-node fairness: 0.97 

Figure 15-6 shows the corresponding plot, which has reasonable per-node fairness over 
both long and short time-scales. The utilization is also close to the value we calculated 
analytically of (1 − 1/N )N −1. Even though the utilization is now lower, the overall result 
is better because all backlogged nodes get equal share of the medium even over short time 
scales. 

These experiments show the trade-off between achieving both good utilization and en­
suring fairness. If our goal were only the former, the problem would be trivial: starve 
all but one of the backlogged nodes. Achieving a good balance between various notions 
of fairness and network utilization (throughput) is at the core of many network protocol 
designs. 
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Figure 15-6: Node transmissions and collisions when we set both lower and upper bounds on each back­

logged node’s transmission probability. Notice that the capture effect is no longer present. The bottom 

panel is each node’s throughput. 

• 15.6 Generalizing to Bigger Packets, and “Unslotted” Aloha 

So far, we have looked at perfectly slotted Aloha, which assumes that each packet fits ex­
actly into a slot. But what happens when packets are bigger than a single slot? In fact, one 
might even ask why we need slotting. What happens when nodes just transmit without 
regard to slot boundaries? In this section, we analyze these issues, starting with packets 
that span multiple slot lengths. Then, by making a slot length much smaller than a single 
packet size, we can calculate the utilization of the Aloha protocol where nodes can send 
without concern for slot boundaries—that variant is also called unslotted Aloha. 

Note that the pure unslotted Aloha model is one where there are no slots at all, and each 
node can send a packet any time it wants. However, this model may be approximated by 
a model where a node sends a packet only at the beginning of a time slot, but each packet 
is many slots long. When we make the size of a packet large compared to the length of 
a single slot, we get the unslotted case. We will abuse terminology slightly and use the 
term unslotted Aloha to refer to the case when there are slots, but the packet size is large 
compared to the slot time. 

Suppose each node sends a packet of size T slots. One can then work out the probability 
of a successful transmission in a network with N backlogged nodes, each attempting to 
send its packet with probability p whenever it is not already sending a packet. The key 
insight here is that any packet whose transmission starts in 2T − 1 slots that have any overlap 
with the current packet can collide. Figure 15-7 illustrates this point, which we discuss in 
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Figure 15-7: Each packet is T slots long. Packet transmissions begin at a slot boundary. In this picture, 

every packet except U and W collide with V. Given packet V, any other packet sent in any one of 2T − 1 

slots—the T slots of V as well as the T − 1 slots immediately preceding V’s transmission—collide with V. 

more detail next. 
Suppose that some node sends a packet in some slot. What is the probability that this 

transmission has no collisions? From Figure 15-7, for this packet to not collide, no other 
node should start its transmission in 2T − 1 slots. Because p is the probability of a back­
logged node sending a packet in a slot, and there are N − 1 nodes, this probability is equal 
to (1 − p)(2T −1)(N−1). (There is a bit of an inaccuracy in this expression, which doesn’t 
make a significant material difference to our conclusions below, but which is worth point­
ing out. This expression assumes that a node sends packet independently in each time slot 
with probability p. Of course, in practice a node will not be able to send a packet in a time 
slot if it is sending a packet in the previous time slot, unless the packet being sent in the 
previous slot has completed. But our assumption in writing this formula is that such “self 
inteference” is permissible, which can’t occur in reality. But it doesn’t matter much for our 
conclusion because we are interested in the utilization when N is large, which means that 
p would be quite small. Moreover, this formula does represent an accurate lower bound on 
the throughput.) 

Now, the transmitting node can be chosen in N ways, and the node has a probability p 
of sending a packet. Hence, the utilization, U , is equal to 

U	 = Throughput/Maximum rate 

= Np(1 − p)(2T −1)(N−1)/(1/T ) 

= TNp(1 − p)(2T −1)(N−1).	 (15.6) 

For what value of p is U maximized, and what is the maximum value? By differentiating 
U wrt p and crunching through some algebra, we find that the maximum value, for large 

TN , is  .(2T −1)e 
Now, we can look at what happens in the pure unslotted case, when nodes send without 

regard to slot boundaries. As explained above, the utilization of this scheme is identical to 
the case when we make the packet size T much larger than 1; i.e., if each packet is large 
compared to a time slot, then the fact that the model assumes that packets are sent along 
slot boundaries is irrelevant as far as throughput (utilization) is concerned. The maximum 

1utilization in this case when N is large is therefore equal to ≈ 0.18. Note that this value 2e 
is one-half of the maximum utilization of pure slotted Aloha where each packet is one 
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slot long. (We’re making this statement for the case when N is large, but it doesn’t take N 
to become all that large for the statement to be roughly true, as we’ll see in the lab.) 

This result may be surprising at first glance, but it is intuitively quite pleasing. Slotting 
makes it so two packets destined to collide do so fully. Because partial collisions are just 
as bad as full ones in our model of the shared medium, forcing a full collision improves 
utilization. Unslotted Aloha has “twice the window of vulnerability” as slotted Aloha, and 
in the limit when the number of nodes is large, achieves only one-half the utilization. 

• 15.7 Carrier Sense Multiple Access (CSMA) 

So far, we have assumed that no two nodes using the shared medium can hear each other. 
This assumption is true in some networks, notably the satellite network example men­
tioned here. Over a wired Ethernet, it is decidedly not true, while over wireless networks, 
the assumption is sometimes true and sometimes not (if there are three nodes A, B, and C, 
such that A and C can’t usually hear each other, but B can usually hear both A and C, then 
A and C are said to be hidden terminals). 

The ability to first listen on the medium before attempting a transmission can be used 
to reduce the number of collisions and improve utilization. The technical term given for 
this capability is called carrier sense: a node, before it attempts a transmission, can listen 
to the medium to see if the analog voltage or signal level is higher than if the medium 
were unused, or even attempt to detect if a packet transmission is in progress by process­
ing (“demodulating”, a concept we will see in later lectures) a set of samples. Then, if it 
determines that another packet transmission is in progress, it considers the medium to be 
busy, and defers its own transmission attempt until the node considers the medium to be 
idle. The idea is for a node to send only when it believes the medium to be idle. 

One can modify the stabilized version of Aloha described above to use CSMA. One 
advantage of CSMA is that it no longer requires each packet to be one time slot long to 
achieve good utilization; packets can be larger than a slot duration, and can also vary in 
length. 

Note, however, that in any practical implementation, it will takes some time for a node 
to detect that the medium is idle after the previous transmission ends, because it takes time 
to integrate the signal or sample information received and determine that the medium is 
indeed idle. This duration is called the detection time for the protocol. Moreover, multiple 
backlogged nodes might discover an “idle” medium at the same time; if they both send 
data, a collision ensues. For both these reasons, CSMA does not achieve 100% utilization, 
and needs a backoff scheme, though it usually achives higher utilization than stabilized 
slotted Aloha over a single shared medium. You will investigate this protocol in the lab. 

• 15.8 A Note on Implementation: Contention Windows 

In the protocols described so far, each backlogged node sends a packet with probability p, 
and the job of the protocol is to adapt p in the best possible way. With CSMA, the idea is to 
send with this probability but only when the medium is idle. In practice, many contention 
protocols such as the IEEE 802.3 (Ethernet) and 802.11 (WiFi) standards do something a 
little different: rather than each node transmitting with a probability in each time slot, 
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they use the concept of a contention window. 
A contention window scheme works as follows. Each node maintains its own current 

value of the window, which we call CW. CW can vary between CWmin and CWmax; 
CWmin may be 1 and CWmax may be a number like 1024. When a node decides to trans­
mit, it does so by picking a random number r uniformly in [1, CW] and sends in time slot 
C + r, where C is the current time slot. If a collision occurs, the node doubles CW; on 
a successful transmission, a node halves CW (or, as is often the case in practice, directly 
resets it to CWmin). 

You should note that this scheme is similar to the one we studied and analyzed above. 
The doubling of CW is analogous to halving the transmission probability, and the halving 
of CW is analogous to doubling the probability (CW has a lower bound; the transmission 
probability has an upper bound). But there are two crucial differences: 

1. Transmissions with a contention window are done according to a uniform probabil­
ity distribution and not a geometrically distributed one. In the previous case, the a 
priori probability that the first transmission occurs t slots from now is geometrically 
distributed; it is p(1 − p)t−1, while with a contention window, it is equal to 1/CW 
for t ∈ [1, CW] and 0 otherwise. This means that each node is guaranteed to attempt 
a transmission within CW slots, while that is not the case in the previous scheme, 
where there is always a chance, though exponentially decreasing, that a node may 
not transmit within any fixed number of slots. 

2. The second difference is more minor: each node can avoid generating a random 
number in each slot; instead, it can generate a random number once per packet trans­
mission attempt. 

In the lab, you will implement the key parts of the contention window protocol and 
experiment with it in conjunction with CSMA. There is one important subtlety to keep in 
mind while doing this implementation. The issue has to do with how to count the slots 
before a node decides to transmit. Suppose a node decides that it will transmit x slots from 
now as long as the medium is idle after x slots; if x includes the busy slots when another 
node transmits, then multiple nodes may end up trying to transmit in the same time slot 
after the ending of a long packet transmission from another node, leading to excessive 
collisions. So it is important to only count down the idle slots; i.e., x should be the number 
of idle slots before the node attempts to transmit its packet (and of course, a node should 
try to send a packet in a slot only if it believes the medium to be idle in that slot). 

• 15.9 Summary 

This lecture discussed the issues involved in sharing a communication medium amongst 
multiple nodes. We focused on contention protocols, developing ways to make them pro­
vide reasonable utilization and fairness. This is what we learned: 

1. Good MAC protocols optimize utilization (throughput) and fairness, but must be 
able to solve the problem in a distributed way. In most cases, the overhead of a 
central controller node knowing which nodes have packets to send is too high. These 
protocols must also provide good utilization and fairness under dynamic load. 
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2. TDMA provides high throughput when all (or most of) the nodes are backlogged 
and the offered loads is evenly distributed amongst the nodes. When per-node loads 
are bursty or when different nodes send different amounts of data, TDMA is a poor 
choice. 

3. Slotted Aloha has surprisingly high utilization for such a simple protocol, if one can 
pick the transmission probability correctly. The probability that maximizes through­
put is 1/N , where N is the number of backlogged nodes, the resulting utilization 
tends toward 1/e ≈ 37%, and the fairness is close to 1 if all nodes present the same 
load. The utilization does remains high even when the nodes present different loads, 
in contrast to TDMA. 

It is also worth calculating (and noting) how many slots are left idle and how many 
slots have more than one node transmitting at the same time in slotted Aloha with 
p = 1/N . When N is large, these numbers are 1/e and 1 − 2/e ≈ 26%, respectively. 
It is interesting that the number of idle slots is the same as the utilization: if we 
increase p to reduce the number of idle slots, we don’t increase the utilization but 
actually increase the collision rate. 

4. Stabilization is crucial to making Aloha practical. We studied a scheme that adjusts 
the transmission probability, reducing it multiplicatively when a collision occurs and 
increasing it (either multiplicatively or to a fixed maximum value) when a successful 
transmission occurs. The idea is to try to converge to the optimum value. 

5. A non-zero lower bound on the transmission probability is important if we want 
to improve fairness, in particular to prevent some nodes from being starved. An 
upper bound smaller than 1 improves fairness over shorter time scales by alleviating 
the capture effect, a situation where one or a small number of nodes capture all the 
transmission attempts for many time slots in succession. 

6. Slotted Aloha has double the utilization of unslotted Aloha when the number of 
backlogged nodes grows. The intuitive reason is that if two packets are destined to 
collide, the “window of vulnerability” is larger in the unslotted case by a factor of 
two. 

7. A broadcast network that uses packets that are multiple slots in length (i.e., mim­
icking the unslotted case) can use carrier sense if the medium is a true broadcast 
medium (or approximately so). In a true broadcast medium, all nodes can hear each 
other reliably, so they can sense the carrier before transmitting their own packets. By 
“listening before transmitting” and setting the transmission probability using stabi­
lization, they can reduce the number of collisions and increase utilization, but it is 
hard (if not impossible) to eliminate all collisions. Fairness still requires bounds on 
the transmission probability as before. 

8. With a contention window, one can make the transmissions from backlogged nodes 
occur according to a uniform distribution, instead of the geometric distribution im­
posed by the “send with probability p” schemes. A uniform distribution in a finite 
window guarantees that each node will attempt a transmission within some fixed 
number of slots, which is not true of the geometric distribution. 
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• Problems and Questions 

1. We studied TDMA, (stabilized) Aloha, and CSMA protocols in this chapter. In each 
statement below, assume that the protocols are implemented correctly. Which of 
these statements is true (more than might be). 

(a) TDMA may have collisions when the size of a packet exceeds one time slot. 

(b) There exists some offered load for which TDMA has lower throughput than 
slotted Aloha. 

(c) In stabilized Aloha, two nodes have a certain probability of colliding in a time 
slot. If they actually collide in that slot, then they will experience a lower prob­
ability of colliding with each other when they each retry. 

(d) There is no workload for which stabilized Aloha achieves a utilization greater 
that (1 − 1/N )N−1 (≈ 1/e for large N ) when run for a long period of time. 

(e) In slotted Aloha with stabilization, each node’s transmission probability con­
verges to 1/N , where N is the number of backlogged nodes. 

(f) In a network in which all nodes can hear each other, CSMA will have no colli­
sions when the packet size is larger than one time slot. 

2. In the Aloha stabilization protocols we studied, when a node experiences a collision, 
it decreases its transmission probability, but sets a lower bound, pmin. When it trans­
mits successfully, it increases its transmission probability, but sets an upper bound, 
pmax. 

(a) Why would we set a lower bound on pmin that is not too close to 0? 

(b) Why would we set pmax to be significantly smaller than 1? 

(c) Let N be the average number of backlogged nodes. What happens if we set 
pmin >> 1/N ? 

3. Alyssa and Ben are all on a shared medium wireless network running a variant of 
slotted Aloha (all packets are the same size and each packet fits in one slot). Their 
computers are configured such that Alyssa is 1.5 times as likely to send a packet as 
Ben. Assume that both computers are backlogged. 

(a) For Alyssa and Ben, what is their probability of transmission such that the uti­
lization of their network is maximized? 

(b) What is the maximum utilization? 
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4. You have two computers, A and B, sharing a wireless network in your room.	 The 
network runs the slotted Aloha protocol with equal-sized packets. You want B to 
get twice the throughput over the wireless network as A whenever both nodes are 
backlogged. You configure A to send packets with probability p. What should you 
set the transmission probability of B to, in order to achieve your throughput goal? 

5. Which of the following statements are always true for networks with N >  1 nodes 
using correctly implemented versions of unslotted Aloha, slotted Aloha, Time Divi­
sion Multiple Access (TDMA) and Carrier Sense Multiple Access (CSMA)? Unless 
otherwise stated, assume that the slotted and unslotted versions of Aloha are stabi­
lized and use the same stabilization method and parameters. Explain your answer 
for each statement. 

(a) There exists some offered load pattern for which TDMA has lower throughput 
than slotted Aloha. 

(b) Suppose nodes I, II and III use a fixed probability of p = 1/3 when transmitting 
on a 3-node slotted Aloha network (i.e., N = 3). If all the nodes are backlogged 
then over time the utilization averages out to 1/e. 

(c) When the number of nodes, N , is large in a stabilized slotted Aloha network, 
setting pmax = pmin = 1/N will achieve the same utilization as a TDMA network 
if all the nodes are backlogged. 

(d) Using contention windows with a CSMA implementation guarantees that a 
packet will be transmitted successfully within some bounded time. 

6. Suppose that there are three nodes, A, B, and C, seeking access to a shared medium 
using slotted Aloha, each using some fixed probability of transmission, where each 
packet takes one slot to transmit. Assume that the nodes are always backlogged, and 
that node A has half the probability of transmission as the other two, i.e., pA = p and 
pB = pC = 2p. 

(a) If pA = 0.3, compute the average utilization of the network. 

(b) What value of pA maximizes the average utilization of the network and what is 
the corresponding maximum utilization? 

7. Ben Bitdiddle sets up a shared medium wireless network with one access point and 
N client nodes. Assume that the N client nodes are backlogged, each with packets 
destined for the access point. The access point is also backlogged, with each of its 
packets destined for some client. The network uses slotted Aloha with each packet 
fitting exactly in one slot. Recall that each backlogged node in Aloha sends a packet 
with some probability p. Two or more distinct nodes (whether client or access point) 
sending in the same slot causes a collision. Ben sets the transmission probability, p, 
of each client node to 1/N and sets the transmission probability of the access point 
to a value pa. 

(a) What is the utilization of the network in terms of N and pa? 
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(b) Suppose N is large. What value of pa ensures that the aggregate throughput of 
packets received successfully by the N clients is the same as the throughput of 
the packets received successfully by the access point? 

8. Consider the same	 setup as the previous problem, but only the client nodes are 
backlogged—the access point has no packets to send. Each client node sends with proba­
bility p (don’t assume it is 1/N ). 

Ben Bitdiddle comes up with a cool improvement to the receiver at the access point. If 
exactly one node transmits, then the receiver works as usual and is able to correctly 
decode the packet. If exactly two nodes transmit, he uses a method to cancel the 
interference caused by each packet on the other, and is (quite remarkably) able to 
decode both packets correctly. 

(a) What is the probability, P2, of  exactly two of the N nodes transmitting in a slot? 
Note that we want the probability of any two nodes sending in a given slot. 

(b) What is the utilization of slotted Aloha with Ben’s receiver modification? Write 
your answer in terms of N , p, and P2, where P2 is defined in the problem above. 

9. Imagine a shared medium wireless network with N nodes. Unlike a perfect broad­
cast network in which all nodes can reliably hear any other node’s transmission at­
tempt, nodes in our network hear each other probabilistically. That is, between any 
two nodes i and j, i can hear j’s transmission attempt with some probability pij , 
where 0 ≤ pij ≤ 1. Assume that all packets are of the same size and that the time slot 
used in the MAC protocol is much smaller than the packet size. 

(a) Show a configuration of nodes where the throughput achieved when the nodes 
all use carrier sense is higher than if they didn’t. 

(b) Show a configuration of nodes where the throughput achieved when slotted 
Aloha without carrier sense is higher than with carrier sense. 

10. Token-passing is a variant of a TDMA MAC protocol. Here, the N nodes sharing 
the medium are numbered 0,1, . . .N  − 1. The token starts at node 0. A node can 
send a packet if, and only if, it has the token. When node i with the token has a 
packet to send, it sends the packet and then passes the token to node (i+ 1) mod N . 
If node i with the token does not have a packet to send, it passes the token to node 
(i+ 1) mod N . To pass the token, a node broadcasts a token packet on the medium 
and all other nodes hear it correctly. 

A data packet occupies the medium for time Td. A token packet occupies the medium 
for time Tk. If  s of the N nodes in the network have data to send when they get the 
token, what is the utilization of the medium? Note that the bandwidth used to send 
tokens is pure overhead; the throughput we want corresponds to the rate at which 
data packets are sent. 

11. Alyssa P. Hacker is designing a MAC protocol for a network used by people who: 
live on a large island, never sleep, never have guests, and are always on-line. Sup­
pose the island’s network has N nodes, and the island dwellers always keep exactly 
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some four of these nodes backlogged. The nodes communicate with each other by 
beaming their data to a satellite in the sky, which in turn broadcasts the data down. If 
two or more nodes transmit in the same slot, their transmissions collide (the satellite 
uplink doesn’t interfere with the downlink). The nodes on the ground cannot hear 
each other, and each node’s packet transmission probability is non-zero. Alyssa uses 
a slotted protocol with all packets equal to one slot in length. 

(a) For the slotted Aloha protocol with a fixed per-node transmission probability, 
what is the maximum utilization of this network? (Note that there are N nodes 
in all, of which some four are constantly backlogged.) 

(b) Suppose the protocol is the slotted Aloha protocol, and the each island dweller 
greedily doubles his node transmission probability on each packet collision (but 
not exceeding 1). What do you expect the network utilization to be? 

(c) In this network, as mentioned above, four of the N nodes are constantly back­
logged, but the set of backlogged nodes is not constant. Suppose Alyssa must 
decide between slotted Aloha with a transmission probability of 1/5 or time 
division multiple access (TDMA) among the N nodes. For what N does the 
expected utilization of this slotted Aloha protocol exceed that of TDMA? 

(d) Alyssa implements a stabilization protocol to adapt the node transmission prob­
abilities on collisions and on successful transmissions. She runs an experiment 
and finds that the measured utilization is 0.5. Ben Bitdiddle asserts that this uti­
lization is too high and that she must have erred in her measurements. Explain 
whether or not it is possible for Alyssa’s implementation of stabilization to be 
consistent with her measured result. 

12. Tim D. Vider thinks Time Division Multiple Access (TDMA) is the best thing since 
sliced bread (“if equal slices are good for bread, then equal slices of time must be 
good for the MAC too”, he says). Each packet is one time slot long. 

However, in Tim’s network with N nodes, the offered load is not uniform across the 
1different nodes. The rate at which node i generates new packets to transmit is ri = 
2i 

packets per time slot (1 ≤ i ≤ N ). That is, in each time slot, the application on node 
i produces a packet to send over the network with probability ri. 

(a) Tim runs an experiment with TDMA for a large number of time slots. At the end 
of the experiment, how many nodes (as a function of N ) will have a substantial 
backlog of packets (i.e., queues that are growing with time)? 

(b) Let N = 20. Calculate the utilization of this non-uniform workload running 
over TDMA. 

13. Recall the MAC protocol with contention windows from §15.8. Here, each node 
maintains a contention window, W , and sends a packet t idle time slots after the cur­
rent slot, where t is an integer picked uniformly in [1,W ]. Assume that each packet 
is 1 slot long. 

Suppose there are two backlogged nodes in the network with contention windows 
W1 and W2, respectively (W1 ≥ W2). Suppose that both nodes pick their random 
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value of t at the same time. What is the probability that the two nodes will collide 
the next time they each transmit? 

14. Eager B. Eaver gets a new computer with two radios. There are N other devices on 
the shared medium network to which he connects, but each of the other devices has 
only one radio. The MAC protocol is slotted Aloha with a packet size equal to 1 time 
slot. Each device uses a fixed transmission probability, and only one packet can be 
sent successfully in any time slot. All devices are backlogged. 

Eager persuades you that because he has paid for two radios, his computer has a 
moral right to get twice the throughput of any other device in the network. You 
begrudgingly agree. 

Eager develops two protocols:
 

Protocol A: Each radio on Eager’s computer runs its MAC protocol independently.
 
That is, each radio sends a packet with fixed probability p. Each other device on the
 
network sends a packet with probability p as well.
 

Protocol B: Eager’s computer runs a single MAC protocol across its two radios, send­
ing packets with probability 2p, and alternating transmissions between the two ra­
dios. Each other device on the network sends a packet with probability p. 

(a) With which protocol, A or B, will Eager achieve higher throughput? 

(b) Which of the two protocols would you allow Eager to use on the network so 
that his expected throughput is double any other device’s? 

15. Carl Coder implements a simple slotted Aloha-style MAC for his room’s wireless 
network. His room has only two backlogged nodes, A and B. Carl picks a transmis­
sion probability of 2p for node A and p for node B. Each packet is one time slot long 
and all transmissions occur at the beginning of a time slot. 

(a) What is the utilization of Carl’s network in terms of p? 

(b) What value of p maximizes the utilization of this network, and what is the max­
imum utilization? 

(c) Instead of maximizing the utilization, suppose Carl chooses	 p so that the 
throughput achieved by A is three times the throughput achieved by B. What 
is the utilization of his network now? 

16. Carl Coder replaces the “send with fixed probability” MAC of the previous problem 
with one that uses a contention window at each node. He configures node A to use a 
fixed contention window of W and node B to use a fixed contention window of 2W . 
Before a transmission, each node independently picks a random integer t uniformly 
between 1 and its contention window value, and transmits a packet t time slots from 
now. Each packet is one time slot long and all transmissions occur at the beginning 
of a time slot. 

