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Abstract. Adjunctions are among the most important constructions
in mathematics. These lecture notes show they are also highly relevant
to datatype-generic programming. First, every fundamental datatype—
sums, products, function types, recursive types—arises out of an adjunc-
tion. The defining properties of an adjunction give rise to well-known laws
of the algebra of programming. Second, adjunctions are instrumental in
unifying and generalising recursion schemes. We discuss a multitude of
basic adjunctions and show that they are directly relevant to program-
ming and to reasoning about programs.

1 Introduction

Haskell programmers have embraced functors [1], natural transformations [2],
monads [3], monoidal functors [4] and, perhaps to a lesser extent, initial alge-
bras [5] and final coalgebras [6]. It is time for them to turn their attention to
adjunctions.

The notion of an adjunction was introduced by Daniel Kan in 1958 [7]. Very
briefly, the functors L and R are adjoint if arrows of type LA→ B are in one-to-
one correspondence to arrows of type A→ RB and if the bijection is furthermore
natural in A and B . Adjunctions have proved to be one of the most important
ideas in category theory, predominantly due to their ubiquity. Many mathemat-
ical constructions turn out to be adjoint functors that form adjunctions, with
Mac Lane [8, p.vii] famously saying, “Adjoint functors arise everywhere.”

The purpose of these lecture notes is to show that the notion of an adjunc-
tion is also highly relevant to programming, in particular, to datatype-generic
programming. The concept is relevant in at least two different, but related ways.

First, every fundamental datatype—sums, products, function types, recursive
types—arises out of an adjunction. The categorical ingredients of an adjunction
correspond to introduction and elimination rules; the defining properties of an
adjunction correspond to β-rules, η-rules and fusion laws, which codify basic
optimisation principles.

Second, adjunctions are instrumental in unifying and generalising recursion
schemes. Historically, the algebra of programming [9] is based on the theory
of initial algebras: programs are expressed as folds, and program calculation is
based on the universal property of folds. In a nutshell, the universal property
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formalises that a fold is the unique solution of its defining equation. It implies
computation laws and optimisation laws such as fusion. The economy of rea-
soning is further enhanced by the principle of duality: initial algebras dualise to
final coalgebras, and correspondingly folds dualise to unfolds. Two theories for
the price of one.

However, all that glitters is not gold. Most, if not all, programs require some
tweaking to be given the form of a fold or an unfold and thus make them
amenable to formal manipulation. Somewhat ironically, this is in particular true
of the “Hello, world!” programs of functional programming: factorial, the Fi-
bonacci function and append. For instance, append does not have the form of a
fold as it takes a second argument that is later used in the base case.

In response to this shortcoming a plethora of different recursion schemes has
been introduced over the past two decades. Using the concept of an adjunction
many of these schemes can be unified and generalised. The resulting scheme
is called an adjoint fold. A standard fold insists on the idea that the control
structure of a function ever follows the structure of its input data. Adjoint folds
loosen this tight coupling—the control structure is given implicitly through the
adjunction.

Technically, the central idea is to gain flexibility by allowing the argument
of a fold or the result of an unfold to be wrapped up in a functor application.
In the case of append, the functor is essentially pairing. Not every functor is
admissible: to preserve the salient properties of folds and unfolds, we require the
functor to have a right adjoint and, dually, a left adjoint for unfolds. Like folds,
adjoint folds are then the unique solutions of their defining equations and, as is
to be expected, this dualises to unfolds.

These lecture notes are organised into two major parts. The first part (Sec-
tion 2) investigates the use of adjunctions for defining ‘data structures’. It is
partly based on the “Category Theory Primer” distributed at the Spring School
[10]. This section includes some background material on category theory, with the
aim of making the lecture notes accessible to readers without specialist knowl-
edge.

The second part (Section 3) illustrates the use of adjunctions for giving a
precise semantics to ‘algorithms’. It is largely based on the forthcoming arti-
cle “Adjoint Folds and Unfolds—An Extended Study” [11]. Some material has
been omitted, some new material has been added (Sections 3.3.3 and 3.4.2);
furthermore, all of the examples have been reworked.

The two parts can be read fairly independently. Indeed, on a first reading I
recommend to skip to the second part even though it relies on the results of the
first one. The development in Section 3 is accompanied by a series of examples
in Haskell, which may help in motivating and comprehending the different con-
structions. The first part then hopefully helps in gaining a deeper understanding
of the material.

The notes are complemented by a series of exercises, which can be used to
check progress. Some of the exercises form independent threads that introduce
more advanced material. As an example, adjunctions are closely related to the
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Haskell programmer’s favourite toy, monads: every adjunction induces a monad
and a comonad; conversely, every (co)monad can be defined by an adjunction.
These advanced exercises are marked with a ‘∗’.

Enjoy reading!

2 Adjunctions for Data Structures

The first part of these lecture notes is structured as follows. Section 2.1 and 2.2
provide some background to category theory, preparing the ground for the re-
mainder of these lecture notes. Sections 2.3 and 2.4 show how to model non-
recursive datatypes, finite products and sums, categorically. We emphasise the
calculational properties of the constructions, working carefully towards the cen-
tral concept of an adjunction, which is then introduced in Section 2.5. This sec-
tion discusses fundamental properties of adjunctions and illustrates the concept
with further examples. In particular, it introduces exponentials, which model
higher-order function types. Section 2.6 then shows how to capture recursive
datatypes, introducing initial algebras and final coalgebras. Both constructions
arise out of an adjunction, related to free algebras and cofree coalgebras, which
are perhaps less well-known and which are studied in considerable depth. Finally,
Section 2.7 introduces an important categorical tool, the Yoneda Lemma, used
repeatedly in the second part of the lecture notes.

2.1 Category, Functor and Natural Transformation

This section introduces the categorical trinity: category, functor and natural
transformation. If you are already familiar with the topic, then you can skip the
section and the next, except perhaps for notation. If this is unexplored territory,
try to absorb the definitions, study the examples and, most importantly, take
your time to let the material sink in.

2.1.1 Category. A category consists of objects and arrows between objects.
We let C , D etc range over categories. We write A ∶ C to express that A is
an object of C . We let A, B etc range over objects. For every pair of objects
A,B ∶ C there is a class of arrows from A to B , denoted C (A,B). If C is obvious
from the context, we abbreviate f ∶ C (A,B) by f ∶ A → B or by f ∶ B ← A. We
will also loosely speak of A → B as the type of f . We let f , g etc range over
arrows.

For every object A ∶ C there is an arrow idA ∶ A → A, called the identity.
Two arrows can be composed if their types match: If f ∶ A → B and g ∶ B → C ,
then g ⋅ f ∶ A→ C . We require composition to be associative with identity as its
neutral element.

A category is often identified with its class of objects. For instance, we say
that Set is the category of sets. However, equally, if not more, important are the
arrows of a category. So, Set is really the category of sets and total functions.
(There is also Rel, the category of sets and relations.) For Set, the identity
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arrow is the identity function and composition is functional composition. If the
objects have additional structure (monoids, groups etc), then the arrows are
typically structure-preserving maps.

Exercise 1. Define the category Mon, whose objects are monoids and whose
arrows are monoid homomorphisms. ⊓⊔

However, the objects of a category are not necessarily sets and the arrows
are not necessarily functions:

Exercise 2. A preorder ≾ is an extreme example of a category: C (A,B) is in-
habited if and only if A ≾ B. So each C (A,B) has at most one element. Spell
out the details. ⊓⊔

Exercise 3. A monoid is another extreme example of a category: there is exactly
one object. Spell out the details. ⊓⊔

A subcategory S of a category C is a collection of some of the objects and
some of the arrows of C , such that identity and composition are preserved to
ensure S constitutes a category. In a full subcategory, S (A,B) = C (A,B), for
all objects A,B ∶ S .

An arrow f ∶ A→ B is invertible if there is an arrow g ∶ A← B with g ⋅ f = idA

and f ⋅ g = idB . If the inverse arrow exists, it is unique and is written as f ○. Two
objects A and B are isomorphic, A ≅ B , if there is an invertible arrow f ∶ A→ B .
We also write f ∶ A ≅ B ∶ f ○ to express that the arrows f ∶ A→ B and f ○ ∶ A← B
witness the isomorphism A ≅ B .

Exercise 4. Show that the inverse of an arrow is unique. ⊓⊔

2.1.2 Functor. Every mathematical structure comes equipped with structure-
preserving maps; so do categories, where these maps are called functors. (Indeed,
category theory can be seen as the study of structure-preserving maps. Mac Lane
[8, p.30] writes: “Category theory asks of every type of Mathematical object:
‘What are the morphisms?’”) Since a category consists of two parts, objects and
arrows, a functor F ∶ C → D consists of a mapping on objects and a mapping
on arrows. It is common practice to denote both mappings by the same symbol.
We will also loosely speak of F’s arrow part as a ‘map’. The action on arrows
has to respect the types: if f ∶ C (A,B), then F f ∶ D(FA,FB). Furthermore, F
has to preserve identity and composition:

F idA = idFA , (1)

F (g ⋅ f ) = F g ⋅ F f . (2)

The force of functoriality lies in the action on arrows and in the preservation of
composition. We let F, G etc range over functors. A functor F ∶ C → C over a
category C is called an endofunctor.
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Exercise 5. Show that functors preserve isomorphisms.

F f ∶ FA ≅ FB ∶ F f ○ ⇐Ô f ∶ A ≅ B ∶ f ○⊓⊔

∗ Exercise 6. The category Mon has more structure than Set. Define a functor
U ∶ Mon → Set that forgets about the additional structure. (The functor U is
called the forgetful or underlying functor.) ⊓⊔

There is an identity functor, IdC ∶ C → C , and functors can be composed:
(G○F)A = G (FA) and (G○F) f = G (F f ). This data turns small categories1 and
functors into a category, called Cat.

Exercise 7. Show that IdC and G○F are indeed functors. ⊓⊔

2.1.3 Natural Transformation. Let F,G ∶ C → D be two parallel functors.
A transformation α ∶ F → G is a collection of arrows, so that for each object
A ∶ C there is an arrow αA ∶ D(FA,GA). In other words, a transformation is a
mapping from objects to arrows. A transformation is natural, α ∶ F →̇G, if

Gh ⋅ αÂ = αǍ ⋅ Fh , (3)

for all objects Â and Ǎ and for all arrows h ∶ C (Â, Ǎ). Note that α is used at
two different instances: D(F Â,G Â) and D(F Ǎ,G Ǎ)—we will adopt the habit
of decorating instances with a circumflex (̂ ) and with an inverted circumflex (̌ ).
Now, given α and h, there are essentially two ways of turning F Â things into G Ǎ
things. The coherence condition (3) demands that they are equal. The condition
is visualised below using a commuting diagram: all paths from the same source
to the same target lead to the same result by composition.

F Â
Fh

≻ F Ǎ

G Â

α Â
⋎

Gh
≻ G Ǎ

α Ǎ
⋎

We write α ∶ F ≅ G, if α is a natural isomorphism. As an example, the identity
is a natural isomorphism of type F ≅ F. We let α, β etc range over natural
transformations.

2.2 Opposite, Product and Functor Category

In the previous section we have encountered a few examples of categories. Next,
we show how to create new categories from old.

1 To avoid paradoxes, we have to require that the objects of Cat are small, where a
category is called small if the class of objects and the class of all arrows are sets. By
that token, Set and Cat are not themselves small.
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2.2.1 Opposite Category. Let C be a category. The opposite category C op

has the same objects as C ; the arrows of C op are in one-to-one correspondence
to the arrows in C , that is, f op ∶ C op(A,B) if and only if f ∶ C (B ,A). Identity
and composition are defined flip-wise:

id = idop and f op ⋅ gop = (g ⋅ f )op .

A functor of type C op → D or C → Dop is sometimes called a contravariant
functor from C to D , the usual kind being styled covariant. The operation (−)op
itself can be extended to a covariant functor (−)op ∶ Cat → Cat, whose arrow
part is defined Fop A = FA and Fop f op = (F f )op. We agree that (f op)op = f so
that the operation is an involution. (In later sections, we will often be sloppy
and omit the bijection (−)op on arrows.)

A somewhat incestuous example of a contravariant functor is pre-composition
C (−,B) ∶ C op → Set, whose action on arrows is given by C (hop,B) f = f ⋅ h.
(Partial applications of mappings and operators are written using ‘categorical
dummies’, where − marks the first and = the second argument if any.) The functor
C (−,B) maps an object A to the set of arrows C (A,B) from A to a fixed B ,
and it takes an arrow hop ∶ C op(Â, Ǎ) to a function C (hop,B) ∶ C (Â,B) →
C (Ǎ,B). Dually, post-composition C (A,−) ∶ C → Set is a covariant functor
defined C (A, k) f = k ⋅ f .

Exercise 8. Show that C (A,−) and C (−,B) are functors. ⊓⊔

2.2.2 Product Category. Let C1 and C2 be categories. An object of the
product category C1 × C2 is a pair ⟨A1, A2⟩ of objects A1 ∶ C1 and A2 ∶ C2; an
arrow of (C1 ×C2)(⟨A1, A2⟩, ⟨B1, B2⟩) is a pair ⟨f1, f2⟩ of arrows f1 ∶ C1(A1,B1)
and f2 ∶ C2(A2,B2). Identity and composition are defined component-wise:

id = ⟨id , id⟩ and ⟨g1, g2⟩ ⋅ ⟨f1, f2⟩ = ⟨g1 ⋅ f1, g2 ⋅ f2⟩ .

The projection functors Outl ∶ C1 × C2 → C1 and Outr ∶ C1 × C2 → C2 are given
by Outl ⟨A1, A2⟩ = A1, Outl ⟨f1, f2⟩ = f1 and Outr ⟨A1, A2⟩ = A2, Outr ⟨f1, f2⟩ = f2.
Product categories avoid the need for functors of several arguments. Functors
such as Outl and Outr from a product category are sometimes called bifunctors.
The diagonal functor ∆ ∶ C → C × C is an example of a functor into a product
category: it duplicates its argument ∆A = ⟨A,A⟩ and ∆f = ⟨f , f ⟩.

If we fix one argument of a bifunctor, we obtain a functor. The converse is
not true: functoriality in each argument separately does not imply functoriality
in both. Rather, we have the following: (−⊗=) ∶ C ×D → E is a bifunctor if and
only if the partial application (A ⊗ −) ∶ D → E is a functor for all A ∶ C , the
partial application (−⊗B) ∶ C → E is a functor for all B ∶ D , and if furthermore
the two collections of unary functors satisfy the exchange law

(Ǎ⊗ g) ⋅ (f ⊗ B̂) = (f ⊗ B̌) ⋅ (Â⊗ g) , (4)
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for all objects Â, Ǎ, B̂ and B̌ and for all arrows f ∶ C (Â, Ǎ) and g ∶ D(B̂, B̌).
Given f and g there are two ways of turning Â⊗ B̂ things into Ǎ⊗ B̌ things:

Â⊗ B̂
Â⊗ g

≻ Â⊗ B̌

Ǎ⊗ B̂

f ⊗ B̂
⋎

Ǎ⊗ g
≻ Ǎ⊗ B̌ .

f ⊗ B̌
⋎

f ⊗ g

≻

The coherence condition (4) demands that they are equal. The arrow part of the
bifunctor, the diagonal, is then given by either side of (4). The exchange law
can also be read as two naturality conditions, stating that f ⊗ − and − ⊗ g are
natural transformations!

Exercise 9. Prove the characterisation of bifunctors. ⊓⊔

The corresponding notion of a ‘binatural’ transformation is more straightfor-
ward. Let F,G ∶ C ×D → E be two parallel functors. The transformation α ∶ F→̇G
is natural in both arguments if and only if it is natural in each argument sepa-
rately.

Exercise 10. Spell out the details and prove the claim. ⊓⊔

We have noted that pre-composition C (A,−) and post-composition C (−,B)
are functors. Pre-composition commutes with post-composition:

C (Ǎ, g) ⋅C (f op, B̂) = C (f op, B̌) ⋅C (Â, g) , (5)

for all f op ∶ C op(Â, Ǎ) and g ∶ C (B̂, B̌). This is an instance of the exchange
law (4), so it follows that the so-called hom-functor C (−,=) ∶ C op × C → Set is
a bifunctor. It maps a pair of objects to the set of arrows between them, the
so-called hom-set; its action on arrows is given by

C (f op, g)h = g ⋅ h ⋅ f . (6)

2.2.3 Functor Category. There is an identity natural transformation idF ∶
F→̇F defined idF A = idFA. Natural transformations can be composed: if α ∶ F→̇G
and β ∶ G →̇ H, then β ⋅ α ∶ F →̇ H is defined (β ⋅ α)A = βA ⋅ αA. Thus, functors
of type C → D and natural transformations between them form a category, the
functor category DC . (Functor categories are exponentials in Cat, hence the
notation. The next paragraph makes a first step towards proving this fact.)

The application of a functor to an object is itself functorial. Specifically,
it is a bifunctor of type (−=) ∶ DC × C → D . Using the characterisation of
bifunctors, we have to show that (F−) ∶ C → D is a functor for each F ∶ DC ,
that (−A) ∶ DC → D is a functor for each A ∶ C , and that the two collections
satisfy the exchange law (4). The former is immediate since (F−) is just F. The
arrow part of the latter is (−A)α = αA. That this action preserves identity
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and composition is a consequence of the definition of DC . Finally, the coherence
condition for bifunctors (4) is just the naturality condition (3). (Indeed, one
could argue the other way round: the desire to turn functor application into a
higher-order functor determines the concept of a natural transformation and in
turn the definition of DC .) For reference, we record that functor application is
a bifunctor, whose action on arrows is defined

α f = F̌ f ⋅ αÂ = αǍ ⋅ F̂ f . (7)

Let F ∶ C → D be a functor. Pre-composition −○F is itself a functor, one
between functor categories −○F ∶ E D → E C . The action on arrows, that is,
natural transformations, is defined (α○F)A = α (FA). Dually, post-composition
F○− is a functor of type F○− ∶ C E → DE defined (F○α)A = F (αA).

Exercise 11. Show that α○F and F○α are natural transformations. Prove that
−○F and F○− preserve identity and composition. ⊓⊔

Pre-composition commutes with post-composition:

(F̌○β) ⋅ (α○Ĝ) = (α○Ǧ) ⋅ (F̂○β) ,

for all α ∶ F̂ →̇ F̌ and β ∶ Ĝ →̇ Ǧ. Again, it follows that functor composition
(−○=) ∶ E D ×DC → E C is a bifunctor.

2.3 Product and Coproduct

Definitions in category theory often take the form of universal constructions, a
concept we explore in this section. The paradigmatic example of this approach
is the definition of products—in fact, this is also historically the first example.

2.3.1 Product. A product of two objects B1 and B2 consists of an object
written B1×B2 and a pair of arrows outl ∶ B1×B2 → B1 and outr ∶ B1×B2 → B2.
These three things have to satisfy the following universal property : for each
object A and for each pair of arrows f1 ∶ A → B1 and f2 ∶ A → B2, there exists a
unique arrow g ∶ A→ B1 ×B2 such that f1 = outl ⋅ g and f2 = outr ⋅ g . (The unique
arrow is also called the mediating arrow).

The universal property can be stated more attractively if we replace the
existentially quantified variable g by a Skolem function2: for each object A and
for each pair of arrows f1 ∶ A → B1 and f2 ∶ A → B2, there exists an arrow
f1 △ f2 ∶ A→ B1 ×B2 (pronounce “f1 split f2”) such that

f1 = outl ⋅ g ∧ f2 = outr ⋅ g ⇐⇒ f1 △ f2 = g , (8)

2 The existentially quantified variable g is in scope of a universal quantifier, hence the
need for a Skolem function.
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for all g ∶ A → B1 × B2. The equivalence captures the existence of an arrow
satisfying the property on the left and furthermore states that f1 △ f2 is the
unique such arrow. The following diagram summarises the type information.

A

B1
≺

f1

B2

f2

≻

B1 ×B2

f1 △ f2........⋎

........

outr

≻≺
outl

The dotted arrow indicates that f1△f2 is the unique arrow from A to B1×B2 that
makes the diagram commute. Any two products of B1 and B2 are isomorphic,
which is why we usually speak of the product (see Exercise 12). The fact that
the definition above determines products only up to isomorphism is a feature,
not a bug. A good categorical definition serves as a specification. Think of it as
an interface, which may enjoy many different implementations.

A universal property such as (8) has two immediate consequences that are
worth singling out. If we substitute the right-hand side into the left-hand side,
we obtain the computation laws (also known as β-rules):

f1 = outl ⋅ (f1 △ f2) , (9)

f2 = outr ⋅ (f1 △ f2) . (10)

They can be seen as defining equations for the arrow f △ g .
Instantiating g in (8) to the identity idB1×B2 and substituting into the right-

hand side, we obtain the reflection law (also known as the simple η-rule or η-rule
‘light’):

outl △ outr = idB1×B2 . (11)

The law expresses an extensionality property: taking a product apart and then
re-assembling it yields the original.

The universal property enjoys two further consequences, which we shall later
identify as naturality properties. The first consequence is the fusion law that
allows us to fuse a split with an arrow to form another split:

(f1 △ f2) ⋅ h = f1 ⋅ h △ f2 ⋅ h , (12)

for all h ∶ Â→ Ǎ. The law states that △ is natural in A. For the proof we reason

f1 ⋅ h △ f2 ⋅ h = (f1 △ f2) ⋅ h
⇐⇒ { universal property (8) }

f1 ⋅ h = outl ⋅ (f1 △ f2) ⋅ h ∧ f2 ⋅ h = outr ⋅ (f1 △ f2) ⋅ h
⇐⇒ { computation (9)–(10) }

f1 ⋅ h = f1 ⋅ h ∧ f2 ⋅ h = f2 ⋅ h .
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Exercise 12. Use computation, reflection and fusion to show that any two prod-
ucts of B1 and B2 are isomorphic. More precisely, the product of B1 and B2 is
unique up to a unique isomorphism that makes the diagram

B1 ×B2

B1
≺

outl

B2

outr

≻

B1 ×′ B2

⋎

...................

≅

⋏...................
outr

′
≻≺

outl ′

commute. (It is not the case that there is a unique isomorphism per se. For
example, there are two isomorphisms between B × B and B × B : the identity
idB×B = outl △ outr and outr △ outl .) ⊓⊔

Exercise 13. Show

f1 △ f2 = g1 △ g2 ⇐⇒ f1 = g1 ∧ f2 = g2 ,

f = g ⇐⇒ outl ⋅ f = outl ⋅ g ∧ outr ⋅ f = outr ⋅ g .

