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Preface

These notes started the fall of 2004, when I taught Maths 165,Differential Calculus, at Community College of Philadelphia.

The students at that course were Andrea BATEMAN, Kelly BLOCKER, Alexandra LOUIS, Cindy LY, Thoraya SABER,
Stephanilee MAHONEY, Brian McCLINTON, Jessica MENDEZ, Labaron PALMER, Leonela TROKA, and Samneak SAK. I
would like to thank them for making me a better teacher with their continuous input and questions.

The main goal of these notes is to initiate students in the study of Calculus. Chapter 1 introduces most of the notation
used throughout the notes. The central problem is: given a (simple) formula relating two quantities, how can we graphically
represent this relationship? This problem is partially answered in Chapter 2, where we derive formulæ for lines, semicircles,
parabolas and hyperbolas by means of the distance formula, without the necessity of the machinery of derivatives. Theircurves
and equations provide then meaningful examples for functions, which are introduced in Chapter 3. Once the basic operations
and transformations of functions are presented, and the basic vocabulary for the graph of a function is given, the insufficiency
of the methods of Chapter 2 leads us to look at the graphs of functions through the methods of Calculus. The strong derivative
of a function is presented in Chapter 4, where theorems regarding its influence on the graph of a function are proven. In
Chapter 4 we introduce polynomial functions, the Sum Rule, Product Rule, and the Chain Rule. A few results from the Theory
of Equations are proved, via the introduction of Taylor polynomials. In Chapter 5 we introduce rational functions and a few
algebraic functions. The Quotient Rule is proved in this Chapter.

I have profitted from conversations with José Mason and Alain Schremmer regarding approaches to teaching this course.

David A. Santos

Please send comments todsantos@ccp.edu

Things to do

Need to

• Write a chapter on exponential and logarithmic functions.

• Write a chapter on goniometric functions.

• Weave Taylor and McLaurin

• Write a proof of Rolle’s Theorem for polynomials, using Taylor polynomials and the Bolzano’s Theorem.

• Write a section on Lagrange Interpolation.

• Write a section on Partial Fractions.

• Rewrite the big oh appendix.
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v

To the Student

These notes are provided for your benefit as an attempt to organise the salient points of the course. They are avery terseaccount
of the main ideas of the course, and are to be used mostly to refer to central definitions and theorems. The number of examples
is minimal, and here you will not find exercises. Themotivationor informal ideas of looking at a certain topic, the ideas linking
a topic with another, the worked-out examples, etc., are given in class. Hence these notes are not a substitute to lectures: you
must always attend to lectures. The order of the notes may not necessarily be the order followed in the class.

There is a certain algebraic fluency that is necessary for a course at this level. These algebraic prerequisites would be
difficult to codify here, as they vary depending on class response and the topic lectured. If at any stage you stumble in Algebra,
seek help! I am here to help you!

Tutoring can sometimes help, but bear in mind that whoever tutors you may not be familiar with my conventions. Again, I
am here to help! On the same vein, other books may help, but theapproach presented here is at times unorthodox and finding
alternative sources might be difficult.

Here are more recommendations:

• Read a section before class discussion, in particular, readthe definitions.

• Class provides the informal discussion, and you will profit from the comments of your classmates, as well as gain
confidence by providing your insights and interpretations of a topic.Don’t be absent!

• I encourage you to form study groups and to discuss the assignments. Discuss among yourselves and help each other but
don’t beparasites!Plagiarising your classmates’ answers will only lead you todisaster!

• Once the lecture of a particular topic has been given, take a fresh look at the notes of the lecture topic.

• Try to understand a single example well, rather than ill-digest multiple examples.

• Start working on the distributed homework ahead of time.

• Ask questions during the lecture.There are two main types of questions that you are likely to ask.

1. Questions of Correction: Is that a minus sign there?If you think that, for example, I have missed out a minus
sign or wroteP where it should have beenQ,1 then by all means, ask. No one likes to carry an error till lineXLV
because the audience failed to point out an error on line I. Don’t wait till the end of the class to point out an error.
Do it when there is still time to correct it!