(a) Which node, A or B, has a higher probability of being the next to transmit a 
packet successfully? (Use intuition, don’t calculate!) 
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(b) What is the probability that A and B will collide the next time they each trans­
mit? 

(c) Suppose A and B each pick a contention window value at some point in time. 
What is the probability that A transmits before B successfully on its next trans­
mission attempt? Note that this probability is equal to the probability that the 
value picked by A value is strictly smaller than the value picked by B. (It may 

nbe useful to apply the formula i = n(n + 1)/2.)i=1 

(d) Suppose there is no collision at the next packet transmission. Calculate the prob­
ability that A will transmit before B? Explain why this answer is different from 
the answer to the previous part. You should be able to obtain the solve this 
problem using the previous two parts. 

(e) None of the previous parts directly answer the question, “What is the proba­
bility that A will be the first node to successfully transmit a packet before B?” 
Explain why. 

17. Ben Bitdiddle runs the slotted Aloha protocol with stabilization. Each packet is one 
time slot long. At the beginning of time slot T , node i has a probability of trans­
mission equal to pi, 1 ≤ i ≤ N , where N is the number of backlogged nodes. The 
increase/decrease rules for pi are doubling/halving, with pmin ≤ pi ≤ pmax, as de­
scribed in this chapter. 

Ben notes that exactly two nodes, j and k, transmit in time slot T . After thinking 
about what happens to these two packets, derive an expression for the probability 
that exactly one node (out of the N backlogged nodes) will transmit successfully in 
time slot T + 1. 
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CHAPTER 16 
Communication Networks: 

Sharing and Switches 

Thus far we have studied techniques to engineer a point-to-point communication link to 
send messages between two directly connected devices. These techniques give us a com­
munication link between two devices that, in general, has a certain error rate and a corre­
sponding message loss rate. Message losses occur when the error correction mechanism is 
unable to correct all the errors that occur due to noise or interference from other concurrent 
transmissions in a contention MAC protocol. 

We now turn to the study of multi-hop communication networks—systems that connect 
three or more devices together.1 The key idea that we will use to engineer communication 
networks is composition: we will build small networks by composing links together, and 
build larger networks by composing smaller networks together. 

The fundamental challenges in the design of a communication network are the same 
as those that face the designer of a communication link: sharing for efficiency and relia­

bility. The big difference is that the sharing problem has different challenges because the 
system is now distributed, spread across a geographic span that is much larger than even 
the biggest shared medium we can practically build. Moreover, as we will see, many more 
things can go wrong in a network in addition to just bit errors on the point-to-point links, 
making communication more unreliable than a single link’s unreliability.2. The next few 
chapters will discuss these two challenges and the key principles to overcome them. 

In addition to sharing and reliability, an important and difficult problem that many 
communication networks (such as the Internet) face is scalability: how to engineer a very 
large, global system. We won’t say very much about scalability in this book, leaving this 
important topic for more advanced courses. 

This chapter focuses on the sharing problem and discusses the following concepts: 

1. Switches and how they enable multiplexing of different communications on individ­
ual links and over the network. Two forms of switching: circuit switching and packet 

1By device, we mean things like computer, phones, embedded sensors, and the like—pretty much anything 
with some computation and communication capability that can be part of a network. 

2As one wag put it: “Networking, just one letter away from not working.” 
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Figure 16-1: A communication network with a link between every pair of devices has a quadratic number

of links. Such topologies are generally too expensive, and are especially untenable when the devices are

far from each other.

switching.

2. Understanding the role of queues to absorb bursts of traffic in packet-switched net-
works.

3. Understanding the factors that contribute to delays in networks: three largely fixed
delays (propagation, processing, and transmission delays), and one significant vari-
able source of delays (queueing delays).

4. Little’s law, relating the average delay to the average rate of arrivals and the average
queue size.

� 16.1 Sharing with Switches

The collection of techniques used to design a communication link, including modulation
and error-correcting channel coding, is usually implemented in a module called the phys-
ical layer (or “PHY” for short). The sending PHY takes a stream of bits and arranges to
send it across the link to the receiver; the receiving PHY provides its best estimate of the
stream of bits sent from the other end. On the face of it, once we know how to develop
a communication link, connecting a collection of N devices together is ostensibly quite
straightforward: one could simply connect each pair of devices with a wire and use the
physical layer running over the wire to communicate between the two devices. This pic-
ture for a small 5-node network is shown in Figure 16-1.

This simple strawman using dedicated pairwise links has two severe problems. First,
it is extremely expensive. The reason is that the number of distinct communication links
that one needs to build scales quadratically with N—there are

(
N
2

) N(N= −1)
2 bi-directional

links in this design (a bi-directional link is one that can transmit data in both directions,
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End point 

Link 

Switch 

Figure 16-2: A simple network topology showing communicating end points, links, and switches.

as opposed to a uni-directional link). The cost of operating such a network would be pro-
hibitively expensive, and each additional node added to the network would incur a cost
proportional to the size of the network! Second, some of these links would have to span
an enormous distance; imagine how the devices in Cambridge, MA, would be connected
to those in Cambridge, UK, or (to go further) to those in India or China. Such “long-haul”
links are difficult to engineer, so one can’t assume that they will be available in abundance.

Clearly we need a better design, one that can “do for a dime what any fool can do for a
dollar”.3 The key to a practical design of a communication network is a special computing
device called a switch. A switch has multiple “interfaces” (often also called “ports”) on it; a
link (wire or radio) can be connected to each interface. The switch allows multiple different
communications between different pairs of devices to run over each individual link—that
is, it arranges for the network’s links to be shared by different communications. In addition
to the links, the switches themselves have some resources (memory and computation) that
will be shared by all the communicating devices.

Figure 16-2 shows the general idea. A switch receives bits that are encapsulated in data
frames arriving over its links, processes them (in a way that we will make precise later),
and forwards them (again, in a way that we will make precise later) over one or more other
links. In the most common kind of network, these frames are called packets, as explained
below.

We will use the term end points to refer to the communicating devices, and call the
switches and links over which they communicate the network infrastructure. The resulting
structure is termed the network topology, and consists of nodes (the switches and end points)
and links. A simple network topology is shown in Figure 16-2. We will model the network
topology as a graph, consisting of a set of nodes and a set of links (edges) connecting vari-
ous nodes together, to solve various problems.

Figure 16-3 show a few switches of relatively current vintage (ca. 2006).

� 16.1.1 Three Problems That Switches Solve

The fundamental functions performed by switches are to multiplex and demultiplex data
frames belonging to different device-to-device information transfer sessions, and to deter-
mine the link(s) along which to forward any given data frame. This task is essential be-

3That’s what an engineer does, according to an old saying.
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Figure 16-3: A few modern switches.

cause a given physical link will usually be shared by several concurrent sessions between
different devices. We break these functions into three problems:

1. Forwarding: When a data frame arrives at a switch, the switch needs to process it,
determine the correct outgoing link, and decide when to send the frame on that link.

2. Routing: Each switch somehow needs to determine the topology of the network,
so that it can correctly construct the data structures required for proper forwarding.
The process by which the switches in a network collaboratively compute the network
topology, adapting to various kinds of failures, is called routing. It does not happen
on each data frame, but occurs in the “background”. The next two chapters will
discuss forwarding and routing in more detail.

3. Resource allocation: Switches allocate their resources—access to the link and local
memory—to the different communications that are in progress.

Over time, two radically different methods have been developed for solving these
problems. These techniques differ in the way the switches forward data and allocate re-
sources (there are also some differences in routing, but they are less significant). The first
method, used by networks like the telephone network, is called circuit switching. The sec-
ond method, used by networks like the Internet, is called packet switching.

There are two crucial differences between the two methods, one philosophical and the
other mechanistic. The mechanistic difference is the easier one to understand, so we’ll talk
about it first. In a circuit-switched network, the frames do not (need to) carry any special
information that tells the switches how to forward information, while in packet-switched

Individual images © source unknown. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Figure 16-4: Circuit switching requires setup and teardown phases.

networks, they do. The philosophical difference is more substantive: a circuit-switched
network provides the abstraction of a dedicated link of some bit rate to the communicating
entities, whereas a packet switched network does not.4 Of course, this dedicated link tra-
verses multiple physical links and at least one switch, so the end points and switches must
do some additional work to provide the illusion of a dedicated link. A packet-switched
network, in contrast, provides no such illusion; once again, the end points and switches
must do some work to provide reliable and efficient communication service to the appli-
cations running on the end points.

� 16.2 Circuit Switching

The transmission of information in circuit-switched networks usually occurs in three
phases (see Figure 16-4):

1. The setup phase, in which some state is configured at each switch along a path from
source to destination,

2. The data transfer phase when the communication of interest occurs, and

3. The teardown phase that cleans up the state in the switches after the data transfer ends.

4One can try to layer such an abstraction atop a packet-switched network, but we’re talking about the
inherent abstraction provided by the network here.
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Figure 16-5: Circuit switching with Time Division Multiplexing (TDM). Each color is a different conver-

sation and there are a maximum of N = 6 concurrent communications on the link in this picture. Each

communication (color) is sent in a fixed time-slot, modulo N .

Because the frames themselves contain no information about where they should go,
the setup phase needs to take care of this task, and also configure (reserve) any resources
needed for the communication so that the illusion of a dedicated link is provided. The
teardown phase is needed to release any reserved resources.

� 16.2.1 Example: Time-Division Multiplexing (TDM)

A common (but not the only) way to implement circuit switching is using time-division
multiplexing (TDM), also known as isochronous transmission. Here, the physical capacity,
or bit rate,5 of a link connected to a switch, C (in bits/s), is conceptually divided into N

“virtual links”, each virtual link being allocated C/N bits/s and associated with a data
transfer session. Call this quantity R, the rate of each independent data transfer session.
Now, if we constrain each frame to be of some fixed size, s bits, then the switch can perform
time multiplexing by allocating the link’s capacity in time-slots of length s/C units each,
and by associating the ith time-slice to the ith transfer (modulo N ), as shown in Figure 16-5.
It is easy to see that this approach provides each session with the required rate of R bits/s,
because each session gets to send s bits over a time period of Ns/C seconds, and the ratio
of the two is equal to C/N = R bits/s.

Each data frame is therefore forwarded by simply using the time slot in which it arrives
at the switch to decide which port it should be sent on. Thus, the state set up during the
first phase has to associate one of these channels with the corresponding soon-to-follow
data transfer by allocating the ith time-slice to the ith transfer. The end points transmitting
data send frames only at the specific time-slots that they have been told to do so by the
setup phase.

Other ways of doing circuit switching include wavelength division multiplexing (WDM),
frequency division multiplexing (FDM), and code division multiplexing (CDM); the latter two
(as well as TDM) are used in some wireless networks, while WDM is used in some high-

5This number is sometimes referred to as the “bandwidth” of the link. Technically, bandwidth is a quantity
measured in Hertz and refers to the width of the frequency over which the transmission is being done. To
avoid confusion, we will use the term “bit rate” to refer to the number of bits per second that a link is currently
operating at, but the reader should realize that the literature often uses “bandwidth” to refer to this term. The
reader should also be warned that some people (curmudgeons?) become apoplectic when they hear someone
using “bandwidth” for the bit rate of a link. A more reasonable position is to realize that when the context is
clear, there’s not much harm in using “bandwidth”. The reader should also realize that in practice most wired
links usually operate at a single bit rate (or perhaps pick one from a fixed set when the link is configured),
but that wireless links using radio communication can operate at a range of bit rates, adaptively selecting the
modulation and coding being used to cope with the time-varying channel conditions caused by interference
and movement.
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speed wired optical networks.

� 16.2.2 Pros and Cons

Circuit switching makes sense for a network where the workload is relatively uniform,
with all information transfers using the same capacity, and where each transfer uses a con-
stant bit rate (or near-constant bit rate). The most compelling example of such a workload is
telephony, where each digitized voice call might operate at 64 kbits/s. Switching was first
invented for the telephone network, well before devices were on the scene, so this design
choice makes a great deal of sense. The classical telephone network as well as the cellular
telephone network in most countries still operate in this way, though telephony over the
Internet is becoming increasingly popular and some of the network infrastructure of the
classical telephone networks is moving toward packet switching.

However, circuit-switching tends to waste link capacity if the workload has a variable bit
rate, or if the frames arrive in bursts at a switch. Because a large number of computer appli-
cations induce burst data patterns, we should consider a different link sharing strategy for

stcomputer networks. Another drawback of circuit switching shows up when the (N + 1)

communication arrives at a switch whose relevant link already has the maximum number
(N ) of communications going over it. This communication must be denied access (or ad-
mission) to the system, because there is no capacity left for it. For applications that require
a certain minimum bit rate, this approach might make sense, but even in that case a “busy
tone” is the result. However, there are many applications that don’t have a minimum bit
rate requirement (file delivery is a prominent example); for this reason as well, a different
sharing strategy is worth considering.

Packet switching doesn’t have these drawbacks.

� 16.3 Packet Switching

An attractive way to overcome the inefficiencies of circuit switching is to permit any sender
to transmit data at any time, but yet allow the link to be shared. Packet switching is a way
to accomplish this task, and uses a tantalizingly simple idea: add to each frame of data a
little bit of information that tells the switch how to forward the frame. This information
is usually added inside a header immediately before the payload of the frame, and the
resulting frame is called a packet.6 In the most common form of packet switching, the
header of each packet contains the address of the destination, which uniquely identifies the
destination of data. The switches use this information to process and forward each packet.
Packets usually also include the sender’s address to help the receiver send messages back
to the sender. A simple example of a packet header is shown in Figure 16-6. In addition to
the destination and source addresses, this header shows a checksum that can be used for
error detection at the receiver.

The figure also shows the packet header used by IPv6 (the Internet Protocol version 6),
which is increasingly used on the Internet today. The Internet is the most prominent and
successful example of a packet-switched network.

The job of the switch is to use the destination address as a key and perform a lookup on

6Sometimes, the term datagram is used instead of (or in addition to) the term “packet”.
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Figure 16-6: LEFT: A simple and basic example of a packet header for a packet-switched network. The

destination address is used by switches in the forwarding process. The hop limit field will be explained

in the chapter on network routing; it is used to discard packets that have been forwarded in the network

for more than a certain number of hops, because it’s likely that those packets are simply stuck in a loop.

Following the header is the payload (or data) associated with the packet, which we haven’t shown in this

picture. RIGHT: For comparison, the format of the IPv6 (“IP version 6”) packet header is shown. Four

of the eight fields are similar to our simple header format. The additional fields are the version number,

which specifies the version of IP, such as “6” or “4” (the current version that version 6 seeks to replace) and

fields that specify, or hint at, how switches must prioritize or provide other traffic management features for

the packet.

a data structure called a routing table. This lookup returns an outgoing link to forward the
packet on its way toward the intended destination. There are many ways to implement
the lookup opertion on a routing table, but for our purposes we can consider the routing
table to be a dictionary mapping each destination to one of the links on the switch.

While forwarding is a relatively simple7 lookup in a data structure, the trickier question
that we will spend time on is determining how the entries in the routing table are obtained.
The plan is to use a background process called a routing protocol, which is typically imple-
mented in a distributed manner by the switches. There are two common classes of routing
protocols, which we will study in later chapters. For now, it is enough to understand that
if the routing protocol works as expected, each switch obtains a route to every destination.
Each switch participates in the routing protocol, dynamically constructing and updating
its routing table in response to information received from its neighbors, and providing
information to each neighbor to help them construct their own routing tables.

Switches in packet-switched networks that implement the functions described in this
section are also known as routers, and we will use the terms “switch” and “router” inter-
changeably when talking about packet-switched networks.

� 16.3.1 Why Packet Switching Works: Statistical Multiplexing

Packet switching does not provide the illusion of a dedicated link to any pair of commu-
nicating end points, but it has a few things going for it:

7At low speeds. At high speeds, forwarding is a challenging problem.
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Figure 16-7: Packet switching works because of statistical multiplexing. This picture shows a simulation

of N senders, each connected at a fixed bit rate of 1 megabit/s to a switch, sharing a single outgoing link.

The y-axis shows the aggregate bit rate (in megabits/s) as a function of time (in milliseconds). In this

simulation, each sender is in either the “on” (sending) state or the “off” (idle) state; the durations of each

state are drawn from a Pareto distribution (which has a “heavy tail”).

1. It doesn’t waste the capacity of any link because each switch can send any packet
available to it that needs to use that link.

2. It does not require any setup or teardown phases and so can be used even for small
transfers without any overhead.

3. It can provide variable data rates to different communications essentially on an “as
needed” basis.

At the same time, because there is no reservation of resources, packets could arrive
faster than can be sent over a link, and the switch must be able to handle such situations.
Switches deal with transient bursts of traffic that arrive faster than a link’s bit rate using
queues. We will spend some time understanding what a queue does and how it absorbs
bursts, but for now, let’s assume that a switch has large queues and understand why packet
switching actually works.

Packet switching supports end points sending data at variable rates. If a large number
of end points conspired to send data in a synchronized way to exercise a link at the same
time, then one would end up having to provision a link to handle the peak synchronized
rate to provide reasonable service to all the concurrent communications.

Fortunately, at least in a network with benign, or even greedy (but non-malicious) send-
ing nodes, it is highly unlikely that all the senders will be perfectly synchronized. Even
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Figure 16-8: Network traffic variability.

ursts of traffic, as long as they alternate betwhen senders send long b ween “on” and “off”
states and move between these states at random (the probability distributions for these
could be complicated and involve “heavy tails” and high variances), the aggregate traffic
of multiple senders tends to smooth out a bit.8

An example is shown in Figure 16-7. The x-axis is time in milliseconds and the y-axis
shows the bit rate of the set of senders. Each sender has a link with a fixed bit rate connect-
ing it to the switch. The picture shows how the aggregate bit rate over this short time-scale
(4 seconds), though variable, becomes smoother as more senders share the link. This kind
of multiplexing relies on the randomness inherent in the concurrent communications, and
is called statistical multiplexing.

Real-world traffic has bigger bursts than shown in this picture and the data rate usu-
ally varies by a large amount depending on time of day. Figure 16-8 shows the bit rates
observed at an MIT lab for different network applications. Each point on the y-axis is
a 5-minute average, so it doesn’t show the variations over smaller time-scales as in the
previous figure. However, it shows how much variation there is with time-of-day.

So far, we have discussed how the aggregation of multiple sources sending data tends
to smooth out traffic a bit, enabling the network designer to avoid provisioning a link for
the sum of the peak offered loads of the sources. In addition, for the packet switching idea
to really work, one needs to appreciate the time-scales over which bursts of traffic occur in
real life.

8It’s worth noting that many large-scale distributed denial-of-service attacks try to take out web sites by sat-
urating its link with a huge number of synchronized requests or garbage packets, each of which individually
takes up only a tiny fraction of the link.

5-minute traffic averages: 
Traffic is bursty and rates 
   are variable 
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Figure 16-9: Traffic bursts at different time-scales, showing some smoothing. Bursts still persist, though.

What better example to use than traffic generated over the duration of a 6.02 lecture on
the 802.11 wireless LAN in 34-101 to illustrate the point?! We captured all the traffic that
traversed this shared wireless network on a few days during lecture in Fall 2010. On a
typical day, we measured about 1 Gigabyte of traffic traversing the wireless network via
the access point our monitoring laptop was connected to, with numerous applications in
the mix. Most of the observed traffic was from Bittorrent, Web browsing, email, with the
occasional IM sessions thrown in the mix. Domain name system (DNS) lookups, which
are used by most Internet applications, also generate a sizable number of packets (but not
bytes).

Figure 16-9 shows the aggregate amount of data, in bytes, as a function of time, over
different time durations. The top picture shows the data over 10 millisecond windows—
here, each y-axis point is the total number of bytes observed over the wireless network
corresponding to a non-overlapping 10-millisecond time window. We show the data here
for a randomly chosen time period that lasts 17 seconds. The most noteworthy aspect of
this picture is the bursts that are evident: the maximum (not shown) is as high as 50,000
bytes over this duration, but also note how successive time windows could change be-
tween close to 20,000 bytes and 0 bytes. From time to time, larger bursts occur where the
network is essentially continuously in use (for example, starting at 14:12:38.55).
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Queue 

Figure 16-10: Packet switching uses queues to buffer bursts of packets that have arrived at a rate faster than

the bit rate of the link.

The middle picture shows what happens when we look at windows that are 100 mil-
liseconds long. Clearly, bursts persist, but one can see from the picture that the variance
has reduced. When we move to longer windows of 1 second each, we see the same effect
persisting, though again it’s worth noting that the bursts don’t actually disappear.

These data sets exemplify the traffic dynamics that a network designer has to plan
for while designing a network. One could pick a data rate that is higher than the peak
expected over a short time-scale, but that would be several times larger than picking a
smaller value and using a queue to absorb the bursts and send out packets over a link of
a smaller rate. In practice, this problem is complicated because network sources are not
“open loop”, but actually react to how the network responds to previously sent traffic.
Understanding how this feedback system works is beyond the scope of 6.02; here, we will
look at how queues work.

� 16.3.2 Absorbing bursts with queues

Queues are a crucial component in any packet-switched network. The queues in a switch
absorb bursts of data (see Figure 16-10): when packets arrives for an outgoing link faster
than the speed of that link, the queue for that link stores the arriving packets. If a packet
arrives and the queue is full, then that packet is simply dropped (if the packet is really
important, then the original sender can always infer that the packet was lost because it
never got an acknowledgment for it from the receiver, and might decide to re-send it).

One might be tempted to provision large amounts of memory for packet queues be-
cause packet losses sound like a bad thing. In fact, queues are like seasoning in a meal—
they need to be “just right” in quantity (size). Too small, and too many packets may be
lost, but too large, and packets may be excessively delayed, causing it to take longer for the
senders to know that packets are only getting stuck in a queue and not being delivered.

So how big must queues be? The answer is not that easy: one way to think of it is to ask
what we might want the maximum packet delay to be, and use that to size the queue. A
more nuanced answer is to analyze the dynamics of how senders react to packet losses and
use that to size the queue. Answering this question is beyond the scope of this course, but
is an important issue in network design. (The short answer is that we typically want a few
tens to ≈ 100 milliseconds of a queue size—that is, we want the queueing delay of a packet
to not exceed this quantity, so the buffer size in bytes should be this quantity multiplied
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by the rate of the link concerned.)
Thus, queues can prevent packet losses, but they cause packets to get delayed. These

delays are therefore a “necessary evil”. Moreover, queueing delays are variable—different
packets experience different delays, in general. As a result, analyzing the performance of
a network is not a straightforward task. We will discuss performance measures next.

� 16.4 Network Performance Metrics

Suppose you are asked to evaluate whether a network is working well or not. To do your
job, it’s clear you need to define some metrics that you can measure. As a user, if you’re
trying to deliver or download some data, a natural measure to use is the time it takes to
finish delivering the data. If the data has a size of S bytes, and it takes T seconds to deliver
the data, the throughput of the data transfer is S

T bytes/second. The greater the throughput,
the happier you will be with the network.

The throughput of a data transfer is clearly upper-bounded by the rate of the slow-
est link on the path between sender and receiver (assuming the network uses only one
path to deliver data). When we discuss reliable data delivery, we will develop protocols
that attempt to optimize the throughput of a large data transfer. Our ability to optimize
throughput depends more fundamentally on two factors: the first factor is the per-packet
delay, sometimes called the per-packet latency and the second factor is the packet loss rate.

The packet loss rate is easier to understand: it is simply equal to the number of packets
dropped by the network along the path from sender to receiver divided by the total num-
ber of packets transmitted by the sender. So, if the sender sent St packets and the receiver
got Sr packets, then the packet loss rate is equal to 1− Sr = St Sr

St S
−
t

. One can equivalently
think of this quantity in terms of the sending and receiving rates too: for simplicity, sup-
pose there is one queue that drops packets between a sender and receiver. If the arrival
rate of packets into the queue from the sender is A packets per second and the departure
rate from the queue is D packets per second, then the packet loss rate is equal to 1− D

A .
The delay experienced by packets is actually the sum of four distinct sources: propaga-

tion, transmission, processing, and queueing, as explained below:

1. Propagation delay. This source of delay is due to the fundamental limit on the time
it takes to send any signal over the medium. For a wire, it’s the speed of light over
that material (for typical fiber links, it’s about two-thirds the speed of light in vac-
uum). For radio communication, it’s the speed of light in vacuum (air), about 3× 108

meters/second.