Again, try to use all of the laws above. ⊓⊔

Let us now assume that the product B1 × B2 exists for every combination
of B1 and B2. In this case, the definition of products is also functorial in B1

and B2—both objects are totally passive in the description above. We capture
this property by turning × into a functor of type C × C → C . Indeed, there is
a unique way to turn × into a functor so that the projection arrows, outl and
outr , are natural in B1 and B2:

k1 ⋅ outl = outl ⋅ (k1 × k2) , (13)

k2 ⋅ outr = outr ⋅ (k1 × k2) . (14)

We appeal to the universal property

k1 ⋅ outl = outl ⋅ (k1 × k2) ∧ k2 ⋅ outr = outr ⋅ (k1 × k2)
⇐⇒ { universal property (8) }

k1 ⋅ outl △ k2 ⋅ outr = k1 × k2 ,

which suggests that the arrow part of × is defined

f1 × f2 = f1 ⋅ outl △ f2 ⋅ outr . (15)

We postpone the proof that × preserves identity and composition.
The functor fusion law states that we can fuse a map after a split to form

another split:

(k1 × k2) ⋅ (f1 △ f2) = k1 ⋅ f1 △ k2 ⋅ f2 , (16)
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for all k1 ∶ B̂1 → B̌1 and k2 ∶ B̂2 → B̌2. The law formalises that △ is natural in B1

and B2. The proof of (16) builds on fusion and computation:

(k1 × k2) ⋅ (f1 △ f2)
= { definition of × (15) }

(k1 ⋅ outl △ k2 ⋅ outr) ⋅ (f1 △ f2)
= { fusion (12) }

k1 ⋅ outl ⋅ (f1 △ f2) △ k2 ⋅ outr ⋅ (f1 △ f2)
= { computation (9)–(10) }

k1 ⋅ f1 △ k2 ⋅ f2 .

Given these prerequisites, it is straightforward to show that × preserves identity

idA × idB

= { definition of × (15) }
idA ⋅ outl △ idB ⋅ outr

= { identity and reflection (11) }
idA×B

and composition

(g1 × g2) ⋅ (f1 × f2)
= { definition of × (15) }

(g1 × g2) ⋅ (f1 ⋅ outl △ f2 ⋅ outr)
= { functor fusion (16) }

g1 ⋅ f1 ⋅ outl △ g2 ⋅ f2 ⋅ outr

= { definition of × (15) }
g1 ⋅ f1 × g2 ⋅ f2 .

The naturality of △ can be captured precisely using product categories and
hom-functors (we use ∀X . FX → GX as a shorthand for F →̇G).

(△) ∶ ∀A,B . (C ×C )(∆A,B) → C (A,×B)

Split takes a pair of arrows as an argument and delivers an arrow to a product.
The object B lives in a product category, so ×B is the product functor applied
to B ; the object A on the other hand lives in C , the diagonal functor sends it
to an object in C ×C . Do not confuse the diagonal functor ∆ (the Greek letter
Delta) with the mediating arrow △ (an upwards pointing triangle). The fusion
law (12) captures naturality in A,

C (h,×B) ⋅ (△) = (△) ⋅ (C ×C )(∆h,B) ,

and the functor fusion law (16) naturality in B ,

C (A,×k) ⋅ (△) = (△) ⋅ (C ×C )(∆A, k) .
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The naturality of outl and outr can be captured using the diagonal functor:

⟨outl , outr⟩ ∶ ∀B . (C ×C )(∆(×B),B) .

The naturality conditions (13) and (14) amount to

k ⋅ ⟨outl , outr⟩ = ⟨outl , outr⟩ ⋅∆(×k) .

The import of all this is that × is right adjoint to the diagonal functor ∆.
We will have to say a lot more about adjoint situations later on (Section 2.5).

Exercise 14. Show A ×B ≅ B ×A and A × (B ×C ) ≅ (A ×B) ×C . ⊓⊔

Exercise 15. What is the difference between ⟨A, B⟩ and A ×B? ⊓⊔

2.3.2 Coproduct. The construction of products nicely dualises to coprod-
ucts, which are products in the opposite category. The coproduct of two ob-
jects A1 and A2 consists of an object written A1 + A2 and a pair of arrows
inl ∶ A1 → A1 + A2 and inr ∶ A2 → A1 + A2. These three things have to satisfy
the following universal property : for each object B and for each pair of arrows
g1 ∶ A1 → B and g2 ∶ A2 → B , there exists an arrow g1 ▽ g2 ∶ A1 + A2 → B
(pronounce “g1 join g2”) such that

f = g1 ▽ g2 ⇐⇒ f ⋅ inl = g1 ∧ f ⋅ inr = g2 , (17)

for all f ∶ A1 +A2 → B .

A1 +A2

A1

inl ≻

A2

≺ inr

B

g1 ▽ g2........⋎

........

≺ g2
g
1 ≻

As with products, the universal property implies computation, reflection, fusion
and functor fusion laws. Computation laws:

(g1 ▽ g2) ⋅ inl = g1 , (18)

(g1 ▽ g2) ⋅ inr = g2 . (19)

Reflection law :
idA+B = inl ▽ inr . (20)

Fusion law :
k ⋅ (g1 ▽ g2) = k ⋅ g1 ▽ k ⋅ g2 . (21)

There is a unique way to turn + into a functor so that the injection arrows are
natural in A1 and A2:

(h1 + h2) ⋅ inl = inl ⋅ h1 , (22)

(h1 + h2) ⋅ inr = inr ⋅ h2 . (23)
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The arrow part of the coproduct functor is then given by

g1 + g2 = inl ⋅ g1 ▽ inr ⋅ g2 . (24)

Functor fusion law :

(g1 ▽ g2) ⋅ (h1 + h2) = g1 ⋅ h1 ▽ g2 ⋅ h2 . (25)

The two fusion laws identify ▽ as a natural transformation:

(▽) ∶ ∀A B . (C ×C )(A,∆B) → C (+A,B) .

The naturality of inl and inr can be captured as follows.

⟨inl , inr⟩ ∶ ∀A . (C ×C )(A,∆(+A)) .

The import of all this is that + is left adjoint to the diagonal functor ∆.

2.4 Initial and Final Object

An object A is called initial if for each object B ∶ C there is exactly one arrow
from A to B . Any two initial objects are isomorphic, which is why we usually
speak of the initial object. It is denoted 0, and the unique arrow from 0 to B is
written 0⇢ B or B ⇠ 0.

0
0⇢ B

≻ B

The uniqueness can also be expressed as a universal property :

f = 0⇢ B ⇐⇒ true , (26)

for all f ∶ 0→ B . Instantiating f to the identity id0, we obtain the reflection law :
id0 = 0 ⇢ 0. An arrow after a unique arrow can be fused into a single unique
arrow.

k ⋅ (B̂ ⇠ 0) = (B̌ ⇠ 0) ,

for all k ∶ B̌ ← B̂. The fusion law expresses that 0⇢ B is natural in B .

Exercise 16. Show that any two initial objects are isomorphic. More precisely,
the initial object is unique up to unique isomorphism. ⊓⊔

Dually, 1 is a final object if for each object A ∶ C there is a unique arrow
from A to 1, written A⇢ 1 or 1⇠ A.

A
A⇢ 1

≻ 1

We have adopted arithmetic notation to denote coproducts and products,
initial and final objects. This choice is justified since the constructions satisfy
many of the laws of high-school algebra (see Exercise 14). The following exercises
ask you to explore the analogy a bit further.

Exercise 17. Show A + 0 ≅ A and dually A × 1 ≅ A. ⊓⊔
∗ Exercise 18. What about A × 0 ≅ 0 and A × (B +C ) ≅ A ×B +A ×C ? ⊓⊔

Exercise 17 suggests that 0 can be seen as a nullary coproduct and, dually, 1 as
a nullary product. In general, a category is said to have finite products if it has
a final object and binary products.
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2.5 Adjunction

We have noted in Section 2.3 that products and coproducts are part of an ad-
junction. In this section, we explore the notion of an adjunction in depth.

Let C and D be categories. The functors L ∶ C ← D and R ∶ C → D are
adjoint, written L ⊣ R,

C
≺

L

�
R

≻ D

if and only if there is a bijection between the hom-sets

⌊−⌋ ∶ C (LA,B) ≅ D(A,RB) ∶ ⌈−⌉ ,

that is natural both in A and B . The functor L is said to be a left adjoint
for R, while R is L’s right adjoint. The isomorphism ⌊−⌋ is called the left adjunct
with ⌈−⌉ being the right adjunct. The notation ⌊−⌋ for the left adjunct is chosen
as the opening bracket resembles an ‘L’. Likewise—but this is admittedly a bit
laboured—the opening bracket of ⌈−⌉ can be seen as an angular ‘r’. An alternative
name for the left adjunct is adjoint transposition, which is why ⌊f ⌋ is commonly
called the transpose of f (often named f ′).

That ⌊−⌋ ∶ C (LA,B) → D(A,RB) and ⌈−⌉ ∶ C (LA,B) ← D(A,RB) are
mutually inverse can be captured using an equivalence.

f = ⌈g⌉ ⇐⇒ ⌊f ⌋ = g (27)

The equation on the left lives in C , and the equation on the right in D .
As a simple example, the identity functor is self-adjoint: Id ⊣ Id. More gen-

erally, if the functor F is invertible, then F is simultaneously a left and a right
adjoint: F ⊣ F○ ⊣ F. (Note that in general F ⊣ G ⊣ H does not imply F ⊣ H.)

2.5.1 Product and Coproduct Revisited. The equivalence (27) is rem-
iniscent of the universal property of products. That the latter indeed defines
an adjunction can be seen more clearly if we re-formulate (8) in terms of the
categories involved (again, do not confuse ∆ and △).

f = ⟨outl , outr⟩ ⋅∆g ⇐⇒ △ f = g (28)

The right part of the diagram below explicates the categories.

C
≺

+
�
∆

≻ C ×C
≺

∆

�
× ≻ C

We actually have a double adjunction with + being left adjoint to ∆. Rewritten
in terms of product categories, the universal property of coproducts (17) becomes

f = ▽g ⇐⇒ ∆f ⋅ ⟨inl , inr⟩ = g . (29)
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2.5.2 Initial and Final Object Revisited. Initial object and final object
also define an adjunction, though a rather trivial one.

C
≺

0

�
∆

≻ 1
≺

∆

�
1

≻ C

The category 1 consists of a single object ∗ and a single arrow id∗. The diagonal
functor is now defined ∆A = ∗ and ∆f = id∗. The objects 0 and 1 are seen as
constant functors from 1. (An object A ∶ C seen as a functor A ∶ 1 → C maps ∗
to A and id∗ to idA.)

f = (0⇢ B) ⋅ 0 g ⇐⇒ ∆f ⋅ id∗ = g (30)

f = id∗ ⋅∆g ⇐⇒ 1 f ⋅ (1⇢ A) = g (31)

The universal properties are somewhat degenerated as the right-hand side of (30)
and the left-hand side of (31) are vacuously true. Furthermore, 0 g and 1 f are
both the identity, so (30) simplifies to (26) and (31) simplifies to the equivalence
true ⇐⇒ A⇢ 1 = g .

2.5.3 Counit and Unit. An adjunction can be defined in a variety of ways.
Recall that the adjuncts ⌊−⌋ and ⌈−⌉ have to be natural both in A and B .

⌈g⌉ ⋅ Lh = ⌈g ⋅ h⌉
R k ⋅ ⌊f ⌋ = ⌊k ⋅ f ⌋

This implies ⌈id⌉ ⋅ Lh = ⌈h⌉ and R k ⋅ ⌊id⌋ = ⌊k⌋. Consequently, the adjuncts are
uniquely defined by their images of the identity: ε = ⌈id⌉ and η = ⌊id⌋. An alter-
native definition of adjunctions is based on these two natural transformations,
which are called the counit ε ∶ L○R→̇Id and the unit η ∶ Id→̇R○L of the adjunction.
The units must satisfy the so-called triangle identities

(ε○L) ⋅ (L○η) = idL and (R○ε) ⋅ (η○R) = idR . (32)

The diagrammatic rendering explains the name triangle identities.

L○R○L

L
idL ≻

L○
η

≻

L

ε○L
≻

R○L○R

R
idR ≻

η○
R

≻

R

R○ε
≻

All in all, an adjunction consists of six entities: two functors, two adjuncts,
and two units. Every single one of those can be defined in terms of the others:

⌈g⌉ = εB ⋅ L g
⌊f ⌋ = R f ⋅ ηA

ε = ⌈id⌉
η = ⌊id⌋

Lh = ⌈ηB ⋅ h⌉
R k = ⌊k ⋅ εA⌋ , (33)

for all f ∶ C (LA,B), g ∶ D(A,RB), h ∶ D(A,B) and k ∶ C (A,B).
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Inspecting (28) we note that the counit of the adjunction ∆ ⊣ × is the pair
⟨outl , outr⟩ of projection arrows. The unit is the so-called diagonal arrow δ =
id△id . Dually, equation (29) suggests that the unit of + ⊣∆ is the pair ⟨inl , inr⟩
of injection arrows. The counit is the so-called codiagonal id ▽ id .

Exercise 19. Show the equivalence of the two ways of defining an adjunction:

1. Assume that an adjunction is given in terms of adjuncts satisfying (27).
Show that the units defined ε = ⌈id⌉ and η = ⌊id⌋ are natural and satisfy the
triangle identities (32).

2. Conversely, assume that an adjunction is given in terms of units satisfying
the triangle identities (32). Show that the adjuncts defined ⌈g⌉ = εB ⋅L g and
⌊f ⌋ = R f ⋅ ηA are natural and satisfy the equivalence (27). ⊓⊔

2.5.4 Adjunctions and Programming Languages. In terms of program-
ming language concepts, adjuncts correspond to introduction and elimination
rules: split △ introduces a pair, join ▽ eliminates a tagged value. The units can
be seen as simple variants of these rules: the counit ⟨outl , outr⟩ eliminates pairs
and the unit ⟨inl , inr⟩ introduces tagged values. When we discussed products,
we derived a variety of laws from the universal property. Table 1 re-formulates
these laws using the new vocabulary. The name of the law is found by identi-
fying the cell in which the law occurs and reading off the label to the left or
to the right of the slash. For instance, from the perspective of the right adjoint
the identity f = ⌈⌊f ⌋⌉ corresponds to a computation law or β-rule, viewed from
the left it is an η-rule.3 An adjunction typically involves a simple or primitive
functor. In our running example, this is the diagonal functor ∆ whose adjuncts
are the interesting new concepts. It is the new concept that determines the view.
Hence we view the equivalence (28) and its consequences from the right and its
dual (29) from the left. The table merits careful study.

2.5.5 Universal Arrow Revisited. We looked at universal constructions
in Section 2.3. Let us now investigate how this generalises all. Since the com-
ponents of an adjunction are inter-definable, an adjunction can be specified by
providing only part of the data. Surprisingly little is needed: for products only
the functor L = ∆ and the universal arrow ε = ⟨outl , outr⟩ were given, the other
ingredients were derived from those. In the rest of this section, we replay the
derivation in the more abstract setting of adjunctions.

Let L ∶ C ← D be a functor, let R ∶ C → D be an object mapping, and
let ε ∶ C (L (RB),B) be a universal arrow. Universality means that for each
f ∶ C (LA,B) there exists a unique arrow g ∶ D(A,RB) such that f = ε ⋅ L g . As
in Section 2.3.1, we replace the existentially quantified variable g by a skolem
function, cunningly written ⌊−⌋. Then the statement reads: for each f ∶ C (LA,B)
3 It is a coincidence that the same Greek letter is used both for extensionality (η-rule)

and for the unit of an adjunction.
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Table 1. Adjunctions and laws (view from the left / right).

⌈−⌉ introduction / elimination ⌊−⌋ elimination / introduction

⌈−⌉ ∶ D(A,RB) → C (LA,B) ⌊−⌋ ∶ C (LA,B) → D(A,RB)

f ∶ C (LA,B) universal property g ∶ D(A,RB)

f = ⌈g⌉ ⇐⇒ ⌊f ⌋ = g

ε ∶ C (L (RB),B) η ∶ D(A,R (LA))

ε = ⌈id⌉ ⌊id⌋ = η

— / computation law computation law / —

η-rule / β-rule β-rule / η-rule

f = ⌈⌊f ⌋⌉ ⌊⌈g⌉⌋ = g

reflection law / — — / reflection law

simple η-rule / simple β-rule simple β-rule / simple η-rule

id = ⌈η⌉ ⌊ε⌋ = id

functor fusion law / — — / fusion law

⌈−⌉ is natural in A ⌊−⌋ is natural in A

⌈g⌉ ⋅ Lh = ⌈g ⋅ h⌉ ⌊f ⌋ ⋅ h = ⌊f ⋅ Lh⌋

fusion law / — — / functor fusion law

⌈−⌉ is natural in B ⌊−⌋ is natural in B

k ⋅ ⌈g⌉ = ⌈R k ⋅ g⌉ R k ⋅ ⌊f ⌋ = ⌊k ⋅ f ⌋

ε is natural in B η is natural in A

k ⋅ ε = ε ⋅ L (R k) R (Lh) ⋅ η = η ⋅ h

there exists an arrow ⌊f ⌋ ∶ D(A,RB) such that

f = ε ⋅ L g ⇐⇒ ⌊f ⌋ = g , (34)

for all g ∶ D(A,RB). The formula suggests that ε ⋅ L g = ⌈g⌉. Computation law:
substituting the right-hand side into the left-hand side, we obtain

f = ε ⋅ L ⌊f ⌋ . (35)

Reflection law: setting f = ε and g = id , yields

⌊ε⌋ = id . (36)

Fusion law: to establish

⌊f ⋅ Lh⌋ = ⌊f ⌋ ⋅ h , (37)

we appeal to the universal property:

f ⋅ Lh = ε ⋅ L (⌊f ⌋ ⋅ h) ⇐⇒ ⌊f ⋅ Lh⌋ = ⌊f ⌋ ⋅ h .
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To show the left-hand side, we calculate

ε ⋅ L (⌊f ⌋ ⋅ h)
= { L functor (2) }
ε ⋅ L ⌊f ⌋ ⋅ Lh

= { computation (35) }
f ⋅ Lh .

There is a unique way to turn the object mapping R into a functor so that the
counit ε is natural in B :

k ⋅ ε = ε ⋅ L (R k) .

We simply appeal to the universal property (34)

k ⋅ ε = ε ⋅ L (R k) ⇐⇒ ⌊k ⋅ ε⌋ = R k ,

which suggests to define

R f = ⌊f ⋅ ε⌋ . (38)

Functor fusion law:

R k ⋅ ⌊f ⌋ = ⌊k ⋅ f ⌋ . (39)

For the proof, we reason

R k ⋅ ⌊f ⌋
= { definition of R (38) }

⌊k ⋅ ε⌋ ⋅ ⌊f ⌋
= { fusion (37) }

⌊k ⋅ ε ⋅ L ⌊f ⌋⌋
= { computation (35) }

⌊k ⋅ f ⌋ .

Functoriality: R preserves identity

R id

= { definition of R (38) }
⌊id ⋅ ε⌋

= { identity and reflection (36) }
id
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and composition

R g ⋅ R f

= { definition of R (38) }
R g ⋅ ⌊f ⋅ ε⌋

= { functor fusion (39) }
⌊g ⋅ f ⋅ ε⌋

= { definition of R (38) }
R (g ⋅ f ) .

Fusion and functor fusion show that ⌊−⌋ is natural both in A and in B .
Dually, a functor R and a universal arrow η ∶ C (A,R (LA)) are sufficient to

form an adjunction.
f = ⌈g⌉ ⇐⇒ R f ⋅ η = g .

Define ⌊f ⌋ = R f ⋅ η and L g = ⌈η ⋅ g⌉.

Exercise 20. Make the relation between naturality and fusion precise. ⊓⊔

2.5.6 Exponential. Let us instantiate the abstract concept of an adjunction
to another concrete example. In Set, a function of two arguments A×X → B can
be treated as a function of the first argument A→ BX whose values are functions
of the second argument. In general, the object BX is called the exponential of X
and B . An element of BX is eliminated using application apply ∶ C (BX ×X ,B).
Application is an example of a universal arrow: for each f ∶ C (A × X ,B) there
exists an arrow Λ f ∶ C (A,BX ) (pronounce “curry f ”) such that

f = apply ⋅ (g × idX ) ⇐⇒ Λ f = g , (40)

for all g ∶ C (A,BX ). The function Λ turns a two argument function into a curried
function, hence its name. We recognise an adjoint situation, − ×X ⊣ (−)X .

C
≺
− ×X

�
(−)X

≻ C Λ ∶ C (A ×X ,B) ≅ C (A,BX ) ∶ Λ○

The left adjoint is pairing with X , the right adjoint is the exponential from X .
Turning to the laws, since the exponential is right adjoint, we have to view

Table 1 from the right. Computation law :

f = apply ⋅ (Λ f × id) . (41)

Reflection law :
Λapply = id . (42)

Fusion law :
Λ f ⋅ h = Λ (f ⋅ (h × id)) . (43)
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There is a unique way to turn (−)X into a functor so that application is natural
in B :

k ⋅ apply = apply ⋅ (kX × id) . (44)

The arrow part of the exponential functor is then given by

f X = Λ (f ⋅ apply) . (45)

Functor fusion law :
kX ⋅Λ f = Λ (k ⋅ f ) . (46)

Exponentials have some extra structure: if all the necessary exponentials
exist, then we do not have a single adjunction, but rather a family of adjunctions,
− × X ⊣ (−)X , one for each choice of X . The exponential is functorial in the
parameter X , and the adjuncts are natural in that parameter. Here are the
details:

We already know that × is a bifunctor. There is a unique way to turn the
exponential into a bifunctor, necessarily contravariant in its first argument, so
that the bijection Λ ∶ C (A ×X ,B) ≅ C (A,BX ) ∶ Λ○ is also natural in X :

C (A × X̂ ,B)
Λ

≻ C (A,B X̂ )

C (A × X̌ ,B)

C (A × p,B)
⋎

Λ
≻ C (A,B X̌ )

C (A,Bp)
⋎

for all p ∶ C (X̌ , X̂ ). We postpone a high-level proof until Section 2.7. For now we
construct the bifunctor manually via its partial applications. Fix an object B .
The arrow part of the contravariant functor B(−) ∶ C op → C is given by

Bp = Λ (apply ⋅ (id × p)) . (47)

Exercise 21. Show that B(−) preserves identity and composition. ⊓⊔
Pre-composition B(−) commutes with post-composition (−)A:

gǍ ⋅ B̂f = B̌f ⋅ gÂ , (48)

for all f ∶ C (Ǎ, Â) and g ∶ C (B̂, B̌). Consequently, the so-called internal hom-
functor (=)(−) ∶ C op × C → C is a bifunctor. It maps a pair of objects to their
exponential; its action on arrows is given by g f = Λ (g ⋅ apply ⋅ (id × f )).