2. Questions of Understanding: I don’t get it!Admitting that you do not understand something is an act requiring
utmost courage. But if you don’t, it is likely that many others in the audience also don’t. On the same vein, if you
feel you can explain a point to an inquiring classmate, I willallow you time in the lecture to do so. The best way to
ask a question is something like: “How did you get from the second step to the third step?” or “What does it mean
to complete the square?” Asseverations like “I don’t understand” do not help me answer your queries. If I consider
that you are asking the same questions too many times, it may be that you need extra help, in which case we will
settle what to do outside the lecture.

• Don’t fall behind! The sequence of topics is closely interrelated, with one topic leading to another.

• You will need square-grid paper, a ruler (preferably a T-square), some needle thread, and a compass.

• The use of calculators is allowed, especially in the occasional lengthy calculations. However, when graphing, you will
need to provide algebraic/analytic/geometric support of your arguments. The questions on assignments and exams will
be posed in such a way that it will be of no advantage to have a graphing calculator.

• Presentation is critical. Clearly outline your ideas. When writing solutions, outline major steps and write in complete
sentences. As a guide, you may try to emulate the style presented in the scant examples furnished in these notes.

1My doctoral adviser used to say “I saidA, I wroteB, I meantC and it should have beenD!
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Chapter 1
Numbers

This chapter introduces essential notation and terminology that will be used throughout these notes.

1.1 The Real Line

1 Definition We will mean by aseta collection of well defined members orelements. A subsetis a sub-collection of a set. We
denote thatB is a subset ofA by the notationB⊂ A.

2 Definition Let A be a set. Ifa belongs to the setA, then we writea∈ A, read “a is an element ofA.” If a does not belong to
the setA, we writea 6∈ A, read “a is not an element ofA.”

We denote the set ofnatural numbers{0,1,2, . . .}1 by the symbolN. The natural numbers allow us to count things, and
they have the property that addition and multiplication is closed within them: that is, if we add or multiply two natural numbers,
we stay within the natural numbers. Observe that this is not true for subtraction and division, since, for example, neither 2−7
nor 2÷7 are natural numbers. We say that then that the natural numbers enjoyclosurewithin multiplication and addition.

By appending the opposite (additive inverse) of every member of N to N we obtain the set

Z = {. . . ,−3,−2,−1,0,1,2,3, . . .}2

of integers. The closure of multiplication and addition is retained by this extension and now we also have closure under
subtraction and we have also the notion ofpositivity. This last property allows us to divide the integers into thestrictly positive,
thestrictly negativeor zero, and hence introduces anordering in the rational numbers by defininga≤ b if and only if b−a is
positive.

Enter now in the picture therational numbers, commonly calledfractions, which we denote by the symbolQ.3 They are

the numbers of the form
a
b

with a∈ Z, b∈ Z, b 6= 0, that is, the division of two integers, with the divisor distinct from zero.

Observe that every rational number
a
b

is a solution to the equation (withx as the unknown)bx−a = 0. It can be shewn that

the rational numbers are precisely those numbers whose decimal representation either is finite (e.g., 0.123) or is periodic (e.g.,

0.123= 0.123123123. . .). Notice that every integer is a rational number, since
a
1

= a, for anya ∈ Z. Upon reachingQ we

have formed a system of numbers having closure for the four arithmetical operations of addition, subtraction, multiplication, or
division.4

Are there numbers which are not rational numbers? Up until the Pythagoreans5, the ancient Greeks thought that all numbers
were the ratio of two integers. It was then discovered that the length of the hypothenuse of a right triangle having both legs

1We follow common European usage and include 0 among the natural numbers.
2Z for the German wordZählen, meaningnumber.
3Q for quotients.
4 “Reeling and Writhing, of course, to begin with,” the Mock Turtle replied, “and the different branches of Arithmetic–Ambition, Distraction, Uglification,

and Derision.”
5Pythagoras lived approximately from 582 to 500 BC. A legend says that the fact that

√
2 was irrational was secret carefully guarded by the Pythagoreans.