The best way to think about the propagation delay for a link is that it is equal to
the time for the first bit of any transmission to reach the intended destination. For a path
comprising multiple links, just add up the individual propagation delays to get the
propagation delay of the path.

2. Processing delay. Whenever a packet (or data frame) enters a switch, it needs to be
processed before it is sent over the outgoing link. In a packet-switched network, this
processing involves, at the very least, looking up the header of the packet in a table
to determine the outgoing link. It may also involve modifications to the header of
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the packet. The total time taken for all such operations is called the processing delay
of the switch.

3. Transmission delay. The transmission delay of a link is the time it takes for a packet
of size S bits to traverse the link. If the bit rate of the link is R bits/second, then the
transmission delay is S/R seconds.

We should note that the processing delay adds to the other sources of delay in a
network with store-and-forward switches, the most common kind of network switch
today. In such a switch, each data frame (packet) is stored before any processing
(such as a lookup) is done and the packet then sent. In contrast, some extremely low
latency switch designs are cut-through: as a packet arrives, the destination field in the
header is used for a table lookup, and the packet is sent on the outgoing link without
any storage step. In this design, the switch pipelines the transmission of a packet on
one link with the reception on another, and the processing at one switch is pipelined
with the reception on a link, so the end-to-end per-packet delay is smaller than the
sum of the individual sources of delay.

Unless mentioned explicitly, we will deal only with store-and-forward switches in
this course.

4. Queueing delay. Queues are a fundamental data structure used in packet-switched
networks to absorb bursts of data arriving for an outgoing link at speeds that are
(transiently) faster than the link’s bit rate. The time spent by a packet waiting in the
queue is its queueing delay.

Unlike the other components mentioned above, the queueing delay is usually vari-
able. In many networks, it might also be the dominant source of delay, accounting for
about 50% (or more) of the delay experienced by packets when the network is con-
gested. In some networks, such as those with satellite links, the propagation delay
could be the dominant source of delay.

� 16.4.1 Little’s Law

A common method used by engineers to analyze network performance, particularly delay
and throughput (the rate at which packets are delivered), is queueing theory. In this course,
we will use an important, widely applicable result from queueing theory, called Little’s law
(or Little’s theorem).9 It’s used widely in the performance evaluation of systems ranging
from communication networks to factory floors to manufacturing systems.

For any stable (i.e., where the queues aren’t growing without bound) queueing system,
Little’s law relates the average arrival rate of items (e.g., packets), λ, the average delay
experienced by an item in the queue, D, and the average number of items in the queue, N .
The formula is simple and intuitive:

N = λ×D (16.1)

Note that if the queue is stable, then the departure rate is equal to the arrival rate.
9This “queueing formula” was first proved in a general setting by John D.C. Little, who is now an Institute

Professor at MIT (he also received his PhD from MIT in 1955). In addition to the result that bears his name, he
is a pioneer in marketing science.
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Figure 16-11: Packet arrivals into a queue, illustrating Little’s law.

Example. Suppose packets arrive at an average rate of 1000 packets per second into
a switch, and the rate of the outgoing link is larger than this number. (If the outgoing
rate is smaller, then the queue will grow unbounded.) It doesn’t matter how inter-packet
arrivals are distributed; packets could arrive in weird bursts according to complicated
distributions. Now, suppose there are 50 packets in the queue on average. That is, if we
sample the queue size at random points in time and take the average, the number is 50
packets.

Then, from Little’s law, we can conclude that the average queueing delay experienced

by a packet is 50/1000 seconds = 50 milliseconds.
Little’s law is quite remarkable because it is independent of how items (packets) arrive

or are serviced by the queue. Packets could arrive according to any distribution. They
can be serviced in any order, not just first-in-first-out (FIFO). They can be of any size. In
fact, about the only practical requirement is that the queueing system be stable. It’s a
useful result that can be used profitably in back-of-the-envelope calculations to assess the
performance of real systems.

Why does this result hold? Proving the result in its full generality is beyond the scope
of this course, but we can show it quite easily with a few simplifying assumptions using
an essentially pictorial argument. The argument is instructive and sheds some light into
the dynamics of packets in a queue.

Figure 16-11 shows n(t), the number of packets in a queue, as a function of time t.
Each time a packet enters the queue, n(t) increases by 1. Each time the packet leaves, n(t)
decreases by 1. The result is the step-wise curve like the one shown in the picture.

For simplicity, we will assume that the queue size is 0 at time 0 and that there is some
time T >> 0 at which the queue empties to 0. We will also assume that the queue services
jobs in FIFO order (note that the formula holds whether these assumptions are true or not).

Let P be the total number of packets forwarded by the switch in time T (obviously, in
our special case when the queue fully empties, this number is the same as the number that
entered the system).

Now, we need to define N , λ, and D. One can think of N as the time average of the
number of packets in the queue; i.e.,

T

N =
∑

n(t)/T.
t=0
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The rate λ is simply equal to P/T , for the system processed P packets in time T .
D, the average delay, can be calculated with a little trick. Imagine taking the total area

under the n(t) curve and assigning it to packets as shown in Figure 16-11. That is, packets
A, B, C, ... each are assigned the different rectangles shown. The height of each rectangle
is 1 (i.e., one packet) and the length is the time until some packet leaves the system. Each
packet’s rectangle(s) last until the packet itself leaves the system.

Now, it should be clear that the time spent by any given packet is just the sum of the
areas of the rectangles labeled by that packet.

Therefore, the average delay experienced by a packet, D, is simply the area under the
n(t) curve divided by the number of packets. That’s because the total area under the curve,
which is

∑
n(t), is the total delay experienced by all the packets.

Hence,
T

D =
∑

n(t)/P.
t=0

From the above expressions, Little’s law follows: N = λ×D.
Little’s law is useful in the analysis of networked systems because, depending on the

context, one usually knows some two of the three quantities in Eq. (16.1), and is interested
in the third. It is a statement about averages, and is remarkable in how little it assumes
about the way in which packets arrive and are processed.
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� Problems and Questions

1. Under what conditions would circuit switching be a better network design than
packet switching?

2. Which of these statements are correct?

(a) Switches in a circuit-switched network process connection establishment and
tear-down messages, whereas switches in a packet-switched network do not.

(b) Under some circumstances, a circuit-switched network may prevent some
senders from starting new conversations.

(c) Once a connection is correctly established, a switch in a circuit-switched net-
work can forward data correctly without requiring data frames to include a
destination address.

(d) Unlike in packet switching, switches in circuit-switched networks do not need
any information about the network topology to function correctly.

3. Consider a switch that uses time division multiplexing (rather than statistical multi-
plexing) to share a link between four concurrent connections (A, B, C, and D) whose
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packets arrive in bursts. The link’s data rate is 1 packet per time slot. Assume that
the switch runs for a very long time.

(a) The average packet arrival rates of the four connections (A through D), in pack-
ets per time slot, are 0.2, 0.2, 0.1, and 0.1 respectively. The average delays ob-
served at the switch (in time slots) are 10, 10, 5, and 5. What are the average
queue lengths of the four queues (A through D) at the switch?

(b) Connection A’s packet arrival rate now changes to 0.4 packets per time slot.
All the other connections have the same arrival rates and the switch runs un-
changed. What are the average queue lengths of the four queues (A through D)
now?

4. Annette Werker has developed a new switch. In this switch, 10% of the packets are
processed on the “slow path”, which incurs an average delay of 1 millisecond. All
the other packets are processed on the “fast path”, incurring an average delay of 0.1
milliseconds. Annette observes the switch over a period of time and finds that the
average number of packets in it is 19. What is the average rate, in packets per second,
at which the switch processes packets?

5. Alyssa P. Hacker has set up eight-node shared medium network running the Carrier
Sense Multiple Access (CSMA) MAC protocol. The maximum data rate of the net-
work is 10 Megabits/s. Including retries, each node sends traffic according to some
unknown random process at an average rate of 1 Megabit/s per node. Alyssa mea-
sures the network’s utilization and finds that it is 0.75. No packets get dropped in
the network except due to collisions, and each node’s average queue size is 5 packets.
Each packet is 10000 bits long.

(a) What fraction of packets sent by the nodes (including retries) experience a col-
lision?

(b) What is the average queueing delay, in milliseconds, experienced by a packet
before it is sent over the medium?

6. Over many months, you and your friends have painstakingly collected 1,000 Giga-
bytes (aka 1 Terabyte) worth of movies on computers in your dorm (we won’t ask
where the movies came from). To avoid losing it, you’d like to back the data up on
to a computer belonging to one of your friends in New York.

You have two options:

A. Send the data over the Internet to the computer in New York. The data rate for
transmitting information across the Internet from your dorm to New York is 1
Megabyte per second.

B. Copy the data over to a set of disks, which you can do at 100 Megabytes per
second (thank you, firewire!). Then rely on the US Postal Service to send the
disks by mail, which takes 7 days.
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Which of these two options (A or B) is faster? And by how much?

Note on units:

1 kilobyte = 103 bytes
1 megabyte = 1000 kilobytes = 106 bytes
1 gigabyte = 1000 megabytes = 109 bytes
1 terabyte = 1000 gigbytes = 1012 bytes

7. Little’s law can be applied to a variety of problems in other fields. Here are some
simple examples for you to work out.

(a) F freshmen enter MIT every year on average. Some leave after their SB degrees
(four years), the rest leave after their MEng (five years). No one drops out (yes,
really). The total number of SB and MEng students at MIT is N .
What fraction of students do an MEng?

(b) A hardware vendor manufactures $300 million worth of equipment per year.
On average, the company has $45 million in accounts receivable. How much
time elapses between invoicing and payment?

(c) While reading a newspaper, you come across a sentence claiming that “less than
1% of the people in the world die every year”. Using Little’s law (and some common
sense!), explain whether you would agree or disagree with this claim. Assume
that the number of people in the world does not decrease during the year (this
assumption holds).

(d) (This problem is actually almost related to networks.) Your friendly 6.02 pro-
fessor receives 200 non-spam emails every day on average. He estimates that of
these, 50 need a reply. Over a period of time, he finds that the average number
of unanswered emails in his inbox that still need a reply is 100.

i. On average, how much time does it take for the professor to send a reply to
an email that needs a response?

ii. On average, 6.02 constitutes 25% of his emails that require a reply. He re-
sponds to each 6.02 email in 60 minutes, on average. How much time on
average does it take him to send a reply to any non-6.02 email?

8. You send a stream of packets of size 1000 bytes each across a network path from
Cambridge to Berkeley, at a mean rate of 1 Megabit/s. The receiver gets these packets
without any loss. You find that the one-way delay is 50 ms in the absence of any
queueing in the network. You find that each packet in your stream experiences a
mean delay of 75 ms.

(a) What is the mean number of packets in the queue at the bottleneck link along
the path?

You now increase the transmission rate to 1.25 Megabits/s. You find that the receiver
gets packets at a rate of 1 Megabit/s, so packets are being dropped because there
isn’t enough space in the queue at the bottleneck link. Assume that the queue is full
during your data transfer. You measure that the one-way delay for each packet in
your packet stream is 125 milliseconds.
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(b) What is the packet loss rate for your stream at the bottleneck link?

(c) Calculate the number of bytes that the queue can store.

9. Consider the network topology shown below. Assume that the processing delay at
all the nodes is negligible.

(a) The sender sends two 1000-byte data packets back-to-back with a negligible
inter-packet delay. The queue has no other packets. What is the time delay
between the arrival of the first bit of the second packet and the first bit of the
first packet at the receiver?

(b) The receiver acknowledges each 1000-byte data packet to the sender, and each
acknowledgment has a size A= 100 bytes. What is the minimum possible round
trip time between the sender and receiver? The round trip time is defined as the
duration between the transmission of a packet and the receipt of an acknowl-
edgment for it.

10. The wireless network provider at a hotel wants to make sure that anyone trying to
access the network is properly authorized and their credit card charged before being
allowed. This billing system has the following property: if the average number of
requests currently being processed is N , then the average delay for the request is
a+ bN2 seconds, where a and b are constants. What is the maximum rate (in requests
per second) at which the billing server can serve requests?

11. “It may be Little, but it’s the law!” Carrie Coder has set up an email server for a large
email provider. The email server has two modules that process messages: the spam
filter and the virus scanner. As soon as a message arrives, the spam filter processes
the message. After this processing, if the message is spam, the filter throws out the
message. The system sends all non-spam messages immediately to the virus scanner.
If the scanner determines that the email has a virus, it throws out the message. The
system then stores all non-spam, non-virus messages in the inboxes of users.

Carrie runs her system for a few days and makes the following observations:

1. On average, λ = 10000 messages arrive per second.

2. On average, the spam filter has a queue size of Ns = 5000 messages.

3. s = 90% of all email is found to be spam; spam is discarded.

4. On average, the virus scanner has a queue size of Nv = 300 messages.

5. v = 20% of all non-spam email is found to have a virus; these messages are
discarded.
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(a) On average, in 10 seconds, how many messages are placed in the inboxes?

(b) What is the average delay between the arrival of an email message to the email
server and when it is ready to be placed in the inboxes? All transfer and pro-
cessing delays are negligible compared to the queueing delays. Make sure to
draw a picture of the system in explaining your answer. Derive your answer

in terms of the symbols given, plugging in all the numbers only in the final

step.

12. “Hunting in (packet) pairs:” A sender S and receiver R are connected using a link with
an unknown bit rate of C bits per second and an unknown propagation delay of D
seconds. At time t = 0, S schedules the transmission of a pair of packets over the
link. The bits of the two packets reach R in succession, spaced by a time determined
by C. Each packet has the same known size, L bits.

The last bit of the first packet reaches R at a known time t = T1 seconds. The last bit
of the second packet reaches R at a known time t = T2 seconds. As you will find, this
packet pair method allows us to estimate the unknown parameters, C and D, of the
path.

(a) Write an expression for T1 in terms of L, C, and D.

(b) At what time does the first bit of the second packet reach R? Express your an-
swer in terms of T1 and one or more of the other parameters given (C, D, L).

(c) What is T2, the time at which the last bit of the second packet reaches R? Express
your answer in terms of T1 and one or more of the other parameters given (C,
D, L).

(d) Using the previous parts, or by other means, derive expressions for the bit rate
C and propagation delay D, in terms of the known parameters (T1, T2,L).
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CHAPTER 17 
Network Routing - I  

Without Any Failures  

This chapter and the next one discuss the key technical ideas in network routing. We start 
by describing the problem, and break it down into a set of sub-problems and solve them. 
The key ideas that you should understand by the end are: 

1. Addressing and forwarding. 

2. Distributed routing protocols: distance-vector and link-state protocols. 

3. How routing protocols handle failures and find usable paths. 

• 17.1 The Problem 
As explained in earlier chapters, sharing is fundamental to all practical network designs. 
We construct networks by interconnecting nodes (switches and end points) using point-to­
point links and shared media. An example of a network topology is shown in Figure 17-1; 
the picture shows the “backbone” of the Internet2 network, which connects a large number 
of academic institutions in the U.S., as of early 2010. The problem we’re going to discuss 
at length is this: what should the switches (and end points) in a packet-switched network 
do to ensure that a packet sent from some sender, S, in the network reaches its intended 
destination, D? 

The word “ensure” is a strong one, as it implies some sort of guarantee. Given that 
packets could get lost for all sorts of reasons (queue overflows at switches, repeated colli­
sions over shared media, and the like), we aren’t going to worry about guaranteed delivery 
just yet.1 Here, we are going to consider so-called best-effort delivery: i.e., the switches will 
“do their best” to try to find a way to get packets from S to D, but there are no guaran­
tees. Indeed, we will see that in the face of a wide range of failures that we will encounter, 
providing even reasonable best-effort delivery will be hard enough. 

1Subsequent chapters will address how to improve delivery reliability. 

267 
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Figure 17-1: Topology of the Internet2 research and education network in the United States as of early 2010. 

To solve this problem, we will model the network topology as a graph, a structure with 
nodes (vertices) connected by links (edges), as shown at the top of Figure 17-2. The nodes 
correspond to either switches or end points. The problem of finding paths in the network 
is challenging for the following reasons: 

1.	 Distributed information: Each node only knows about its local connectivity, i.e., its 
immediate neighbors in the topology (and even determining that reliably needs a 
little bit of work, as we’ll see). The network has to come up with a way to provide 
network-wide connectivity starting from this distributed information. 

2.	 Efficiency: The paths found by the network should be reasonably “good”; they 
shouldn’t be inordinately long in length, for that will increase the latency (delay) ex­
perienced by packets. For concreteness, we will assume that links have costs (these 
costs could model link latency, for example), and that we are interested in finding a 
path between any source and destination that minimizes the total cost. We will as­
sume that all link costs are non-negative. Another aspect of efficiency that we must 
pay attention to is the extra network bandwidth consumed by the network in finding 
good paths. 

3.	 Failures: Links and nodes may fail and recover arbitrarily. The network should be 
able to find a path if one exists, without having packets get “stuck” in the network 
forever because of glitches. To cope with the churn caused by the failure and recovery 
of links and switches, as well as by new nodes and links being set up or removed, 

Courtesy of Internet2 Network NOC. Used with permission.

http://noc.net.internet2.edu/
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any solution to this problem must be dynamic and continually adapt to changing 
conditions. 

In this description of the problem, we have used the term “network” several times 
while referring to the entity that solves the problem. The most common solution is for the 
network’s switches to collectively solve the problem of finding paths that the end points’ 
packets take. Although network designs where end points take a more active role in deter­
mining the paths for their packets have been proposed and are sometimes used, even those 
designs require the switches to do the hard work of finding a usable set of paths. Hence, 
we will focus on how switches can solve this problem. Clearly, because the information 
required for solving the problem is spread across different switches, the solution involves 
the switches cooperating with each other. Such methods are examples of distributed com­
putation. 

Our solution will be in three parts: first, we need a way to name the different nodes 
in the network. This task is called addressing. Second, given a packet with the name 
of a destination in its header we need a way for a switch to send the packet on the correct 
outgoing link. This task is called forwarding. Finally, we need a way by which the switches 
can determine how to send a packet to any destination, should one arrive. This task is done 
in the background, and continuously, building and updating the data structures required 
for forwarding to work properly. This background task, which will occupy most of our 
time, is called routing. 

• 17.2 Addressing and Forwarding 
Clearly, to send packets to some end point, we need a way to uniquely identify the end 
point. Such identifiers are examples of names, a concept commonly used in computer sys­
tems: names provide a handle that can be used to refer to various objects. In our context, 
we want to name end points and switches. We will use the term address to refer to the 
name of a switch or an end point. For our purposes, the only requirement is that addresses 
refer to end points and switches uniquely. In large networks, we will want to constrain 
how addresses are assigned, and distinguish between the unique identifier of a node and 
its addresses. The distinction will allow us to use an address to refer to each distinct net­
work link (aka “interface”) available on a node; because a node may have multiple links 
connected to it, the unique name for a node is distinct from the addresses of its interfaces 
(if you have a computer with multiple active network interfaces, say a wireless link and an 
Ethernet, then that computer will have multiple addresses, one for each active interface). 

In a packet-switched network, each packet sent by a sender contains the address of the 
destination. It also usually contains the address of the sender, which allows applications 
and other protocols running at the destination to send packets back. All this information 
is in the packet’s header, which also may include some other useful fields. When a switch 
gets a packet, it consults a table keyed by the destination address to determine which link 
to send the packet on in order to reach the destination. This process is a table lookup, and the 
table in question is called the routing table.2 The selected link is called the outgoing link. 

2In practice, in high-speed networks, the routing table is distinct from the forwarding table. The former 
contains both the route to use for any destination and other properties of the route, such as the cost. The latter 
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Figure 17-2: A simple network topology showing the routing table at node B. The route for a destination is 
marked with an oval. The three links at node B are L0, L1, and L2; these names aren’t visible at the other 
nodes but are internal to node B. 

The combination of the destination address and outgoing link is called the route used by 
the switch for the destination. Note that the route is different from the path between source 
and destination in the topology; the sequence of routes at individual switches produces a 
sequence of links, which in turn leads to a path (assuming that the routing and forwarding 
procedures are working correctly). Figure 17-2 shows a routing table and routes at a node 
in a simple network. 

Because data may be corrupted when sent over a link (uncorrected bit errors) or because 
of bugs in switch implementations, it is customary to include a checksum that covers the 
packet’s header, and possibly also the data being sent. 

These steps for forwarding work as long as there are no failures in the network. In the 
next chapter, we will expand these steps to combat problems caused by failures, packet 
losses, and other changes in the network that might cause packets to loop around in the 
network forever. We will use a “hop limit” field in the packet header to detect and discard 
packets that are being repeatedly forwarded by the nodes without finding their way to the 
intended destination. 

is a table that contains only the route, and is usually placed in faster memory because it has to be consulted 
on every packet. 
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• 17.3 Overview of Routing 
If you don’t know where you are going, any road will take you there. 

—Lewis Carroll 

Routing is the process by which the switches construct their routing tables. At a high 
level, most routing protocols have three components: 

1.	 Determining neighbors: For each node, which directly linked nodes are currently 
both reachable and running? We call such nodes neighbors of the node in the topology. 
A node may not be able to reach a directly linked node either because the link has 
failed or because the node itself has failed for some reason. A link may fail to deliver 
all packets (e.g., because a backhoe cuts cables), or may exhibit a high packet loss rate 
that prevents all or most of its packets from being delivered. For now, we will assume 
that each node knows who its neighbors are. In the next chapter, we will discuss a 
common approach, called the HELLO protocol, by which each node determines who 
its current neighbors are. The basic idea if for each node to send periodic “HELLO” 
messages on all its live links; any node receiving a HELLO knows that the sender of 
the message is currently alive and a valid neighbor. 

2.	 Sending advertisements: Each node sends routing advertisements to its neighbors. 
These advertisements summarize useful information about the network topology. 
Each node sends these advertisements periodically, for two reasons. First, in vec­
tor protocols, periodic advertisements ensure that over time the nodes all have all 
the information necessary to compute correct routes. Second, in both vector and 
link-state protocols, periodic advertisements are the fundamental mechanism used 
to overcome the effects of link and node failures (as well as packet losses). 

3.	 Integrating advertisements: In this step, a node processes all the advertisements it 
has recently heard and uses that information to produce its version of the routing 
table. 

Because the network topology can change and because new information can become 
available, these three steps must run continuously, discovering the current set of neigh­
bors, disseminating advertisements to neighbors, and adjusting the routing tables. This 
continual operation implies that the state maintained by the network switches is soft: that 
is, it refreshes periodically as updates arrive, and adapts to changes that are represented 
in these updates. This soft state means that the path used to reach some destination could 
change at any time, potentially causing a stream of packets from a source to destination to 
arrive reordered; on the positive side, however, the ability to refresh the route means that 
the system can adapt by “routing around” link and node failures. We will study how the 
routing protocol adapts to failures in the next chapter. 

A variety of routing protocols have been developed in the literature and several differ­
ent ones are used in practice. Broadly speaking, protocols fall into one of two categories 
depending on what they send in the advertisements and how they integrate advertise­
ments to compute the routing table. Protocols in the first category are called vector pro­

tocols because each node, n, advertises to its neighbors a vector, with one component per 
destination, of information that tells the neighbors about n’s route to the corresponding 
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destination. For example, in the simplest form of a vector protocol, n advertises its cost to 
reach each destination as a vector of destination:cost tuples. In the integration step, each 
recipient of the advertisement can use the advertised cost from each neighbor, together 
with some other information (the cost of the link from the node to the neighbor) known to 
the recipient, to calculate its own cost to the destination. A vector protocol that advertises 
such costs is also called a distance-vector protocol.3 

Routing protocols in the second category are called link-state protocols. Here, each 
node advertises information about the link to its current neighbors on all its links, and 
each recipient re-sends this information on all of its links, flooding the information about 
the links through the network. Eventually, all nodes know about all the links and nodes 
in the topology. Then, in the integration step, each node uses an algorithm to compute the 
minimum-cost path to every destination in the network. 