Since Λ is also natural in X , we have yet another fusion law, the parameter
fusion law :

Bp ⋅Λ f = Λ (f ⋅ (A × p))) . (49)

We can also merge the three fusion laws into a single law:

kp ⋅Λ f ⋅ h = Λ (k ⋅ f ⋅ (h × p))) .
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However, it is not the case that apply is natural in X —its source type BX ×
X is not even functorial in X . (Rather, apply is an example of a dinatural
transformation [12], see also [8, Exercise IX.4.1].)

As an aside, a category with finite products (∆ ⊣ 1 and ∆ ⊣ × exist) and
exponentials (−×X ⊣ (−)X exists for each choice of X ) is called cartesian closed.

Exercise 22. Show that the contravariant functor B(−) ∶ C op → C is self-adjoint:
(B(−))op ⊣ B(−). ⊓⊔

2.5.7 Power and Copower. A finite product can be formed by nesting bi-
nary products: A1×(A2×(⋯×An)). (By definition, the n-ary product is the final
object 1 for n = 0.) Alternatively, we can generalise products and coproducts to n
components (or, indeed, to an infinite number of components).

Central to the double adjunction + ⊣ ∆ ⊣ × is the notion of a product
category. The product category C × C can be regarded as a simple functor
category: C 2, where 2 is some two-element set. To be able to deal with an
arbitrary number of components we generalise from 2 to an arbitrary index set.

A set forms a so-called discrete category : the objects are the elements of the
set and the only arrows are the identities. Consequently, a functor from a discrete
category is uniquely defined by its action on objects. The category of indexed
objects and arrows C I , where I is some arbitrary index set, is a functor category
from a discrete category: A ∶ C I if and only if ∀i ∈ I . Ai ∶ C and f ∶ C I (A,B)
if and only if ∀i ∈ I . fi ∶ C (Ai ,Bi). The diagonal functor ∆ ∶ C → C I now
sends each index to the same object: (∆A)i = A. Left and right adjoints of
the diagonal functor generalise the binary constructions. The left adjoint of the
diagonal functor is a simple form of a dependent sum (also called a dependent
product).

C (∑ i ∈ I . Ai ,B) ≅ C I (A,∆B)

Its right adjoint is a dependent product (also called a dependent function space).

C I (∆A,B) ≅ C (A,∏ i ∈ I . Bi)

The following diagram summarises the type information.

C
≺
Σ i ∈ I . (−)i

�
∆

≻ C I ≺
∆

�
Π i ∈ I . (−)i

≻ C

Let us spell out the underlying universal properties. The family of arrows ιk ∶
Ak → (Σ i ∈ I . Ai) generalises the binary injections inl and inr . For each family
of arrows ∀i ∈I . gi ∶ Ai → B , there exists an arrow (

`
i ∈I . gi) ∶ (Σ i ∈I . Ai) → B

such that

f = (
h

i ∈ I . gi) ⇐⇒ (∀i ∈ I . f ⋅ ιi = gi) (50)

for all f ∶ (Σ i ∈ I . Ai) → B .
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Dually, the family πk ∶ (Π i ∈ I . Bi) → Bk generalises the binary projections
outl and outr . For each family of arrows ∀i ∈I . fi ∶ A→ Bi , there exists an arrow
(
a

i ∈ I . fi) ∶ A→ (Π i ∈ I . Bi) such that

(∀i ∈ I . fi = πi ⋅ g) ⇐⇒ (
i

i ∈ I . fi) = g (51)

for all g ∶ A→ (Π i ∈ I . Bi).
It is worth singling out a special case of the construction that we shall need

later on. First of all, note that C I (∆X ,∆Y ) ≅ (C (X ,Y ))I ≅ I → C (X ,Y ).
Consequently, if the summands of the sum and the factors of the product are
the same, Ai = X and Bi = Y , we obtain another adjoint situation:

C (∑ I . X ,Y ) ≅ I → C (X ,Y ) ≅ C (X ,∏ I . Y ) . (52)

The degenerated sum ∑ I . A is also called a copower, sometimes written I ●A.
The degenerated product ∏ I . A is also called a power, sometimes written AI .
In Set, we have ∑ I . A = I × A and ∏ I . A = I → A. (Hence, Σ I ⊣ Π I is
essentially a variant of currying).

2.5.8 Properties of Adjunctions. Adjunctions satisfy a myriad of proper-
ties. A property well worth memorising is that both the left and right adjoint of
a functor is unique up to natural isomorphism. For the proof assume that the
functor L ∶ C ← D has two right adjoints:

⌊−⌋ ∶ C (LA,B) ≅ D(A,RB) ,

⌊−⌋′ ∶ C (LA,B) ≅ D(A,R′ B) .

The natural isomorphism is given by

⌊ε⌋′ ∶ R ≅ R′ ∶ ⌊ε′⌋ .

We show one half of the isomorphism, the proof of the other half proceeds com-
pletely analogously (this solves Exercise 12, albeit in the abstract).

⌊ε⌋′ ⋅ ⌊ε′⌋
= { fusion: ⌊−⌋′ is natural in A (Table 1) }

⌊ε ⋅ L ⌊ε′⌋⌋′

= { computation (35) }
⌊ε′⌋′

= { reflection (Table 1) }
id

We shall give an application in Section 2.6.5 (where we show that F∗ A ≅ µFA).
Here is another property worth memorising: left adjoints preserve initial ob-

jects and coproducts and, dually, right adjoints preserve final objects and prod-
ucts. (In general, left adjoints preserve so-called colimits and right adjoints pre-
serve so-called limits.) In what follows let L ∶ C ← D and R ∶ C → D be an adjoint
pair of functors.
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A functor F ∶ C → D preserves initial objects if it takes an initial object in C
to an initial object in D . To prove that the left adjoint L preserves initial objects
we show that for each object B ∶ C there is a unique arrow from L0 to B . The
required arrow is simply the transpose of the unique arrow to RB .

f = ⌈0⇢ RB⌉
⇐⇒ { adjunction: f = ⌈g⌉ ⇐⇒ ⌊f ⌋ = g (27) }

⌊f ⌋ = 0⇢ RB

⇐⇒ { 0 is initial: universal property (26) }
true

Since the initial object is unique up to unique isomorphism (see Exercise 16),
we conclude that

L0 ≅ 0 .

A functor F ∶ C → D preserves the product B1 × B2 if F (B1 × B2) with
Foutl ∶ F (B1 × B2) → FB1 and Foutr ∶ F (B1 × B2) → FB2 is a product of FB1

and FB2. To show that the right adjoint R preserves B1 × B2, we establish the
universal property of products:

f1 = Routl ⋅ g ∧ f2 = Routr ⋅ g
⇐⇒ { adjunction: f = ⌈g⌉ ⇐⇒ ⌊f ⌋ = g (27) }

⌈f1⌉ = ⌈Routl ⋅ g⌉ ∧ ⌈f2⌉ = ⌈Routr ⋅ g⌉
⇐⇒ { fusion: ⌈−⌉ is natural in B (Table 1) }

⌈f1⌉ = outl ⋅ ⌈g⌉ ∧ ⌈f2⌉ = outr ⋅ ⌈g⌉
⇐⇒ { B1 ×B2 is a product: universal property (8) }

⌈f1⌉ △ ⌈f2⌉ = ⌈g⌉
⇐⇒ { adjunction: f = ⌈g⌉ ⇐⇒ ⌊f ⌋ = g (27) }

⌊⌈f1⌉ △ ⌈f2⌉⌋ = g .

The calculation shows that ⌊⌈f1⌉△⌈f2⌉⌋ is the required mediating arrow, the split
of f1 and f2. Since the product is unique up to a unique isomorphism relating
the projections (see Exercise 12), we have

τ = Routl △ Routr ∶ R (B1 ×B2) ≅ RB1 × RB2 ,

and consequently

Routl = outl ⋅ τ ∧ Routr = outr ⋅ τ . (53)

To illustrate the ‘preservation properties’, let us instantiate L ⊣ R to the
‘curry’ adjunction − ×X ⊣ (−)X . For the left adjoint we obtain familiar looking
laws:

0 ×X ≅ 0 ,

(A1 +A2) ×X ≅ A1 ×X +A2 ×X .
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These laws are the requirements for a distributive category (see also Exercise 17),
which demonstrates that a cartesian closed category with finite coproducts is
automatically distributive. For the right adjoint we obtain two of the laws of
exponentials:

1X ≅ 1 ,

(B1 ×B2)X ≅ BX
1 ×BX

2 .

Another interesting example is provided by the adjunction (B(−))op ⊣ B(−)

of Exercise 22. Since the self-adjoint functor B(−) is contravariant, it takes the
initial object to the final object and coproducts to products:

X 0 ≅ 1 ,

X A1+A2 ≅ X A1 ×X A2 .

We obtain two more of the laws of exponentials.

2.6 Initial Algebra and Final Coalgebra

Products model pair types, coproducts model sum types, and exponentials model
higher-order function types. In this section we study initial algebras and final
coalgebras, which give a meaning to recursively defined types. We shall say a
lot more about recursive types and functions over recursive types in the second
part of these notes (Section 3).

2.6.1 Initial Algebra. Let F ∶ C → C be an endofunctor. An F-algebra is a
pair ⟨A, a⟩ consisting of an object A ∶ C (the carrier of the algebra) and an arrow
a ∶ C (FA,A) (the action of the algebra). An F-algebra homomorphism between
algebras ⟨A, a⟩ and ⟨B , b⟩ is an arrow h ∶ C (A,B) such that h ⋅ a = b ⋅ Fh. The
diagram below illustrates F-algebras and their homomorphisms.

FA

A

a

⋎

FA
Fh

≻ FB

A

a

⋎
h

≻ B

b

⋎

FB

B

b

⋎

There are two ways to turn FA things into B things; the coherence property for
F-algebra homomorphisms demands that they are equal.

Identity is an F-algebra homomorphism and homomorphisms compose. Thus,
the data defines a category, called F-Alg(C ) or just F-Alg if the underlying
category is obvious from the context. The initial object in this category—if it
exists—is the so-called initial F-algebra ⟨µF, in⟩. The import of initiality is that
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there is a unique arrow from ⟨µF, in⟩ to any F-algebra ⟨B , b⟩. This unique arrow
is written ((b)) and is called fold or catamorphism.4 Expressed in terms of the
base category, it satisfies the following uniqueness property.

f = ((b)) ⇐⇒ f ⋅ in = b ⋅ F f (⇐⇒ f ∶ ⟨µF, in⟩ → ⟨B , b⟩) (54)

Similar to products, the uniqueness property has two immediate consequences.
Substituting the left-hand side into the right-hand side gives the computation
law :

((b)) ⋅ in = b ⋅ F((b)) (⇐⇒ ((b)) ∶ ⟨µF, in⟩ → ⟨B , b⟩) . (55)

Setting f = id and b = in, we obtain the reflection law :

id = ((in )) . (56)

Since the initial algebra is an initial object, we also have a fusion law for
fusing an arrow with a fold to form another fold.

k ⋅ ((̂b)) = ((̌b)) ⇐Ô k ⋅ b̂ = b̌ ⋅ F k (⇐⇒ k ∶ ⟨B̂, b̂⟩ → ⟨B̌, b̌⟩) (57)

The proof is trivial if phrased in terms of the category F-Alg(C ). However, we
can also execute the proof in the underlying category C .

k ⋅ ((̂b)) = ((̌b))
⇐⇒ { uniqueness property (54) }

k ⋅ ((̂b)) ⋅ in = b̌ ⋅ F (k ⋅ ((̂b)))
⇐⇒ { computation (55) }

k ⋅ b̂ ⋅ F((̂b)) = b̌ ⋅ F (k ⋅ ((̂b)))
⇐⇒ { F functor (2) }

k ⋅ b̂ ⋅ F((̂b)) = b̌ ⋅ F k ⋅ F((̂b))
⇐Ô { cancel − ⋅ F((̂b)) on both sides }

k ⋅ b̂ = b̌ ⋅ F k .

The fusion law states that ((−)) is natural in ⟨B , b⟩, that is, as an arrow in F-
Alg(C ). This does not imply naturality in the underlying category C . (As an
arrow in C the fold ((−)) is a strong dinatural transformation.)

Using these laws we can show Lambek’s Lemma [13], which states that µF
is a fixed point of the functor: F (µF) ≅ µF. The isomorphism is witnessed by
in ∶ C (F (µF), µF) ∶ ((F in )). We calculate

in ⋅ ((F in )) = id

⇐⇒ { reflection (56) }
in ⋅ ((F in )) = ((in ))

⇐Ô { fusion (57) }
in ⋅ F in = in ⋅ F in .

4 The term catamorphism was coined by Meertens, the notation ((−)) is due to Malcolm,
and the name banana bracket is attributed to Van der Woude.
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For the reverse direction, we reason

((F in )) ⋅ in
= { computation (55) }

F in ⋅ F((F in ))
= { F functor (2) }

F (in ⋅ ((F in )))
= { see proof above }

F id

= { F functor (1) }
id .

As an example, Bush = µB where BA = N+(A×A) defines the type of binary
leaf trees: a tree is either a leaf, labelled with a natural number, or a node
consisting of two subtrees. Binary leaf trees can be used to represent non-empty
sequences of natural numbers. To define a function that computes the sum of
such a sequence, we need to provide an algebra of type BN → N. The arrow
id ▽ plus where plus is addition will do nicely. Consequently, the function that
computes the total is given by ((id ▽ plus )).

Exercise 23. Explore the category Id-Alg(C ) where Id is the identity functor.
Determine the initial Id-algebra. ⊓⊔

∗ Exercise 24. The inclusion functor Incl ∶ C → Id-Alg(C ), defined InclA = ⟨A, id⟩
and Incl f = f , embeds the underlying category in the category of Id-algebras.
Does Incl have a left or a right adjoint? ⊓⊔

Exercise 25. Explore the category K-Alg(C ) where KA = C is the constant
functor. Determine the initial K-algebra. ⊓⊔

Exercise 26. Is there such a thing as a final F-algebra? ⊓⊔

If all the necessary initial algebras exist, we can turn µ into a higher-order
functor of type C C → C . The object part of this functor maps a functor to its
initial algebra; the arrow part maps a natural transformation α ∶ F →̇ G to an
arrow µα ∶ C (µF, µG). There is a unique way to define this arrow so that the
arrow in ∶ F (µF) → µF is natural in F:

µα ⋅ in = in ⋅ α (µα) . (58)

Note that the higher-order functor λF . F (µF), whose action on arrows is
λα . α (µα) = λα . α (µG) ⋅ F (µα), involves the ‘application functor’ (7). To
derive µα we simply appeal to the universal property (54):

µα ⋅ in = in ⋅ α (µG) ⋅ F (µα) ⇐⇒ µα = ((in ⋅ α (µG))) .
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To reduce clutter we will usually omit the type argument of α on the right-hand
side and define

µα = ((in ⋅ α)) . (59)

As with products, we postpone the proof that µ preserves identity and compo-
sition.

Folds enjoy a second fusion law that we christen base functor fusion or just
base fusion law. It states that we can fuse a fold after a map to form another
fold:

((b ⋅ α)) = ((b)) ⋅ µα , (60)

for all α ∶ F̂ →̇ F̌. To establish base fusion we reason

((b)) ⋅ µα = ((b ⋅ α))
⇐⇒ { definition of µ (59) }

((b)) ⋅ ((in ⋅ α)) = ((b ⋅ α))
⇐Ô { fusion (57) }

((b)) ⋅ in ⋅ α = b ⋅ α ⋅ F̂((b))
⇐⇒ { computation (55) }

b ⋅ F̌((b)) ⋅ α = b ⋅ α ⋅ F̂((b))
⇐⇒ { α is natural: F̌h ⋅ α = α ⋅ F̂h }

b ⋅ α ⋅ F̂((b)) = b ⋅ α ⋅ F̂((b)) .

Given these prerequisites, it is straightforward to show that µ preserves identity

µid

= { definition of µ (59) }
((in ⋅ id ))

= { identity and reflection (56) }
id

and composition

µβ ⋅ µα
= { definition of µ (59) }

((in ⋅ β)) ⋅ µα
= { base fusion (60) }

((in ⋅ β ⋅ α))
= { definition of µ (59) }
µ(β ⋅ α) .

To summarise, base fusion expresses that ((−)) is natural in F:

((−)) ∶ ∀F . C (FB ,B) → C (µF,B) .
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Note that C (−B ,B) and C (µ−,B) are contravariant, higher-order functors of
type C C → Setop.

As an example, α = succ ▽ id is a natural transformation of type B →̇B. The
arrow µα increments the labels contained in a binary leaf tree.

2.6.2 Final Coalgebra. The development nicely dualises to F-coalgebras and
unfolds. An F-coalgebra is a pair ⟨C , c⟩ consisting of an object C ∶ C and an
arrow c ∶ C (C ,FC ). An F-coalgebra homomorphism between coalgebras ⟨C , c⟩
and ⟨D , d⟩ is an arrow h ∶ C (C ,D) such that Fh ⋅ c = d ⋅ h. Identity is an F-
coalgebra homomorphism and homomorphisms compose. Consequently, the data
defines a category, called F-Coalg(C ) or just F-Coalg. The final object in this
category—if it exists—is the so-called final F-coalgebra ⟨νF, out⟩. The import of
finality is that there is a unique arrow to ⟨νF, out⟩ from any F-coalgebra ⟨C , c⟩.
This unique arrow is written [(c)] and is called unfold or anamorphism. Expressed
in terms of the base category, it satisfies the following uniqueness property.

(g ∶ ⟨C , c⟩ → ⟨νF, out⟩ ⇐⇒) F g ⋅ c = out ⋅ g ⇐⇒ [(c)] = g (61)

As with initial algebras, the uniqueness property implies computation, reflection,
fusion and base fusion laws. Computation law :

([(c)] ∶ ⟨C , c⟩ → ⟨νF, out⟩ ⇐⇒) F [(c)] ⋅ c = out ⋅ [(c)] . (62)

Reflection law :
[(out )] = id . (63)

Fusion law :

[(ĉ)] = [(č)] ⋅ h ⇐Ô Fh ⋅ ĉ = č ⋅ h (⇐⇒ h ∶ ⟨Ĉ, ĉ⟩ → ⟨Č, č⟩) . (64)

There is a unique way to turn ν into a functor so that out is a natural in F:

α (να) ⋅ out = out ⋅ να .

The arrow part of the functor ν is then given by

να = [(α ⋅ out )] . (65)

Base fusion law :
να ⋅ [(c)] = [(α ⋅ c)] . (66)

As an example, Tree = νT where TA = A×N×A defines the type of bifurca-
tions, infinite binary trees of naturals. (A bifurcation is a division of a state or
an action into two branches.) The unfold generate = [(shift0 △ id△shift1 )], where
shift0 n = 2 ∗ n + 0 and shift1 n = 2 ∗ n + 1, generates an infinite tree: generate 1
contains all the positive naturals.

Exercise 27. Explore the category Id-Coalg(C ) where Id is the identity functor.
Determine the final Id-coalgebra. ⊓⊔
Exercise 28. Explore the category K-Coalg(C ) where KA = C is the constant
functor. Determine the final K-coalgebra. ⊓⊔
Exercise 29. Is there such a thing as an initial F-coalgebra? ⊓⊔
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2.6.3 Free Algebra and Cofree Coalgebra. We have explained coprod-
ucts, products and exponentials in terms of adjunctions. Can we do the same for
initial algebras and final coalgebras? Well, the initial algebra is an initial object,
hence it is part of a trivial adjunction between F-Alg and 1. Likewise, the final
coalgebra is a final object giving rise to an adjunction between 1 and F-Coalg.
A more satisfactory answer is provided by the following:

The category F-Alg(C ) has more structure than C . The forgetful or un-
derlying functor U ∶ F-Alg(C ) → C forgets about the additional structure:
U ⟨A, a⟩ = A and Uh = h. An analogous functor can be defined for F-Coalg(C ).
While the definitions of the forgetful functors are deceptively simple, they give
rise to two interesting concepts via two adjunctions.

F-Alg(C ) ≺
Free

�
U

≻ C
≺

U

�
Cofree

≻ F-Coalg(C )

The functor Free maps an object A to the so-called free F-algebra over A. Dually,
Cofree maps an object A to the cofree F-coalgebra over A.

2.6.4 Free Algebra. Let us explore the notion of the free algebra in more
depth. First of all, FreeA is an F-algebra. We christen its action com for rea-
sons to become clear in a moment. In Set, the elements of U (FreeA) are terms
built from constructors determined by F and variables drawn from A. Think
of the functor F as a grammar describing the syntax of a language. The ac-
tion com ∶ C (F (U (FreeA)),U (FreeA)) constructs a composite term from an
F-structure of subterms. There is also an operation var ∶ C (A,U (FreeA)) for
embedding a var iable into a term. This operation is a further example of a uni-
versal arrow: for each g ∶ C (A,UB) there exists an F-algebra homomorphism
eval g ∶ F-Alg(FreeA,B) (pronounce “evaluate with g”) such that

f = eval g ⇐⇒ U f ⋅ var = g , (67)

for all f ∶ F-Alg(FreeA,B). In words, the meaning of a term is uniquely deter-
mined by the meaning of the variables. The fact that eval g is a homomorphism
entails that the meaning function is compositional: the meaning of a composite
term is defined in terms of the meanings of its constituent parts.

The universal property implies the usual smörg̊asbord of laws. Even though
U’s action on arrows is a no-op, Uh = h, we shall not omit applications of U,
because it provides valuable ‘type information’: it makes precise that h is an
F-algebra homomorphism, not just an arrow in C .