One of them betrayed this secret, and hence was assassinatedby being drowned from a ship.
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The Real Line

of unit length—which is
√

2 in modern notation—could not be represented as the ratio of two integers, that is, that
√

2 is
irrational6. Appending the irrational numbers to the rational numbers we obtain thereal numbersR.

Observe that
√

2 is a solution to the equationx2 − 2 = 0. A further example is3
√

5, which is a solution to the equation

x5−3 = 0. A more difficult example to visualise is
3
√√

2+1, which is a solution tox6−2x3−1 = 0.7 Any number which is a
solution of an equation of the forma0xn +a1xn−1 + · · ·+an = 0 is called analgebraic number.

A numberu is anupper boundfor a set of numbersA if for all a∈ A we havea≤ u. The smallest such upper bound is called
thesupremumof the setA. Similarly, a numberl is a lower boundfor a set of numbersB if for all b∈ B we havel ≤ b. The
largest such lower bound is called theinfimumof the setB. The real numbers have the following property, which we enunciate
as an axiom.

3 Axiom (Completeness ofR) Any set of real numbers which is bounded above has a supremum.Any set of real numbers
which is bounded below has a infimum.

Observe that the rational numbers are not complete. For example, there is no largest rational number in the set

{x∈ Q : x2 < 2}

since
√

2 is irrational and for any good rational approximation to
√

2 we can always find a better one.

Are there real numbers which are not algebraic? It wasn’t till the XIXth century when it was discovered that there were
irrational numbers which were not algebraic. These irrational numbers are calledtranscendental numbers. It was later shewn
that numbers likeπ andeare transcendental. In fact, in the XIXth century George Cantor proved that even thoughN andR are
both infinite sets, their infinities are in a way “different” because they cannot be put into a one-to-one correspondence.

0 1 2 3 4 5 6 7-1-2-3-4-5-6-7

+∞−∞

Figure 1.1: The Real Line.

Geometrically, each real number can be viewed as a point on a straight line. We make the convention that we orient the real
line with 0 as the origin, the positive numbers increasing towards the right from 0 and the negative numbers decreasing towards
the left of 0, as in figure1.1. We append the object+∞, which is larger than any real number, and the object−∞, which is
smaller than any real number. Lettingx∈ R, we make the following conventions.

(+∞)+(+∞) = +∞ (1.1)

(−∞)+(−∞) = −∞ (1.2)

x+(+∞) = +∞ (1.3)

x+(−∞) = −∞ (1.4)

6An irrational number is thus one that cannot be written as the quotient of two integers
a
b

with b 6= 0.

7To see this, work backwards: ifx =
3
√√

2+1, thenx3 =
√

2+1, which gives(x3−1)2 = 2, which isx6−2x3−1 = 0.
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x(+∞) = +∞ if x > 0 (1.5)

x(+∞) = −∞ if x < 0 (1.6)

x(−∞) = −∞ if x > 0 (1.7)

x(−∞) = +∞ if x < 0 (1.8)

x
±∞

= 0 (1.9)

Observe that we leave the following undefined:

±∞
±∞

, (+∞)+(−∞), 0(±∞).

The square of every real numberx is positive8, that is, for all real numbersx we havex2 ≥ 0. Introducing the object
i =

√
−1—whose square satisfiesi2 = −1, a negative number—and considering the numbers of the forma+bi, with a andb

real numbers, we obtain thecomplex numbersC.

In summary we have
N ⊂ Z ⊂ Q ⊂ R ⊂ C.

1.2 Intervals

4 Definition An interval I is a subset of the real numbers with the following property: if s∈ I andt ∈ I , and ifs< x < t, then
x∈ I . In other words, intervals are those subsets of real numberswith the property that every number between two elements is
also contained in the set. Since there are infinitely many decimals between two different real numbers, intervals with distinct
endpoints contain infinitely many members. Table1.1shews the various types of intervals.