We will compare and contrast distance-vector and link-state routing protocols at the 
end of the next chapter, after we study how they work in detail. For now, keep in mind the 
following key distinction: in a distance-vector protocol (in fact, in any vector protocol), the 
route computation is itself distributed, while in a link-state protocol, the route computation 
process is done independently at each node and the dissemination of the topology of the 
network is done using distributed flooding. 

The next two sections discuss the essential details of distance-vector and link-state pro­
tocols. In this chapter, we will assume that there are no failures of nodes or links in the network; 
we will assume that the only changes that can occur in the network are additions of either 
nodes or links. We will relax this assumption in the next chapter. 

We will assume that all links in the network are bi-directional and that the costs in each 
direction are symmetric (i.e., the cost of a link from A to B is the same as the cost of the 
link from B to A, for any two directly connected nodes A and B). 

• 17.4 A Simple Distance-Vector Protocol 
The best way to understand any routing protocol is in terms of how the two distinctive 
steps—sending advertisements and integrating advertisements—work. In this section, we 
explain these two steps for a simple distance-vector protocol that achieves minimum-cost 
routing. 

• 17.4.1 Distance-vector Protocol Advertisements 

The advertisement in a distance-vector protocol is simple, consisting of a set of tuples as 
shown below: 

[(dest1, cost1), (dest2, cost2), (dest3, cost3), ...] 

Here, each “dest” is the address of a destination known to the node, and the corre­
sponding “cost” is the cost of the current best path known to the node. Figure 17-3 shows 
an example of a network topology with the distance-vector advertisements sent by each 
node in steady state, after all the nodes have computed their routing tables. During the 

3The actual costs may have nothing to do with physical distance, and the costs need not satisfy the triangle 
inequality. The reason for using the term “distance-vector” rather than “cost-vector” is historic. 
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Figure 17-3: In steady state, each node in the the topology in this picture sends out the distance-vector 
advertisements shown near the node,along each link at the node. 

process of computing the tables, each node advertises its current routing table (i.e., the des­
tination and cost fields from the table), allowing the neighbors to make changes to their 
tables and advertise updated information. 

What does a node do with these advertised costs? The answer lies in how the adver­
tisements from all the neighbors are integrated by a node to produce its routing table. 

• 17.4.2 Distance-Vector Protocol: Integration Step 

The key idea in the integration step uses an old observation about finding shortest-cost 
paths in graphs, originally due to Bellman and Ford. Consider a node n in the network 
and some destination d. Suppose that n hears from each of its neighbors, i, what its cost, 
ci, to reach d is. Then, if n were to use the link n-i as its route to reach d, the corresponding 
cost would be ci + li, where li is the cost of the n-i link. Hence, from n’s perspective, it 
should choose the neighbor (link) for which the advertised cost plus the cost of the link 
from n to that neighbor is smallest. More formally, the lowest-cost path to use would be 
via the neighbor j, where 

j = argmin(ci + li). (17.1) 
i 

The beautiful thing about this calculation is that it does not require the advertisements 
from the different neighbors to arrive synchronously. They can arrive at arbitrary times, 
and in any order; moreover, the integration step can run each time an advertisement ar­
rives. The algorithm will eventually end up computing the right cost and finding the 
correct route (i.e., it will converge). 

Some care must be taken while implementing this algorithm, as outlined below: 
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Figure 17-4: Periodic integration and advertisement steps at each node. 

1. A node should update its cost and route if the new cost is smaller than the current 
estimate, or if the cost of the route currently being used changes. One question you 
might have is what the initial value of the cost should be before the node hears any 
advertisements for a destination. clearly, it should be large, a number we’ll call “in­
finity”. Later on, when we discuss failures, we will find that “infinity” for our simple 
distance-vector protocol can’t actually be all that large. Notice that “infinity” does 
need to be larger than the cost of the longest minimum-cost path in the network for 
routing between any pair of nodes to work correctly, because a path cost of “infinity” 
between some two nodes means that there is no path between those two nodes. 

2. In the advertisement step, each node should make sure to advertise the current best 
(lowest) cost along all its links. 

The implementor must take further care in these steps to correctly handle packet losses, 
as well as link and node failures, so we will refine this step in the next chapter. 

Conceptually, we can imagine the advertisement and integration processes running pe­
riodically, for example as shown in Figure 17-4. On each advertisement, a node sends the 
destination:cost tuples from its current routing table. In the integration step that follows, 
the node processes all the information received in the most recent advertisement from each 
neighbor to produce an updated routing table, and the subsequent advertisement step uses 
this updated information. Eventually, assuming no packet losses or failures or additions, 
the system reaches a steady state and the advertisements don’t change. 

• 17.4.3 Correctness and Performance 

These two steps are enough to ensure correctness in the absence of failures. To see why, 
first consider a network where each node has information about only itself and about no 
other nodes. At this time, the only information in each node’s routing table is its own, with 
a cost of 0. In the advertisement step, a node sends that information to each of its neighbors 
(whose liveness is determined using the HELLO protocol). Now, the integration step runs, 
and each node’s routing table has a set of new entries, one per neighbor, with the route set 
to the link along which the advertisement arrived and a path cost equal to the cost of the 
link. 

The next advertisement sent by each node includes the node-cost pairs for each routing 
table entry, and the information is integrated into the routing table at a node if, and only 
if, the cost of the current path to a destination is larger than (or larger than or equal to) the 
advertised cost plus the cost of the link on which the advertisement arrived. 

One can show the correctness of this method by induction on the length of the path. It 
is easy to see that if the minimum-cost path has length 1 (i.e., 1 hop), then the algorithm 
finds it correctly. Now suppose that the algorithm correctly computes the minimum-cost 
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path from a node s to any destination for which the minimum-cost path is ≤ C hops. Now 
consider a destination, d, whose minimum-cost path is of length C+ 1. It is clear that this 
path may be written as s, t, . . . , d, where t is a neighbor of s and the sub-path from t to d 
has length C. By the inductive assumption, the sub-path from t to d is a path of length C and 
therefore the algorithm must have correctly found it. The Bellman-Ford integration step at 
s processes all the advertisements from s’s neighbors and picks the route whose link cost 
plus the advertised path cost is smallest. Because of this step, and the assumption that the 
minimum-cost path has length C+1, the path s, t, . . . , d must be a minimum-cost route that 
is correctly computed by the algorithm. This completes the proof of correctness. 

How well does this protocol work? In the absence of failures, and for small networks, 
it’s quite a good protocol. It does not consume too much network bandwidth, though the 
size of the advertisements grows linearly with the size of the network. How long does it 
take for the protocol to converge, assuming no packet losses or other failures occur? The 
next chapter will discuss what it means for a protocol to “converge”; briefly, what we’re 
asking here is the time it takes for each of the nodes to have the correct routes to every other 
destination. To answer this question, observe that after every integration step, assuming 
that advertisements and integration steps occur at the same frequency, every node obtains 
information about potential minimum-cost paths that are one hop longer compared to the 
previous integration step. This property implies that after H steps, each node will have 
correct minimum-cost paths to all destinations for which the minimum-cost paths are ≤ H 
hops. Hence, the convergence time in the absence of packet losses is equal to the length 
(i.e., number of hops) of the longest minimum-cost path in the network. 

In the next chapter, when we augment the protocol to handle failures, we will calculate 
the bandwidth consumed by the protocol and discuss some of its shortcomings. In partic­
ular, we will discover that when link or node failures occur, this protocol behaves poorly. 
Unfortunately, it will turn out that many of the solutions to this problem are a two-edged 
sword: they will solve the problem, but do so in a way that does not work well as the size 
of the network grows. As a result, a distance vector protocol is limited to small networks. 
For these networks (tens of nodes), it is a good choice because of its relative simplicity. 
In practice, some examples of distance-vector protocols include RIP (Routing Information 
Protocol), the first distributed routing protocol ever developed for packet-switched net­
works; EIGRP, a proprietary protocol developed by Cisco; and a slew of wireless mesh 
network protocols (which are variants of the concepts described above) including some 
that are deployed in various places around the world. 

• 17.5 A Simple Link-State Routing Protocol 
A link-state protocol may be viewed as a counter-point to distance-vector: whereas a node 
advertised only the best cost to each destination in the latter, in a link state protocol, a 
node advertises information about all its neighbors and the link costs to them in the ad­
vertisement step (note again: a node does not advertise information about its routes to 
various destinations). Moreover, upon receiving the advertisement, a node re-broadcasts 
the advertisement along all its links.4 This process is termed flooding. 

As a result of this flooding process, each node has a map of the entire network; this map 
4We’ll assume that the information is re-broadcast even along the link on which it came, for simplicity. 
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consists of the nodes and currently working links (as evidenced by the HELLO protocol at 
the nodes). Armed with the complete map of the network, each node can independently 
run a centralized computation to find the shortest routes to each destination in the network. 
As long as all the nodes optimize the same metric for each destination, the resulting routes 
at the different nodes will correspond to a valid path to use. In contrast, in a distance-
vector protocol, the actual computation of the routes is distributed, with no node having 
any significant knowledge about the topology of the network. A link-state protocol dis­
tributes information about the state of each link (hence the name) and node in the topology 
to all the nodes, and as long as the nodes have a consistent view of the topology and optimize the 
same metric, routing will work as desired. 

• 17.5.1 Flooding link-state advertisements 

Each node uses the HELLO protocol (mentioned earlier, and which we will discuss in the 
next chapter in more detail) to maintain a list of current neighbors. Periodically, every 
ADVERT INTERVAL, the node constructs a link-state advertisement (LSA) and sends it along 
all its links. The LSA has the following format: 

[origin addr, seq, (nbhr1, linkcost1), (nbhr2, linkcost2), (nbhr3, linkcost3), ...] 

Here, “origin addr” is the address of the node constructing the LSA, each “nbhr” refers 
to a currently active neighbor (the next chapter will describe more precisely what “cur­
rently active” means), and the “linkcost” refers to the cost of the corresponding link. An 
example is shown in Figure 17-5. 

In addition, the LSA has a sequence number, “seq”, that starts at 0 when the node turns 
on, and increments by 1 each time the node sends an LSA. This information is used by the 
flooding process, as follows. When a node receives an LSA that originated at another node, 
s, it first checks the sequence number of the last LSA from s. It uses the “origin addr” field 
of the LSA to determine who originated the LSA. If the current sequence number is greater 
than the saved value for that originator, then the node re-broadcasts the LSA on all its links, 
and updates the saved value. Otherwise, it silently discards the LSA, because that same 
or later LSA must have been re-broadcast before by the node. There are various ways to 
improve the performance of this flooding procedure, but we will stick to this simple (and 
correct) process. 

For now, let us assume that a node sends out an LSA every time it discovers a new 
neighbor or a new link gets added to the network. The next chapter will refine this step to 
send advertisements periodically, in order to handle failures and packet losses, as well as 
changes to the link costs. 

• 17.5.2 Integration step: Dijkstra’s shortest path algorithm 

The competent programmer is fully aware of the limited size of his own skull. He 
therefore approaches his task with full humility, and avoids clever tricks like the plague. 

—Edsger W. Dijkstra, in The Humble Programmer, CACM 1972 

You probably know that arrogance, in computer science, is measured in nanodijkstras. 
—Alan Kay, 1997 
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Figure 17-5: Link-state advertisement from node F in a network. The arrows show the same advertisement 
being re-broadcast (at different points in time) as part of the flooding process once per node, along all of 
the links connected to the node. The link state is shown in this example for one node; in practice, there is 
one of these originating from each node in the network, and re-broadcast by the other nodes. 

The final step in the link-state routing protocol is to compute the minimum-cost paths 
from each node to every destination in the network. Each node independently performs 
this computation on its version of the network topology (map). As such, this step is quite 
straightforward because it is a centralized algorithm that doesn’t require any inter-node 
coordination (the coordination occurred during the flooding of the advertisements). 

Over the past few decades, a number of algorithms for computing various proper­
ties over graphs have been developed. In particular, there are many ways to compute 
minimum-cost path between any two nodes. For instance, one might use the Bellman-
Ford method developed in Section 17.4. That algorithm is well-suited to a distributed im­
plementation because it iteratively converges to the right answer as new updates arrive, 
but applying the algorithm on a complete graph is slower than some alternatives. 

One of these alternatives was developed a few decades ago, a few years after the 
Bellman-Ford method, by a computer scientist named Edsger Dijkstra. Most link-state 
protocol implementations use Dijkstra’s shortest-paths algorithm (and numerous exten­
sions to it) in their integration step. One crucial assumption for this algorithm, which is 
fortunately true in most networks, is that the link costs must be non-negative. 

Dijkstra’s algorithm uses the following property of shortest paths: if a shortest path from 
node X to node Y goes through node Z, then the sub-path from X to Z must also be a shortest path. 
It is easy to see why this property must hold. If the sub-path from X to Z is not a shortest 
path, then one could find a shorter path from X to Y that uses a different, and shorter, 
sub-path from X to Z instead of the original sub-path, and then continue from Z to Y . By  
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Integration Step: Dijkstra�s Algorithm  
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Figure 17-6: Dijkstra’s shortest paths algorithm in operation, finding paths from A to all the other nodes.

Initially, the set S of nodes to which the algorithm knows the shortest path is empty. Nodes are added to

it in non-decreasing order of shortest path costs, with ties broken arbitrarily. In this example, nodes are

added in the order (A, C, B, F, E, D, G). The numbers in parentheses near a node show the current value of

spcost of the node as the algorithm progresses, with old values crossed out.

the same logic, the sub-path from Z to Y must also be a shortest path in the network. As
a result, shortest paths can be concatenated together to form a shortest path between the
nodes at the ends of the sub-paths.

This property suggests an iterative approach toward finding paths from a node, n, to all
the other destinations in the network. The algorithm maintains two disjoint sets of nodes,
S and X = V − S, where V is the set of nodes in the network. Initially S is empty. In
each step, we will add one more node to S, and correspondingly remove that node from
X . The node, v, we will add satisfies the following property: it is the node in X that has
the shortest path from n. Thus, the algorithm adds nodes to S in non-decreasing order of
shortest-path costs. The first node we will add to S is n itself, since the cost of the path
from n to itself is 0 (and not larger than the path to any other node, since the links all have
non-negative weights). Figure 17-6 shows an example of the algorithm in operation.

Fortunately, there is an efficient way to determine the next node to add to S from the set
X . As the algorithm proceeds, it maintains the current shortest-path costs, spcost(v), for
each node v. Initially, spcost(v) = ∞ (some big number in practice) for all nodes, except
for n, whose spcost is 0. Whenever a node u is added to S, the algorithm checks each
of u’s neighbors, w, to see if the current value of spcost(w) is larger than spcost(u) +
linkcost(uw). If it is, then update spcost(w). Clearly, we don’t need to check if the
spcost of any other node that isn’t a neighbor of u has changed because u was added to
S—it couldn’t have. Having done this step, we check the set X to find the next node to

Integration Step: Dijkstra s Algorithm  �
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add to S; as mentioned before, the node with the smallest spcost is selected (we break
ties arbitrarily).

The last part is to remember that what the algorithm needs to produce is a route for each
destination, which means that we need to maintain the outgoing link for each destination.
To compute the route, observe that what Dijkstra’s algorithm produces is a shortest path
tree rooted at the source, n, traversing all the destination nodes in the network. (A tree is a
graph that has no cycles and is connected, i.e., there is exactly one path between any two
nodes, and in particular between n and every other node.) There are three kinds of nodes
in the shortest path tree:

1. n itself: the route from n to n is not a link, and we will call it “Self”.
2. A node v directly connected to n in the tree, whose parent is n. For such nodes, the

route is the link connecting n to v.
3. All other nodes, w, which are not directly connected to n in the shortest path tree.

For such nodes, the route to w is the same as the route to w’s parent, which is the
node one step closer to n along the (reverse) path in the tree from w to n. Clearly, this
route will be one of n’s links, but we can just set it equal to the route to w’s parent
and rely on the second step above to determine the link.
We should also note that just because a node w is directly connected to n, it doesn’t
imply that the route from n is the direct link between them. If the cost of that link
is larger than the path through another link, then we would want to use the route
(outgoing link) corresponding to that better path.
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� Problems and Questions

1. Consider the network shown in Figure 17-7. The number near each link is its cost.
We’re interested in finding the shortest paths (taking costs into account) from S to
every other node in the network.

What is the result of running Dijkstra’s shortest path algorithm on this network? To
answer this question, near each node, list a pair of numbers: The first element of the
pair should be the order, or the iteration of the algorithm in which the node is picked.
The second element of each pair should be the shortest path cost from S to that node.

2. Alice and Bob are responsible for implementing Dijkstra’s algorithm at the nodes in a
network running a link-state protocol. On her nodes, Alice implements a minimum-
cost algorithm. On his nodes, Bob implements a “shortest number of hops” algo-
rithm. Give an example of a network topology with 4 or more nodes in which a
routing loop occurs with Alice and Bob’s implementations running simultaneously
in the same network. Assume that there are no failures.

(Note: A routing loop occurs when a group of k≥ 1 distinct nodes, n0, n1, n2, . . . , nk−1

have routes such that ni’s next-hop (route) to a destination is ni+1mod k.)
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Figure 17-7: Topology for problem 1.

3. Consider any two graphs(networks) G and G′ that are identical except for the costs
of the links.

(a) The cost of link l in graph G is cl > 0, and the cost of the same link l in Graph G′

is kcl, where k > 0 is a constant. Are the shortest paths between any two nodes
in the two graphs identical? Justify your answer.

(b) Now suppose that the cost of a link l in G′ is kcl + h, where k > 0 and h > 0

are constants. Are the shortest paths between any two nodes in the two graphs
identical? Justify your answer.

4. Eager B. Eaver implements distance vector routing in his network in which the links
all have arbitrary positive costs. In addition, there are at least two paths between
any two nodes in the network. One node, u, has an erroneous implementation of
the integration step: it takes the advertised costs from each neighbor and picks the
route corresponding to the minimum advertised cost to each destination as its route
to that destination, without adding the link cost to the neighbor. It breaks any ties
arbitrarily. All the other nodes are implemented correctly.

Let’s use the term “correct route” to mean the route that corresponds to the
minimum-cost path. Which of the following statements are true of Eager’s network?

(a) Only u may have incorrect routes to any other node.

(b) Only u and u’s neighbors may have incorrect routes to any other node.

(c) In some topologies, all nodes may have correct routes.
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(d) Even if no HELLO or advertisements packets are lost and no link or node fail-
ures occur, a routing loop may occur.

5. Alyssa P. Hacker is trying to reverse engineer the trees produced by running Dijk-
stra’s shortest paths algorithm at the nodes in the network shown in Figure 19-9 on

the left. She doesn’t know the link costs, but knows that they are all positive. All
link costs are symmetric (the same in both directions). She also knows that there is
exactly one minimum-cost path between any pair of nodes in this network.
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Figure 17-8: Topology for problem 5.

She discovers that the routing tree computed by Dijkstra’s algorithm at node A looks
like the picture in Figure 19-9 on the right. Note that the exact order in which the
nodes get added in Dijkstra’s algorithm is not obvious from this picture.

(a) Which of A’s links has the highest cost? If there could be more than one, tell us
what they are.

(b) Which of A’s links has the lowest cost? If there could be more than one, tell us
what they are.

Alyssa now inspects node C, and finds that it looks like Figure 17-9. She is sure that
the bold (not dashed) links belong to the shortest path tree from node C, but is not
sure of the dashed links.

(c) List all the dashed links in Figure 17-9 that are guaranteed to be on the routing
tree at node C.

(d) List all the dashed links in Figure 17-9 that are guaranteed not to be (i.e., surely
not) on the routing tree at node C.

6. Consider a network implementing minimum-cost routing using the distance-vector
protocol. A node, S, has k neighbors, numbered 1 through k, with link cost ci to
neighbor i (all links have symmetric costs). Initially, S has no route for destination
D. Then, S hears advertisements for D from each neighbor, with neighbor i adver-
tising a cost of pi. The node integrates these k advertisements. What is the cost for
destination D in S’s routing table after the integration?
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Figure 17-9: Picture for problems 5(c) and 5(d).
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Figure 17-10: Fishnet topology for problem 6.

7. Ben Bitdiddle is responsible for routing in FishNet, shown in Figure 17-10. He gets
to pick the costs for the different links (the w’s shown near the links). All the costs
are non-negative.

Goal: To ensure that the links connecting C to A and C to B, shown as darker lines,
carry equal traffic load. All the traffic is generated by S1 and S2, in some unknown
proportion. The rate (offered load) at which S1 and S2 together generate traffic for
destinations A, B, and D are rA, rB , and rD, respectively. Each network link has a
bandwidth higher than rA + rB + rD. There are no failures.

Protocol: FishNet uses link-state routing; each node runs Dijkstra’s algorithm to pick
minimum-cost routes.

(a) If rA + rD = rB , then what constraints (equations or inequalities) must the link
costs satisfy for the goal to be met? Explain your answer. If it’s impossible to
meet the goal, say why.
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(b) If rA = rB = 0 and rD > 0, what constraints must the link costs satisfy for the
goal to be met? Explain your answer. If it’s impossible to meet the goal, say
why.

8. Consider the network shown in Figure 17-11. Each node implements Dijkstra’s short-
est paths algorithm using the link costs shown in the picture.
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Figure 17-11: Topology for Problem 8.

(a) Initially, node B’s routing table contains only one entry, for itself. When B runs
Dijkstra’s algorithm, in what order are nodes added to the routing table? List

all possible answers.

(b) Now suppose the link cost for one of the links changes but all costs remain
non-negative. For each change in link cost listed below, state whether it is

possible for the route at node B (i.e., the link used by B) for any destination to
change, and if so, name the destination(s) whose routes may change.

i. The cost of link(A, C) increases:
ii. The cost of link(A, C) decreases:

iii. The cost of link(B, C) increases:
iv. The cost of link(B, C) decreases:

9. Eager B. Eaver implements the distance-vector protocol studied in this chapter, but

on some of the nodes, his code sets the cost and route to each advertised destination
D differently:

Cost to D = min(advertised cost) heard from each neighbor.
Route to D = link to a neighbor that advertises the minimum cost to D.

Every node in the network periodically advertises its vector of costs to the destina-
tions it knows about to all its neighbors. All link costs are positive.

At each node, a route for destination D is valid if packets using that route will even-
tually reach D.

At each node, a route for destination D is correct if packets using that route will
eventually reach D along some minimum-cost path.
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Assume that there are no failures and that the routing protocol has converged to

produce some route to each destination at all the nodes.

Explain whether each of these statements is True or False. Assume a network in
which at least two of the nodes (and possibly all of the nodes) run Eager’s modified
version of the code, while the remaining nodes run the method discussed in this
chapter.

(a) There exist networks in which some nodes will have invalid routes.

(b) There exist networks in which some nodes will not have correct routes.

(c) There exist networks in which all nodes will have correct routes.

10. The hypercube is an interesting network topology. An n-dimensional hypercube has
2n nodes, each with a unique n-bit address. Two nodes in the hypercube are con-
nected with a link if, and only if, their addresses have a Hamming distance of 1. The
picture below shows hypercubes for n = 3 and 4. The solid and dashed lines are the
links. We are interested in link-state routing over hypercube topologies.
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(a) Suppose n = 4. Each node sends a link-state advertisement (LSA) periodically,
starting with sequence number 0. All link costs are equal to 5. Node 1000 dis-
covers that its link to 1001 has failed. There are no other failures. What are the
contents of the fourth LSA originating from node 1000?