Computation law :
U (eval g) ⋅ var = g . (68)

Reflection law :
id = eval var . (69)

Fusion law :
k ⋅ eval g = eval (U k ⋅ g) . (70)
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Note that the computation law lives in the underlying category C , whereas the
reflection law and the fusion law live in F-Alg(C ).

As usual, there is a unique way to turn Free into a functor so that the unit
var is natural in A:

U (Freeh) ⋅ var = var ⋅ h . (71)

The arrow part of the functor Free is then given by

Free g = eval (var ⋅ g) . (72)

Functor fusion law :
eval g ⋅ Freeh = eval (g ⋅ h) . (73)

The algebra com ∶ C (F (U (FreeA)),U (FreeA)) is also natural in A.

U (Freeh) ⋅ com = com ⋅ F (U (Freeh)) . (74)

This is just a reformulation of the fact that Freeh ∶ FreeA → FreeB is an F-
algebra homomorphism.

As an example, the free algebra of the squaring functor SqA = A × A gen-
eralises the type of binary leaf trees abstracting away from the type of natural
numbers: var creates a leaf and com an inner node (see also Example 21 and
Exercise 42).

∗ Exercise 30. Every adjunction L ⊣ R gives rise to a monad R○L. This exercise
asks you to explore M = U○Free, the so-called free monad of the functor F. The
unit of the monad is var ∶ Id →̇M, which embeds a variable into a term. The
multiplication of the monad, join ∶ M○M →̇M, implements substitution. Define
join using eval and prove the monad laws (○ binds more tightly than ⋅):

join ⋅ var ○M = idM ,

join ⋅M○var = idM ,

join ⋅ join○M = join ⋅M○join .

The laws capture fundamental properties of substitution. Explain. ⊓⊔

Exercise 31. What is the free monad of the functor Id? Is the free monad of the
constant functor KA = C useful? ⊓⊔

∗ Exercise 32. Exercise 6 asked you to define the forgetful functor U ∶ Mon →
Set that forgets about the additional structure of Mon. Show that the functor
Free ∶ Set →Mon, which maps a set A to the free monoid on A, is left adjoint
to U. The units of this adjunction are familiar list-processing functions. Which
ones? ⊓⊔

Free algebras have some extra structure. As with products, we do not have a
single adjunction, but rather a family of adjunctions, one for each choice of F. The
construction of the free algebra is functorial in the underlying base functor F and
the operations are natural in that functor. Compared to products, the situation
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is more complicated as each choice of F gives rise to a different category of
algebras. We need some infrastructure to switch swiftly between those different
categories:

Rather amazingly, the construction (−)-Alg can be turned into a contravari-
ant functor of type C C → Catop: it sends the functor F to the category of
F-algebras and the natural transformation α ∶ F →̇ G to the functor α-Alg ∶ G-
Alg → F-Alg, defined α-Alg ⟨A, a⟩ = ⟨A, a ⋅ αA⟩ and α-Alg h = h. (As an ex-
ample, µα is an F-algebra homomorphism of type ⟨µF, in⟩ → α-Alg ⟨µG, in⟩.)
A number of proof obligations arise. We have to show that the G-algebra homo-
morphism h ∶ A → B is also a F-algebra homomorphism of type α-Alg A → α-
Alg B .

h ⋅ a ⋅ αA

= { assumption: h is an G-algebra homomorphism: h ⋅ a = b ⋅Gh }
b ⋅Gh ⋅ αA

= { α is natural: Gh ⋅ αÂ = αǍ ⋅ Fh }
b ⋅ αB ⋅ Fh

Furthermore, (−)-Alg has to preserve identity and composition.

(idF)-Alg = IdF-Alg (75)

(α ⋅ β)-Alg = β-Alg○α-Alg (76)

The proofs are straightforward as the functor (−)-Alg does not change the carrier
of an algebra. This is an important property worth singling out: UF○α-Alg = UG.

G-Alg(C )
α-Alg

≻ F-Alg(C )

C
≺ U F

U
G ≻

(77)

Since several base functors are involved, we have indexed the constructions with
the respective functor.

Equipped with the new machinery we can now generalise the fusion law (70)
to homomorphisms of different types. Assuming α ∶ F →̇G, we have

UG k ⋅UF (evalF g) = UF (evalF (UG k ⋅ g)) . (78)

The original fusion law lives in F-Alg(C ), whereas this one lives in the underlying
category C . The proof makes essential use of property (77).

UG k ⋅UF (evalF g)
= { UG = UF○α-Alg (77) }

UF (α-Alg k) ⋅UF (evalF g)
= { UF functor (2) }

UF (α-Alg k ⋅ evalF g)
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= { fusion (70) }
UF (evalF (UF (α-Alg k) ⋅ g))

= { UG = UF○α-Alg (77) }
UF (evalF (UG k ⋅ g))

The application of α-Alg can be seen as an adaptor. The algebras are invisible in
the calculation—they can be made explicit using the type information provided
by the adaptor.

Let us now turn to the heart of the matter. It is convenient to introduce a
shortcut for the carrier of the free algebra:

F∗ = UF○FreeF . (79)

This defines a functor whose arrow part is F∗ g = UF (evalF (varF ⋅ g)). Using F∗

we can assign more succinct types to the constructors: varF ∶ C (A,F∗ A) and
comF ∶ C (F (F∗ A),F∗ A).

We claim that (−)∗ is a higher-order functor of type C C → C C that maps
a base functor F to the so-called free monad of the functor F. As usual, we
would like to derive the definition of the arrow part, which takes a natural
transformation α ∶ F →̇ G to a natural transformation α∗ ∶ F∗ →̇ G∗. One would
hope that the constructors varF ∶ C (A,F∗ A) and comF ∶ C (F (F∗ A),F∗ A) are
natural in F:

α∗ A ⋅ varF = varG ,

α∗ A ⋅ comF = comG ⋅ α (α∗ A) .

Note that the functor λF . F (F∗ A), whose action on arrows is λα . α (α∗ A) =
λα . α (µG) ⋅ F (α∗ A), involves the ‘application functor’ (7). Consequently, the
second condition expresses that the arrow α∗ A is an F-homomorphism of type
FreeF A→ α-Alg (FreeG A):

α∗ A ⋅ comF = comG ⋅ α (µG) ⋅ Fα∗ A

⇐⇒ α∗ A ∶ ⟨F∗ A, comF⟩ → ⟨G∗ A, comG ⋅ α (µG)⟩ .

To derive the arrow part of α∗ A we reason

α∗ A ⋅ varF = varG

⇐⇒ { α∗ A is an F-homomorphism, see above }
UF (α∗ A) ⋅ varF = varG

⇐⇒ { universal property (67) }
α∗ A = evalF varG

⇐⇒ { evalF varG is an F-homomorphism }
α∗ A = UF (evalF varG) .
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Two remarks are in order. First, the universal property is applicable in the
second step as varG ∶ A→ UG (FreeG A) = A→ UF (α-Alg (FreeG A)). Second, the
equations live in different categories: the last equation lives in C , whereas the
second, but last equation lives in F-Alg(C ). To summarise, the arrow part of
the higher-order functor α∗ is defined

α∗ A = UF (evalF varG) . (80)

Turning to the proofs we first have to show that α∗ is indeed natural. Let
h ∶ C (Â, Ǎ), then

G∗ h ⋅ α∗ Â
= { definition of G∗ (79) and α∗ (80) }

UG (evalG (varG ⋅ h)) ⋅UF (evalF varG)
= { generalised fusion (78) }

UF (evalF (UG (evalG (varG ⋅ h)) ⋅ varG))
= { computation (68) }

UF (evalF (varG ⋅ h))
= { functor fusion (73) }

UF (evalF varG ⋅ FreeF h)
= { UF functor (2) }

UF (evalF varG) ⋅UF (FreeF h)
= { definition of α∗ (80) and F∗ (79) }
α∗ Ǎ ⋅ F∗ h .

As usual, we postpone the proof that (−)∗ preserves identity and composition.

The base functor fusion law states that

UG (evalG g) ⋅ α∗ A = UF (evalF g) . (81)

We reason

UG (evalG g) ⋅ α∗ A

= { definition of (−)∗ (80) }
UG (evalG g) ⋅UF (evalF varG)

= { generalised fusion (78) }
UF (evalF (UG (evalG g) ⋅ varG))

= { computation (68) }
UF (evalF g) .
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Given these prerequisites, it is straightforward to show that (−)∗ preserves iden-
tity (id ∶ F →̇ F)

id∗ A

= { definition of (−)∗ (80) and (75) }
UF (evalF varF)

= { reflection (69) }
UF id

= { UF functor (1) }
id ,

and composition (β ∶ G →̇H and α ∶ F →̇G)

β∗ ⋅ α∗

= { definition of (−)∗ (80) }
UG (evalG varH) ⋅ α∗

= { base functor fusion (81) }
UF (evalF varH)

= { definition of (−)∗ (80) and (76) }
(β ⋅ α)∗ .

Base functor fusion expresses that UF (evalF −) ∶ C (A,UB) → C (F∗ A,UB) is
natural in F—note that F occurs in a contravariant position.

2.6.5 Relating F∗ and µF. Since left adjoints preserve initial objects, we
have Free0 ≅ ⟨µF, in⟩ and consequently F∗ 0 = U (Free0) ≅ U ⟨µF, in⟩ = µF—
this step uses the fact that functors, here U, preserve isomorphisms (see Ex-
ercise 5). In words, the elements of µF are closed terms, terms without vari-
ables. Conversely, free algebras can be expressed in terms of initial algebras:
⟨F∗ A, com⟩ ≅ ⟨µFA, in ⋅ inr⟩ where FA X = A + FX . The functor FA formalises
that a term is either a variable or a composite term. For this representation,
in ⋅ inl plays the rôle of var and in ⋅ inr plays the rôle of com. To prove the
isomorphism we show that the data above determines an adjunction with U as
the right adjoint. Since left adjoints are unique up to natural isomorphism, the
result follows. (The isomorphism ⟨F∗ A, com⟩ ≅ ⟨µFA, in ⋅ inr⟩ between algebras
is even natural in A.)

Turning to the proof, we show that for each g ∶ C (A,UB) there exists an
F-algebra homomorphism F-Alg(⟨µFA, in ⋅ inr⟩, ⟨B , b⟩) satisfying the univer-
sal property (67). We claim that ((g ▽ b)) is the required homomorphism. The
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following calculation shows that ((g ▽ b)) is indeed an F-algebra homomorphism.

((g ▽ b)) ⋅ in ⋅ inr

= { computation (55) }
(g ▽ b) ⋅ FA ((g ▽ b)) ⋅ inr

= { FA X = A + FX and inr is natural (23) }
(g ▽ b) ⋅ inr ⋅ F((g ▽ b))

= { computation (19) }
b ⋅ F((g ▽ b))

To establish the universal property (67) we reason

f = ((g ▽ b))
⇐⇒ { uniqueness property (54) }

f ⋅ in = (g ▽ b) ⋅ FA f

⇐⇒ { FA X = A + FX and functor fusion (25) }
f ⋅ in = g ▽ b ⋅ F f

⇐⇒ { universal property (17) }
f ⋅ in ⋅ inl = g ∧ f ⋅ in ⋅ inr = b ⋅ F f

⇐⇒ { f ∶ ⟨µFA, in ⋅ inr⟩ → ⟨B , b⟩ }
U f ⋅ in ⋅ inl = g .

The last step makes use of the fact that f ranges over F-algebra homomorphisms.

2.6.6 Banana-split. The adjunction Free ⊣ U tells us a lot about the struc-
ture of the category of algebras. We have already made use of the fact that left
adjoints preserve initial objects: Free0 ≅ 0. Since right adjoints preserve final
objects and products, we furthermore know that

U1 ≅ 1 , (82)

U (B1 ×B2) ≅ UB1 ×UB2 . (83)

Since U is a forgetful functor, we can use these properties to derive the definition
of final objects and products in the category of algebras. Property (82) suggests
that the final algebra is given by (this solves Exercise 26)

1 = ⟨1, F1⇢ 1⟩ .

The action of the final algebra is determined since there is exactly one arrow from
F1 to 1. The unique homomorphism from any algebra ⟨A, a⟩ to the final algebra
is simply A⇢ 1. The homomorphism condition, (1⇠ A)⋅a = (1⇠ F1)⋅F (1⇠ A),
follows from fusion.

Likewise, Property (83) determines the carrier of the product algebra. To
determine its action, we reason as follows. Preservation of products also implies
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Uoutl = outl and Uoutr = outr—these are instances of (53) assuming equality
rather than isomorphism in (83). In other words, outl and outr have to be F-
algebra homomorphisms: outl ∶ ⟨B1 ×B2, x ⟩ → ⟨B1, b1⟩ and outr ∶ ⟨B1 ×B2, x ⟩ →
⟨B2, b2⟩ where x is the to-be-determined action. Let’s calculate.

outl ∶ ⟨B1 ×B2, x ⟩ → ⟨B1, b1⟩ ∧ outr ∶ ⟨B1 ×B2, x ⟩ → ⟨B2, b2⟩
⇐⇒ { homomorphism condition }

outl ⋅ x = b1 ⋅ Foutl ∧ outr ⋅ x = b2 ⋅ Foutr

⇐⇒ { universal property (8) }
x = b1 ⋅ Foutl △ b2 ⋅ Foutr

Consequently, the product of algebras is defined

⟨B1, b1⟩ × ⟨B2, b2⟩ = ⟨B1 ×B2, b1 ⋅ Foutl △ b2 ⋅ Foutr⟩ .

There is one final proof obligation: we have to show that the mediating arrow △
takes homomorphisms to homomorphisms.

f1 △ f2 ∶ ⟨A, a⟩ → ⟨B1, b1⟩ × ⟨B2, b2⟩
⇐Ô f1 ∶ ⟨A, a⟩ → ⟨B1, b1⟩ ∧ f2 ∶ ⟨A, a⟩ → ⟨B2, b2⟩

We reason

(f1 △ f2) ⋅ a
= { fusion (12) }

f1 ⋅ a △ f2 ⋅ a
= { assumption: f1 ∶ ⟨A, a⟩ → ⟨B1, b1⟩ ∧ f2 ∶ ⟨A, a⟩ → ⟨B2, b2⟩ }

b1 ⋅ F f1 △ b2 ⋅ F f2

= { computation (9)–(10) }
b1 ⋅ F (outl ⋅ (f1 △ f2)) △ b2 ⋅ F (outr ⋅ (f1 △ f2))

= { F functor (2) }
b1 ⋅ Foutl ⋅ F (f1 △ f2) △ b2 ⋅ Foutr ⋅ F (f1 △ f2)

= { fusion (12) }
(b1 ⋅ Foutl △ b2 ⋅ Foutr) ⋅ F (f1 △ f2) .

Using product algebras we can justify the banana-split law [9], an important
program optimisation which replaces a double tree traversal by a single one.

((b1)) △ ((b2)) = ((b1 ⋅ Foutl △ b2 ⋅ Foutr )) ∶ ⟨µF, in⟩ → ⟨B1, b1⟩ × ⟨B2, b2⟩

The double traversal on the left is transformed into the single traversal on the
right. (The law is called ‘banana-split’, because the fold brackets are like bananas
and △ is pronounced ‘split’.) The law can now be justified in two different ways:
because ((b1)) △ ((b2)) is the unique homomorphism to the product algebra, and
because ((b1 ⋅Foutl△b2 ⋅Foutr )) is the unique F-algebra homomorphism from the
initial algebra.
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Exercise 33. Formalise the dual of the banana-split law (which involves unfolds
and coproducts). ⊓⊔

2.6.7 Cofree Coalgebra. The dual of the free algebra is the cofree coalgebra.
In Set, the elements of U (CofreeA) are infinite trees whose branching structure
is determined by F with labels drawn from A. The action of the coalgebra,
subtrees ∶ C (U (CofreeA),F (U (CofreeA))), maps a tree to an F-structure of
subtrees. Think of the functor F as a static description of all possible behaviours
of a system. Additionally, there is an operation label ∶ C (U (CofreeA),A) for
extracting the label of (the root of) a tree. This operation is universal: for each f ∶
C (UA,B) there is an F-coalgebra homomorphism trace f ∶ F-Coalg(A,CofreeB)
such that

f = label ⋅U g ⇐⇒ trace f = g , (84)

for all g ∶ F-Coalg(A,CofreeB). Think of the coalgebra A as a type of states,
whose action is a mapping from states to successor states. The universal property
expresses that the infinite tree of behaviours for a given start state is uniquely
determined by a labelling function for the states. As an aside, the carrier of
CofreeA, written F∞ A, is also known as a generalised rose tree.

As an example, the cofree coalgebra of the squaring functor SqA = A × A
generalises the type of bifurcations abstracting away from the type of natural
numbers (see also Exercise 43).

∗ Exercise 34. The composition U○Cofree is the cofree comonad of the functor F.
Explore the structure for F = Id and F = K, where K is the constant functor. ⊓⊔

Since right adjoints preserve final objects, we have Cofree1 ≅ ⟨νF, out⟩ and
consequently F∞ 1 = U (Cofree1) ≅ U ⟨νF, out⟩ = νF. In words, the elements of
νF are infinite trees with trivial labels. Conversely, cofree coalgebras can be
expressed in terms of final coalgebras: ⟨F∞ A, subtrees⟩ ≅ ⟨νFA, outr ⋅out⟩ where
FA X = A × FX .

Table 2 summarises the adjunctions discussed in this section.

2.7 The Yoneda Lemma

This section introduces an important categorical tool: the Yoneda Lemma. It is
related to continuation-passing style and induces an important proof technique,
the principle of indirect proof [14].

Recall that the contravariant hom-functor C (−,X ) ∶ C op → Set maps an
arrow f ∶ C (B ,A) to a function C (f ,X ) ∶ C (A,X ) → C (B ,X ). This function
is natural in X —this is the import of identity (5). Furthermore, every natural
transformation of type C (A,−) →̇ C (B ,−) is obtained as the image of C (f ,−)
for some f . So we have the following isomorphism between arrows and natural
transformations.

C (B ,A) ≅ C (A,−) →̇C (B ,−)
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Table 2. Examples of adjunctions.
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L 0 ∆ + ∆ Σ i ∈ I . (−)i ∆ − ×X Free U

R ∆ 1 ∆ × ∆ Π i ∈ I . (−)i (−)
X U Cofree

⌈−⌉ ▽

`
i ∈ I . (−)i Λ○ eval

⌊−⌋ △

a
i ∈ I . (−)i Λ trace

ε ¡ id ▽ id ⟨outl , outr⟩ π(−) apply label

η ! ⟨inl , inr⟩ δ = id △ id ι(−) var

This isomorphism is an instance of a more general result, known as the Yoneda
Lemma [8]. Let H ∶ C → Set be a set-valued functor, then

HA ≅ C (A,−) →̇H . (85)

(The isomorphism is natural in H and in A.) The following arrows are the wit-
nesses of the Yoneda isomorphism:

y s X = λ f ∶ C (A,X ) . H f s and y○ α = αA idA . (86)

Observe that y is just H with the two arguments swapped. It is easy to see that
y○ is the left-inverse of y.

y○ (y s)
= { definition of y○ (86) }

y s A idA

= { definition of y (86) }
H idA s

= { H functor (2) }
s

For the opposite direction, we make use of the naturality of α, that is, Hh ⋅α X̂ =
α X̌ ⋅ C (A,h), or written in a pointwise style: Hh (α X̂ g) = α X̌ (h ⋅ g), with
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h ∶ C (X̂ , X̌ ) and g ∶ C (A, X̂ ).

y (y○ α)X

= { definition of y (86) }
λ f . H f (y○ α)

= { definition of y○ (86) }
λ f . H f (αA idA)

= { α is natural: Hh (α X̂ g) = α X̌ (h ⋅ g) }
λ f . αX (f ⋅ idA)

= { identity }
λ f . αX f

= { extensionality—αX is a function }
αX

For H ∶ C → Set with HX = C (B ,X ) and B fixed, we have C (B ,A) ≅
C (A,−) →̇C (B ,−). Furthermore, the isomorphism simplifies to y g = C (g ,−) as
a quick calculation shows.

y g X = λ f . C (B , f ) g = λ f . C (g ,X ) f = C (g ,X )

Conversely, for H ∶ C op → Set with HX = C (X ,B) and B fixed, we have
C (A,B) ≅ C op(A,−) →̇C (−,B) ≅ C (−,A) →̇C (−,B). Furthermore, the isomor-
phism simplifies to y g = C (−, g).

These special cases give rise to the principle of indirect proof.

f = g ⇐⇒ C (f ,−) = C (g ,−) (87)

f = g ⇐⇒ C (−, f ) = C (−, g) (88)

Instead of proving the equality of f and g directly, we show the equality of their
Yoneda images y f and y g .

When we discussed exponentials (see Section 2.5), we noted that there is a
unique way to turn the exponential BX into a bifunctor, so that the bijection

Λ ∶ C (A ×X ,B) ≅ C (A,BX ) ∶ Λ○ (89)

is also natural in X . The proof of this fact makes essential use of the Yoneda
Lemma. Recall that a transformation between n-ary functors is natural if and
only if it is natural in each argument separately. Let p ∶ C (X̌ , X̂ ), then the
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naturality condition (89) implies

C (−,Bp) ⋅Λ = Λ ⋅C (− × p,B)
⇐⇒ { adjunction: Λ ⋅Λ○ = id and Λ○ ⋅Λ = id (27) }

C (−,Bp) = Λ ⋅C (− × p,B) ⋅Λ○

⇐⇒ { Yoneda Lemma: C (B X̂ ,B X̌ ) ≅ C (−,B X̂ ) →̇C (−,B X̌ ) (85) }
y○ (C (−,Bp)) = y○ (Λ ⋅C (− × p,B) ⋅Λ○)

⇐⇒ { definition of y○ }

C (−,Bp)B X̂ id = (Λ ⋅C (− × p,B) ⋅Λ○)B X̂ id

⇐⇒ { composition of natural transformations }

C (−,Bp)B X̂ id = (Λ ⋅C (B X̂ × p,B) ⋅Λ○) id

⇐⇒ { definition of hom-functors (6) }

Bp = Λ (Λ○ id ⋅ (B X̂ × p))
⇐⇒ { apply = Λ○ id (Table 1) }

Bp = Λ (apply ⋅ (B X̂ × p)) .