Observe that we indicate that the endpoints are included by means of shading the dots at the endpoints and that the endpoints
are excluded by not shading the dots at the endpoints.9

1.3 Neighbourhood of a point

Before stating the main definition of this section, let us consider the concept of “nearness.” What does it mean for one point
to be “near” another point? We could argue that 1 is near to 0, but, for some purposes, this distance could be “far.” We could
certainly see that 0.5 is closer to 0 than 1 is, but then again, for some purposes, even this distance could be “far.” Mentioning a
specific number “near” 0, like 1 or 0.5 fails in what we desire for “nearness” because mentioning aspecific point immediately
gives a “static” quality to “nearness”: once you mention a specific point, you could mention infinitely many more points which
are closer than the point you mentioned. The points in the sequence

0.1, 0.01, 0.001, 0.0001, . . .

get closer and closer to 0 with an arbitrary precision. Notice that this sequence approaches 0 through values> 0. This arbitrary
precision is what will be the gist of our concept of “nearness.” “Nearness” is dynamic: it involves the ability of gettingcloser
to a point with any desired degree of accuracy. It is not static.

Again, the points in the sequence

−1
2
, −1

4
, −1

8
, − 1

16
, . . .

8We use the wordpositiveto indicate a quantity≥ 0, and use the termstrictly positivefor a quantity> 0. Similarly withnegative(≤ 0) andstrictly negative
(< 0).

9It may seem like a silly analogy, but think that in[a;b] the brackets are “arms” “hugging”a andb, but in ]a;b[ the “arms” are repulsed. “Hugging” is thus
equivalent to including the endpoint, and “repulsing” is equivalent to excluding the endpoint.
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Miscellaneous Notation

Interval Notation Set Notation Graphical Representation

[a;b] {x∈ R : a≤ x≤ b}10

a b
]a;b[ {x∈ R : a < x < b}

a b
[a;b[ {x∈ R : a≤ x < b}

a b
]a;b] {x∈ R : a < x≤ b}

a b
]a;+∞[ {x∈ R : x > a}

a +∞
[a;+∞[ {x∈ R : x≥ a}

a +∞
]−∞;b[ {x∈ R : x < b}

−∞ b
]−∞;b] {x∈ R : x≤ b}

−∞ b
]−∞;+∞[ R

−∞ +∞
Table 1.1: Intervals.

are arbitrarily close to 0, but they “approach” 0 from the left. Once again, the sequence

+
1
2
, −1

3
, +

1
4
, −1

5
, . . .

approaches 0 from both above and below. After this long preamble, we may formulate our first definition.

5 Definition The notationx → a, read “x tends toa,” means thatx is very close, with an arbitrary degree of precision, toa.
Herex can approacha through values smaller or larger thana. We writex→ a+ (read “x tends toa from the right”) to mean that
x approachesa through values larger thana and we writex→ a− (read “x tends toa from the left”) we mean thatx approaches
a through values smaller thana.

6 Definition A neighbourhood of a point ais an interval containinga.

Notice that the definition of neighbourhood does not rule outthe possibility thata may be an endpoint of the the interval. Our
interests will be mostly on arbitrarily small neighbourhoods of a point. Schematically we have a diagram like figure1.2.

−∞ +∞a

a+

a−

|

Figure 1.2: A neighbourhood ofa.

1.4 Miscellaneous Notation

We will often use the symbol⇐⇒ for “if and only if”, and the symbol=⇒ , “implies.” The symbol≈ meansapproximately.
From time to time we use the set theoretic notation below.



5

Chapter 1

7 Definition Theunionof two setsA andB, is the set

A∪B = {x : (x∈ A) or (x∈ B)}.

This is read “A unionB.” See figure1.3.

The intersectionof two setsA andB, is

A∩B = {x : (x∈ A) and(x∈ B)}.

This is read “A intersectionB.” See figure1.4.