(b) Suppose n = 4. Three of the links at node 1000, including the link to node 1001,
fail. No other failures or packet losses occur.

i. How many distinct copies of any given LSA originating from node 1000

does node 1001 receive?
ii. How many distinct copies of any given LSA originating from node 1001

does node 1000 receive?

(c) Suppose n = 3 and there are no failures. Each link has a distinct, positive,
integral cost. Node 000 runs Dijkstra’s algorithm (breaking ties arbitrarily) and
finds that the minimum-cost path to 010 has 5 links on it. What can you say
about the cost of the direct link between 000 and 010?
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11. Alyssa P. Hacker runs the link-state routing protocol in the network shown below.
Each node runs Dijkstra’s algorithm to compute minimum-cost routes to all other
destinations, breaking ties arbitrarily.
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Figure 17-12: Alyssa’s link-state routing problem.

Answer the following questions, explaining each answer.

(a) In what order does C add destinations to its routing table in its execution of
Dijkstra’s algorithm? Give all possible answers.

(b) Suppose the cost of link 〈CB〉 increases. What is the largest value it can increase
to, before forcing a change to any of the routes in the network? (On a tie, the
old route remains.)

(c) Assume that no link-state advertisement (LSA) packets are lost on any link.
When C generates a new LSA, how many copies of that LSA end up getting
flooded in total over all the links of this network, using the link-state flooding
protocol described in 6.02?
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CHAPTER 18 
Network Routing - II 

Routing Around Failures 

This chapter describes the mechanisms used by distributed routing protocols to handle 
link and node failures, packet losses (which may cause advertisements to be lost), changes 
in link costs, and (as in the previous chapter) new nodes and links being added to the 
network. We will use the term churn to refer to any changes in the network topology. Our 
goal is to find the best paths in the face of churn. Of particular interest will be the ability to 
route around failures, finding the minimum-cost working paths between any two nodes 
from among the set of available paths. 

We start by discussing what it means for a routing protocol to be correct, and define our 
correctness goal in the face of churn. The first step to solving the problem is to discover 
failures. In routing protocols, each node is responsible for discovering which of its links 
and corresponding nodes are still working; most routing protocols use a simple HELLO 
protocol for this task. Then, to handle failures, each node runs the advertisement and integra­
tion steps periodically. The idea is for each node to repeatedly propagate what it knows 
about the network topology to its neighbors so that any changes are propagated to all the 
nodes in the network. These periodic messages are the key mechanism used by routing 
protocols to cope with changes in the network. Of course, the routing protocol has to be 
robust to packet losses that cause various messages to be lost; for example, one can’t use 
the absence of a single message to assume that a link or node has failed, for packet losses 
are usually far more common than actual failures. 

We will see that the distributed computation done in the distance-vector protocol in­
teracts adversely with the periodic advertisements and causes the routing protocol to not 
produce correct routing tables in the face of certain kinds of failures. We will present and 
analyze a few different solutions that overcome these adverse interactions, which extend 
our distance-vector protocol. We also discuss some circumstances under which link-state 
protocols don’t work correctly. We conclude this chapter by comparing link-state and dis­
tance vector protocols. 

287 
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• 18.1 Correctness and Convergence 

In an ideal, correctly working routing protocol, two properties hold: 

1. For any node, if the node has a route to a given destination, then there will be a 
usable path in the network topology from the node to the destination that traverses 
the link named in the route. We call this property route validity. 

2. In addition, each node will have a route to each destination for which there is a 
usable path in the network topology, and any packet forwarded along the sequence 
of these routes will reach the destination (note that a route is the outgoing link at 
each switch; the sequence of routes corresponds to a path). We call this property path 
visibility because it is a statement of how visible the usable paths are to the switches 
in the network. 

If these two properties hold in a network, then the network’s routing protocol is said to 
have converged. It is impossible to guarantee that these properties hold at all times because 
it takes a non-zero amount of time for any change to propagate through the network to all 
nodes, and for all the nodes to come to some consensus on the state of the network. Hence, 
we will settle for a less ambitious—though still challenging—goal, eventual convergence. 
We define eventual convergence as follows: Given an arbitrary initial state of the network 
and the routing tables at time t = 0, suppose some sequence of failure and recovery events 
and other changes to the topology occur over some duration of time, τ . After t = τ , sup­
pose that no changes occur to the network topology, also that no route advertisements or 
HELLO messages are lost. Then, if the routing protocol ensures that route validity and path 
visibility hold in the network after some finite amount of time following t = τ , then the protocol is 
said to “eventually converge”. 

In practice, it is quite possible, and indeed likely, that there will be no time τ after 
which there are no changes or packet losses, but even in these cases, eventual convergence 
is a valuable property of a routing protocol because it shows that the protocol is working 
toward ensuring that the routing tables are all correct. The time taken for the protocol to 
converge after a sequence of changes have occurred (or from some initial state) is called 
the convergence time. Thus, even though churn in real networks is possible at any time, 
eventual convergence is still a valuable goal. 

During the time it takes for the protocol to converge, a number of things could go 
wrong: routing loops and reduced path visibility are two significant problems. 

• 18.1.1 Routing Loops 

Suppose the nodes in a network each want a route to some destination D. If the routes 
they have for D take them on a path with a sequence of nodes that form a cycle, then the 
network has a routing loop. That is, if the path resulting from the routes at each successive 
node forms a sequence of two or more nodes n1, n2, . . . , nk in which ni = nj for some 
i �= j, then we have a routing loop. A routing loop violates the route validity correctness 
condition. If a routing loop occurs, packets sent along this path to D will be stuck in 
the network forever, unless other mechanisms are put in place (while packets are being 
forwarded) to “flush” such packets from the network (see Section 18.2). 
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• 18.1.2 Reduced Path Visibility 

This problem usually arises when a failed link or node recovers after a failure and a pre­
viously unreachable part of the network now becomes reachable via that link or node. 
Because it takes time for the protocol to converge, it takes time for this information to 
propagate through the network and for all the nodes to correctly compute paths to nodes 
on the “other side” of the network. During that time, the routing tables have not yet con­
verged, so as far as data packets are concerned, the previously unreachable part of the 
network still remains that way. 

• 18.2 Alleviating Routing Loops: Hop Limits on Packets 

If a packet is sent along a sequence of routers that are part of a routing loop, the packet 
will remain in the network until the routing loop is eliminated. The typical time scales over 
which routing protocols converge could be many seconds or even a few minutes, during 
which these packets may consume significant amounts of network bandwidth and reduce 
the capacity available to other packets that can be sent successfully to other destinations. 

To mitigate this (hopefully transient) problem, it is customary for the packet header to 
include a hop limit. The source sets the “hop limit” field in the packet’s header to some 
value larger than the number of hops it believes is needed to get to the destination. Each 
switch, before forwarding the packet, decrements the hop limit field by 1. If this field reaches 
0, then it does not forward the packet, but drops it instead (optionally, the switch may send 
a diagnostic packet toward the source telling it that the switch dropped the packet because 
the hop limit was exceeded). 

The forwarding process needs to make sure that if a checksum covers the hop limit 
field, then the checksum needs to be adjusted to reflect the decrement done to the hop-
limit field.1 

Combining this information with the rest of the forwarding steps discussed in the pre­
vious chapter, we can summarize the basic steps done while forwarding a packet in a 
best-effort network as follows: 

1. Check the hop-limit field. If it is 0, discard the packet. Optionally, send a diagnos­
tic packet toward the packet’s source saying “hop limit exceeded”; in response, the 
source may decide to stop sending packets to that destination for some period of 
time. 

2. If the hop-limit is larger than 0, then perform a routing table lookup using the des­
tination address to determine the route for the packet. If no link is returned by the 
lookup or if the link is considered “not working” by the switch, then discard the 
packet. Otherwise, if the destination is the present node, then deliver the packet to 
the appropriate protocol or application running on the node. Otherwise, proceed to 
the next step. 

3. Decrement the hop-limit by 1. Adjust the checksum (typically the header checksum) 
if necessary. Enqueue the packet in the queue corresponding to the outgoing link 

1IP version 4 has such a header checksum, but IP version 6 dispenses with it, because higher-layer protocols 
used to provide reliable delivery have a checksum that covers portions of the IP header. 
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returned by the route lookup procedure. When this packet reaches the head of the 
queue, the switch will send the packet on the link. 

• 18.3 Neighbor Liveness: HELLO Protocol 

As mentioned in the previous chapter, determining which of a node’s neighbors is cur­
rently alive and working is the first step in any routing protocol. We now address this 
question: how does a node determine its current set of neighbors? The HELLO protocol 
solves this problem. 

The HELLO protocol is simple and is named for the kind of message it uses. Each 
node sends a HELLO packet along all its links periodically. The purpose of the HELLO is 
to let the nodes at the other end of the links know that the sending node is still alive. As 
long as the link is working, these packets will reach. As long as a node hears another’s 
HELLO, it presumes that the sending node is still operating correctly. The messages are 
periodic because failures could occur at any time, so we need to monitor our neighbors 
continuously. 

When should a node remove a node at the other end of a link from its list of neighbors? 
If we knew how often the HELLO messages were being sent, then we could wait for a cer­
tain amount of time, and remove the node if we don’t hear even one HELLO packet from it 
in that time. Of course, because packet losses could prevent a HELLO packet from reach­
ing, the absence of just one (or even a small number) of HELLO packets may not be a sign 
that the link or node has failed. Hence, it is best to wait for enough time before deciding 
that a node whose HELLO packets we haven’t heard should no longer be a neighbor. 

For this approach to work, HELLO packets must be sent at some regularity, such that 
the expected number of HELLO packets within the chosen timeout is more or less the 
same. We call the mean time between HELLO packet transmissions the HELLO INTERVAL. 
In practice, the actual time between these transmissions has small variance; for instance, 
one might pick a time drawn randomly from [HELLO INTERVAL - δ, HELLO INTERVAL + 
δ], where δ < HELLO INTERVAL. 

When a node doesn’t hear a HELLO packet from a node at the other end of a direct link 
for some duration, k· HELLO INTERVAL, it removes that node from its list of neighbors 
and considers that link “failed” (the node could have failed, or the link could just be expe­
rienced high packet loss, but we assume that it is unusable until we start hearing HELLO 
packets once more). 

The choice of k is a trade-off between the time it takes to determine a failed link and the 
odds of falsely flagging a working link as “failed” by confusing packet loss for a failure (of 
course, persistent packet losses that last a long period of time should indeed be considered 
a link failure, but the risk here in picking a small k is that if that many successive HELLO 
packets are lost, we will consider the link to have failed). In practice, designers pick k 
by evaluating the latency before detecting a failure (k· HELLO INTERVAL) with the prob­
ability of falsely flagging a link as failed. This probability is gk, where g is the packet loss 
probability on the link, assuming—and this is a big assumption in some networks—that 
packet losses are independent and identically distributed. 
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• 18.4 Periodic Advertisements 

The key idea that allows routing protocols to adapt to dynamic network conditions is pe­

riodic routing advertisements and the integration step that follows each such advertise­
ment. This method applies to both distance-vector and link-state protocols. Each node 
sends an advertisement every ADVERT INTERVAL seconds to its neighbors. In response, 
in a distance-vector protocol, each receiving node runs the integration step; in the link-
state protocol each receiving node rebroadcasts the advertisement to its neighbors if it has 
not done so already for this advertisement. Then, every ADVERT INTERVAL seconds, off­
set from the time of its own advertisement by ADVERT INTERVAL/2 seconds, each node 
in the link-state protocol runs its integration step. That is, if a node sends its advertise­
ments at times t1, t2, t3, . . ., where the mean value of ti+1 − ti =ADVERT INTERVAL, then 
the integration step runs at times (t1 + t2)/2, (t2 + t3)/2, . . .. Note that one could imple­
ment a distance-vector protocol by running the integration step at such offsets, but we 
don’t need to because the integration in that protocol is easy to run incrementally as soon 
as an advertisement arrives. 

It is important to note that in practice the advertisements at the different nodes are 
unsynchronized. That is, each node has its own sequence of times at which it will send its 
advertisements. In a link-state protocol, this means that in general the time at which a 
node rebroadcasts an advertisement it hears from a neighbor (which originated at either 
the neighbor or some other node) is not the same as the time at which it originates its own 
advertisement. Similarly, in a distance-vector protocol, each node sends its advertisement 
asynchronously relative to every other node, and integrates advertisements coming from 
neighbors asynchronously as well. 

• 18.5 Link-State Protocol Under Failure and Churn 

We now argue that a link-state protocol will eventually converge (with high probability) 
given an arbitrary initial state at t = 0  and a sequence of changes to the topology that all 
occur within time (0, τ), assuming that each working link has a “high enough” probability 
of delivering a packet. To see why, observe that: 

1. There exists some finite time t1 > τ  at which each node will correctly know, with 
high probability, which of its links and corresponding neighboring nodes are up and 
which have failed. Because we have assumed that there are no changes after τ and 
that all packets are delivered with high-enough probability, the HELLO protocol run­
ning at each node will correctly enable the neighbors to infer its liveness. The arrival 
of the first HELLO packet from a neighbor will provide evidence for liveness, and if 
the delivery probability is high enough that the chances of k successive HELLO pack­
ets to be lost before the correct link state propagates to all the nodes in the network 
is small, then such a time t1 exists. 

2. There exists some finite time t2 > t1 at which all the nodes have received, with high 
probability, at least one copy of every other node’s link-state advertisement. Once 
a node has its own correct link state, it takes a time proportional to the diameter of 
the network (the number of hops in the longest shortest-path in the network) for that 
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Figure 18-1: Distance-vector protocol showing the “count-to-infinity” problem (see Section 18.6 for the 

explanation). 

advertisement to propagate to all the other nodes, assuming no packet loss. If there 
are losses, then notice that each node receives as many copies of the advertisement 
as there are neighbors, because each neighbor sends the advertisement once along 
each of its links. This flooding mechanism provides a built-in reliability at the cost of 
increased bandwidth consumption. Even if a node does not get another node’s LSA, 
it will eventually get some LSA from that node given enough time, because the links 
have a high-enough packet delivery probability. 

3. At a time roughly ADVERT INTERVAL/2 after receiving every other node’s correct 
link-state, a node will compute the correct routing table. 

Thus, one can see that under good packet delivery conditions, a link-state protocol can 
converge to the correct routing state as soon as each node has advertised its own link-
state advertisement, and each advertisement is received at least once by every other node. 
Thus, starting from some initial state, because each node sends an advertisement within 
time ADVERT INTERVAL on average, the convergence time is expected to be at least this 
amount. We should also add a time of roughly ADVERT INTERVAL/2 seconds to this quan­
tity to account for the delay before the node actually computes the routing table. This time 
could be higher, if the routes are recomputed less often on average, or lower, if they are 
recomputed more often. 

Ignoring when a node recomputes its routes, we can say that if each node gets at least 
one copy of each link-state advertisement, then the expected convergence time of the 
protocol is one advertisement interval plus the amount of time it takes for an LSA message 
to traverse the diameter of the network. Because the advertisement interval is many orders 
of magnitude larger than the message propagation time, the first term is dominant. 

Link-state protocols are not free from routing loops, however, because packet losses 
could cause problems. For example, if a node A discovers that one of its links has failed, it 
may recompute a route to a destination via some other neighboring node, B. If  B does not 
receive a copy of A’s LSA, and if B were using the link to A as its route to the destination, 
then a routing loop would ensue, at least until the point when B learned about the failed 
link. 

In general, link-state protocols are a good way to achieve fast convergence. 

• 18.6 Distance-Vector Protocol Under Failure and Churn 

Unlike in the link-state protocol where the flooding was distributed but the route computa­
tion was centralized at each node, the distance-vector protocol distributes the computation 
too. As a result, its convergence properties are far more subtle. 
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Consider for instance a simple “chain” topology with three nodes, A, B, and destination 
D (Figure 18-1). Suppose that the routing tables are all correct at t = 0 and then that link 
between B and D fails at some time t < τ . After this event, there are no further changes to 
the topology. 

Ideally, one would like the protocol to do the following. First, B’s HELLO protocol 
discovers the failure, and in its next routing advertisement, sends a cost of INFINITY (i.e., 
“unreachable”) to A. In response, A would conclude that B no longer had a route to D, and 
remove its own route to D from its routing table. The protocol will then have converged, 
and the time taken for convergence not that different from the link-state case (proportional 
to the diameter of the network in general). 

Unfortunately, things aren’t so clear cut because each node in the distance-vector pro­
tocol advertises information about all destinations, not just those directly connected to it. 
What could easily have happened was that before B sent its advertisment telling A that 
the cost to D had become INFINITY, A’s advertisement could have reached B telling B 
that the cost to D is 2. In response, B integrates this route into its routing table because 2 
is smaller than B’s own cost, which is INFINITY. You can now see the problem—B has a 
wrong route because it thinks A has a way of reaching D with cost 2, but it doesn’t really 
know that A’s route is based on what B had previously told him! So, now A thinks it has 
a route with cost 2 of reaching D and B thinks it has a route with cost 2 + 1 = 3. The next 
advertisement from B will cause A to increase its own cost to 3 + 1 = 4. Subsequently, 
after getting A’s advertisement, B will increase its cost to 5, and so on. In fact, this mess 
will continue, with both nodes believing that there is some way to get to the destination 
D, even though there is no path in the network (i.e., the route validity property does not 
hold here). 

There is a colorful name for this behavior: counting to infinity. The only way in which 
each node will realize that D is unreachable is for the cost to reach INFINITY. Thus, for 
this distance-vector protocol to converge in reasonable time, the value of INFINITY must 
be quite small! And, of course, INFINITY must be at least as large as the cost of the longest 
usable path in the network, for otherwise that routes corresponding to that path will not 
be found at all. 

We have a problem. The distance-vector protocol was attractive because it consumed far 
less bandwidth than the link-state protocol, and so we thought it would be more appopri­
ate for large networks, but now we find that INFINITY (and hence the size of networks for 
which the protocol is a good match) must be quite small! Is there a way out of this mess? 

First, let’s consider a flawed solution. Instead of B waiting for its normal advertisment 
time (every ADVERT INTERVAL seconds on average), what if B sent news of any unreach­
able destination(s) as soon as its integration step concludes that a link has failed and some 
destination(s) has cost INFINITY? If each node propagated this “bad news” fast in its ad­
vertisement, then perhaps the problem will disappear. 

Unfortunately, this approach does not work because advertisement packets could easily 
be lost. In our simple example, even if B sent an advertisement immediately after discov­
ering the failure of its link to D, that message could easily get dropped and not reach A. 
In this case, we’re back to square one, with B getting A’s advertisement with cost 2, and 
so on. Clearly, we need a more robust solution. We consider two, in turn, each with fancy 
names: split horizon routing and path vector routing. Both generalize the distance-vector 
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Figure 18-2: Split horizon (with or without poison reverse) doesn’t prevent routing loops of three or more 

hops. The dashed arrows show the routing advertisements for destination D. If link BD fails, as explained 

in the text, it is possible for a “count-to-infinity” routing loop involving A, B, and C to ensue. 

protocol in elegant ways. 

• 18.7 Distance Vector with Split Horizon Routing 

The idea in the split horizon extension to distance-vector routing is simple: 

If a node A learns about the best route to a destination D from neighbor B, then A will 
not advertise its route for D back to B. 

In fact, one can further ensure that B will not use the route advertised by A by having 
A advertise a route to D with a cost of INFINITY. This modification is called a poison reverse, 
because the node (A) is poisoning its route for D in its advertisement to B. 

It is easy to see that the two-node routing loop that showed up earlier disappears with 
the split horizon technique. 

Unfortunately, this method does not solve the problem more generally; loops of three 
or more hops can persist. To see why, look at the topology in Figure 18-2. Here, B is 
connected to destination D, and two other nodes A and C are connected to B as well as 
to each other. Each node has the following correct routing state at t = 0: A thinks D is at 
cost 2 (and via B), B thinks D is at cost 1 via the direct link, and C thinks D is at cost S 
(and via B). Each node uses the distance-vector protocol with the split horizon technique 
(it doesn’t matter whether they use poison reverse or not), so A and C advertise to B that 
their route to D has cost INFINITY. Of course, they also advertise to each other that there 
is a route to D with cost 2; this advertisement is useful if link AB (or BC) were to fail, 
because A could then use the route via C to get to D (or C could use the route via A). 

Now, suppose the link BD fails at some time t < τ . Ideally, if B discovers the failure 
and sends a cost of INFINITY to A and C in its next update, all the nodes will have the 
correct cost to D, and there is no routing loop. Because of the split horizon scheme, B 
does not have to send its advertisement immediately upon detecting the failed link, but 
the sooner it does, the better, for that will enable A and C to converge sooner. 
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Figure 18-3: Path vector protocol example. 

However, suppose B’s routing advertisement with the updated cost to D (of INFINITY) 
reaches A, but is lost and doesn’t show up at C. A now knows that there is no route of finite 
cost to D, but C doesn’t. Now, in its next advertisement, C will advertise a route to D of 
cost 2 to A (and a cost of INFINITY to B because of poison reverse). In response, A will 
assume that C has found a better route than what A has (which is a “null” route with cost 
INFINITY), and integrate that into its table. In its next advertisement, A will advertise to 
B that it has a route of cost 3 to destination D, and B will incorporate that route at cost 4! 
It is easy to see now that when B advertises this route to C, it will cause C to increase its 
cost to 5, and so on. The count-to-infinity problem has shown up again! 

Path vector routing is a good solution to this problem. 

• 18.8 Path-Vector Routing 

The insight behind the path vector protocol is that a node needs to know when it is safe 
and correct to integrate any given advertisement into its routing table. The split horizon 
technique was an attempt that worked in only a limited way because it didn’t prevent 
loops longer than two hops. The path vector technique extends the distance vector adver­
tisement to include not only the cost, but also the nodes along the best path from the node to the 
destination. It looks like this: 

[dest1 cost1 path1 dest2 cost2 path2 dest3 cost3 path3 ...] 

Here, each “path” is the concatenation of the identifiers of the node along the path, with 
the destination showing up at the end (the opposite convention is equivalent, as long as 
all nodes treat the path consistently). Figure 18-3 shows an example. 

The integration step at node n should now be extended to only consider an advertise­
ment as long as n does not already appear on the advertised path. With that step, the rest 
of the integration step of the distance vector protocol can be used unchanged. 

Given an initial state at t = 0  and a set of changes in (0, τ), and assuming that each 
link has a high-enough packet delivery probability, this path vector protocol eventually 
converges (with high probability) to the correct state without “counting to infinity”. The 
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time it takes to converge when each node is interested in finding the minimum-cost path 
is proportional to the length of the longest minimum-cost path multiplied by the adver­
tisement interval. The reason is as follows. Initially, each node knows nothing about the 
network. After one advertisement interval, it learns about its neighbors routing tables, but 
at this stage those tables have nothing other than the nodes themselves. Then, after the 
next advertisement, each node learns about all nodes two hops away and how to reach 
them. Eventually, after k advertisements, each node learns about how to reach all nodes k 
hops away, assuming of course that no packet losses occur. Hence, it takes d advertisement 
intervals before a node discovers routes to all the other nodes, where d is the length of the 
longest minimum-cost path from the node. 

Compared to the distance vector protocol, the path vector protocol consumes more net­
work bandwidth because now each node needs to send not just the cost to the destination, 
but also the addresses (or identifiers) of the nodes along the best path. In most large real-
world networks, the number of links is large compared to the number of nodes, and the 
length of the minimum-cost paths grows slowly with the number of nodes (typically log­
arithmically). Thus, for large network, a path vector protocol is a reasonable choice. 

We are now in a position to compare the link-state protocol with the two vector proto­
cols (distance-vector and path-vector). 

• 18.9 Summary: Comparing Link-State and Vector Protocols 

There is nothing either good or bad, but thinking makes it so. 
—Hamlet, Act II (scene ii) 

Bandwidth consumption. The total number of bytes sent in each link-state advertise­
ment is quadratic in the number of links, while it is linear in the number of links for the 
distance-vector protocol. 