The reflection law (42) implies that B(−) preserves the identity. Since the natu-
rality condition (89) uniquely determines B(−)’s action on arrows, it furthermore
preserves composition:

C (−,Bp⋅q)
= { naturality condition (89) }

Λ ⋅C (− × (p ⋅ q),B) ⋅Λ○

= { A × − covariant functor and C (−,B) contravariant functor }
Λ ⋅C (− × q ,B) ⋅C (− × p,B) ⋅Λ○

= { naturality condition (89) }
Λ ⋅C (− × q ,B) ⋅Λ○ ⋅C (−,Bp)

= { naturality condition (89) and adjunction Λ ⋅Λ○ = id (27) }
C (−,Bq) ⋅C (−,Bp)

= { C (A,−) covariant functor }
C (−,Bq ⋅Bp) .

Applying the principle of indirect proof (88), we conclude that Bp⋅q = Bq ⋅Bp .

Exercise 35. Generalise the argument above to an arbitrary adjunction with a
parameter. Let L ∶ C ← D ×X be a bifunctor, written LX A for clarity, so that
the partial application LX ∶ C ← D has a right adjoint RX ∶ C → D for each
choice of X ∶ X :

⌊−⌋ ∶ C (LX A,B) ≅ D(A,RX B) . (90)
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1. Show that there is a unique way to turn R into a bifunctor of type X op×C →
D so that the bijection (90) is natural in all three variables A, B and X .

C (LX̂ A,B)
⌊−⌋

≻ D(A,RX̂ B)

C (LX̌ A,B)

C (Lp A,B)

⋎

⌊−⌋≻ D(A,RX̌ B)

D(A,Rp B)

⋎

Explain why RX is necessarily contravariant in the parameter X .
2. Let ηX ∶ Id →̇RX ○LX be the unit of the adjunction with a parameter. What

property of η corresponds to the naturality of the bijection (90) in X ? (The
unit is not natural in X since RX ○LX is not functorial in X . Why?) ⊓⊔

3 Adjunctions for Algorithms

In the first part of these lecture notes we have seen that every fundamental ‘data
structure’ arises out of an adjunction. In the second part we turn our attention to
‘algorithms’. Our goal is to give a precise semantics to a large class of recursion
equations—equations as they might arise in a Haskell program.

This second part is organised as follows. Section 3.1 reviews conventional
folds and unfolds as introduced in Section 2.6. We take a somewhat non-standard
approach and re-introduce them as solutions of so-called Mendler-style equations.
Section 3.2 generalises these equations to adjoint equations and demonstrates
that many Haskell functions fall under this umbrella. Section 3.3 specialises
adjoint equations to a variety of basic adjunctions and explores the resulting
recursion schemes. Section 3.4 develops the calculational properties of adjoint
folds. Like their vanilla counterparts, they enjoy reflection, computation and
fusion laws.

Some knowledge of the functional programming language Haskell [15] is use-
ful, as the formal development is paralleled by a series of programming examples.

3.1 Fixed-Point Equations

In this section we review the semantics of datatypes, albeit with a slight twist.
The following two Haskell programs serve as running examples.

Example 1. The datatype Bush models binary leaf trees, a representation of
non-empty sequences of natural numbers.

data Bush = Leaf Nat ∣ Fork (Bush,Bush)

The type (A,B) is Haskell syntax for the cartesian product A ×B .
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The function total computes the sum of a bush of natural numbers.

total ∶ Bush → Nat
total (Leaf n) = n
total (Fork (l , r)) = total l + total r

This is a typical example of a fold, a function that consumes data. ⊓⊔

Example 2. The type Tree captures bifurcations, infinite binary trees of naturals.
(A bifurcation is a division of a state or an action into two branches.)

data Tree = Branch (Tree,Nat ,Tree)

The call generate 1 constructs an infinite tree, labelled with the naturals
from 1 onwards.

generate ∶ Nat → Tree
generate n = Branch (generate (2 ∗ n + 0),n, generate (2 ∗ n + 1))

This is a typical example of an unfold, a function that produces data. ⊓⊔

Both the types, Bush and Tree, and the functions, total and generate, are
given by recursion equations. At the outset, it is not at all clear that these equa-
tions have solutions and if so whether the solutions are unique. It is customary
to rephrase the problem of solving recursion equations as a fixed-point problem:
a recursion equation of the form x = Ψ x implicitly defines a function Ψ in the
unknown x , the so-called base function of the recursion equation. A fixed-point
of the base function is then a solution of the recursion equation and vice versa.

Consider the type equation defining Bush. Its base function or, rather, its
base functor is given by

dataBush bush = LeafNat ∣ Fork (bush, bush)
instance Functor Bushwhere

fmap f (Leafn) = Leafn
fmap f (Fork (l , r)) = Fork (f l , f r) .

We adopt the convention that the base functor is named after the underlying
type, using this font for the former and this font for the latter. The type argument
of Bush marks the recursive component. In Haskell, the object part of a functor
is defined by a data declaration; the arrow part is given by a Functor instance.
Using arithmetic notation Bush is written BushB = Nat +B ×B .

All functors underlying first-order datatype declarations (sums of products,
no function types) have two extremal fixed points: the initial F-algebra ⟨µF, in⟩
and the final F-coalgebra ⟨νF, out⟩, where F ∶ C → C is the functor in question
(Section 2.6). Some programming languages such as Charity [16] or Coq [17]
allow the user to choose between initial and final solutions—the datatype decla-
rations are flagged as inductive or coinductive. Haskell is not one of them. Since
Haskell’s underlying category is SCpo, the category of complete partial orders
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and strict continuous functions, initial algebras and final coalgebras actually
coincide [18, 19]—further background is provided at the end of this section. In
contrast, in Set elements of an inductive type are finite, whereas elements of a
coinductive type are potentially infinite. Operationally, an element of an induc-
tive type can be constructed in a finite sequence of steps, whereas an element of
a coinductive type allows any finite sequence of observations.

Turning to our running examples, we view Bush as an initial algebra—though
inductive and coinductive trees are both equally useful. For bifurcations, only
the coinductive reading is useful since in Set the initial algebra of Tree’s base
functor is the empty set.

Definition 3. In Haskell, initial algebras and final coalgebras can be defined as
follows.

newtypeµf = In {in○ ∶ f (µf )}
newtypeν f = Out○ {out ∶ f (ν f )}

The definitions use Haskell’s record syntax to introduce the destructors in○ and
out in addition to the constructors In and Out○. The newtype declaration
guarantees that µf and f (µf ) share the same representation at run-time, and
likewise for νf and f (νf ). In other words, the constructors and destructors are
no-ops. Of course, since initial algebras and final coalgebras coincide in Haskell,
they could be defined by a single newtype definition. However, since we wish
to use Haskell as a meta-language for Set, we keep them separate. ⊓⊔

Working towards a semantics for total , let us first adapt its definition to the
new ‘two-level type’ µBush. The term is due to [20]; one level describes the
structure of the data, the other level ties the recursive knot.

total ∶ µBush → Nat
total (In (Leafn)) = n
total (In (Fork (l , r))) = total l + total r

Now, if we abstract away from the recursive call, we obtain a non-recursive base
function of type (µBush→ Nat) → (µBush→ Nat). As with functors, we adopt
the convention that the base function is named after the underlying function,
using this font for the former and this font for the latter.

total ∶ (µBush→ Nat) → (µBush → Nat)
total total (In (Leafn)) = n
total total (In (Fork (l , r))) = total l + total r

Functions of this type possibly have many fixed points—consider as an extreme
example the identity base function, which has an infinite number of fixed points.
Interestingly, the problem of ambiguity disappears into thin air, if we additionally
remove the constructor In.

total ∶ ∀x . (x → Nat) → (Bush x → Nat)
total total (Leafn) = n
total total (Fork (l , r)) = total l + total r
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The type of the base function has become polymorphic in the argument of the
recursive call. We shall show in the next section that this type guarantees that
the recursive definition of total

total ∶ µBush→ Nat
total (In s) = total total s

is well-defined in the sense that the equation has exactly one solution.
Applying an analogous transformation to the type Tree and the function

generate we obtain

dataTree tree =Branch (tree,Nat , tree)
generate ∶ ∀x . (Nat → x) → (Nat → Tree x)
generate generate n

=Branch (generate (2 ∗ n + 0),n, generate (2 ∗ n + 1))
generate ∶ Nat → νTree
generate n = Out○ (generate generate n) .

Again, the base function enjoys a polymorphic type that guarantees that the
recursive function is well-defined.

Abstracting away from the particulars of the syntax, the examples suggest
the consideration of fixed-point equations of the form

x ⋅ in = Ψ x , and dually out ⋅ x = Ψ x , (91)

where the unknown x has type C (µF,A) on the left and C (A, νG) on the right.
The Haskell definitions above are pointwise versions of these equations: x (In a) =
Ψ x a and x a = Out○ (Ψ x a). Arrows defined by equations of this form are known
as Mendler-style folds and unfolds, because they were originally introduced by
Mendler [21] in the setting of type theory. We shall usually drop the qualifier
and call the solutions simply folds and unfolds. In fact, the abuse of language is
justified as each Mendler-style equation is equivalent to the defining equation of
a standard (un)fold. This is what we show next, considering folds first.

3.1.1 Initial Fixed-Point Equations. Let C be some base category and let
F ∶ C → C be some endofunctor. An initial fixed-point equation in the unknown
x ∶ C (µF,A) has the syntactic form

x ⋅ in = Ψ x , (92)

where the base function Ψ has type

Ψ ∶ ∀X . C (X ,A) → C (FX ,A) .

In the fixed-point equation (92) the natural transformation Ψ is instantiated to
the initial algebra: x ⋅in = Ψ (µF) x . For reasons of readability we will usually omit



Generic Programming with Adjunctions 45

the ‘type arguments’ of natural transformations. The diagram below displays the
types involved.

F (µF)

µF

in

⋎
x

≻ A

Ψ (µF) x

≻

The naturality condition can be seen as the semantic counterpart of the
guarded-by-destructors condition [22]. This becomes visible if we move the iso-
morphism in ∶ F (µF) ≅ µF to the right-hand side: x = Ψ x ⋅ in○. Here in○ is the
destructor that guards the recursive calls. The equation has a straightforward
operational reading. The argument of x is destructed yielding an element of type
F (µF). The base function Ψ then works on the F-structure, possibly applying its
first argument, the recursive call of x , to elements of type µF. These elements
are proper sub-terms of the original argument—recall that the type argument of
F marks the recursive components. The naturality of Ψ ensures that only these
sub-terms can be passed to the recursive calls.

Does this imply that x is terminating? Termination is an operational notion;
how the notion translates to a denotational setting depends on the underlying
category. Our primary goal is to show that Equation (92) has a unique solution.
When working in Set this result implies that the equation admits a solution that
is indeed a total function. Furthermore, the operational reading of x = Ψ x ⋅ in○

suggests that x is terminating, as elements of an inductive type can only be
destructed a finite number of times. (Depending on the evaluation strategy this
claim is also subject to the proviso that the F-structures themselves are finite.)
On the other hand, if the underlying category is SCpo, then the solution is a
continuous function that does not necessarily terminate for all its inputs, since
initial algebras in SCpo possibly contain infinite elements.

While the definition of total fits nicely into the framework above, the following
program does not.

Example 4. The naturality condition is sufficient but not necessary as the ex-
ample of the binary increment demonstrates.

data Nat = N ∣ O Nat ∣ I Nat

succ ∶ Nat → Nat
succ (N ) = I N
succ (O b) = I b
succ (I b) = O (succ b)

As with total , we split the datatype into two levels.

type Nat = µNat

dataNatnat =N ∣ Onat ∣ Inat
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instance Functor Natwhere
fmap f (N) =N
fmap f (O b) =O (f b)
fmap f (I b) = I (f b)

In Set, the implementation of the successor function is clearly terminating. How-
ever, the associated base function

succ ∶ (Nat → Nat) → (NatNat → Nat)
succ succ (N) = In (I (In N))
succ succ (O b) = In (I b)
succ succ (I b) = In (O (succ b))

lacks naturality. In a sense, its type is too concrete, as it reveals that the recursive
call is passed a binary number. An adversary can make use of this information
turning the terminating program into a non-terminating one:

bogus ∶ (Nat → Nat) → (NatNat → Nat)
bogus succ (N) = In (I (In N))
bogus succ (O b) = In (I b)
bogus succ (I b) = succ (In (I b)) .

We will get back to this example in Section 3.3.2 (Example 19). ⊓⊔

Turning to the proof of uniqueness, let us spell out the naturality property
of the base function Ψ . If h ∶ C (X1,X2), then C (Fh, id) ⋅Ψ = Ψ ⋅C (h, id). Using
the definition of hom-functors (6), this unfolds to

Ψ f ⋅ Fh = Ψ (f ⋅ h) , (93)

for all arrows f ∶ C (X2,A). This property implies, in particular, that Ψ is com-
pletely determined by its image of id as Ψ h = Ψ id ⋅ Fh. Now, to prove that
equation x ⋅ in = Ψ x (92) has a unique solution, we show that x is a solution if
and only if x is a standard fold.

x ⋅ in = Ψ x

⇐⇒ { Ψ is natural (93) }
x ⋅ in = Ψ id ⋅ F x

⇐⇒ { uniqueness property of standard folds (54) }
x = ((Ψ id ))

Overloading the banana brackets, the unique solution of the fixed-point equation
x ⋅ in = Ψ x (92) is written ((Ψ )).

Let us explore the relation between standard folds and Mendler-style folds in
more depth. The proof above rests on the fact that the type of Ψ is isomorphic
to C (FA,A), the type of F-algebras.

C (FA,A) ≅ (∀X ∶ C . C (X ,A) → C (FX ,A)) .
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This bijection between arrows and natural transformations is an instance of the
Yoneda Lemma (Section 2.7), where the contravariant functor H ∶ C op → Set
is given by H = C (F−,A). Consequently, Mendler-style folds and standard folds
are related by ((Ψ )) = ((y○ Ψ )) = ((Ψ id )) and ((λ x . a ⋅ F x )) = ((y a )) = ((a )).

Example 1. The standard fold for computing the total of a bush of natural num-
bers is ((id ▽ plus )), see Section 2.6.1. Written in a pointwise style, the algebra
id ▽ plus reads

total ∶BushNat → Nat
total (Leafn) = n
total (Fork (l , r)) = l + r .

The algebra and the base function are related by total = total id and total total =
total ⋅ fmap total , which implies ((total)) = ((total)). ⊓⊔

3.1.2 Final Fixed-Point Equations. The development of the previous sec-
tion dualises to final coalgebras. For completeness, let us spell out the details.

A final fixed-point equation in the unknown x ∶ C (A, νG) has the form

out ⋅ x = Ψ x , (94)

where the base function Ψ has type

Ψ ∶ ∀X . C (A,X ) → C (A,GX ) .

Overloading the lens brackets, the unique solution of (94) is denoted [(Ψ )].
In Set, the naturality condition captures the guarded-by-constructors condi-

tion [22] ensuring productivity. Again, this can be seen more clearly if we move
the isomorphism out ∶ νG ≅ G (νG) to the right-hand side: x = out○ ⋅ Ψ x . Here
out○ is the constructor that guards the recursive calls. The base function Ψ has to
produce a G (νG) structure. To create the recursive components of type νG, the
base function Ψ can use its first argument, the recursive call of x . However, the
naturality of Ψ ensures that these calls can only be made in guarded positions.

The type of Ψ is isomorphic to C (A,GA), the type of G-coalgebras.

C (A,GA) ≅ (∀X ∶ C . C (A,X ) → C (A,GX )) .

Again, this is an instance of the Yoneda Lemma: now H = C (A,G−) is a covariant
functor H ∶ D → Set.

Example 2. The standard unfold for constructing an infinite tree of natural num-
bers is [(shift0 △ id △ shift1 )], see Section 2.6.2. Written in a pointwise style, the
coalgebra shift0 △ id △ shift1 reads

generate ∶ Nat → TreeNat
generate n = Branch (2 ∗ n + 0,n,2 ∗ n + 1) .

The coalgebra and the base function are related by generate = generate id and
generate gen = fmap gen ⋅ generate, which implies [(generate)] = [(generate)]. ⊓⊔

In the following sections we show that fixed-point equations are quite general.
More functions fit under this umbrella than one might initially think.
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3.1.3 Mutual Type Recursion. In Haskell, datatypes can be defined by
mutual recursion.

Example 5. Imagine a simple imperative programming language. The abstract
syntax of expressions and statements is typically defined by mutual type recur-
sion (this is a very stripped-down example).

data Expr = Var Var ∣ Block (Stat ,Expr)
data Stat = Assign (Var ,Expr) ∣ Seq (Stat ,Stat)

As function follows form, functions that consume an abstract syntax tree are
typically defined by mutual value recursion.

type Vars = SetVar

varsExpr ∶ Expr → Vars
varsExpr (Var x) = {x}
varsExpr (Block (s, e)) = varsStat s ∪ varsExpr e

varsStat ∶ Stat → Vars
varsStat (Assign (x , e)) = {x} ∪ varsExpr e
varsStat (Seq (s1, s2)) = varsStat s1 ∪ varsStat s2

The functions determine the variables of either an expression or a statement,
assuming a suitable collection type Set with operations {−} and ∪. ⊓⊔
Can we fit the above definitions into the framework of the previous section? Yes,
we only have to choose a suitable base category: in this case, a product category
(Section 2.2.2). The base functor underlying Expr and Stat is an endofunctor
over a product category:

Grammar ⟨A, B⟩ = ⟨Var +B ×A, Var ×A +B ×B⟩ .
The Haskell types Expr and Stat are then the components of the fixed point:
µGrammar = ⟨Expr , Stat⟩. The functions varsExpr and varsStat are handled
accordingly: we bundle them to a single arrow

vars = ⟨varsExpr , varsStat⟩ ∶ (C ×C )(µGrammar, ⟨Vars, Vars⟩) .

The following calculation makes explicit that an initial fixed-point equation
in C ×D corresponds to two equations, one in C and one in D .

x ⋅ in = Ψ x ∶ (C ×D)(F (µF), ⟨A1, A2⟩)
⇐⇒ { surjective pairing: f = ⟨Outl f , Outr f ⟩ }

⟨Outl x , Outr x ⟩ ⋅ ⟨Outl in, Outr in⟩ = Ψ ⟨Outl x , Outr x ⟩
⇐⇒ { set x1 = Outl x , x2 = Outr x and in1 = Outl in, in2 = Outr in }

⟨x1, x2⟩ ⋅ ⟨in1, in2⟩ = Ψ ⟨x1, x2⟩
⇐⇒ { definition of composition in C ×D }

⟨x1 ⋅ in1, x2 ⋅ in2⟩ = Ψ ⟨x1, x2⟩
⇐⇒ { surjective pairing: f = ⟨Outl f , Outr f ⟩ }

⟨x1 ⋅ in1, x2 ⋅ in2⟩ = ⟨Outl (Ψ ⟨x1, x2⟩), Outr (Ψ ⟨x1, x2⟩)⟩
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⇐⇒ { set Ψ1 = Outl○Ψ and Ψ2 = Outr○Ψ }
⟨x1 ⋅ in1, x2 ⋅ in2⟩ = ⟨Ψ1 ⟨x1, x2⟩, Ψ2 ⟨x1, x2⟩⟩

⇐⇒ { equality of arrows in C ×D }
x1 ⋅ in1 = Ψ1 ⟨x1, x2⟩ ∶ C (Outl (F (µF)),A1) and

x2 ⋅ in2 = Ψ2 ⟨x1, x2⟩ ∶ D(Outr (F (µF)),A2)

The base functions Ψ1 and Ψ2 are parametrised both with x1 and x2. Other than
that, the syntactic form is identical to a standard fixed-point equation.

It is a simple exercise to bring the equations of Example 5 into this form:

Definition 6. In Haskell, mutually recursive types can be modelled as follows.

newtypeµ1 f1 f2 = In1 {in○
1 ∶ f1 (µ1 f1 f2) (µ2 f1 f2)}

newtypeµ2 f1 f2 = In2 {in○
2 ∶ f2 (µ1 f1 f2) (µ2 f1 f2)}

Since Haskell has no concept of pairs on the type level, that is, no product kinds,
we have to curry the type constructors: µ1 f1 f2 = Outl (µ⟨f1, f2⟩) and µ2 f1 f2 =
Outr (µ⟨f1, f2⟩). ⊓⊔

Example 7. The base functors of Expr and Stat are

dataExpr expr stat =VarVar ∣ Block (stat , expr)
dataStat expr stat = Assign (Var , expr) ∣ Seq (stat , stat) .

Since all Haskell functions live in the same category, we have to represent arrows
in C ×C by pairs of arrows in C .

varsExpr ∶ ∀x1 x2 .
(x1 → Vars, x2 → Vars) → (Expr x1 x2 → Vars)

varsExpr (varsExpr , varsStat) (Var x) = {x}
varsExpr (varsExpr , varsStat) (Block (s, e)) = varsStat s ∪ varsExpr e

varsStat ∶ ∀x1 x2 .
(x1 → Vars, x2 → Vars) → (Stat x1 x2 → Vars)

varsStat (varsExpr , varsStat) (Assign (x , e)) = {x} ∪ varsExpr e
varsStat (varsExpr , varsStat) (Seq (s1, s2)) = varsStat s1 ∪ varsStat s2

The definitions of varsExpr and varsStat match exactly the scheme above.

varsExpr ∶ µ1 ExprStat→ Vars
varsExpr (In1 e) = varsExpr (varsExpr , varsStat) e

varsStat ∶ µ2 ExprStat→ Vars
varsStat (In2 s) = varsStat (varsExpr , varsStat) s

Since the two equations are equivalent to an initial fixed-point equation in C ×C ,
they indeed have unique solutions. ⊓⊔
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No new theory is needed to deal with mutually recursive datatypes and mutually
recursive functions over them. By duality, the same is true for final coalgebras.
For final fixed-point equations we have the following correspondence.

out ⋅ x = Ψ x ⇐⇒ out1 ⋅ x1 = Ψ1 ⟨x1, x2⟩ and out2 ⋅ x2 = Ψ2 ⟨x1, x2⟩

3.1.4 Type Functors. In Haskell, datatypes can be parametrised by types.

Example 8. The type of random-access lists [23] is given by

dataArray a = Null ∣ Zero (Array (a,a)) ∣ One (a,Array (a,a))
instance Functor Arraywhere

fmap f (Null) = Null
fmap f (Zero s) = Zero (fmap (f × f ) s)
fmap f (One (a, s)) = One (f a, fmap (f × f ) s)

(×) ∶ (â→ ǎ) → (b̂→ b̌) → ((â, b̂) → (ǎ, b̌))
(f × g) (a, b) = (f a, g b) .