A B

Figure 1.3:A∪B

A B

Figure 1.4:A∩B

8 Example If A = [−10;2], B =]−∞;1[, then

A∩B = [−10;1[, A∪B =]−∞;2].
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Chapter 2
Distance and Curves on the Plane

The main objective of this chapter is to introduce the distance formula for two points on the plane, and by means of this distance
formula, the linking of certain equations with certain curves on the plane. Thus the main object of these notes, that of relating
a graph to a formula, is partially answered.

2.1 Distance on the Real Line

9 Definition Let x∈ R. Theabsolute value of x—denoted by|x|—is defined by

|x| =















−x if x < 0,

x if x≥ 0.

The absolute value of a real number is thus the distance of that real number to 0, and hence|x−y| is the distance betweenx and
y on the real line. Below are some properties of the absolute value. Herex,y, t are all real numbers.

−|x| ≤ x≤ |x|. (2.1)

|x−y| = |y−x| (2.2)

√
x2 = |x| (2.3)

|x|2 = |x2| = x2 (2.4)

|x| ≤ t ⇐⇒ −t ≤ x≤ t (t ≥ 0) (2.5)

|x| ≥ t ⇐⇒ x≤−t or x≥ t (t ≥ 0) (2.6)

|x+y| ≤ |x|+ |y| (2.7)

||x|− |y|| ≤ |x−y| (2.8)
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2.2 Distance on the Real Plane

We now turn our attention to the plane, which we denote by the symbolR2.

Consider two pointsA = (x1,y1),B = (x2,y2) on the Cartesian plane, as in figure2.1. Dropping perpendicular lines toC, as
in the figure, we can find their Euclidean distanceABwith the aid of the Pythagorean Theorem. For

AB2 = AC2 +BC2,

translates into

AB=
√

(x2−x1)2 +(y2−y1)2.

This motivates the following definition.

10 Definition Let (x1,y1),(x2,y2) be points on the Cartesian plane. TheEuclidean distancebetween them is given by

d〈(x1,y1),(x2,y2)〉 =
√

(x1−x2)2 +(y1−y2)2. (2.9)

b

b

A

B

C
b

|y 2
−

y 1
|

|x2−x1|

Figure 2.1: Distance between two points.

11 Example Find the Euclidean distance between(−1,2) and(−3,8).

Solution:

d〈(−1,2),(−3,−8)〉 =
√

(−1− (−3))2 +(2−8)2 =
√

40= 2
√

10≈ 6.32.

2.3 Circles and Semicircles

We now study our first curve on the plane: the circle. We will see that theequationof a circle on the plane is a consequence of
the distance formula2.9.

Here is a way to draw a circle on sand: using a string, tie it to what you wish to be the centre of the circle. Tighten up the
string now and trace the path followed by the other extreme ofthe string. You now have a circle, whose radius is the length of
the string. Notice then that every point on the circumference is at a fixed distance from the centre. This motivates the following.

12 Theorem A circle on the plane with radiusRand centre(x0,y0) has equation

(x−x0)
2 +(y−y0)

2 = R2, (2.10)

called thecanonical equationfor a circle of radiusRand centre(x0,y0). Conversely, the graph any equation of the form2.10is
a circle.
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Lines

Proof: The point(x,y) belongs to circle of radius R and centre(x0,y0)

⇐⇒ d〈(x,y),(x0,y0)〉 = R

⇐⇒
√

(x−x0)2 +(y−y0)2 = R

⇐⇒ (x−x0)
2 +(y−y0)

2 = R2

,

giving the desired result.❑

(x0,y0)

R

Figure 2.2: A circle with centre
(x0,y0) and radiusR.

b bb

b

b

Figure 2.3: Example13. Figure 2.4: Example14 Figure 2.5: Example15

13 Example The equation of the circle with centre(−1,2) and radius 6 is(x+ 1)2 +(y−2)2 = 36. Observe that the points
(−1±6,2) and(−1,2±6) are on the circle. Thus(−7,2) is the left-most point on the circle,(5,2) is the right-most,(−1,−4)
is the lower-most, and(−1,8) is the upper-most. The circle is shewn in figure2.3.