The advertisement step in the simple distance-vector protocol consumes less band­
width than in the simple link-state protocol. Suppose that there are n nodes and m links 
in the network, and that each [node pathcost] or [neighbor linkcost] tuple in an advertise­
ment takes up k bytes (k might be 6 in practice). Each advertisement also contains a source 
address, which (for simplicity) we will ignore. 

Then, for distance-vector, each node’s advertisement has size kn. Each such adver­
tisement shows up on every link twice, because each node advertises its best path cost to 
every destination on each of its link. Hence, the total bandwidth consumed is roughly 
2knm/ADVERT INTERVAL bytes/second. 

The calculation for link-state is a bit more involved. The easy part is to observe that 
there’s a “origin address” and sequence number of each LSA to improve the efficiency 
of the flooding process, which isn’t needed in distance-vector. If the sequence number 
is g bytes in size, then because each node broadcasts every other node’s LSA once, the 
number of bytes sent is gn. However, this is a second-order effect; most of the bandwidth 
is consumed by the rest of the LSA. The rest of the LSA consists of k bytes of information per 
neighbor. Across the entire network, this quantity accounts for k(2m) bytes of information, 
because the sum of the number of neighbors of each node in the network is 2m. Moreover, 
each LSA is re-broadcast once by each node, which means that each LSA shows up twice 
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on every link. Therefore, the total number of bytes consumed in flooding the LSAs over 
the network to all the nodes is k(2m)(2m) = 4km2. Putting it together with the bandwidth 
consumed by the sequence number field, we find that the total bandwidth consumed is 
(4km2 + 2gmn)/ADVERT INTERVAL bytes/second. 

It is easy to see that there is no connected network in which the bandwidth consumed 
by the simple link-state protocol is lower than the simple distance-vector protocol; the 
important point is that the former is quadratic in the number of links, while the latter 
depends on the product of the number of nodes and number of links. 

Convergence time. The convergence time of our distance vector and path vector proto­
cols can be as large as the length of the longest minimum-cost path in the network mul­
tiplied by the advertisement interval. The convergence time of our link-state protocol is 
roughly one advertisement interval. 

Robustness to misconfiguration. In a vector protocol, each node advertises costs and/or 
paths to all destinations. As such, an error or misconfiguration can cause a node to wrongly 
advertise a good route to a destination that the node does not actually have a good route 
for. In the worst case, it can cause all the traffic being sent to that destination to be hijacked 
and possibly “black holed” (i.e., not reach the intended destination). This kind of problem 
has been observed on the Internet from time to time. In contrast, the link-state protocol 
only advertises each node’s immediate links. Of course, each node also re-broadcasts the 
advertisements, but it is harder for any given erroneous node to wreak the same kind of 
havoc that a small error or misconfiguration in a vector protocol can. 

In practice, link-state protocols are used in smaller networks typically within a single 
company (enterprise) network. The routing between different autonomously operating 
networks in the Internet uses a path vector protocol. Variants of distance vector protocols 
that guarantee loop-freedom are used in some small networks, including some wireless 
“mesh” networks built out of short-range (WiFi) radios. 
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• Problems and Questions 

1. Why does the link-state advertisement include a sequence number? 

2. What is the purpose of the hop limit field in packet headers? Is that field used in 
routing or in forwarding? 

3. Describe clearly why the convergence time of our distance vector protocol can be as 
large as the length of the longest minimum-cost path in the network. 

4. Suppose a link connecting two nodes in a network drops packets independently with 
probability 10%. If we want to detect a link failure with a probability of falsely re­
porting a failure of ≤ 0.1%, and the HELLO messages are sent once every 10 seconds, 
then how much time does it take to determine that a link has failed? 

5. You’ve set up a 6-node connected network topology in your home, with nodes 
named A,B, . . . ,F . Inspecting A’s routing table, you find that some entries have 
been mysteriously erased (shown with “?” below), but you find the following en­
tries: 

Destination Cost Next-hop 
B 3 C 
C 2 ? 
D 4 E 
E 2 ? 
F 1 ? 

Each link has a cost of either 1 or 2 and link costs are symmetric (the cost from X 
to Y is the same as the cost from Y to X). The routing table entries correspond to 
minimum-cost routes. 

(a) Draw a network topology with the smallest number of links that is consistent with 
the routing table entries shown above and the cost information provided. Label 
each node and show each link cost clearly. 

(b) You know that there could be other links in the topology. To find out, you now 
go and inspect D’s routing table, but it is mysteriously empty. What is the small­
est possible value for the cost of the path from D to F in your home network 
topology? (Assume that any two nodes may possibly be directly connected to 
answer this question.) 

6. A network with N nodes and N bi-directional links is connected in a ring as shown 
in Figure 18-4, where N is an even number. The network runs a distance-vector 
protocol in which the advertisement step at each node runs when the local time is 

TT ∗ i seconds and the integration step runs when the local time is T ∗ i+ seconds,2 
(i = 1,2, . . .). Each advertisement takes time δ to reach a neighbor. Each node has a 
separate clock and time is not synchronized between the different nodes. 

Suppose that at some time t after the routing has converged, node N + 1 is inserted 
into the ring, as shown in the figure above. Assume that there are no other changes 
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Figure 18-4: The ring network with N nodes (N is even). 

in the network topology and no packet losses. Also assume that nodes 1 and N 
update their routing tables at time t to include node N + 1, and then rely on their 
next scheduled advertisements to propagate this new information. 

(a) What is the minimum time before every node in the network has a route to node 
N + 1? 

(b) What is the maximum time before every node in the network has a route to 
node N + 1? 

7. Alyssa P. Hacker manages MIT’s internal network that runs link-state routing. She 
wants to experiment with a few possible routing strategies. Listed below are the 
names of four strategies and a brief description of what each one does. 

(a) MinCost: Every node picks the path that has the smallest sum of link costs along 
the path. (This is the minimum cost routing you implemented in the lab). 

(b) MinHop: Every node picks the path with the smallest number of hops (irrespec­
tive of what the cost on the links is). 

(c) SecondMinCost: Every node picks the path with the second lowest sum of link 
costs. That is, every node picks the second best path with respect to path costs. 

(d) MinCostSquared:	 Every node picks the path that has the smallest sum of 
squares of link costs along the path. 

Assume that sufficient information is exchanged in the link state advertisements, so 
that every node has complete information about the entire network and can correctly 
implement the strategies above. You can also assume that a link’s properties don’t 
change, e.g., it doesn’t fail. 

(a) Help Alyssa figure out which of these strategies will work correctly, and which 
will result in routing with loops. In case of strategies that do result in rout­
ing loops, come up with an example network topology with a routing loop to 
convince Alyssa. 
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(b) How would you implement MinCostSquared in a distance-vector protocol? 
Specify what the advertisements should contain and what the integration step 
must do. 

8. Alyssa P. Hacker implements the 6.02 distance-vector protocol on the network shown 
below. Each node has its own local clock, which may not be synchronized with any 
other node’s clock. Each node sends its distance-vector advertisement every 100 
seconds. When a node receives an advertisement, it immediately integrates it. The 
time to send a message on a link and to integrate advertisements is negligible. No 
advertisements are lost. There is no HELLO protocol in this network. 

A

2

B C

DS

2 6 

2 7 
1 

(a) At time 0, all the nodes except D are up and running. At time 10 seconds, 
node D turns on and immediately sends a route advertisement for itself to all 
its neighbors. What is the minimum time at which each of the other nodes is guar­

anteed to have a correct routing table entry corresponding to a minimum-cost 
path to reach D? Justify your answers. 

(b) If every node sends packets to destination D, and to no other destination, which 
link would carry the most traffic? 

Alyssa is unhappy that one of the links in the network carries a large amount 
of traffic when all the nodes are sending packets to D. She decides to overcome 
this limitation with Alyssa’s Vector Protocol (AVP). In AVP, S lies, advertising 
a “path cost” for destination D that is different from the sum of the link costs 
along the path used to reach D. All the other nodes implement the standard 
distance-vector protocol, not AVP. 

(c) What is the smallest numerical value of the cost that S should advertise for D 
along each of its links, to guarantee that only its own traffic for D uses its direct 
link to D? Assume that all advertised costs are integers; if two path costs are 
equal, one can’t be sure which path will be taken. 

9. Help Ben Bitdiddle answer these questions about the distance-vector protocol he 
runs on the network shown in Figure 18-5. The link costs are shown near each link. 
Ben is interested in minimum-cost routes to destination node D. 

Each node sends a distance-vector advertisement to all its neighbors at times 
0, T,2T, . . .. Each node integrates advertisements at times T/2,3T/2,5T/2, . . .. You  
may assume that all clocks are synchronized. The time to transmit an advertisement 
over a link is negligible. There are no failures or packet losses. 

At each node, a route for destination D is valid if packets using that route will even­
tually reach D. 
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Figure 18-5: Time to converge = ? 

At each node, a route for destination D is correct if packets using that route will 
eventually reach D along some minimum-cost path. 

(a) At what time will all nodes have integrated a valid route to D into their routing 
tables? What node is the last one to integrate a valid route to D? Answer both 
questions. 

(b) At what time will all nodes have integrated a correct (minimum-cost) route to 
D into their routing tables? What node is the last one to integrate a correct route 
to D? Answer both questions. 

10.	 Go Ahead, Make My Route: Jack Ripper uses a minimum-cost distance-vector routing 
protocol in the network shown in Figure 18-6. Each link cost (not shown) is a positive 
integer and is the same in each direction of the link. Jack sets “infinity” to 32 in the 
protocol. After all routes have converged (breaking ties arbitrarily), F ’s routing table 
is as follows: 

A 

B C 

D 

E F 

Figure 18-6: Distance vector topology in Jack Ripper’s network. 

Using the information provided, answer these questions: 

(a) Fill in the two missing blanks in the table above. 
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Destination Cost Route 
A 6 link (FC) 
B 4 link (FC) 
C 
D 

3 
5 link (FD) 

E 1 

(b) For each link in the picture, write the link’s cost in the box near the link. Each 
cost is either a positive integer or an expression of the form “< c,≤ c,≥ c, or 
> c”, for some integer c. 

(c) Suppose link (FE) fails, but there are no other changes. When the protocol 
converges, what will F ’s route (not path) to E be? (If there is no route, say “no 
route”.) 

(d) Now suppose links (BC) and (BF ) also fail soon after link (FE) fails. There 
are no packet losses. In the worst case, C and F enter a “count-to-infinity” 
phase. How many distinct route advertisements (with different costs) must C 
hear from F , before C determines that it does not have any valid route to node 
A? 

11. Alyssa P. Hacker runs the link-state routing protocol in the network shown below. 
Each node runs Dijkstra’s algorithm to compute minimum-cost routes to all other 
destinations, breaking ties arbitrarily. 

B 

C 

A 

D E 

5 

1 1 

2 

6 
6 

7 

6 

Figure 18-7: Network in Alyssa’s link-state protocol. 

The links in Alyssa’s network are unreliable; on each link, any packet sent over the 
link is delivered with some probability, p, to the other end of the link, independent 
of all other events (0 < p < 1). Suppose links (CE) and (BD) fail. 

Answer the following questions. 
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(a) How do C and E discover that the link has failed? How does the method work? 

(b) Over this unreliable network, link state advertisements (LSAs) are lost accord­
ing to the probabilities mentioned above. Owing to a bug in its software, E does 
not originate any LSA of its own or flood them, but all other nodes (except E) 
work correctly. Calculate the probability that A learns that link (CE) has failed 
from the first LSA that originates from C after C discovers that link (CE) has 
failed. Note that link (BD) has also failed. 

(c) Suppose only link (CE) had failed, but not (BD), which like the other surviv­
ing links can delivery packets successfully with probability p. Now, would the 
answer to part (b) above increase, decrease, or  remain the same? Why? (No 
math necessary.) 
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CHAPTER 19 
Reliable Data Transport Protocols 

Packets in a best-effort network lead a rough life. They can be lost for any number of rea­
sons, including queue overflows at switches because of congestion, repeated collisions 
over shared media, routing failures, and uncorrectable bit errors. In addition, packets can 
arrive out-of-order at the destination because different packets sent in sequence take differ­
ent paths or because some switch en route reorders packets for some reason. They usually 
experience variable delays, especially whenever they encounter a queue. In some cases, 
the underlying network may even duplicate packets. 

Many applications, such as Web page downloads, file transfers, and interactive termi­
nal sessions would like a reliable, in-order stream of data, receiving exactly one copy of 
each byte in the same order in which it was sent. A reliable transport protocol does the job 
of hiding the vagaries of a best-effort network—packet losses, reordered packets, and du­
plicate packets—from the application, and provides it the abstraction of a reliable packet 
stream. We will develop protocols that also provide in-order delivery. 

A large number of protocols have been developed that various applications use, and 
there are several ways to provide a reliable, in-order abstraction. This chapter will not 
discuss them all, but will instead discuss two protocols in some detail. The first protocol, 
called stop-and-wait, will solve the problem in perhaps the simplest possible way that 
works, but do so somewhat inefficiently. The second protocol will augment the first one 
with a sliding window to significantly improve performance. 

All reliable transport protocols use the same powerful ideas: redundancy to cope with 
packet losses and receiver buffering to cope with reordering, and most use adaptive timers. The 
tricky part is figuring out exactly how to apply redundancy in the form of packet retrans­
missions, in working out exactly when retransmissions should be done, and in achieving 
good performance. This chapter will study these issues, and discuss ways in which a reli­
able transport protocol can achieve high throughput. 

• 19.1 The Problem 

The problem we’re going to solve is relatively easy to state. A sender application wants 
to send a stream of packets to a receiver application over a best-effort network, which 
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can drop packets arbitrarily, reorder them arbitrarily, delay them arbitrarily, and possibly 
even duplicate packets. The receiver wants the packets in exactly the same order in which 
the sender sent them, and wants exactly one copy of each packet.1 Our goal is to devise 
mechanisms at the sending and receiving nodes to achieve what the receiver wants. These 
mechanisms involve rules between the sender and receiver, which constitute the proto­
col. In addition to correctness, we will be interested in calculating the throughput of our 
protocols, and in coming up with ways to maximize it. 

All mechanisms to recover from losses, whether they are caused by packet drops or 
corrupted bits, employ redundancy. We have already studied error-correcting codes such as 
linear block codes and convolutional codes to mitigate the effect of bit errors. In principle, 
one could apply similar coding techniques over packets (rather than over bits) to recover 
from packet losses (as opposed to bit corruption). We are, however, interested not just in 
a scheme to reduce the effective packet loss rate, but to eliminate their effects altogether, 
and recover all lost packets. We are also able to rely on feedback from the receiver that 
can help the sender determine what to send at any point in time, in order to achieve that 
goal. Therefore, we will focus on carefully using retransmissions to recover from packet 
losses; one may combine retransmissions and error-correcting codes to produce a proto­
col that can further improve throughput under certain conditions. In general, experience 
has shown that if packet losses are not persistent and occur in bursts, and if latencies are 
not excessively long (i.e., not multiple seconds long), retransmissions by themselves are 
enough to recover from losses and achieve good throughput. Most practical reliable data 
transport protocols running over Internet paths today use only retransmissions on packets 
(individual links usually use the error correction methods, such as the ones we studied 
earlier, and may also augment them with a limited number of retransmissions to reduce 
the link-level packet loss rate. 

We will develop the key ideas for two kinds of reliable data transport protocols: stop­

and-wait and sliding window with a fixed window size. We will use the word “sender” 
to refer to the sending side of the transport protocol and the word “receiver” to refer to 
the receiving side. We will use “sender application” and “receiver application” to refer to 
the processes (applications) that would like to send and receive data in a reliable, in-order 
manner. 

• 19.2 Stop-and-Wait Protocol 

The high-level idea in this protocol is simple. The sender attaches a transport-layer header 
to every data packet, which includes a unique identifier for the data packet (the transport-
layer header is distinct from the network-layer packet header that contains the destination 
address, hop limit, and header checksum discussed in Chapters 17 and 18). Ideally, this 
unique identifier will never be reused for two different packets on the same stream.2 The 

1The reason for the “exactly one copy” requirement is that the mechanism used to solve the problem will 
end up retransmitting packets, so duplicates may occur that need to be filtered out. In some networks, it is 
possible that some links may end up duplicating packets because of mechanisms they employ to improve the 
packet delivery probability or bit-error rate over the link. 

2In an ideal implementation, such reuse will never occur. In practice, however, a transport protocol may 
use a sequence number field whose width is not large enough and sequence numbers may wrap-around. 
In this case, it is important to ensure that two distinct unacknowledged data packets never have the same 
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Figure 19-1: The stop-and-wait protocol. Each picture has a sender timeline and a receiver timeline. Time 

starts at the top of each vertical line and increases moving downward. The picture on the left shows what 

happens when there are no losses; the middle shows what happens on a data packet loss; and the right 

shows how duplicate packets may arrive at the receiver because of an ACK loss. 

receiver, upon receiving the data packet with identifier k, will send an acknowledgment 
(ACK) to the sender; the header of this ACK contains k, so the receiver communicates “I 
got data packet k” to the sender. Both data packets and ACKs may get lost in the network. 

In the stop-and-wait protocol, the sender sends the next data packet on the stream if, 
and only if, it receives an ACK for k. If it does not get an ACK within some period of time, 
called the timeout, the sender retransmits data packet k. 

The receiver’s job is to deliver each data packet it receives to the receiver application. 
Figure 19-1 shows the basic operation of the protocol when packets are not lost (left) and 
when data packets are lost (right). 

Three properties of this protocol bear some discussion: 

1. how to pick unique identifiers, 

2. why this protocol may deliver duplicate data packets to the receiver application, and 
how the receiver can prevent that from occurring, and 

3. how to pick the timeout. 

We discuss each of these in turn below. 

sequence number. 
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• 19.2.1 Selecting Unique Identifiers: Sequence Numbers 

The sender may pick any unique identifier for a data packet. In most transport protocols, 
a convenient and effective choice of unique identifier is to use an incrementing sequence 
number. The simplest way to achieve this goal is for the sender and receiver to agree on 
the initial value of the identifier (which for our purposes will be taken to be 1), and then 
increment the identifier by 1 for each subsequent new data packet sent. Thus, the data 
packet sent after the ACK for k is received by the sender will have identifier k + 1. These 
incrementing identifiers are called sequence numbers. 

In practice, transport protocols like TCP (Transmission Control Protocol), the standard 
Internet protocol for reliable data delivery, devote considerable effort to picking a good 
initial sequence number to avoid overlaps with previous instantiations of reliable streams 
between the same communicating processes. We won’t worry about these complications 
in this chapter, except to note that establishing and properly terminating these streams 
(aka connections) reliably is a non-trivial problem. TCP also uses a sequence number that 
identifies the starting byte offset of the packet in the stream, to handle variable packet sizes. 

• 19.2.2 Semantics of this Stop-and-Wait Protocol 

It is easy to see that the stop-and-wait protocol achieves reliable data delivery as long as 
each of the links along the path have a non-zero packet delivery probability. However, it 
does not achieve exactly once semantics; its semantics are at least once—i.e., each packet will 
be delivered to the receiver application either once or more than once. 

One reason is that the network could drop ACKs, as shown in Figure 19-1 (right). A 
data packet may have reached the receiver, but the ACK doesn’t reach the sender, and the 
sender will then timeout and retransmit the data packet. The receiver will get multiple 
copies of the data packet, and deliver both to the receiver application. Another reason 
is that the sender might have timed out, but the original data packet may not actually 
have been lost. Such a retransmission is called a spurious retransmission, and is a waste of 
bandwidth. The sender may strive to reduce the number of spurious retransmissions, but 
it is impossible to eliminate them in general. 

Preventing duplicates: The solution to the problem of duplicate data packets arriving 
at the receiver is for the receiver to keep track of the last in-sequence data packet it has 
delivered to the application. At the receiver, let us maintain the sequence number of the 
last in-sequence data packet in the variable rcv seqnum. If a data packet with sequence 
number less than or equal to rcv seqnum arrives, then the receiver sends an ACK for the 
packet and discards it. Note that the only way a data packet with sequence number smaller 
than rcv seqnum can arrive is if there were reordering in the network and the receiver 
gets an old data packet; for such packets, the receiver can safely not send an ACK because 
it knows that the sender knows about the receipt of the packet and has sent subsequent 
packets. This method prevents duplicate packets from being delivered to the receiving 
application. 

If a data packet with sequence number rcv seqnum + 1 arrives, then the receiver 
sends an ACK to the sender, delivers the data packet to the application, and increments 
rcv seqnum. Note that a data packet with sequence number greater than rcv seqnum 
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+ 1 should never arrive in this stop-and-wait protocol because that would imply that the 
sender got an ACK for rcv seqnum + 1, but such an ACK would have been sent only if 
the receiver got the corresponding data packet. So, if such a data packet were to arrive, 
then there must be a bug in the implementation of either the sender or the receiver in this 
stop-and-wait protocol. 

With this modification, the stop-and-wait protocol guarantees exactly-once delivery to 
the application.3 

• 19.2.3 Setting Timeouts 

The final design issue that we need to nail down in our stop-and-wait protocol is setting 
the value of the timeout. How soon after the transmission of a packet should the sender 
conclude that the data packet (or the ACK) was lost, and go ahead and retransmit? One 
approach might be to use some constant, but then the question is what it should be set to. 
Too small, and the sender may end up retransmitting data packets before giving enough 
time for the ACK for the original transmission to arrive, wasting network bandwidth. Too 
large, and one ends up wasting network bandwidth and simply idling before retransmit­
ting. 

The natural time-scale in the protocol is the time between the transmission of a data 
packet and the arrival of the ACK for the packet. This time is called the round-trip time, 
or RTT, and plays a crucial role in all reliable transport protocols. A good value of the 
timeout must clearly depend on the RTT; it makes no sense to use a timeout that is not 
bigger than the mean RTT (and in fact, it must be quite a bit bigger than the average, as 
we’ll see). 

The other reason the RTT is an important concept is that the throughput (in packets per 
second) achieved by the stop-and-wait protocol is inversely proportional to the RTT (see 
Section 19.4). In fact, the throughput of the sliding window protocol also depends on the 
RTT, as we will see. 

The next section describes a procedure to estimate the RTT and set sender timeouts. 
This technique is general and applies to a variety of protocols, including both stop-and­
wait and sliding window. 

• 19.3 Adaptive RTT Estimation and Setting Timeouts 

The RTT experienced by packets is variable because the delays in a best-effort network are 
variable. An example is shown in Figure 19-2, which shows the RTT of an Internet path 
between two hosts (blue) and the packet loss rate (red), both as a function of the time-of­
day. The “rtt median-filtered” curve is the median RTT computed over a recent window 
of samples, and you can see that even that varies quite a bit. Picking a timeout equal to 
simply the mean or median RTT is not a good idea because there will be many RTT samples 
that are larger than the mean (or median), and we don’t want to timeout prematurely and 
send spurious retransmissions. 

3We are assuming here that the sender and receiver nodes and processes don’t crash and restart; handling 
those cases make “exactly once” semantics considerably harder than described here and require stable storage 
that persists across crashes. 
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Figure 19-2: RTT variations are pronounced in many networks. 

A good solution to the problem of picking the timeout value uses two tools we have 
seen earlier in the course: probability distributions (in our case, of the RTT estimates) and a 
simple filter design. 

Suppose we are interested in estimating a good timeout post facto: i.e., suppose we run 
the protocol and collect a sequence of RTT samples, how would one use these values to 
pick a good timeout? We can take all the RTT samples and plot them as a probability 
distribution, and then see how any given timeout value will have performed in terms of 
the probability of a spurious retransmission. If the timeout value is T , then this probability 
may be estimated as the area under the curve to the right of “T” in the picture on the left 
of Figure 19-3, which shows the histogram of RTT samples. Equivalently, if we look at the 
cumulative distribution function of the RTT samples (the picture on the right of Figure 19­
3, the probability of a spurious retransmission may be assumed to be the value of the y-axis 
corresponding to a value of T on the x-axis. 