The type Array is a so-called nested datatype [24] as the type argument changes
from a to (a,a) in the recursive calls. Random-access lists are a numerical rep-
resentation, a container type that is modelled after a number system, here the
binary numbers.

size ∶ ∀a . Array a → Nat
size (Null) = 0
size (Zero s) = 2 ∗ size s + 0
size (One (a, s)) = 2 ∗ size s + 1

The function size calculates the size of a random-access list, illustrating the cor-
respondence between random-access lists and binary numbers. The definition re-
quires polymorphic recursion [25], as the recursive calls have type Array (a,a) →
Nat , which is a substitution instance of the declared type. ⊓⊔

Can we fit the definitions above into the framework of Section 3.1.1? Again,
the answer is yes. We only have to choose a suitable base category: this time,
a functor category (Section 2.2.3). The base functor of Array is an endofunctor
over a functor category:

ArrayFA = 1 + F (A ×A) +A × F (A ×A) .

The second-order functor Array sends a functor to a functor. Since its fixed point
Array = µArray lives in a functor category, folds over random-access lists are nec-
essarily natural transformations. The function size is a natural transformation,
as we can assign it the type

size ∶ µArray →̇KNat ,

where K ∶ D → DC is the constant functor defined KA B = A. Again, we can
replay the development in Haskell.
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Definition 9. The definition of second-order initial algebras and final coalgebras
is identical to that of Definition 3, except for an additional type argument.

newtypeµf a = In {in○ ∶ f (µf )a }
newtypeν f a = Out○ {out ∶ f (ν f )a }

To capture the fact that µf and νf are functors whenever f is a second-order
functor, we need an extension of the Haskell 2010 class system.

instance (∀x . (Functor x) ⇒ Functor (f x)) ⇒ Functor (µf )where
fmap f (In s) = In (fmap f s)

instance (∀x . (Functor x) ⇒ Functor (f x)) ⇒ Functor (νf )where
fmap f (Out○ s) = Out○ (fmap f s)

The declarations use a so-called polymorphic predicate [26], which precisely cap-
tures the requirement that f sends functors to functors. Unfortunately, the exten-
sion has not been implemented yet. It can be simulated within Haskell 2010 [27],
but the resulting code is somewhat clumsy. Alternatively, one can use ‘recursive
dictionaries’

instance Functor (f (µf )) ⇒ Functor (µf )where
fmap f (In s) = In (fmap f s)

instance Functor (f (νf )) ⇒ Functor (νf )where
fmap f (Out○ s) = Out○ (fmap f s)

and rely on the compiler to tie the recursive knot [28]. ⊓⊔

Let us specialise fixed-point equations to functor categories.

x ⋅ in = Ψ x

⇐⇒ { equality of arrows in DC }
∀A ∶ C . (x ⋅ in)A = Ψ x A

⇐⇒ { definition of composition in DC }
∀A ∶ C . x A ⋅ in A = Ψ x A

In Haskell, type application is invisible, so fixed-point equations in functor cat-
egories cannot be distinguished from equations in the base category.

Example 10. Continuing Example 8, the base functor of Array maps functors to
functors: it has kind (⋆ → ⋆) → (⋆ → ⋆).

dataArrayarray a =Null ∣ Zero (array (a,a)) ∣ One (a,array (a,a))
instance (Functor array) ⇒ Functor (Arrayarray)where

fmap f (Null) =Null
fmap f (Zero s) = Zero (fmap (f × f ) s)
fmap f (One (a, s)) =One (f a, fmap (f × f ) s)
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Table 3. Initial algebras and final coalgebras in different categories.

category
initial fixed-point equation final fixed-point equation

x ⋅ in = Ψ x out ⋅ x = Ψ x

Set
inductive type coinductive type
standard fold standard unfold

Cpo —
continuous coalgebra (domain)

continuous unfold
(F locally continuous in SCpo)

SCpo
continuous algebra (domain) continuous coalgebra (domain)

strict continuous fold strict continuous unfold
(F locally continuous in SCpo, µF ≅ νF)

C ×D

mutually recursive inductive types mutually recursive coinductive types
mutually recursive folds mutually recursive unfolds

x1 ⋅ in1 = Ψ1 ⟨x1, x2⟩ out1 ⋅ x1 = Ψ1 ⟨x1, x2⟩
x2 ⋅ in2 = Ψ2 ⟨x1, x2⟩ out2 ⋅ x2 = Ψ2 ⟨x1, x2⟩

DC
inductive type functor coinductive type functor

higher-order fold higher-order unfold
x A ⋅ in A = Ψ x A out A ⋅ x A = Ψ x A

Its action on arrows, not shown above, maps natural transformations to natural
transformations. Accordingly, the base function of size is a second-order natural
transformation that takes natural transformations to natural transformations.

size ∶ ∀x . (∀a . x a → Nat) → (∀a . Array x a → Nat)
size size (Null) = 0
size size (Zero s) = 2 ∗ size s + 0
size size (One (a, s)) = 2 ∗ size s + 1

size ∶ ∀a . µArraya → Nat
size (In s) = size size s

The resulting equation fits the pattern of an initial fixed-point equation (type
application is invisible in Haskell). Consequently, it has a unique solution. ⊓⊔

Table 3 summarises our findings so far. To provide some background, Cpo
is the category of complete partial orders and continuous functions; SCpo is
the full subcategory of strict functions. A functor F ∶ SCpo → SCpo is locally
continuous if its action on arrows SCpo(A,B) → SCpo(FA,FB) is continuous
for any pair of objects A and B . A continuous algebra is just an algebra whose
carrier is a complete partial order and whose action is a continuous function. In
SCpo, every locally continuous functor has an initial algebra and, furthermore,
the initial algebra coincides with the final coalgebra. This is the reason why
SCpo is commonly considered to be Haskell’s ambient category. It may seem
odd at first that lazy programs are modelled by strict functions. Non-strict func-
tions, however, are in one-to-one correspondence to strict functions from a lifted
domain: SCpo(A�,B) ≅ Cpo(A,B). (In other words, we have an adjunction
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(−)� ⊣ Incl between lifting and the inclusion functor Incl ∶ SCpo → Cpo.) The
denotational notion of lifting, adding a new least element, models the operational
notion of a thunk (also known as a closure, laze or recipe).

3.2 Adjoint Fixed-Point Equations

We have seen in the previous section that initial and final fixed-point equations
are quite general. However, there are obviously a lot of definitions that do not
fit the pattern. We have mentioned list concatenation and others in the intro-
duction.

Example 11. The datatype Stack models stacks of natural numbers.

data Stack = Empty ∣ Push (Nat ,Stack)

The function cat concatenates two stacks.

cat ∶ (Stack , Stack) → Stack
cat (Empty , ns) = ns
cat (Push (m,ms),ns) = Push (m, cat (ms,ns))

The definition does not fit the pattern of an initial fixed-point equation as it
takes two arguments and recurses only over the first one. ⊓⊔
Example 12. The functions left and right generate infinite trees labelled with
zeros and ones.

left ∶ () → Tree
left () = Branch (left (),0, right ())
right ∶ () → Tree
right () = Branch (left (),1, right ())

The two definitions are not instances of final fixed-point equations, because even
though the functions are mutually recursive the datatype is not. ⊓⊔

In Example 11 the element of the initial algebra is embedded in a context.
Written in a point-free style the definition of cat is of the form x ⋅ (in × id) = Ψ x .
The central idea of these lecture notes is to model this context by a functor,
generalising fixed-point equations to

x ⋅ L in = Ψ x , and dually Rout ⋅ x = Ψ x , (95)

where the unknown x has type C (L (µF),A) on the left and C (A,R (νG)) on
the right. The functor L models the context of µF. In the case of cat the functor
is L = − × Stack . Dually, R allows x to return an element of νG embedded in a
context. Section 3.3.2 discusses a suitable choice for R in Example 12.

Of course, the functors L and R cannot be arbitrary. For instance, for L = KA
where K ∶ C → C D is the constant functor and Ψ = id , the equation x ⋅ L in = Ψ x
simplifies to x = x , which every arrow of the appropriate type satisfies. One
approach for ensuring uniqueness is to require L and R to be adjoint: L ⊣ R
(Section 2.5). The adjoint transposition allows us to trade L in the source for R
in the target of an arrow, which is the key for showing that generalised fixed-
point equations (95) have unique solutions. This is what we do next.
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3.2.1 Adjoint Initial Fixed-Point Equations. Let C and D be categories,
let L ⊣ R be an adjoint pair of functors L ∶ C ← D and R ∶ C → D , and let
F ∶ D → D be some endofunctor. An adjoint initial fixed-point equation in the
unknown x ∶ C (L (µF),A) has the syntactic form

x ⋅ L in = Ψ x , (96)

where the base function Ψ has type

Ψ ∶ ∀X ∶ D . C (LX ,A) → C (L (FX ),A) .

The unique solution of (96) is called an adjoint fold, denoted ((Ψ ))L. The diagrams
below summarise the type information.

L (F (µF))

L (µF)

L in

⋎

x
≻ A

Ψ (µF) x

≻

C

R
//� D

Loo
F

xx

The proof of uniqueness makes essential use of the fact that the left adjunct
is natural in A.

x ⋅ L in = Ψ x

⇐⇒ { adjunction: ⌈⌊f ⌋⌉ = f (27) }
⌊x ⋅ L in⌋ = ⌊Ψ x ⌋

⇐⇒ { fusion: ⌊−⌋ is natural in A (37) }
⌊x ⌋ ⋅ in = ⌊Ψ x ⌋

⇐⇒ { adjunction: ⌈⌊f ⌋⌉ = f }
⌊x ⌋ ⋅ in = ⌊Ψ ⌈⌊x ⌋⌉⌋

⇐⇒ { Section 3.1.1 }
⌊x ⌋ = ((λ x . ⌊Ψ ⌈x ⌉⌋))

⇐⇒ { adjunction: f = ⌈g⌉ ⇐⇒ ⌊f ⌋ = g (27) }
x = ⌈((λ x . ⌊Ψ ⌈x ⌉⌋))⌉

In three simple steps we have transformed the adjoint fold x ∶ C (L (µF),A)
into the standard fold ⌊x ⌋ ∶ D(µF,RA) and, alongside, the adjoint base func-
tion Ψ ∶ ∀X . C (LX ,A) → C (L (FX ),A) into the standard base function
λ x . ⌊Ψ ⌈x ⌉⌋ ∶ ∀X . D(X ,RA) → D(FX ,RA). We have shown in Section 3.1.1
that the resulting equation has a unique solution. To summarise,

((Ψ ))L = ⌈((λ x . ⌊Ψ ⌈x ⌉⌋))⌉ or, equivalently, ⌊((Ψ ))L⌋ = ((λ x . ⌊Ψ ⌈x ⌉⌋)) .
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3.2.2 Adjoint Final Fixed-Point Equations. Dually, an adjoint final fixed-
point equation in the unknown x ∶ D(A,R (νG)) has the syntactic form

Rout ⋅ x = Ψ x , (97)

where the base function Ψ has type

Ψ ∶ ∀X ∶ C . D(A,RX ) → D(A,R (GX )) .

The unique solution of (97) is called an adjoint unfold, denoted [(Ψ )]R.

3.3 Exploring Adjunctions

The simplest example of an adjunction is Id ⊣ Id, which demonstrates that adjoint
fixed-point equations (95) subsume fixed-point equations (91).

C
≺

Id

�
Id

≻ C

In the following sections we explore more interesting examples. Each section
is structured as follows: we introduce an adjunction, specialise Equations (95)
to the adjoint functors, and then provide some Haskell examples that fit the
pattern.

3.3.1 Currying. The Haskell programmer’s favourite adjunction is perhaps
currying: − × X ⊣ (−)X (Section 2.5.6). Let us specialise the adjoint equations
to L = − ×X and R = (−)X in Set.

x ⋅ L in = Ψ x ⇐⇒ ∀a, c . x (in a, c) = Ψ x (a, c)
Rout ⋅ x = Ψ x ⇐⇒ ∀a, c . out (x a c) = Ψ x a c

The adjoint fold takes two arguments, an element of an initial algebra and a
second argument (often an accumulator, see Example 14), both of which are
available on the right-hand side. The transposed fold (not shown) is a higher-
order function that yields a function. Dually, a curried unfold is transformed
into an uncurried unfold.

Example 13. To turn the definition of cat , see Example 11, into the form of an
adjoint equation, we follow the same steps as in Section 3.1. First, we turn Stack
into a two-level type.

type Stack = µStack

dataStack stack = Empty ∣ Push (Nat , stack)
instance Functor Stackwhere

fmap f (Empty) = Empty
fmap f (Push (n, s)) =Push (n, f s)
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Second, we determine the base function abstracting away from the recursive call,
additionally removing in, and then we tie the recursive knot (L = − × Stack).

cat ∶ ∀x . (L x → Stack) → (L (Stack x) → Stack)
cat cat (Empty, ns) = ns
cat cat (Push (m,ms),ns) = Push (m, cat (ms,ns))
cat ∶ LStack → Stack
cat (In ms,ns) = cat cat (ms,ns)

The defining equation fits the pattern of an adjoint initial fixed-point equation,
x ⋅ (in × id) = Ψ x . Since L = −×Stack has a right adjoint, cat is uniquely defined.
The transposed fold, cat ′ = ⌊cat⌋,

cat ′ ∶ Stack → RStack
cat ′ (In Empty) = λns → ns
cat ′ (In (Push (m,ms))) = λns → Push (m, (cat ′ ms)ns)

is simply the curried variant of cat . ⊓⊔

Example 14. The function shunt pushes the elements of the first onto the second
stack.

shunt ∶ (µStack, Stack) → Stack
shunt (In Empty, ns) = ns
shunt (In (Push (m,ms)),ns) = shunt (ms,Push (m,ns))

Unlike cat , the parameter of shunt is changed in the recursive call—it serves as
an accumulator. Nonetheless, shunt fits into the framework, as its base function

shunt ∶ ∀x . (L x → Stack) → (L (Stack x) → Stack)
shunt shunt (Empty, ns) = ns
shunt shunt (Push (m,ms),ns) = shunt (ms,Push (m,ns))

has the required naturality property. The revised definition of shunt

shunt ∶ L (µStack) → Stack
shunt (In ms,ns) = shunt shunt (ms,ns)

matches exactly the scheme for adjoint initial fixed-point equations. ⊓⊔

Exercise 36. Is the following tail-recursive variant of total (see Example 1)

totalPlus ∶ (Bush,Nat) → Nat
totalPlus (Leaf n, s) = n + s
totalPlus (Fork (l , r), s) = totalPlus (l , totalPlus (r , s))

an adjoint fold? ⊓⊔

Lists are parametric in Haskell. Can we adopt the above reasoning to para-
metric types and polymorphic functions?
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Example 15. The type of lists is given as the initial algebra of a higher-order
base functor of kind (⋆ → ⋆) → (⋆ → ⋆).

typeList = µList
dataList list a =Nil ∣ Cons (a, list a)
instance (Functor list) ⇒ Functor (List list)where

fmap f Nil =Nil
fmap f (Cons (a,as)) = Cons (f a, fmap f as)

(Again, we do not need the functor’s action on arrows, which maps natural
transformations to natural transformations.) Lists generalise stacks, sequences
of natural numbers, to an arbitrary element type. Likewise, the function

append ∶ ∀a . (µLista, Lista) → Lista
append (In Nil, bs) = bs
append (In (Cons (a,as)), bs) = In (Cons (a,append (as, bs)))

generalises cat (Example 11) to sequences of an arbitrary element type. ⊓⊔

If we lift products pointwise to functors, (F ×̇ G)A = FA × GA, we can view
append as a natural transformation of type

append ∶ List ×̇ List →̇ List .

All that is left to do is to find the right adjoint of the lifted product − ×̇H. One
could be led to think that F ×̇ H →̇ G ≅ F →̇ (H →̇ G), but this does not work
as H →̇ G is not a functor in any sensible way (recall that H →̇ G is the set of
natural transformations from H to G). Also, lifting exponentials pointwise GH A =
(GA)HA does not work, because again the data does not define a functor as the
exponential is contravariant in its first argument. To make progress, let us assume
that the functor category is SetC so that GH ∶ C → Set. (The category SetC op

of
contravariant, set-valued functors and natural transformations is known as the
category of pre-sheaves.) We reason as follows:

GH A

≅ { Yoneda Lemma (85) }
C (A,−) →̇GH

≅ { requirement: − ×̇H ⊣ (−)H }
C (A,−) ×̇H →̇G .

The derivation suggests that the exponential of the functors H and G is given
by C (A,−) ×̇ H →̇ G. However, the calculation does not prove that the functor
thus defined is actually right adjoint to − ×̇H, as its existence is assumed in the
second step. We leave the proof as a (laborious) exercise to the reader—a more
general result abstracting away from Set can be found in [11].

Exercise 37. Show that − ×̇H is left adjoint to (−)H.
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1. Show that GH A = C (A,−) ×̇H →̇G is functorial in A. (The functor GH takes
an object to a set of natural transformations and an arrow to a function that
in turn takes a natural transformation to a natural transformation.)

2. The adjuncts of − ×̇H ⊣ (−)H are defined

⌊σ⌋ = λA . λ s . λX . λ (k , t) . σX (F k s, t) ,

⌈τ⌉ = λA . λ (s, t) . τ A s A (id , t) .

Prove that they are natural in F and G and mutually inverse. ⊓⊔

∗ Exercise 38. Can you make sense of the functors IdId and IdSq? ⊓⊔

Definition 16. The definition of exponentials goes beyond Haskell 2010, as it
requires rank-2 types (the data constructor Exp has a rank-2 type).

newtypeExph g a = Exp {exp○ ∶ ∀x . (a → x ,h x) → g x }
instance Functor (Exph g)where

fmap f (Exp h) = Exp (λ(k , t) → h (k ⋅ f , t))

Morally, h and g are functors, as well. However, their mapping functions are not
needed to define the Exph g instance of Functor . The adjuncts are defined

⌊−⌋Exp ∶ (Functor f ) ⇒ (∀x . (f x ,h x) → g x) → (∀x . f x → Exph g x)
⌊σ⌋Exp = λs → Exp (λ(k , t) → σ (fmap k s, t))
⌈−⌉Exp ∶ (∀x . f x → Exph g x) → (∀x . (f x ,h x) → g x)
⌈τ⌉Exp = λ(s, t) → exp○ (τ s) (id , t) .

The type variables f , g and h are implicitly universally quantified. Again, most
of the functor instances are not needed. ⊓⊔

Example 17. Continuing Example 15, we may conclude that the defining equa-
tion of append has a unique solution. Its transpose of type List →̇ListList is inter-
esting as it combines append with fmap:

append ′ ∶ ∀a . Lista → ∀x . (a → x) → (List x → List x)
append ′ as = λf → λbs → append (fmap f as, bs) .

For clarity, we have inlined the definition of ExpList List. ⊓⊔

3.3.2 Mutual Value Recursion. The functions left and right introduced
in Example 12 are defined by mutual recursion. The program is similar to Ex-
ample 5, which defines varsExpr and varsStat , with the notable difference that
only one datatype is involved, rather than a pair of mutually recursive datatypes.
Nonetheless, the correspondence suggests to view left and right as a single arrow
in a product category.

trees ∶ ⟨1, 1⟩ →∆(νTree)
The arrow trees is an adjoint unfold since the diagonal functor ∆ ∶ C → C ×C has
a left adjoint, the coproduct (Sections 2.3.2 and 2.5.1). Using a similar reasoning
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as in Section 3.1.3, we can unfold the adjoint final fixed-point equation specialised
to the diagonal functor:

∆out ⋅ x = Ψ x ⇐⇒ out ⋅ x1 = Ψ1 ⟨x1, x2⟩ and out ⋅ x2 = Ψ2 ⟨x1, x2⟩ ,

where x1 = Outl x , x2 = Outr x , Ψ1 = Outl○Ψ and, Ψ2 = Outr○Ψ . The resulting
equations are similar to those of Section 3.1.3, except that now the destructor
out is the same in both equations.

Example 18. Continuing Example 12, the base functions of left and right are
given by

left ∶ ∀x . (() → x , () → x) → (() → Tree x)
left (left , right) () = Branch (left (),0, right ())
right ∶ ∀x . (() → x , () → x) → (() → Tree x)
right (left , right) () = Branch (left (),1, right ()) .

The recursion equations

left ∶ () → νTree
left () = Out○ (left (left , right) ())
right ∶ () → νTree
right () = Out○ (right (left , right) ())

exactly fit the pattern above (if we move Out○ to the left-hand side). Hence,
both functions are uniquely defined. Their transpose, ⌈⟨left , right⟩⌉, combines
the two functions into a single one using a coproduct.

trees ∶ Either () () → νTree
trees (Left ()) = Out○ (Branch (trees (Left ()),0, trees (Right ())))
trees (Right ()) = Out○ (Branch (trees (Left ()),1, trees (Right ())))

The predefined datatype Either given by dataEither a b = Left a ∣ Right b is
Haskell’s coproduct. ⊓⊔

Let us turn to the dual case. To handle folds defined by mutual recursion, we
need the right adjoint of the diagonal functor, which is the product (Sections 2.3.1
and 2.5.1). Specialising the adjoint initial fixed-point equation yields

⟨x1, x2⟩ ⋅∆in = Ψ ⟨x1, x2⟩ ⇐⇒ x1 ⋅ in = Ψ1 ⟨x1, x2⟩ and x2 ⋅ in = Ψ2 ⟨x1, x2⟩ .