Solving fory in (x−x0)
2 +(y−y0)

2 = R2, we obtain

y = y0±
√

R2− (x−x0)2.

The choice of the+ sign gives the upper half of the circle (the upper semicircle) and the− sign gives the lower semicircle.

14 Example Sketch the curvey =
√

1−x2

Solution: Squaring,y2 = 1− x2. Hencex2 + y2 = 1. This is the equation of a circle with centre at(0,0) and radius 1. The
original equation describes the upper semicircle (sincey≥ 0). The graph is shewn in figure2.4.

15 Example Sketch the curvey = 2−
√

8−x2−2x

Solution: We havey−2 = −
√

8−x2−2x. Squaring,(y−2)2 = 8−x2−2x. Hence, by completing squares,

x2 +2x+1+(y−2)2 = 9 =⇒ (x+1)2 +(y−2)2 = 9.

This is the equation of a circle with centre at(−1,2) and radius 3. The original equation describes the lower semicircle (since
y≤ 2). The graph is shewn in figure2.5.

2.4 Lines

16 Definition Let a andb be real number constants. Avertical lineon the plane is a set of the form

{(x,y) : x = a}.
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Similarly, ahorizontal lineon the plane is a set of the form

{(x,y) : y = b}.

Figure 2.6: A vertical line. Figure 2.7: A horizontal line.

b

b

b

(x1,y1)

(x,y)

(x2,y2)

y 2
−

y 1

y
−

y 1

x−x1

x2−x1

Figure 2.8: Theorem17.

17 Theorem The equation of any non-vertical line on the plane can be written in the formy = mx+k, wherem andk are real
number constants. Conversely, any equation of the formy = ax+b, wherea,b are fixed real numbers has as a line as a graph.

Proof: If the line is parallel to the x-axis, that is, if it is horizontal, then it is of the form y= b, where b is a
constant and so we may take m= 0 and k= b. Consider now a line non-parallel to any of the axes, as in figure
2.8, and let(x,y), (x1,y1), (x2,y2) be three given points on the line. By similar triangles we have

y2−y1

x2−x1
=

y−y1

x−x1
,

which, upon rearrangement, gives

y =

(

y2−y1

x2−x1

)

x−x1

(

y2−y1

x2−x1

)

+y1,

and so we may take

m=
y2−y1

x2−x1
, k = −x1

(

y2−y1

x2−x1

)

+y1.

Conversely, consider real numbers x1 < x2 < x3, and let P= (x1,ax1 +b), Q= (x2,ax2 +b), and R= (x3,ax3 +b)
be on the graph of the equation y= ax+b. We will shew that

d〈P,Q〉+d〈Q,R〉 = d〈P,R〉.

Since the points P,Q,R are arbitrary, this means that any three points on the graphof the equation y= ax+b are
collinear, and so this graph is a line. Then

d〈P,Q〉 =
√

(x2−x1)2 +(ax2−ax1)2 = |x2−x1|
√

1+a2 = (x2−x1)
√

1+a2,

d〈Q,R〉 =
√

(x3−x2)2 +(ax3−ax2)2 = |x3−x2|
√

1+a2 = (x3−x2)
√

1+a2,

d〈P,Q〉 =
√

(x3−x1)2 +(ax3−ax1)2 = |x3−x1|
√

1+a2 = (x3−x1)
√

1+a2,

from where
d〈P,Q〉+d〈Q,R〉 = d〈P,R〉

follows. This means that the points P,Q, and R lie on a straight line, which finishes the proof of the theorem.❑
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! The quantity m=
y2−y1

x2−x1
in Theorem17is theslope of the line joining(x1,y1) and(x2,y2). Since y= m(0)+k,

the quantity k is the y-intercept of the line joining(x1,y1) and(x2,y2).

Figure 2.9: Example18.

b

b

Figure 2.10: Example19.