Real-world distributions of RTT are not actually Gaussian, but an interesting property 
of all distributions is that if you pick a threshold that is a sufficient number of standard 
deviations greater than the mean, the tail probability of a sample exceeding that threshold 
can be made arbitrarily small. (For the mathematically inclined, a useful result for arbi­
trary distributions is Chebyshev’s inequality, which you might have seen in other courses 
already (or soon will): P (|X − μ| ≥ kσ) ≤ 1/k2, where μ is the mean and σ the standard 
deviation of the distribution. For Gaussians, the tail probability falls off much faster than 
1/k2; for instance, when k = 2, the Gaussian tail probability is only about 0.05 and when 
k = 3, the tail probability is about 0.003.) 

The protocol designer can use past RTT samples to determine an RTT cut-off so that 
only a small fraction f of the samples are larger. The choice of f depends on what spuri­
ous retransmission rate one is willing to tolerate, and depending on the protocol, the cost 
of such an action might be small or large. Empirically, Internet transport protocols tend to 

Courtesy of the Cooperative Association for Internet Data Analysis. Used with permission.
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Figure 19-3: RTT variations on a wide-area cellular wireless network (Verizon Wireless’s 3G CDMA Rev 

A service) across both idle periods and when data transfers are in progress, showing extremely high RTT 

values and high variability. The x-axis in both pictures is the RTT in milliseconds. The picture on the left 

shows the histogram (each bin plots the total probability of the RTT value falling within that bin), while 

the picture on the right is the cumulative distribution function (CDF). These delays suggest a poor network 

design with excessively long queues that do nothing more than cause delays to be very large. Of course, 

it means that the timeout method must adapt to these variations to the extent possible. (Data collected in 

November 2009 in Cambridge, MA and Belmont, MA.) 

be conservative and use k = 4, in an attempt to make the likelihood of a spurious retrans­
mission very small, because it turns out that the cost of doing one on an already congested 
network is rather large. 

Notice that this approach is similar to something we did earlier in the course when 
we estimated the bit-error rate from the probability density function of voltage samples, 
where values above (or below) a threshold would correspond to a bit error. In our case, 
the “error” is a spurious retransmission. 

So far, we have discussed how to set the timeout in a post-facto way, assuming we knew 
what the RTT samples were. We now need to talk about two important issues to complete 
the story: 

1. How can the sender obtain RTT estimates? 

2. How should the sender estimate the mean and deviation and pick a suitable timeout? 

Obtaining RTT estimates. If the sender keeps track of when it sent each data packet, then 
it can obtain a sample of the RTT when it gets an ACK for the packet. The RTT sample is 
simply the difference in time between when the ACK arrived and when the data packet 
was sent. An elegant way to keep track of this information in a protocol is for the sender 
to include the current time in the header of each data packet that it sends in a “timestamp” 
field. The receiver then simply echoes this time in its ACK. When the sender gets an ACK, 
it just has to consult the clock for the current time, and subtract the echoed timestamp to 
obtain an RTT sample. 

RTT sample 

Probability 

RTT sample 

Cumula,ve probability (CDF) 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Calculating the timeout. As explained above, our plan is to pick a timeout that uses 
both the average and deviation of the RTT sample distribution. The sender must take two 
factors into account while estimating these values: 

1. It must not get swayed by infrequent samples that are either too large or too small. 
That is, it must employ some sort of “smoothing”. 

2. It must weigh more recent estimates higher than old ones, because network condi­
tions could have changed over multiple RTTs. 

Thus, what we want is a way to track changing conditions, while at the same time not 
being swayed by sudden changes that don’t persist. 

Let’s look at the first requirement. Given a sequence of RTT samples, r0, r1, r2, . . . , rn, 
we want a sequence of smoothed outputs, s0, s1, s2, . . . , sn that avoids being swayed by 
sudden changes that don’t persist. This problem sounds like a filtering problem, which we 
have studied earlier. The difference, of course, is that we aren’t applying it to frequency 
division multiplexing, but the underlying problem is what a low-pass filter (LPF) does. 

A simple LPF that provides what we need has the following form: 

sn = αrn + (1  − α)sn−1, (19.1) 

where 0 < α < 1. 
To see why Eq. (19.1) is a low-pass filter, let’s write down the frequency response, H(Ω). 

We know that if rn = ejΩn, then sn = H(Ω)ejΩn. Letting z = ejΩ, we can rewrite Eq. (19.1) 
as 

n (n−1)H(Ω)z = αzn + (1  − α)H(Ω)z , 

which then gives us 
αz 

H(Ω) = , (19.2) 
z − (1 − α)

This filter has a single real pole, and is stable when 0 < α< 1. The peak of the frequency 
response is at Ω = 0. 

What does α do? Clearly, large values of α mean that we are weighing the current 
sample much more than the existing s estimate, so there’s little memory in the system, and 
we’re therefore letting higher frequencies through more than a smaller value of α. What 
α does is determine the rate at which the frequency response of the LPF tapers: small α 
makes lets fewer high-frequency components through, but at the same time, it takes more 
time to react to persistent changes in the RTT of the network. As α increases, we let more 
higher frequencies through. Figure 19-4 illustrates this point. 

Figure 19-5 shows how different values of α react to a sudden non-persistent change 
in the RTT, while Figure 19-6 shows how they react to a sudden, but persistent, change in 
the RTT. Empirically, on networks prone to RTT variations due to congestion, researchers 
have found that α between 0.1 and 0.25 works well. In practice, TCP uses α = 1/8. 

The specific form of Equation 19.1 is very popular in many networks and computer 
systems, and has a special name: exponential weighted moving average (EWMA). It is  
a “moving average” because the LPF produces a smoothed estimate of the average be­
havior. It is “exponentially weighted” because the weight given to older samples decays 
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Figure 19-4: Frequency response of the exponential weighted moving average low-pass filter. As α de­

creases, the low-pass filter becomes even more pronounced. The graph shows the response for α = 

0.9, 0.5, 0.1, going from top to bottom. 

Figure 19-5: Reaction of the exponential weighted moving average filter to a non-persistent spike in the 

RTT (the spike is double the other samples). The smaller α (0.1, shown on the left) doesn’t get swayed by 

it, whereas the bigger value (0.5, right) does. The output of the filter is shown in green, the input in blue. 

geometrically: one can rewrite Eq. 19.1 as 

sn = αrn + α(1 − α)rn−1 + α(1 − α)2 rn−2 + . . .  + α(1 − α)n−1 r1 + (1  − α)n r0, (19.3) 

observing that each successive older sample’s weight is a factor of (1 − α) “less important” 
than the previous one’s. 

With this approach, one can compute the smoothed RTT estimate, srtt, quite easily 
using the pseudocode shown below, which runs each time an ACK arrives with an RTT 
estimate, r. 

srtt ← αr + (1  − α)srtt 
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Figure 19-6: Reaction of the exponential weighted moving average filter to a persistent change (doubling) 

in the RTT. The smaller α (0.1, shown on the left) takes much longer to track the change, whereas the bigger 

value (0.5, right) responds much quicker. The output of the filter is shown in green, the input in blue. 

What about the deviation? Ideally, we want the sample standard deviation, but it turns 
out to be a bit easier to compute the mean linear deviation instead.4 The following elegant 
method performs this task: 

dev ← |r − srtt|

rttdev ← β · dev + (1− β) · rttdev
 

Here, 0 < β <  1, and we apply an EWMA to estimate the linear deviation as well. TCP 
uses β = 0.25; again, values between 0.1 and 0.25 have been found to work well. 

Finally, the timeout is calculated very easily as follows: 

timeout ← srtt + 4 · rttdev 

This procedure to calculate the timeout runs every time an ACK arrives. It does a great 
deal of useful work essential to the correct functioning of any reliable transport protocol, 
and it can be implemented in less than 10 lines of code in most programming languages! 
The reader should note that this procedure does not depend on whether the transport 
protocol is stop-and-wait or sliding window; the same method works for both. 

Exponential back-off of the timeout. When a timeout occurs and the sender retransmits 
a data packet, it might be lost again (or its ACK might be lost). In that case, it is possible (in 
networks where congestion is the main reason for packet loss) that the network is heavily 
congested. Rather than using the same timeout value and retransmitting, it would be 
prudent to take a leaf from the exponential back-off idea we studied earlier with contention 
MAC protocols and double the timeout value. Eventually, when the retransmitted data 
packet is acknowledged, the sender can revert to the timeout value calculated from the 
mean RTT and its linear deviation. Most reliable transport protocols use an adaptive timer 
with such an exponential back-off mechanism. 

4The mean linear deviation is always at least as big as the sample standard deviation, so picking a timeout 
equal to the mean plus k times the linear deviation has a tail probability no larger than picking a timeout equal 
to the mean plus k times the sample standard deviation. 
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• 19.4 Throughput of Stop-and-Wait 

We now show how to calculate the throughput of the stop-and-wait protocol. Clearly, 
the maximum throughput occurs when there are no packet losses. The sender sends one 
packet every RTT, so the maximum throughput is exactly that. 

We can also calculate the throughput of stop-and-wait when the network has a packet 
loss rate of C. For convenience, we will treat C as the bi-directional loss rate; i.e., the prob­
ability of any given packet or its ACK getting lost is C.5 We will assume that the packet 
loss distribution is independent and identically distributed. What is the throughput of the 
stop-and-wait protocol in this case? 

The answer clearly depends on the timeout that’s used. Let’s assume that the retrans­
mission timeout is RTO, which we will assume to be a constant for simplicity (i.e., it is 
the same throughout the connection and the sender doesn’t use any exponential back-off). 
These assumptions mean that the calculation below may be viewed as a (good) upper 
bound on the throughput. 

Let T denote the expected time taken to send a data packet and get an ACK for it. Ob­
serve that with probability 1− C, the data packet reaches the receiver and its ACK reaches 
the sender. On the other hand, with probability C, the sender needs to time out and re­
transmit a data packet. We can use this property to write an expression for T : 

T = (1− C) · RTT + C(RTO + T ), (19.4) 

because once the sender times out, the expected time to send a data packet and get an 
ACK is exactly T , the number we want to calculate. Solving Equation (19.4), we find that 

£T = RTT + · RTO. 1−£ 
The expected throughput of the protocol is then equal to 1/T packets per second.6 

The good thing about the stop-and-wait protocol is that it is very simple, and should be 
used under two circumstances: first, when throughput isn’t a concern and one wants good 
reliability, and second, when the network path has a small RTT such that sending one data 
packet every RTT is enough to saturate the bandwidth of the link or path between sender 
and receiver. 

On the other hand, a typical Internet path between Boston and San Francisco might 
have an RTT of about 100 milliseconds. If the network path has a bit rate of 1 megabit/s, 
and we use a data packet size of 10,000 bits, then the maximum throughput of stop-and­
wait would be only 10% of the possible rate. And in the face of packet loss, it would be 
much lower than that. 

The next section describes a protocol that provides considerably higher throughput. It 

5In general, we will treat the loss rate as a probability of loss, so it is a unit-less quantity between 0 and 1; 
it is not a “rate” like the throughput. A better term might be the “loss probability” or a “loss ratio” but “loss 
rate” has become standard terminology in networking. 

6The careful reader or purist may note that we have only calculated T , the expected time between the trans­
mission of a data packet and the receipt of an ACK for it. We have then assumed that the expected value of the 
reciprocal of X , which is a random variable whose expected value is T , is equal to 1/T . In general, however, 
1/E[X] is not equal to E[1/X]. But the formula for the expected throughput we have written does in fact 
hold. Intuitively, to see why, define Yn = X1 + X2 + . . .Xn. As  n → ∞, one can show using the Chebyshev 
inequality that the probability that |Yn − nT | > δn  goes to 0 or any positive δ. That is, when viewed over a 
long period of time, the random variable X looks like a constant—which is the only distribution for which the 
expected value of the reciprocal is equal to the reciprocal of the expectation. 
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Figure 19-7: The sliding window protocol in action (W = 5 here). 

builds on all the mechanisms used in the stop-and-wait protocol. 

• 19.5 Sliding Window Protocol 

The idea is to use a window of data packets that are outstanding along the path between 
sender and receiver. By “outstanding”, we mean “unacknowledged”. The idea then is 
to overlap data packet transmissions with ACK receptions. For our purposes, a window 
size of W data packets means that the sender has at most W outstanding data packets at 
any time. Our protocol will allow the sender to pick W , and the sender will try to have 
W outstanding data packets in the network at all times. The receiver is almost exactly 
the same as in the stop-and-wait case, except that it must also buffer data packets that 
might arrive out-of-order so that it can deliver them in order to the receiving application. 
This enhancement makes the receiver more complicated than before, but this complexity 
is worth the improvement in throughput in most situations. 

The key idea in the protocol is that the window slides every time the sender gets an 
ACK. The reason is that the receipt of an ACK is a positive signal that one data packet 
left the network, and so the sender can add another to replenish the window. This plan is 
shown in Figure 19-7 that shows a sender (top line) with W = 5 and the receiver (bottom 
line) sending ACKs (dotted arrows) whenever it gets a data packet (solid arrow). Time 
moves from left to right here. 

There are at least two different ways of defining a window in a reliable transport proto­
col. Here, we will use the following: 
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A window size of W means that the maximum number of outstanding (un­

acknowledged) data packets between sender and receiver is W . 

When there are no packet losses, the operation of the sliding window protocol is fairly 
straightforward. The sender transmits the next in-sequence data packet every time an 
ACK arrives; if the ACK is for data packet k and the window is W , the data packet sent 
out has sequence number k+W . The receiver ACKs each data packet echoing the sender’s 
timestamp and delivers packets in sequence number order to the receiving application. 
The sender uses the ACKs to estimate the smoothed RTT and linear deviations and sets 
a timeout. Of course, the timeout will only be used if an ACK doesn’t arrive for a data 
packet within that duration. 

We now consider what happens when a packet is lost. Suppose the receiver has received 
data packets 0 through k − 1 and the sender doesn’t get an ACK for data packet k. If  
the subsequent data packets in the window reach the receiver, then each of those packets 
triggers an ACK. So the sender will have the following ACKs assuming no further packets 
are lost: k + 1, k  + 2, . . . , k  +W − 1. Moreover, upon the receipt of each of these ACKs, 
an additional new data packet will get sent with an even higher sequence number. But 
somewhere in the midst of these new data packet transmissions, the sender’s timeout for 
data packet k will occur, and the sender will retransmit that packet. If that data packet 
reaches, then it will trigger an ACK, and if that ACK reaches the sender, yet another new 
data packet with a new sequence number one larger than the last sent so far will be sent. 

Hence, this protocol tries hard to keep as many data packets outstanding as possible, 
but not exceeding the window size, W . If  C data packets or ACKs get lost, then the effective 
number of outstanding data packets reduces to W − C, until one of them times out, is 
retransmitted and received successfully by the receiver, and its ACK received successfully 
at the sender. 

We will use a fixed size window in our discussion in this chapter. The sender picks 
a maximum window size and does not change that during a stream. In practice, most 
practical transport protocols on the Internet should implement a congestion control strategy 
to adjust the window size to prevailing network conditions (level of congestion, rate of 
data delivery, packet loss rates, round-trip times, etc.) 

• 19.5.1 Sliding Window Sender 

We now describe the salient features of the sender side of this fixed-size sliding window 
protocol. The sender maintains unacked pkts, a buffer of unacknowledged data packets. 
Every time the sender is called (by a fine-grained timer, which we assume fires each slot), 
it first checks to see whether any data packets were sent greater than “timeout” seconds 
ago (assuming time is maintained in seconds). If so, the sender retransmits each of these 
data packets, and takes care to change the packet transmission time of each of these pack­
ets to be the current time. For convenience, we usually maintain the time at which each 
packet was last sent in the packet data structure, though other ways of keeping track of 
this information are also possible. 

After checking for retransmissions, the sender proceeds to see whether any new data 
packets can be sent. To properly check if any new packets can be sent, the sender maintains 
a variable, outstanding, which keeps track of the current number of outstanding data 
packets. If this value is smaller than the maximum window size, the sender sends a new 
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data packet, setting the sequence number to be max seq + 1, where max seq is the highest 
sequence number sent so far. Of course, we should remember to update max seq as well, 
and increment outstanding by 1. 

Whenever the sender gets an ACK, it should remove the acknowledged data packet 
from unacked pkts (assuming it hasn’t already been removed), decrement outstanding, 
and call the procedure to calculate the timeout (which will use the timestamp echoed in 
the current ACK to update the EWMA filters and update the timeout value). 

We would like outstanding to keep track of the number of unackowledged data pack­
ets between sender and receiver. We have described the method to do this task as follows: 
increment it by 1 on each new data packet transmission, and decrement it by 1 on each 
ACK that was not previously seen by the sender, corresponding to a packet the sender had 
previously sent that is being acknowledged (as far as the sender is concerned) for the first 
time. The question now is whether outstanding should be adjusted when a retransmis­
sion is done. A little thought will show that it should not be. The reason is that it is precisely 
on a timeout of a data packet that the sender believes that the packet was actually lost, and 
in the sender’s view, the packet has left the network. But the retransmission immediately 
adds a data packet to the network, so the effect is that the number of outstanding packets 
is exactly the same. Hence, no change is required in the code. 

Implementing a sliding window protocol is sometimes error-prone even when one com­
pletely understands the protocol in one’s mind. Three kinds of errors are common. First, 
the timeouts are set too low because of an error in the EWMA estimators, and data packets 
end up being retransmitted too early, leading to spurious retransmissions. In addition to 
keeping track of the sender’s smoothed round-trip time (srtt), RTT deviation, and timeout 
estimates,7 it is a good idea to maintain a counter for the number of retransmissions done 
for each data packet. If the network has a certain total loss rate between sender and re­
ceiver and back (i.e., the bi-directional loss rate), pl, the number of retransmissions should 

1be on the order of 1−pl 
− 1, assuming that each packet is lost independently and with the 

same probability. (It is a useful exercise to work out why this formula holds.) If your im­
plementation shows a much larger number than this prediction, it is very likely that there’s 
a bug in it. 

Second, the number of outstanding data packets might be larger than the configured 
window, which is an error. If that occurs, and especially if a bug causes the number of 
outstanding packets to grow unbounded, delays will increase and it is also possible that 
packet loss rates caused by congestion will increase. It is useful to place an assertion or two 
that checks that the outstanding number of data packets does not exceed the configured 
window. 

Third, when retransmitting a data packet, the sender must take care to modify the time 
at which the packet is sent. Otherwise, that packet will end up getting retransmitted re­
peatedly, a pretty serious bug that will cause the throughput to diminish. 

• 19.5.2 Sliding Window Receiver 

At the receiver, the biggest change to the stop-and-wait case is to maintain a list of received 
data packets that are out-of-order. Call this list rcvbuf. Each data packet that arrives is 
added to this list, assuming it is not already on the list. It’s convenient to store this list 

7In our lab, this information will be printed when you click on the sender node. 
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in increasing sequence order. Then, check to see whether one or more contiguous data 
packets starting from rcv seqnum + 1 are in  rcvbuf. If they are, deliver them to the 
application, remove them from rcvbuf, and remember to update rcv seqnum. 

• 19.5.3 Throughput 

What is the throughput of the sliding window protocol we just developed? Clearly, we 
send W data packets per RTT when there are no data packet or ACK losses, so the through­
put in the absence of losses is W/RTT packets per second. So the question one should ask 
is, what should we set W to in order to maximize throughput, at least when there are no 
data packet or ACK losses? After answering this question, we will provide a simple for­
mula for the throughput of the protocol in the absence of losses, and then finally consider 
packet losses. 

Setting W 

One can address the question of how to choose W using Little’s law. Think of the entire 
bi-directional path between the sender and receiver as a single queue (in reality it’s more 
complicated than a single queue, but the abstraction of a single queue still holds). W is the 
number of (unacknowledged) packets in the system and RTT is the mean delay between 
the transmission of a data packet and the receipt of its ACK at the sender (upon which the 
sender transmits a new data packet). We would like to maximize the processing rate of 
this system. Note that this rate cannot exceed the bit rate of the slowest, or bottleneck, link 
between the sender and receiver (i.e., the rate of the bottleneck link) . If that rate is B packets 
per second, then by Little’s law, setting W = B × RTT will ensure that the protocol comes 
close to achieving a thoroughput equal to the available bit rate. 

But what should the RTT be in the above formula? After all, the definition of a “RTT 
sample” is the time that elapses between the transmission of a data packet and the receipt 
of an ACK for it. As such, it depends on other data using the path. Moreover, if one looks 
at the formula B = W/ RTT, it suggests that one can simply increase the window size W 
to any value and B may correspondingly just increase. Clearly, that can’t be right! 

Consider the simple case when there is only one connection active over a network path. 
Observe that the RTT experienced by a packet P sent on the connection may be broken 
into two parts: one part that does not depend on any queueing delay (i.e., the sum of the 
propagation, transmission, and processing delays of the packet and its ACK), and one part 
that depends on how many other packets were ahead of P in the bottleneck queue. (Here 
we are assuming that ACKs experience no queueing, for simplicity.) Denote the RTT in the 
absence of queuing as RTTmin, the minimum possible round-trip time that the connection 
can experience. 

Now, suppose the RTT of the connection is equal to RTTmin. That is, there is no queue 
building up at the bottleneck link. Then, the throughput of the connection is W/RTT 
= W/RTTmin. We would like this throughput to be the bottleneck link rate, B. Setting 
W/RTTmin = B, we find that W should be equal to B · RTTmin. 

This quantity—B · RTTmin—is an important concept for sliding window protocols (all 
sliding window protocols, not just the one we have studied). It is called the bandwidth-

delay product of the connection and is a property of the bi-directional network path be­
tween sender and receiver. When the window size is strictly smaller than the bandwidth­
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delay product, the throughput will be strictly smaller than the bottleneck rate, B, and the 
queueing delay will be non-existent. In this phase, the connection’s throughput linearly 
increases as we increase the window size, W , assuming no other traffic intervenes. The 
smallest window size for which the throughput will be equal to B is the bandwidth-delay 
product. 

This discussion shows that for our sliding window protocol, setting W = B × RTTmin 

achieves the maximum possible throughput, B, in the absence of any data packet or ACK 
losses. When packet losses occur, the window size will need to be higher to get maximum 
throughput (utilization), because we need a sufficient number of unacknowledged data 
packets to keep a B × RTTmin worth of packets even when losses occur. A smaller win­
dow size will achieve sub-optimal throughput, linear in the window size, and inversely 
proportional to RTTmin. 

But once W exceeds B × RTTmin, the RTT experienced by the connection includes 
queueing as well, and the RTT will no longer be a constant independent of W ! That is, in­
creasing W will cause RTT to also increase, but the rate, B, will no longer increase. What 
is the throughput in this case? 

We can answer this question by applying Little’s law twice. Once at the bottleneck 
link’s queue, and once on the entire network path. We will show the intuitive result that if 
W > B  × RTTmin, then the throughput is B packets per second. 

First, let the average number of packets at the queue of the bottleneck link be Q. By  
Little’s law applied to this queue, we know that Q = B · τ , where B is the rate at which 
the queue drains (i.e., the bottleneck link rate), and τ is the average delay in the queue, so 
τ = Q/B. 

We also know that 
RTT = RTTmin + τ = RTTmin +Q/B. (19.5) 

Now, consider the window size, W , which is the number of unacknowledged packets. 
We know that all these packets, by conservation of packets, must either be in the bottleneck 
queue, or in the non-queueing part of the system. That is, 

W = Q +B · RTTmin. (19.6) 

Finally, from Little’s law applied to the entire bi-directional network path, 

W
Throughput = (19.7)

RTT 
B · RTTmin +Q 

= (19.8)
RTTmin + (Q/B) 

= B (19.9) 

Thus, we can conclude that, in the absence of any data packet or ACK losses, the con­
nection’s throughput is as shown schematically in Figure 19-8. 