Example 19. We can use mutual value recursion to fit the definition of the binary
increment (Example 4) into the framework. The definition of succ has the form
of a paramorphism [29], as the argument that drives the recursion is not exclu-
sively used in the recursive call. The idea is to ‘guard’ the other occurrence by
the identity function and to pretend that both functions are defined by mutual
recursion.
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succ ∶ µNat → Nat
succ (In (N)) = In (I (In N))
succ (In (O b)) = In (I (id b))
succ (In (I b)) = In (O (succ b))

id ∶ µNat → Nat
id (In (N)) = In (N)
id (In (O b)) = In (O (id b))
id (In (I b)) = In (I (id b))

If we abstract away from the recursive calls, we find that the two base func-
tions have indeed the required polymorphic types.

succ ∶ ∀x . (x → Nat , x → Nat) → (Nat x → Nat)
succ (succ, id) (N) = In (I (In N))
succ (succ, id) (O b) = In (I (id b))
succ (succ, id) (I b) = In (O (succ b))
id ∶ ∀x . (x → Nat , x → Nat) → (Nat x → Nat)
id (succ, id) (N) = In (N)
id (succ, id) (O b) = In (O (id b))
id (succ, id) (I b) = In (I (id b))

The transposed fold has type µNat → Nat × Nat and corresponds to the usual
encoding of paramorphisms as folds (using tupling). The trick does not work for
the ‘base function’ bogus as the resulting function still lacks naturality. ⊓⊔

Exercise 39. Show that the factorial function

data Peano = Z ∣ S Peano

fac ∶ Peano → Peano
fac (Z ) = 1
fac (S n) = S n ∗ fac n

is an adjoint fold. ⊓⊔

Exercise 40. Can you also fit the Fibonacci function

fib ∶ Peano → Peano
fib (Z ) = Z
fib (S Z ) = S Z
fib (S (S n)) = fib n + fib (S n)

into the framework of adjoint folds? Hint: introduce a second function fib′ n =
fib (S n) and transform the nested recursion above into mutual recursion. ⊓⊔

3.3.3 Single Value Recursion. We have discussed mutually recursive func-
tions over mutually recursive datatypes and mutually recursive functions over
datatypes defined by single recursion. But what about a single function that
recurses over a datatype defined by mutual recursion?

Example 20. The following datatypes (see also Example 5) model the abstract
syntax of a simple functional programming language (as usual, this is a very
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stripped-down example).

data Expr = Var Var ∣ Let (Decl ,Expr)
data Decl = Def (Var ,Expr) ∣ And (Decl ,Decl)
bound ∶ Decl → Vars
bound (Def (x , e)) = {x}
bound (And (d1,d2)) = bound d1 ∪ bound d2

The function bound determines the variables that are defined by a declaration.
⊓⊔

The function bound proceeds by structural recursion, but it is not a fold simply
because Decl is not an initial algebra: Decl = Outr (µGrammar). We can view
bound as an adjoint fold provided Outr is part of an adjoint situation. It turns
out that the projection functors Outl and Outr have both left and right adjoints
if the base categories have initial and final objects. We show that Outl has a
right adjoint—the other proofs proceed completely analogously.

C (OutlA,B)
≅ { S × 1 ≅ S }

C (OutlA,B) × 1

≅ { assumption: D has a final object }
C (OutlA,B) ×D(OutrA,1)

≅ { definition of C ×D }
(C ×D)(A, ⟨B , 1⟩)

The isomorphism is natural in A and B since each step is. The following diagram
summarises the adjoint situations.

C
≺

Outl

�
⟨−, 1⟩ ≻ C ×D

≺
⟨−, 0⟩
�

Outl
≻ C

Specialising the adjoint fixed-point equations to Outl yields

x ⋅ in1 = Ψ x , and out1 ⋅ x = Ψ x ,

where in1 = Outl in and out1 = Outlout .

Exercise 41. Define the Haskell functions

freeExpr ∶ Expr → Vars
freeDecl ∶ Decl → Vars

that determine the free variables of expressions and declarations, respectively.
Try to capture them as adjoint folds. (This is more involved than you might
initially think, since freeExpr very likely also depends on the function bound
from Example 20). ⊓⊔
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An alternative approach to giving a semantics to bound is to make use of the
fact that a fixed point of a functor over product categories can be expressed in
terms of fixed points of unary functors [30]:

µF ≅ ⟨µX . F1 ⟨X , µY . F2 ⟨X , Y ⟩⟩, µY . F2 ⟨µX . F1 ⟨X , Y ⟩, Y ⟩⟩ ,

where F1 = Outl○F and F2 = Outr○F.

3.3.4 Type Application. Folds of higher-order initial algebras are necessar-
ily natural transformations as they live in a functor category. However, many
Haskell functions that recurse over a parametric datatype are actually monomor-
phic.

Example 21. The type Sequ generalises the type of binary leaf trees, abstracting
away from the type Nat .

typeSequ = µSequ

dataSequ sequ a =Singlea ∣ Cat (sequ a, sequ a)
instance (Functor sequ) ⇒ Functor (Sequ sequ)where

fmap f (Singlea) =Single (f a)
fmap f (Cat (l , r)) = Cat (fmap f l , fmap f r)

The function sums defined

sums ∶ µSequNat → Nat
sums (In (Singlen)) = n
sums (In (Cat (l , r))) = sums l + sums r

sums a non-empty sequence of natural numbers. It is the adaptation of total
(Example 1) to the type of parametric leaf trees. ⊓⊔

The definition of sums looks suspiciously like a fold, but it is not as it does not
have the right type. The corresponding function on random-access lists does not
even resemble a fold.

Example 22. The function suma sums a random-access list.

suma ∶ µArrayNat → Nat
suma (In (Null)) = 0
suma (In (Zero s)) = suma (fmap plus s)
suma (In (One (a, s))) = a + suma (fmap plus s)
plus ∶ (Nat ,Nat) → Nat
plus (a, b) = a + b

Note that the recursive calls of suma are not applied to a subterm of the input.
In fact, they cannot as the parameter s has type Array (Nat ,Nat), not ArrayNat .
As an aside, this definition requires the functor instance for µ (Definition 9). ⊓⊔
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Perhaps surprisingly, the definitions above fit into the framework of ad-
joint fixed-point equations. We already know that type application is a functor
(Section 2.2.3). Using this higher-order functor we can assign suma the type
(−Nat) (µArray) → Nat . All that is left to do is to check whether −X is part
of an adjunction. It turns out that under some mild conditions (existence of
copowers and powers) −X has both a left and a right adjoint. We choose to
derive the left adjoint.

C (A,BX )
≅ { Yoneda Lemma (85) }
∀Y ∶ D . D(X ,Y ) → C (A,BY )

≅ { copower: C (∑ I . X ,Y ) ≅ I → C (X ,Y ) (52) }
∀Y ∶ D . C (∑D(X ,Y ) . A,BY )

≅ { define LshX A = λY ∶ D . ∑D(X ,Y ) . A }
∀Y ∶ D . C (LshX A Y ,BY )

≅ { natural transformations }
LshX A →̇B

Since each step is natural in A and B, the composite isomorphism is natural
in A and B, as well. We call LshX the left shift of X , for want of a better name.
Dually, the right adjoint is RshX B = λY ∶ D . ∏D(Y ,X ) . B , the right shift
of X . The following diagram summarises the type information.

C D ≺
LshX
�
−X

≻ C
≺

−X

�
RshX

≻ C D

Recall that in Set, the copower ∑ I . A is the cartesian product I ×A and the
power ∏ I . A is the set of functions I → A. This correspondence suggests the
Haskell implementation below. However, it is important to keep in mind that I
is a set, not an object in the ambient category (like A).

Definition 23. The functors Lsh and Rsh can be defined as follows.

newtypeLshx a y = Lsh (x → y ,a)
instance Functor (Lshx a)where

fmap f (Lsh (k ,a)) = Lsh (f ⋅ k ,a)
newtypeRshx b y = Rsh {rsh○ ∶ (y → x) → b}
instance Functor (Rshx b)where

fmap f (Rsh g) = Rsh (λk → g (k ⋅ f ))

The type Lshx a y can be seen as an abstract datatype: a is the internal state
and x → y is the observer function—often, but not always, the types a and x
are identical (Lshx x is a comonad, similar to the costate comonad). Dually,
Rshx b y implements a continuation type—again, the types x and b are likely to
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be identical (Rshx x is the continuation monad, see Exercise 44). The adjuncts
are defined

⌊−⌋Lsh ∶ ∀x a b . (∀y . Lshx a y → b y) → (a → b x)
⌊α⌋Lsh = λs → α (Lsh (id , s))
⌈−⌉Lsh ∶ ∀x a b . (Functor b) ⇒ (a → b x) → (∀y . Lshx a y → b y)
⌈g⌉Lsh = λ(Lsh (k , s)) → fmap k (g s)
⌊−⌋Rsh ∶ ∀x a b . (Functor a) ⇒ (a x → b) → (∀y . a y → Rshx b y)
⌊f ⌋Rsh = λs → Rsh (λk → f (fmap k s))
⌈−⌉Rsh ∶ ∀x a b . (∀y . a y → Rshx b y) → (a x → b)
⌈β⌉Rsh = λs → rsh○ (β s) id .

Note that the adjuncts are also natural in x , the parameter of the adjunctions.
(Exercise 45 asks you to explore this fact.) ⊓⊔
As usual, let us specialise the adjoint equations (in Set).

x ⋅ (−X ) in = Ψ x ⇐⇒ ∀s . x (in X s) = Ψ x s

(−X )out ⋅ x = Ψ x ⇐⇒ ∀a . out X (x a) = Ψ x a

Since both type abstraction and type application are invisible in Haskell, the
adjoint equations are, in fact, indistinguishable from standard fixed-point equa-
tions.

Example 24. Continuing Example 22, the base function of suma is

suma ∶ ∀x . (Functor x) ⇒
(x Nat → Nat) → (Array x Nat → Nat)

suma suma (Null) = 0
suma suma (Zero s) = suma (fmap plus s)
suma suma (One (a, s)) = a + suma (fmap plus s) .

The definition requires the Array x functor instance, which in turn induces the
Functor x context. The transpose of suma is a fold that returns a higher-order
function: suma ′ ∶ Array →̇ RshNat Nat .

suma ′ ∶ ∀x . Array x → (x → Nat) → Nat
suma ′ (Null) = λk → 0
suma ′ (Zero s) = λk → suma ′ s (plus ⋅ (k × k))
suma ′ (One (a, s)) = λk → k a + suma ′ s (plus ⋅ (k × k)) .

Quite interestingly, the transformation turns a generalised fold in the sense of [31]
into an efficient generalised fold in the sense of [32]. Both versions have a linear
running time, but suma ′ avoids the repeated invocations of the mapping function
(fmap plus). ⊓⊔

∗ Exercise 42. The type of non-empty sequences (see Example 21)

dataSequa = Single a ∣ Cat (Sequa,Sequa)

can alternatively be seen as the free monad of the squaring functor SqA = A×A,
see Section 2.6.4. Express sums in terms of eval . ⊓⊔
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∗ Exercise 43. The type

dataTreea = Branch (Treea,a,Treea)

generalises the type of bifurcations (Example 2), abstracting away from the type
of labels. Capture generate ∶ Nat → TreeNat as an adjoint unfold. The type Tree
can also be seen as the cofree comonad of the squaring functor SqA = A×A (see
Exercise 34). Express generate in terms of trace. ⊓⊔

∗ Exercise 44. The purpose of this exercise is to show that the functor M = RshX X
is a monad for each choice of X ∶ C . There are at least two approaches: via the
specification or via the implementation.

1. If we specialise the specification of RshX , the adjunction −X ⊣ RshX , to
(setting B ∶=X )

⌊−⌋ ∶ C (AX ,X ) ≅ C C (A,M) ∶ ⌈−⌉ ,

we obtain an isomorphism natural in the functor A. This suggests to define
the unit and the multiplication of the monad by

return = ⌊id⌋ ,
join = ⌊e ⋅M e⌋where e = ⌈id⌉ .

Note that the arrow e ∶ C (MX ,X ) runs a computation. Show that return
and join satisfy the monad laws (see Exercise 30).

2. If the monad is implemented by MA = ∏C (A,X ) . X , then we can use the
combinators of Section 2.5.7 to define

return =
i

k . k ,

join =
i

k . ππk
.

Show that return and join thus defined satisfy the monad laws. Try to re-
late the definitions to the implementation of the continuation monad from
Haskell’s standard libraries. ⊓⊔

∗ Exercise 45. Like the curry adjunction, −X ⊣ RshX is an adjunction with a
parameter. Apply Exercise 35 to show that there is a unique way to turn Rsh
into a bifunctor, so that the bijection C (AX ,B) ≅ C D(A,RshX B) is also natural
in X :

C (A X̂ ,B)
⌊−⌋

≻ C D(A,RshX̂ B)

C (A X̌ ,B)

C (Ap,B)
⋎

⌊−⌋≻ C D(A,RshX̌ B) ,

C D(A,Rshp B)
⋎

where p ∶ D(X̂ , X̌ ). Explore. ⊓⊔
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3.3.5 Type Composition. Continuing the theme of the last section, func-
tions over parametric types, consider the following example.

Example 25. The function join defined

join ∶ ∀a . µSequ (Sequa) → Sequa
join (In (Single s)) = s
join (In (Cat (l , r))) = In (Cat (join l , join r))

flattens a non-empty sequence of non-empty sequences. ⊓⊔

The definition has the structure of an ordinary fold, but again the type is not
quite right: we need a natural transformation of type µSequ →̇ G, but join has
type µSequ○Sequ→̇Sequ. Can we fit the definition into the framework of adjoint
equations? The answer is an emphatic “Yes, we Kan!” Similar to the development
of the previous section, the first step is to identify a left adjoint. We already
know that pre-composition is a functor (Section 2.2.3). Using this higher-order
functor we can assign join the type (−○Sequ) (µSequ) →̇ Sequ. (We interpret
Sequ○Sequ as (−○Sequ)Sequ rather than (Sequ○−)Sequ because the outer list,
written µSequ for emphasis, drives the recursion.)

As a second step, we have to construct the right adjoint of the higher-order
functor. It turns out that this is a well-studied problem in category theory.
Similar to the situation of the previous section, under some conditions −○J has
both a left and a right adjoint. For variety, we derive the latter.

F○J →̇G

≅ { natural transformation as an end [8, p.223] }
∀Y ∶ C . E (F (JY ),GY )

≅ { Yoneda Lemma (85) }
∀Y ∶ C . ∀X ∶ D . D(X , JY ) → E (FX ,GY )

≅ { power: I → C (Y ,B) ≅ C (Y ,∏ I . B) (52) }
∀Y ∶ C . ∀X ∶ D . E (FX ,∏D(X , JY ) . GY )

≅ { interchange of quantifiers [8, p.231f] }
∀X ∶ D . ∀Y ∶ C . E (FX ,∏D(X , JY ) . GY )

≅ { the hom-functor E (A,−) preserves ends [8, p.225] }
∀X ∶ D . E (FX ,∀Y ∶ C .∏D(X , JY ) . GY )

≅ { define RanJG = λX ∶ D . ∀Y ∶ C .∏D(X , JY ) . GY }
∀X ∶ D . E (FX ,RanJGX )

≅ { natural transformation as an end [8, p.223] }
F →̇ RanJG

Since each step is natural in F and G, the composite isomorphism is also natural
in F and G. The functor RanJG is called the right Kan extension of G along J.
(If we view J ∶ C → D as an inclusion functor, then RanJG ∶ D → E extends
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G ∶ C → E to the whole of D .) The universally quantified object in the definition
of RanJ is a so-called end, which corresponds to a polymorphic type in Haskell.
An end is usually written with an integral sign; I prefer the universal quantifier,
in particular, as it blends with the notation for natural transformations. And
indeed, natural transformations are an example of an end: DC (F,G) = ∀X ∶
C . D(FX ,GX ). We refer the interested reader to [8] for further details.

Dually, the left adjoint of −○J is called the left Kan extension and is defined
LanJ F = λX ∶ D . ∃Y ∶ C . ∑D(JY ,X ) . FY . The existentially quantified
object is a coend, which corresponds to an existential type in Haskell (hence the
notation). The following diagrams summarise the type information.

C

E ≺
G

≺
LanJ F

≺

F

D

J

⋎

E D ≺
LanJ
�
−○J ≻ E C ≺

−○J
�

RanJ
≻ E D

C

D

J

⋎ F
≻

RanJG
≻ E

G

≻

Definition 26. Like Exp, the definition of the right Kan extension requires rank-2
types (the data constructor Ran has a rank-2 type).

newtypeRanj g x = Ran {ran○ ∶ ∀a . (x → j a) → g a }
instance Functor (Ranj g)where

fmap f (Ran h) = Ran (λk → h (k ⋅ f ))

The type Ranj g can be seen as a generalised continuation type—often, but not
always, the type constructors j and g are identical (RanJ J is known as the
codensity monad, see Exercise 46). Morally, j and g are functors. However, their
mapping functions are not needed to define the Ranj g instance of Functor .
Hence, we omit the (Functor j ,Functor g) context. The adjuncts are defined

⌊−⌋Ran ∶ ∀j f g . (Functor f ) ⇒ (∀x . f (j x) → g x) → (∀x . f x → Ranj g x)
⌊α⌋Ran = λs → Ran (λk → α (fmap k s))
⌈−⌉Ran ∶ ∀j f g . (∀x . f x → Ranj g x) → (∀x . f (j x) → g x)
⌈β⌉Ran = λs → ran○ (β s) id .

Note that the adjuncts are also natural in j , the parameter of the adjunction.
(Exercise 47 asks you to explore this fact.)

Turning to the definition of the left Kan extension we require another exten-
sion of the Haskell 2010 type system: existential types.

dataLanj f x = ∀a . Lan (j a → x , f a)
instance Functor (Lanj f )where

fmap f (Lan (k , s)) = Lan (f ⋅ k , s) .

The existential quantifier is written as a universal quantifier in front of the
data constructor Lan. Ideally, Lanj should be given by a newtype declaration,
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but newtype constructors must not have an existential context (in GHC). For
similar reasons, we cannot use a destructor, that is, a selector function lan○. The
type Lanj f can be seen as a generalised abstract data type: f a is the internal
state and j a → x the observer function—again, the type constructors j and f
are likely to be identical (LanJ J is known as the density comonad). The adjuncts
are given by

⌊−⌋Lan ∶ ∀j f g . (∀x . Lanj f x → g x) → (∀x . f x → g (j x))
⌊α⌋Lan = λs → α (Lan (id , s))
⌈−⌉Lan ∶ ∀j f g . (Functor g) ⇒ (∀x . f x → g (j x)) → (∀x . Lanj f x → g x)
⌈β⌉Lan = λ(Lan (k , s)) → fmap k (β s) .

The duality of the construction is somewhat obscured in Haskell. ⊓⊔

As usual, let us specialise the adjoint equations (in Set).

x ⋅ (−○J) in = Ψ x ⇐⇒ ∀A . ∀s . x A (in (JA) s) = Ψ x A s

(−○J)out ⋅ x = Ψ x ⇐⇒ ∀A . ∀a . out (JA) (x A a) = Ψ x A a

The usual caveat applies when reading the equations as Haskell definitions: as
type application is invisible, the derived equation is indistinguishable from the
original one.

Example 27. Continuing Example 25, the base function of join is straightfor-
ward, except perhaps for the types.

join ∶ ∀x . (∀a . x (Sequa) → Sequa) →
(∀a .Sequ x (Sequa) → Sequa)

join join (Single s) = s
join join (Cat (l , r)) = In (Cat (join l , join r))

The base function join is a second-order natural transformation. The transpose
of join is quite revealing. First of all, its type is

join ′ ∶ Sequ →̇ RanSequ Sequ ≅ ∀a . Sequa → ∀b . (a → Sequ b) → Sequ b .

The type suggests that join ′ is the bind of the monad Sequ (Exercise 42) and
this is indeed the case!

join ′ ∶ ∀a b . µSequa → (a → Sequ b) → Sequ b
join ′ as = λk → join (fmap k as)

For clarity, we have inlined RanSequ Sequ. ⊓⊔

Kan extensions generalise the constructions of the previous section: If the
category C is non-empty (C ≠ 0), then we have LshA B ≅ Lan(KA) (KB) and
RshA B ≅ Ran(KA) (KB), where K is the constant functor. Here is the proof for
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the right adjoint:

FA→ B

≅ { arrows as natural transformations: A→ B ≅ KA →̇KB if C ≠ 0 }
K (FA) →̇KB

= { K (FA) = F○KA }
F○KA →̇KB

≅ { (−○J) ⊣ RanJ }
F →̇ RanKA (KB) .

Since adjoints are unique up to isomorphism (Section 2.5.8), we conclude that
RanKA○K ≅ RshA.

∗ Exercise 46. Kan extensions generalise shifts. Likewise, the codensity monad
generalises the continuation monad. This exercise is due to Mac Lane [8, Exer-
cise X.7.3]; it is solved in the forthcoming paper [33].

1. Generalise the argument of Exercise 44 to show that M = RanJ J is a monad
for each choice of J ∶ C → D . The functor M is called the codensity monad
of J. (Specifically, if we specialise the adjunction (−○J) ⊣ RanJ to (G ∶= J)

⌊−⌋ ∶ DC (F○J, J) ≅ DD(F,M) ∶ ⌈−⌉ ,

we obtain a bijection natural in the functor F ∶ D → D . Unit and multiplica-
tion of the codensity monad are given by

return = ⌊id⌋ ,
join = ⌊e ⋅M○e⌋where e = ⌈id⌉ ,

where the natural transformation e ∶ DC (M○J, J) runs a computation.)
2. Show that if R ∶ C → D has a left adjoint, L ⊣ R, then the codensity monad

of R is the monad induced by the adjunction, (R○L, η,R○ε○L). ⊓⊔

∗ Exercise 47. The adjunction (−○J) ⊣ RanJ is yet another example of an adjunc-
tion with a parameter. Apply Exercise 35 to show that there is a unique way
to turn Ran into a higher-order bifunctor, so that the bijection E C (F○J,G) ≅
E D(F,RanJG) is also natural in J:

E C (F○Ĵ,G)
⌊−⌋

≻ E D(F,RanĴG)

E C (F○J̌,G)

E C (F○α,G)
⋎

⌊−⌋≻ E D(F,RanJ̌G) ,

E D(F,RanαG)
⋎

where α ∶ DC (Ĵ, J̌). Remember that −○= is a bifunctor (Section 2.2.3). Conse-
quently, −○α is a higher-order natural transformation. Explore. ⊓⊔
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3.3.6 Swapping Arguments. So far we have considered inductive and coin-
ductive types only in isolation. The following example introduces two functions
that combine an inductive with a coinductive type.