Throughput of the sliding window protocol with packet losses 

Assuming that one sets the window size properly, i.e., to be large enough so that W ≥ 
B × RTTmin always, even in the presence of data or ACK losses, what is the maximum 
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Throughput of connecton 
(no data or ACK losses) 

Botleneck link rate 
B 

R8*RTTmin Window size, W 

Figure 19-8: Throughput of the sliding window protocol as a function of the window size in a network 

with no other traffic. The bottleneck link rate is B packets per second and the RTT without any queueing 

is RTTmin. The product of these two quantities is the bandwidth-delay product. 

throughput of our sliding window protocol if the network has a certain probability of 
packet loss? 

Consider a simple model in which the network path loses any packet—data or ACK— 
such that the probability of either a data packet being lost or its ACK being lost is equal to 
C, and the packet loss random process is independent and identically distributed (the same 
model as in our analysis of stop-and-wait). Then, the utilization achieved by our sliding 
window reliable transport protocol is at most 1 − C. Moreover, for a large-enough window 
size, W , our sliding window protocol comes close to achieving it. 

The reason for the upper bound on utilization is that in this protocol, a data packet is 
acknowledged only when the sender gets an ACK explicitly for that packet. Now consider 
the number of transmissions that any given data packet must incur before its ACK is re­
ceived by the sender. With probability 1 − C, we need one transmission, with probability 
C(1 − C), we need two transmissions, and so on, giving us an expected number of transmis­

1sions of . If we make this number of transmissions, one data packet is successfully sent 1−£ 
1and acknowledged. Hence, the utilization of the protocol can be at most 1 = 1  − C. In  

1−£ 

fact, it turns out the 1 − C is the capacity (i.e., upper-bound on throughput) for any channel 
(network path) with packet loss rate C. 

If the sender picks a window size sufficiently larger than the bandwidth-minimum-
RTT product, so that at least bandwidth-minimum-RTT packets are in transit (unacknowl­
edged) even in the face of data and ACK losses, then the protocol’s utilization will be close 
to the maximum value of 1 − C. 
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Is a good timeout important for the sliding window protocol? 

Given that our sliding window protocol always sends a data packet every time the sender 
gets an ACK, one might reasonably ask whether setting a good timeout value, which under 
even the best of conditions involves a hard trade-off, is essential. The answer turns out to 
be subtle: it’s true that the timeout can be quite large, because data packets will continue to 
flow as long as some ACKs are arriving. However, as data packets (or ACKs) get lost, the 
effective window size keeps falling, and eventually the protocol will stall until the sender 
retransmits. So one can’t ignore the task of picking a timeout altogether, but one can pick 
a more conservative (longer) timeout than in the stop-and-wait protocol. However, the 
longer the timeout, the bigger the stalls experienced by the receiver application—even 
though the receiver’s transport protocol would have received the data packets, they can’t 
be delivered to the application because it wants the data to be delivered in order. Therefore, 
a good timeout is still quite useful, and the principles discussed in setting it are widely 
useful. 

Secondly, we note that the longer the timeout, the bigger the receiver’s buffer has to be 
when there are losses; in fact, in the worst case, there is no bound on how big the receiver’s 
buffer can get. To see why, think about what happens if we were unlucky and a data packet 
with a particular sequence number kept getting lost, but everything else got through. 

The two factors mentioned above affect the throughput of the transport protocol, but 
the biggest consequence of a long timeout is the effect on the latency perceived by appli­
cations (and users). The reason is that data packets are delivered in-order by the protocol 
to the application, which means that a missing packet with sequence number k will cause 
the application to stall, even though data packets with sequence numbers larger than k 
have arrived and are in the transport protocol’s receiver buffer. Hence, an excessively long 
timeout hurts interactivity and degrades the user’s experience. 

• 19.6 Summary 

This chapter described the key concepts in the design on a reliable data transport proto­
col. The big idea is to use redundancy in the form of careful retransmissions, for which 
we developed the idea of using sequence numbers to uniquely identify data packets and 
acknowledgments for the receiver to signal the successful reception of a data packet to 
the sender. We discussed how the sender can set a good timeout, balancing between the 
ability to track a persistent change of the round-trip times against the ability to ignore non-
persistent glitches. The method to calculate the timeout involved estimating a smoothed 
mean and linear deviation using an exponential weighted moving average, which is a sin­
gle real-zero low-pass filter. The timeout itself is set at the mean + 4 times the deviation to 
ensure that the tail probability of a spurious retransmission is small. We used these ideas 
in developing the simple stop-and-wait protocol. 

We then developed the idea of a sliding window to improve performance, and showed 
how to modify the sender and receiver to use this concept. Both the sender and receiver are 
now more complicated than in the stop-and-wait protocol, but when there are no losses, 
one can set the window size to the bandwidth-delay product and achieve high throughput 
in this protocol. We also studied how increasing the window size increases the throughput 
linearly up to a point, after only the (queueing) delay increases, and not the throughput of 
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the connection. 
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• Problems and Questions 

1. Consider a best-effort network with variable delays and losses. In such a network, 
Louis Reasoner suggests that the receiver does not need to send the sequence number 
in the ACK in a correctly implemented stop-and-wait protocol, where the sender 
sends data packet k + 1  only after the ACK for data packet k is received. Explain 
whether he is correct or not. 

2. The 802.11 (WiFi) link-layer uses a stop-and-wait protocol to improve link reliability. 
The protocol works as follows: 

(a) The sender transmits data packet k + 1 to the receiver as soon as it receives an 
ACK for the data packet k. 

(b) After the receiver gets the entire data packet, it computes a checksum (CRC). 
The processing time to compute the CRC is Tp and you may assume that it does 
not depend on the packet size. 

(c) If the CRC is correct, the receiver sends a link-layer ACK to the sender.	 The 
ACK has negligible size and reaches the sender instantaneously. 

The sender and receiver are near each other, so you can ignore the propagation delay. 
The bit rate is R = 54 Megabits/s, the smallest data packet size is 540 bits, and the 
largest data packet size is 5,400 bits. 

What is the maximum processing time Tp that ensures that the protocol will achieve 
a throughput of at least 50% of the bit rate of the link in the absence of data packet 
and ACK losses, for any data packet size? 

3. Alyssa P. Hacker sets up a wireless network in her home to enable her computer 
(“client”) to communicate with an Access Point (AP). The client and AP communi­
cate with each other using a stop-and-wait protocol. 

The data packet size is 10000 bits. The total round-trip time (RTT) between the AP 
and client is equal to 0.2 milliseconds (that includes the time to process the packet, 
transmit an ACK, and process the ACK at the sender) plus the transmission time of 
the 10000 bit packet over the link. 

Alyssa can configure two possible transmission bit rates for her link, with the follow­
ing properties: 



324	 CHAPTER 19. RELIABLE DATA TRANSPORT PROTOCOLS 

Bit rate Bi-directional packet loss probability RTT 

10 Megabits/s	 1/11 

20 Megabits/s	 1/4 

Alyssa’s goal is to select the bit rate that provides the higher throughput for a stream 
of packets that need to be delivered reliably between the AP and client using stop­
and-wait. For both bit rates, the retransmission timeout (RTO) is 2.4 milliseconds. 

(a) Calculate the round-trip time (RTT) for each bit rate? 

(b) For each bit rate, calculate the expected time, in milliseconds, to successfully 
deliver a packet and get an ACK for it. Show your work. 

(c) Using the above calculations, which bit rate would you choose to achieve 
Alyssa’s goal? 

4. Suppose the sender in a reliable transport protocol uses an EWMA filter to estimate 
the smoothed round trip time, srtt, every time it gets an ACK with an RTT sample r. 

srtt → α · r +(1 − α)· srtt 

We would like every data packet in a window to contribute a weight of at least 1% 
to the srtt calculation. As the window size increases, should α increase, decrease, or 
remain the same, to achieve this goal? (You should be able to answer this question 
without writing any equations.) 

5. TCP computes an average round-trip time (RTT) for the connection using an EWMA 
estimator, as in the previous problem. Suppose that at time 0, the initial estimate, 
srtt, is equal to the true value, r0. Suppose that immediately after this time, the RTT 
for the connection increases to a value R and remains at that value for the remainder 
of the connection. You may assume that R >> r0. 

Suppose that the TCP retransmission timeout value at step n, RT O(n), is set to β · srtt. 
Calculate the number of RTT samples before we can be sure that there will be no 
spurious retransmissions. Old TCP implementations used to have β = 2  and α = 
1/8. How many samples does this correspond to before spurious retransmissions 
are avoided, for this problem? (As explained in Section 19.3, TCP now uses the mean 
linear deviation as its RTO formula. Originally, TCP didn’t incorporate the linear 
deviation in its RTO formula.) 

6. Consider a sliding window protocol between a sender and a receiver.	 The receiver 
should deliver data packets reliably and in order to its application. 

The sender correctly maintains the following state variables: 
unacked pkts – the buffer of unacknowledged data packets 
first unacked – the lowest unacked sequence number (undefined if all data 

packets have been acked) 
last unacked – the highest unacked sequence number (undefined if all data 
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packets have been acked) 
last sent – the highest sequence number sent so far (whether acknowledged or 

not)
 

If the receiver gets a data packet that is strictly larger than the next one in sequence,
 
it adds the packet to a buffer if not already present. We want to ensure that the size
 
of this buffer of data packets awaiting delivery never exceeds a value W ≥ 0. Write
 
down the check(s) that the sender should perform before sending a new data packet
 
in terms of the variables mentioned above that ensure the desired property.
 

7. Alyssa P. Hacker measures that the network path between two computers has a 
round-trip time (RTT) of 100 milliseconds. The queueing delay is negligible. The 
rate of the bottleneck link between them is 1 Mbyte/s. Alyssa implements the re­
liable sliding window protocol studied in 6.02 and runs it between these two com­
puters. The data packet size is fixed at 1000 bytes (you can ignore the size of the 
acknowledgments). There is no other traffic. 

(a) Alyssa sets the window size to 10 data packets. What is the resulting maximum 
utilization of the bottleneck link? Explain your answer. 

(b) Alyssa’s implementation of a sliding window protocol uses an 8-bit field for 
the sequence number in each data packet. Assuming that the RTT remains the 
same, what is the smallest value of the bottleneck link bandwidth (in Mbytes/s) 
that will cause the protocol to stop working correctly when packet losses occur? 
Assume that the definition of a window in her protocol is the difference between 
the last transmitted sequence number and the last in-sequence ACK. 

(c) Suppose the window size is 10 data packets and that the value of the sender’s 
retransmission timeout is 1 second. A data packet gets lost before it reaches the 
receiver. The protocol continues and no other data packets or acks are lost. The  
receiver wants to deliver data to the application in order. 
What is the maximum size, in packets, that the buffer at the receiver can grow 
to in the sliding window protocol? Answer this question for the two different 
definitions of a “window” below. 

i. When the window is the maximum difference between the last transmitted 
data packet and the last in-sequence ACK received at the sender: 

ii. When the window is the maximum number of unacknowledged data pack­
ets at the sender: 

8. In the reliable transport protocols we studied, the receiver sends an acknowledgment 
(ACK) saying “I got k” whenever it receives a data packet with sequence number k. 
Ben Bitdiddle invents a different method using cumulative ACKs: whenever the 
receiver gets a data packet, whether in order or not, it sends an ACK saying “I got 
every data packet up to and including C”, where C is the highest, in-order data packet 
received so far. 

The definition of the window is the same as before: a window size of W means that 
the maximum number of unacknowledged data packets is W . Every time the sender 
gets an ACK, it may transmit one or more data packets, within the constraint of the 
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window size. It also implements a timeout mechanism to retransmit data packets 
that it believes are lost using the algorithm described in these notes. The protocol 
runs over a best-effort network, but no data packet or ACK is duplicated at the network 
or link layers. 

The sender sends a stream of new data packets according to the sliding window 
protocol, and in response gets the following cumulative ACKs from the receiver: 

1 2 3 4 4 4 4 4 4 4  

(a) Now, suppose that the sender times out and retransmits the first unacknowl­
edged data packet. When the receiver gets that retransmitted data packet, what 
can you say about the ACK, a, that it sends? 

i. a = 5. 
ii. a ≥ 5. 

iii. 5 ≤ a ≤ 11. 
iv. a = 11. 
v. a ≤ 11. 

(b) Assuming no ACKs were lost, what is the minimum window size that can pro­
duce the sequence of ACKs shown above? 

(c) Is it possible for the given sequence of cumulative ACKs to have arrived at the 
sender even when no data packets were lost en route to the receiver when they 
were sent? 

(d) A little bit into the data transfer, the sender observes the following sequence of 
cumulative ACKs sent from the receiver: 

21 22 23 25 28 

The window size is 8 packets. What data packet(s) should the sender transmit 
upon receiving each of the above ACKs, if it wants to maximize the number of 
unacknowledged data packets? 

On getting ACK # → Send ?? On getting ACK # → Send ?? 

21 → 22 → 
23 → 25 → 
28 → 

9. Give one example of a situation where the cumulative ACK protocol described in 
the previous problem gets higher throughput than the sliding window protocol de­
scribed in this chapter. 

10. A sender S and receiver R communicate reliably over a series of links using a sliding 
window protocol with some window size, W packets. The path between S and R 
has one bottleneck link (i.e., one link whose rate bounds the throughput that can be 
achieved), whose data rate is C packets/second. When the window size is W , the 
queue at the bottleneck link is always full, with Q data packets in it. The round trip 
time (RTT) of the connection between S and R during this data transfer with window 
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size W is T seconds, including the queueing delay. There are no data packet or ACK 
losses in this case, and there are no other connections sharing this path. 

(a) Write an expression for W in terms of the other parameters specified above. 

(b) We would like to reduce the window size from W and still achieve high uti­
lization. What is the minimum window size, Wmin, which will achieve 100% 
utilization of the bottleneck link? Express your answer as a function of C, T , 
and Q. 

(c) Now suppose the sender starts with a window size set to Wmin. If all these data 
packets get acknowledged and no packet losses occur in the window, the sender 
increases the window size by 1. The sender keeps increasing the window size 
in this fashion until it reaches a window size that causes a data packet loss to 
occur. What is the smallest window size at which the sender observes a data 
packet loss caused by the bottleneck queue overflowing? Assume that no ACKs 
are lost. 

11. Ben Bitdiddle decides to use the sliding window transport protocol described in 
these notes on the network shown in Figure 19-9. The receiver sends end-to-end 
ACKs to the sender. The switch in the middle simply forwards packets in best-effort 
fashion. 
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Max queue size = 100 packets 
Packet size = 1000 bytes 
ACK size = 40 bytes 
Inital sender window size = 10 packets 

Figure 19-9: Ben’s network. 

(a) The sender’s window size is 10 packets. At what approximate rate (in packets 
per second) will the protocol deliver a multi-gigabyte file from the sender to the 
receiver? Assume that there is no other traffic in the network and packets can 
only be lost because the queues overflow. 

i. Between 900 and 1000. 
ii. Between 450 and 500. 

iii. Between 225 and 250. 
iv. Depends on the timeout value used. 
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(b) You would like to double the throughput of this sliding window transport pro­
tocol running on the network shown on the previous page. To do so, you can 
apply one of the following techniques alone: 

i. Double the window size. 
ii. Halve the propagation time of the links. 

iii. Double the rate of the link between the Switch and Receiver. 

For each of the following sender window sizes, list which of the above tech­
niques, if any, can approximately double the throughput. If no technique does 
the job, say “None”. There might be more than one answer for each window 
size, in which case you should list them all. Each technique works in isolation. 

1. W = 10: 
2. W = 50:
 
3. W = 30:
 

12. Eager B. Eaver starts MyFace, a next-generation social networking web site in which 
the only pictures allowed are users’ faces. MyFace has a simple request-response 
interface. The client sends a request (for a face), the server sends a response (the 
face). Both request and response fit in one packet (the faces in the responses are small 
pictures!). When the client gets a response, it immediately sends the next request. 
The size of the largest packet is S = 1000 bytes. 

Eager’s server is in Cambridge. Clients come from all over the world. Eager’s mea­
surements show that one can model the typical client as having a 100 millisecond 
round-trip time (RTT) to the server (i.e., the network component of the request-
response delay, not counting the additional processing time taken by the server, is 
100 milliseconds). 

If the client does not get a response from the server in a time τ , it resends the request. 
It keeps doing that until it gets a response. 

(a) Is the protocol described above “at least once”, “at most once”, or “exactly 
once”? 

(b) Eager needs to provision the link bandwidth for MyFace. He anticipates that at 
any given time, the largest number of clients making a request is 2000. What 
minimum outgoing link bandwidth from MyFace will ensure that the link con­
necting MyFace to the Internet will not experience congestion? 

(c) Suppose the probability of the client receiving a response from the server for 
any given request is p. What is the expected time for a client’s request to obtain 
a response from the server? Your answer will depend on p, RTT, and τ . 

13. Lem E. Tweetit is designing a new protocol for Tweeter, a Twitter rip-off. All tweets 
in Tweeter are 1000 bytes in length. Each tweet sent by a client and received by the 
Tweeter server is immediately acknowledged by the server; if the client does not 
receive an ACK within a timeout, it re-sends the tweets, and repeats this process 
until it gets an ACK. 
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Sir Tweetsalot uses a device whose data transmission rate is 100 Kbytes/s, which you 
can assume is the bottleneck rate between his client and the server. The round-trip 
propagation time between his client and the server is 10 milliseconds. Assume that 
there is no queueing on any link between client and server and that the processing 
time along the path is 0. You may also assume that the ACKs are very small in size, 
so consume neglible bandwidth and transmission time (of course, they still need to 
propagate from server to client). Do not ignore the transmission time of a tweet. 

(a) What is the smallest value of the timeout, in milliseconds, that will avoid spuri­
ous retransmissions? 

(b) Suppose that the timeout is set to 90 milliseconds. Unfortunately, the probability 
that a given client transmission gets an ACK is only 75%. What is the utilization 
of the network? 

14. A sender A and a receiver B communicate using the stop-and-wait protocol studied 
in this chapter. There are n links on the path between A and B, each with a data rate 
of R bits per second. The size of a data packet is S bits and the size of an ACK is K 
bits. Each link has a physical distance of D meters and the speed of signal propaga­
tion over each link is c meters per second. The total processing time experienced by a 
data packet and its ACK is Tp seconds. ACKs traverse the same links as data packets, 
except in the opposite direction on each link (the propagation time and data rate are 
the same in both directions of a link). There is no queueing delay in this network. 
Each link has a packet loss probability of p, with packets being lost independently. 

What are the following four quantities in terms of the parameters given? 

(a) Transmission	 time for a data packet on one link between A and B: 
. 

(b) Propagation	 time for a data packet across n links between A and B: 
. 

(c) Round-trip	 time (RTT) between A and B? 
. 

(The RTT is defined as the elapsed time between the start of transmission of a 
data packet and the completion of receipt of the ACK sent in response to the 
data packet’s reception by the receiver.) 

(d) Probability	 that a data packet sent by A will reach B: 
. 

15. Ben Bitdiddle gets rid of the timestamps from the packet header in this chapter’s 
stop-and-wait transport protocol running over a best-effort network. The network 
may lose or reorder packets, but it never duplicates a packet. In the protocol, the 
receiver sends an ACK for each data packet it receives, echoing the sequence number 
of the packet that was just received. 

The sender uses the following method to estimate the round-trip time (RTT) of the 
connection: 
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1. When the sender transmits a packet with sequence number k, it stores the time 
on its machine at which the packet was sent, tk. If the transmission is a retrans­
mission of sequence number k, then tk is updated. 

2. When the sender gets an ACK for packet k, if it has not already gotten an ACK 
for k so far, it observes the current time on its machine, ak, and measures the 
RTT sample as ak − tk. 

If the ACK received by the sender at time ak was sent by the receiver in response 
to a data packet sent at time tk, then the RTT sample ak − tk is said to be correct. 
Otherwise, it is incorrect. 

State True or False for the following statements, with an explanation for your choice. 

(a) If the sender never retransmits a data packet during a data transfer, then all the 
RTT samples produced by Ben’s method are correct. 

(b) If data and ACK packets are never reordered in the network, then all the RTT 
samples produced by Ben’s method are correct. 

(c) If the sender makes no spurious retransmissions during a data transfer (i.e., it 
only retransmits a data packet if all previous transmissions of data packets with 
the same sequence number did in fact get dropped before reaching the receiver), 
then all the RTT samples produced by Ben’s method are correct. 

16. Opt E. Miser implements this chapter’s stop-and-wait reliable transport protocol 
with one modification: being stingy, he replaces the sequence number field with a 
1-bit field, deciding to reuse sequence numbers across data packets. The first data 
packet has sequence number 1, the second has number 0, the third has number 1, the 
fourth has number 0, and so on. Whenever the receiver gets a packet with sequence 
number s(= 0 or 1), it sends an ACK to the sender echoing s. The receiver delivers a 
data packet to the application if, and only if, its sequence number is different from the 
last one delivered, and upon delivery, updates the last sequence number delivered. 

He runs this protocol over a best-effort network that can lose packets (with prob­
ability < 1) or reorder them, and whose delays are variable. Explain whether the 
modified protocol always provides reliable, in-order delivery of a stream of packets. 

17. Consider a reliable transport connection using this chapter’s sliding window proto­
col on a network path whose RTT in the absence of queueing is RTTmin = 0.1 seconds. 
The connection’s bottleneck link has a rate of C = 100 packets per second, and the 
queue in front of the bottleneck link has space for Q = 20  packets. 

Assume that the sender uses a sliding window protocol with fixed window size. 
There is no other traffic on the path. 

(a) If the window size is 8 packets, then what is the throughput of the connection? 

(b) If the window size is 16 packets, then what is the throughput of the connection? 

(c) What is the smallest window size for which the connection’s RTT exceeds 
RTTmin? 
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(d) What is the largest value of the sender window size for which no packets are 
lost due to a queue overflow? 

18. Annette Werker correctly implements the fixed-size sliding window protocol de­
scribed in this chapter. She instruments the sender to store the time at which each 
DATA packet is sent and the time at which each ACK is received. A snippet of the 
DATA and ACK traces from an experiment is shown in the picture below. Each + is 
a DATA packet transmission, with the x-axis showing the transmission time and the 
y-axis showing the sequence number. Each × is an ACK reception, with the x-axis 
showing the ACK reception time and the y-axis showing the ACK sequence number. 
All DATA packets have the same size.
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Answer the following questions, providing a brief explanation for each one. 

(a) Estimate any one sample round-trip time (RTT) of the connection. 

(b) Estimate the sender’s retransmission timeout (RTO) for this trace. 

(c) On the picture, circle DATA packet retransmissions for four different sequence 
numbers. 

(d) Some DATA packets in this trace may have incurred more than one retransmis­
sion? On the picture, draw a square around one such retransmission. 

(e) What is your best estimate of the sender’s window size? 

(f) What is your best estimate of the throughput in packets per second of the con­
nection? 
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(g) Considering only sequence numbers > 880, what is your best estimate of the 
packet loss rate experienced by DATA packets? 

19. Consider the same setup as the previous problem. Suppose the window size for the 
connection is equal to twice the bandwidth-delay product of the network path. 

For each change to the parameters of the network path or the sender given below, 
explain if the connection’s throughput (not utilization) will increase, decrease, or 
remain the same. In each statement, nothing other than what is specified in that 
statement changes. 

(a) The packet loss rate, C, decreases to C/3. 

(b) The minimum value of the RTT, R, increases to 1.8R. 

(c) The window size, W , decreases to W/3. 

20. Annette Werker conducts tests between a server and a client using the sliding win­
dow protocol described in this chapter. There is no other traffic on the path and no 
packet loss. Annette finds that: 

• With a window size W1 = 50  packets, the throughput is 200 packets per second. 

• With a window size W2 = 100 packets, the throughput is 250 packets per second. 

Annette finds that even this small amount of information allows her to calculate 
several things, assuming there is only one bottleneck link. Calculate the following: 

(a) The minimum round-trip time between the client and server. 

(b) The average queueing delay at the bottleneck when the window size is 100 
packets. 

(c) The average queue size when the window size is 100 packets. 
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