Example 28. Bifurcations and functions over the binary numbers are in one-to-
one correspondence. The functions tabulate and lookup witness the isomorphism.

tabulate ∶ (Nat → Nat) → Tree
tabulate f = Branch (tabulate (f ⋅O), f N , tabulate (f ⋅ I ))
lookup ∶ Tree → (Nat → Nat)
lookup (Branch (l , v , r)) (N ) = v
lookup (Branch (l , v , r)) (O b) = lookup l b
lookup (Branch (l , v , r)) (I b) = lookup r b

The first isomorphism tabulates a given function, producing an infinite tree of
its values. Its inverse looks up a binary number at a given position. ⊓⊔

Tabulation is a standard unfold, but what about lookup? Its type involves expo-
nentials: lookup ∶ C (Tree,NatµNat). However, the curry adjunction −×X ⊣ (−)X
is not applicable here, as the right adjoint fixes the source object. We need its
counterpart, the functor X (−) ∶ C op → C , which fixes the target object (Ex-
ercise 22). Since this functor is contravariant, the type of lookup is actually

C op((Nat(−))op (µNat),Tree), which suggests that the arrow is an adjoint fold!
If we specialise the adjoint equation to C = Set and L = X (−), we obtain

x ⋅ L in = Ψ x ⇐⇒ ∀s . ∀a . x a (in s) = Ψ x a s .

So x is simply a curried function that recurses over the second argument.
We have not mentioned unfolds so far. The reason is perhaps surprising. In

this particular case, an adjoint unfold is the same as an adjoint fold! Consider
the type of an adjoint unfold: C (A,R (νF)). Since R = X (−) is contravariant,
the final coalgebra in C op is the initial algebra in C . Since furthermore X (−) is
self-adjoint, we obtain the type of an adjoint fold: C (A,L (µF)) = C op(L (µF),A).

Table 4 summarises the adjunctions considered in this section.

Exercise 48. Exercise 32 asked you to explore the adjunction Free ⊣ U, where
U ∶ Mon→ Set is the functor that forgets about the additional structure of Mon.
Explore adjoint folds of type Free (µF) → A. ⊓⊔

3.4 Program Verification

In this section we develop the calculational properties of adjoint folds—the reader
is invited to dualise the results to adjoint unfolds. Sections 3.4.1 is concerned
with laws that support structured point-free reasoning. Section 3.4.2 then shifts
the focus from point-free to pointwise style. It presents a unifying proof method
that can be readily adapted to support effective pointwise calculations.
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Table 4. Adjunctions and types of recursion.

adjunction initial fixed-point equation final fixed-point equation

L ⊣ R
x ⋅ L in = Ψ x Rout ⋅ x = Ψ x

x ′ ⋅ in = ⌊Ψ ⌈x ′⌉⌋ out ⋅ x ′ = ⌈Ψ ⌊x ′⌋⌉

Id ⊣ Id
standard fold standard unfold
standard fold standard unfold

− ×X ⊣ (−)
X

parametrised fold curried unfold

x ⋅ (in ×X ) = Ψ x outX ⋅ x = Ψ x
fold to an exponential unfold from a product

(X (−)
)
op
⊣ X (−)

swapped curried fold
X in

⋅ x = Ψ x
fold to an exponential

(+) ⊣∆

recursion from a coproduct of
mutual value recursion

mutually recursive types
out ⋅ x1 = Ψ1 ⟨x1, x2⟩
out ⋅ x2 = Ψ2 ⟨x1, x2⟩

mutual value recursion on single recursion from a
mutually recursive types coproduct domain

∆ ⊣ (×)

mutual value recursion
recursion to a product of
mutually recursive types

x1 ⋅ in = Ψ1 ⟨x1, x2⟩
x2 ⋅ in = Ψ2 ⟨x1, x2⟩

single recursion to a mutual value recursion on
product domain mutually recursive types

⟨−, 0⟩ ⊣ Outl —

single value recursion on
mutually recursive types

out1 ⋅ x = Ψ x
‘mutual’ value recursion on

mutually recursive types

Outl ⊣ ⟨−, 1⟩

single value recursion on

—
mutually recursive types

x ⋅ in1 = Ψ x
‘mutual’ value recursion on

mutually recursive types

LshX ⊣ (−X ) —
monomorphic unfold

out X ⋅ x = Ψ x
unfold from a left shift

(−X ) ⊣ RshX

monomorphic fold
—x ⋅ in X = Ψ x

fold to a right shift

LanJ ⊣ (−○J) —
polymorphic unfold

out○J ⋅ x = Ψ x
unfold from a left Kan extension

(−○J) ⊣ RanJ

polymorphic fold
—x ⋅ in○J = Ψ x

fold to a right Kan extension
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3.4.1 Uniqueness Property. Adjoint folds enjoy the usual plethora of prop-
erties. The fact that an adjoint initial fixed-point equation has a unique solution
can be captured by the following equivalence, the uniqueness property.

x = ((Ψ ))L ⇐⇒ x ⋅ L in = Ψ x (98)

The uniqueness property has two simple consequences. First, substituting the
left-hand side into the right-hand side gives the computation law.

((Ψ ))L ⋅ L in = Ψ ((Ψ ))L (99)

The law has a straightforward operational reading: an application of an adjoint
fold is replaced by the body of the fold.

Second, instantiating x to id , we obtain the reflection law.

((Ψ ))L = id ⇐⇒ Ψ id = L in (100)

As an application of these identities, let us generalise the banana-split law [9].
In Section 2.6.6 we have stated the law in terms of standard folds. However, it
can be readily ported to adjoint folds. First we introduce the counterpart of the
product of two algebras (see also Exercise 49):

(Φ⊗ Ψ) x = Φ (outl ⋅ x) △ Ψ (outr ⋅ x) . (101)

It is worth pointing out that the definition of ⊗ mentions neither the base func-
tor F nor the adjoint functor L—in a sense, the base functions are hiding unnec-
essary detail.

Exercise 49. We have seen in Section 3.1.1 that base functions of type C (−,A)→̇
C (F−,A) and F-algebras are in one-to-one correspondence. Show that ⊗ corre-
sponds to the product of algebras (for L = Id). ⊓⊔

The generalised banana-split law then states

((Φ))L △((Ψ ))L = ((Φ⊗ Ψ ))L . (102)

For the proof we appeal to the uniqueness property (98); the obligation is dis-
charged as follows.

(((Φ))L △((Ψ ))L) ⋅ L in

= { fusion (12) }
((Φ))L ⋅ L in △((Ψ ))L ⋅ L in

= { computation (99) }
Φ((Φ))L △ Ψ ((Ψ ))L

= { computation (9)–(10) }
Φ (outl ⋅ (((Φ))L △((Ψ ))L)) △ Ψ (outr ⋅ (((Φ))L △((Ψ ))L))

= { definition of ⊗ (101) }
(Φ⊗ Ψ) (((Φ))L △((Ψ ))L)
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Exercise 50. Consider the following string of isomorphisms.

LA→ B1 ×B2

≅ (LA→ B1) × (LA→ B2)
≅ (A→ RB1) × (A→ RB2)
≅ A→ RB1 × RB2

≅ A→ R (B1 ×B2)
≅ LA→ B1 ×B2

Justify each step. Why is the generalised banana-split law in a sense unsurpris-
ing? ⊓⊔

The fusion law states a condition for fusing an arrow h ∶ C (A,B) with an
adjoint fold ((Φ))L ∶ C (L (µF),A) to form another adjoint fold ((Ψ ))L ∶ C (L (µF),B).
The condition can be easily calculated.

h ⋅ ((Φ))L = ((Ψ ))L
⇐⇒ { uniqueness property (98) }

h ⋅ ((Φ))L ⋅ L in = Ψ (h ⋅ ((Φ))L)
⇐⇒ { computation (99) }

h ⋅Φ((Φ))L = Ψ (h ⋅ ((Φ))L)
⇐Ô { abstracting away from ((Φ))L }

∀f . h ⋅Φ f = Ψ (h ⋅ f )

Consequently,

h ⋅ ((Φ))L = ((Ψ ))L ⇐Ô ∀f . h ⋅Φ f = Ψ (h ⋅ f ) . (103)

As for generalised banana-split, the fusion condition h ⋅ Φ f = Ψ (h ⋅ f ) mentions
neither the base functor F nor the adjoint functor L, which makes the law easy
to use.

Exercise 51. Let a and b be the algebras corresponding to the base functions Φ
and Ψ (for L = Id). Show that

h ⋅ a = b ⋅ Fh ⇐⇒ ∀f . h ⋅Φ f = Ψ (h ⋅ f ) .

In other words, the fusion condition requires h to be an F-algebra homomor-
phism. ⊓⊔

Example 29. The function height determines the height of a stack.

height ∶ Stack → Nat
height Empty = 0
height (Push (n, s)) = 1 + height s
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Let us show that height is a monoid homomorphism from the stack monoid
to the monoid of natural numbers with addition, height ∶ (Stack ,Empty ,◇) →
(Nat ,0,+):

height Empty = 0 , (104)

height (x ◇ y) = height x + height y , (105)

or, written in a point-free style,

height ⋅ empty = zero , (106)

height ⋅ cat = plus ⋅ (height × height) . (107)

Here zero is the constant arrow that yields 0, empty is the constant arrow that
yields Empty , and, finally, cat and plus are ◇ and + written prefix. The first
condition (106) is an immediate consequence of height ’s definition. Regarding
the second condition (107), there is no obvious zone of attack, as neither the
left- nor the right-hand side is an adjoint fold. Consequently, we proceed in two
steps: we first demonstrate that the left-hand side can be fused to an adjoint
fold, and then we show that the right-hand side satisfies the adjoint fixed-point
equation of this fold.

For the first step, we are seeking a base function height2 so that

height ⋅ ((cat))L = ((height2))L ,

where L = −×Stack . The base function cat is defined in Example 13. Fusion (103)
immediately gives us

∀cat . height ⋅ cat cat = height2 (height ⋅ cat) , (108)

from which we can easily synthesise a definition of height2:
Case Empty:

height2 (height ⋅ cat) (Empty, y)
= { specification of height2 (108) }

height (cat cat (Empty, y))
= { definition of cat (Example 13) }

height y .

Case Push (a, x):

height2 (height ⋅ cat) (Push (a, x), y)
= { specification of height2 (108) }

height (cat cat (Push (a, x), y))
= { definition of cat (Example 13) and In ⋅Push = Push }

height (Push (a, cat (x , y)))
= { definition of height }

1 + (height ⋅ cat) (x , y) .
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Abstracting away from height ⋅ cat , we obtain

height2 ∶ ∀x . (L x → Nat) → (L (Stack x) → Nat)
height2 height2 (Empty, y) = height y
height2 height2 (Push (a, x), y) = 1 + height2 (x , y) .

For the second step, we have to show

plus ⋅ (height × height) = ((height2))L .

Appealing to uniqueness (98), we are left with the proof obligation

plus ⋅ (height × height) ⋅ L in = height2 (plus ⋅ (height × height)) ,

which is straightforward to discharge. ⊓⊔

3.4.2 Unique Fixed-point Principle. Assume that you want to prove the
equality of two arrows. In the fortunate case that one of the arrows takes the
form of an adjoint fold, we can either appeal to the uniqueness property, or
preferably, invoke the fusion law. Unfortunately, more often than not neither
arrow is given explicitly as an adjoint fold, in which case none of the laws is
directly applicable. Property (107) illustrates this observation: both sides of the
equation involve adjoint folds, but they are not themselves adjoint folds.

The following proof method, the unique fixed-point principle, provides a way
out of this dilemma. The idea is to demonstrate f ⋅ L in = Θ f and Θ g = g ⋅ L in.
If the equation x ⋅ L in = Θ x has a unique solution, then we may conclude that
f = g . The important point is that we discover the base function Θ on the fly
during the calculation. A proof in this style is laid out as follows.

f ⋅ L in

= { why? }
Θ f

∝ { x ⋅ L in = Θ x has a unique solution }
Θ g

= { why? }
g ⋅ L in

The symbol ∝ is meant to suggest a link connecting the upper and the lower
part. Overall, the proof establishes that f = g . An analogous approach can be
used to prove the equality of two adjoint unfolds.

Example 30. Let us show height (x ◇y) = height x +height y (105) a second time,
this time using the unique fixed-point principle. For reasons of brevity it is useful
to condense the definitions of cat and height into single equations (we abbreviate
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Empty and Push by E and P).

cat ∶ (µStack, µStack) → µStack
cat (In s, u) = case s of {E→ u;P (a, t) → In (P (a, cat (t ,u)))}
height ∶ µStack→ Nat
height (In s) = case s of {E→ 0;P (a, t) → 1 + height t }

Expressing the calculation in a pointwise style leads to a more attractive proof,
which proceeds as follows:

height (cat (In s,u))
= { definition of cat }

height (case s of {E→ u;P (a, t) → In (P (a, cat (t ,u)))})
= { case-fusion }

case s of {E→ height u;P (a, t) → height (In (P (a, cat (t ,u))))}
= { definition of height }

case s of {E→ height u;P (a, t) → 1 + height (cat (t ,u))}
∝ { x (In s,u) = case s of {E→ height u;P (a, t) → 1 + x (t ,u)} }

case s of {E→ height u;P (a, t) → 1 + (height t + height u)}
= { (Nat ,0,+) is a monoid }

case s of {E→ 0 + height u;P (a, t) → (1 + height t) + height u }
= { case-fusion }

(case s of {E→ 0;P (a, t) → 1 + height t }) + height u

= { definition of height }
height (In s) + height u .

Note that height (cat (In s,u)) = height (In s) + height u is the pointwise version
of height ⋅ cat ⋅ L in = plus ⋅ (height × height) ⋅ L in. Likewise, case-fusion is the
pointwise variant of join-fusion (21), k ⋅ (g1 ▽ g2) = k ⋅ g1 ▽ k ⋅ g2.

The proof is short and sweet—every step is more or less forced. Furthermore,
the central step, the application of the monoidal laws, stands out clearly. Along
the way we have re-discovered the function height2 . It also served as the link in
the original proof, which established height ⋅cat = height2 = plus ⋅(height×height)
in two steps. The new proof format merges the two separate proofs into one. ⊓⊔

On the face of it the proof above is tantalisingly close to a conventional inductive
proof, with in marking the induction argument and ∝ marking the application
of the induction hypothesis. Indeed, in the case of Set a unique fixed-point
proof can be easily converted into an inductive proof. (The converse is true if
the inductive proof establishes the equality of two functions: ∀x . f x = g x .)
However, the unique fixed-point principle is agnostic of the underlying category
and furthermore it works equally well for coinductive types.
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Exercise 52. Show that (Stack ,Empty ,◇) is a monoid:

Empty ◇ s = s = s ◇Empty ,

(s ◇ t) ◇ u = s ◇ (t ◇ u) ,

or, written in a point-free style,

cat ⋅ (empty △ id) = id = cat ⋅ (id △ empty) ,

cat ⋅ (cat × id) = cat ⋅ (id × cat) ⋅ assocr ,

where assocr ∶ (A ×B) ×C ≅ A × (B ×C ) is the standard isomorphism between
nested products. ⊓⊔

4 Further Reading

This section provides some background on our subject, including references for
further reading. A more in-depth appreciation of related work can be found in
the article “Adjoint Folds and Unfolds—An Extended Study” [11].

Category theory. The categorical trinity—category, functor and natural trans-
formation—was discovered by Eilenberg and Mac Lane. The first treatment of
categories in their own right appeared in 1945 [34]—the paper investigates the
notion of a natural isomorphism and is well worth reading. The definitive refer-
ence for category theory is Mac Lane’s masterpiece [8]. Introductory textbooks
to category theory include Awodey [35], Barr and Wells [36] and Pierce [37].

The notion of an adjunction was introduced by Daniel Kan in 1958 [7]. Ry-
deheard [38] illustrates the concept using the free construction of a monoid as a
running example, solving some of our exercises. (In the 1980s and 1990s there
was a series of conferences on “Category Theory and Computer Science”; this
paper appeared as a tutorial contribution to the first incarnation, which was
called “Category Theory and Computer Programming”.) Spivey [39] explored
the categorical background of Bird’s theory of lists [40, 41], later known as the
Bird-Meertens formalism. Our calculational treatment of adjunctions is inspired
by Fokkinga and Meertens’ paper [42].

Recursion schemes. There is a large body of work on recursion schemes or
‘morphisms’. Utilising the categorical notions of functors and natural trans-
formations, Malcolm [43] generalised the Bird-Meertens formalism to arbitrary
datatypes. His work assumed Set as the underlying category and was adapted
by Meijer et al. [5] to the category Cpo. The latter paper also popularised
the now famous terms catamorphism and anamorphism (for folds and unfolds),
along with the banana and lens brackets (((−)) and [(−)]). Fokkinga [44] captured
mutually recursive functions by mutumorphisms. An alternative solution to the
‘append -problem’ was proposed by Pardo [45]: he introduces folds with parame-
ters and uses them to implement generic accumulations. Building on the work
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of Hagino [46], Malcolm [43] and many others, Bird and de Moor gave a compre-
hensive account of the “Algebra of Programming” in their seminal textbook [9].
The textbook puts a particular emphasis on a relational approach to program
construction—moving from the concept of a category to the richer structure of
an allegory.

The discovery of nested datatypes and their expressive power [24, 47, 48] led
to a flurry of research. Standard folds on nested datatypes, which are natural
transformations by construction, were perceived as not being expressive enough.
The paper “Generalised folds for nested datatypes” by Bird and Paterson [31]
addressed the problem by adding extra parameters to folds leading to the notion
of a generalised fold. The second part of these lecture notes is, in fact, based on
their work. In order to show that generalised folds are uniquely defined, they
discuss conditions to ensure that the more general equation x ⋅L in = Ψ x , our ad-
joint initial fixed-point equation, uniquely defines x . Two solutions are provided
to this problem, the second of which requires L to have a right adjoint. They
also show that the right Kan extension is the right adjoint of pre-composition.

An alternative, type-theoretic approach to (co)inductive types was proposed
by Mendler [21]. His induction combinators Rµ and Sν map a base function to its
unique fixed point. Strong normalisation is guaranteed by the polymorphic type
of the base function. The first categorical justification of Mendler-style recursion
was given by De Bruin [49].

Other recursion schemes. We have shown that many recursion schemes fall under
the umbrella of adjoint (un)folds. However, we cannot reasonably expect that ad-
joint (un)folds subsume all existing species of morphisms. For instance, a largely
orthogonal extension of standard folds are recursion schemes from comonads [50,
51]. Very briefly, given a comonad N and a distributive law α ∶ F○N →̇ N○F, we
can define an arrow f = ((N in ⋅ α)) ∶ µF → N (µF) that fans out a data structure.
Then the equation in the unknown x ∶ µF→ A,

x ⋅ in = a ⋅ F (N x ⋅ f ) ,

has a unique solution for every algebra a ∶ F (NA) → A. This scheme includes
so-called histomorphisms as a special case (the Fibonacci function is an example
of a histomorphism).

We have noted that initial algebras and final coalgebras are different entities.
The fact that µF and νF are not compatible in general has the unfortunate conse-
quence that we cannot freely combine folds (consumers) and unfolds (producers).
A way out of this dilemma is to use hylomorphisms based on recursive coalgebras
as a structured recursion scheme [52]. Very briefly, a coalgebra ⟨C , c⟩ is called
recursive if for every algebra ⟨A, a⟩ the equation in the unknown x ∶ C (C ,A),

x = a ⋅G x ⋅ c , (109)

has a unique solution. The equation captures the divide-and-conquer pattern
of computation: a problem is divided into sub-problems (c), the sub-problems
are solved recursively (G x ), and finally the sub-solutions are combined into a
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single solution (a). The uniquely defined arrow x is called a hylomorphism. Hy-
lomorphisms are more expressive than adjoint folds. The added expressive power
comes at a price, however. Hylomorphisms sometimes suffer from the practical
problem that a suitable control functor (G above) is hard to find, see [11] for a
more in-depth comparison.

Type fusion. The initial algebra approach to the semantics of datatypes origi-
nates in the work of Lambek [13] on fixed points in categories. Lambek suggests
that lattice theory provides a fruitful source of inspiration for results in category
theory. This viewpoint was taken up by Backhouse [53], who generalised a num-
ber of lattice-theoretic fixed point rules to category theory. One important law
is type fusion, which allows us to fuse an application of a functor with an initial
algebra to form another initial algebra

L (µF) ≅ µG ⇐Ô L○F ≅ G○L .

The witnesses of the isomorphism L (µF) ≅ µG can be defined as solutions of
(adjoint) fixed point equations. Using type fusion one can show, for instance,

µListNat ≅ µStack ,

which allows us to relate the functions total and sums. The paper [11] contains
many more examples and also shows the intimate link between adjoint (un)folds
and type fusion.

5 Conclusion

Adjunctions have proved to be one of the most important ideas in category
theory, predominantly due to their ubiquity. Many mathematical constructions
turn out to be adjoint functors that form adjunctions, with Mac Lane [8, p.vii]
famously saying, “Adjoint functors arise everywhere.”

The same is probably true of computing science. Every fundamental type
or type constructor—initial object, final object, sum, product, exponential, free
algebra, cofree coalgebra—arises out of an adjunction. An adjunction features an
amazing economy of expression, combining introduction-, elimination, β- and η-
rules in a single statement. Indeed, suitable categories of discourse can be defined
just using adjunctions, for example, a category is called cartesian closed if the
following adjunctions exist: ∆ ⊣ 1, ∆ ⊣ ×, and − × X ⊣ (−)X for each choice
of X .

Adjoint folds and unfolds strike a fine balance between expressiveness and
ease of use. We have shown that many Haskell functions fit under this banner.
The mechanics are straightforward: given a (co)recursive function, we abstract
away from the recursive calls, additionally removing occurrences of in and out
that guard those calls. In Set termination and productivity are ensured by a
naturality condition on the resulting base function. The categorical concept of
an adjunction plays a central role in this development. In a sense, each adjunc-
tion captures a different recursion scheme—accumulating parameters, mutual
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recursion, polymorphic recursion on nested datatypes and so forth—and allows
the scheme to be viewed as an instance of an adjoint (un)fold.

Acknowledgements. I am grateful to Nate Foster, Jeremy Gibbons, José Pedro
Magalhães and Nicolas Wu for proof-reading several drafts of these lecture notes.
They spotted numerous errors and suggested many improvements regarding style
and presentation.
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