18 Example By Theorem17, the equationy= x represents a line with slope 1 and passing through the origin. Sincey= x, the
line makes a 45◦ angle with thex-axis, and bisects quadrants I and III. See figure2.9

19 Example A line passes through(−3,10) and(6,−5). Find its equation and draw it.

Solution: The equation is of the formy = mx+k. We must find the slope and they-intercept. To findm we compute the ratio

m=
10− (−5)

−3−6
= −5

3
.

Thus the equation is of the formy = −5
3

x+k and we must now determinek. To do so, we substitute either point, say the first,

into y = −5
3

x+ k obtaining 10= −5
3
(−3)+ k, whencek = 5. The equation sought is thusy = −5

3
x+ 5. To draw the graph,

first locate they-intercept (at(0,5)). Since the slope is−5
3

, move five units down (to(0,0)) and three to the right (to(3,0)).

Connect now the points(0,5) and(3,0). The graph appears in figure2.10.

2.4.1 Parallel and Perpendicular Lines

The material here will be needed for example82and so it is optional if this example is omitted.

20 Definition Two lines are parallel if they have the same slope.

21 Example Find the equation of the line passing through(4,0) and parallel to the line joining(−1,2) and(2,−4).

Solution: First we compute the slope of the line joining(−1,2) and(2,−4):

m=
2− (−4)

−1−2
= −2.

The line we seek is of the formy = −2x+ k. We now compute they-intercept, using the fact that the line must pass through
(4,0). This entails solving 0= −2(4)+k, whencek = 8. The equation sought is finallyy = −2x+8.

22 Theorem Let y = mx+ k be a line non-parallel to the axes. If the liney = m1x+ k1 is perpendicular toy = mx+ k then

m1 = − 1
m

.
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Proof: Refer to figure2.11. Since we may translate lines without affecting the angle between them, we assume
without loss of generality that both y= mx+k and y= m1x+k1 pass through the origin, giving thus k= k1 = 0.
Now, the line y= mx meets the vertical line x= 1 at (1,m) and the line y= m1x meets this same vertical line at
(1,m1) (see figure2.11). By the Pythagorean Theorem

(m−m1)
2 = (1+m2)+(1+m2

1).

Upon simplifying we gather that mm1 = −1, which proves the assertion.❑

bb

y = mx

y = m1x

•

•

(1,m)

(1,m1)

Figure 2.11: Theorem22.

.

23 Example Find the equation of the line passing through(4,0) and perpendicular to the line joining(−1,2) and(2,−4).

Solution: By the preceding problem, the slope of the line joining (−1,2) and(2,−4) is−2. The slope of the perpendicular line
is

m1 = − 1
m

=
1
2
.

The equation sought has the formy =
x
2

+k. We find they-intercept by solving 0=
4
2

+ k, whencek = −2. The equation of

the perpendicular line is thusy =
x
2
−2.

24 Example For a given real numbert, associate the straight lineLt with the equation

Lt : (4− t)y = (t +2)x+6t.

➊ Determinet so that theLt be parallel to thex-axis and determine the equation of the resulting line.

➋ Determinet so that theLt be parallel to they-axis and determine the equation of the resulting line.

➌ Determinet so that theLt be parallel to the line−5y = 3x−1.

➍ Determinet so that theLt be perpendicular to the line−5y = 3x−1.

➎ Is there a point(a,b) belonging to every lineLt regardless of the value oft?

Solution:

➊ We needt +2 = 0 =⇒ t = −2. In this case

(4− (−2))y = −12 =⇒ y = −2.

➋ We need 4− t = 0 =⇒ t = 4. In this case

0 = (4+2)x+24 =⇒ x = −4.
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➌ The slope ofLt is
t +2
4− t

,

and the slope of the line−5y = 3x−1 is−3
5

. Therefore we need

t +2
4− t

= −3
5

=⇒ −3(4− t) = 5(t +2) =⇒ t = −11.

➍ In this case we need
t +2
4− t

=
5
3

=⇒ 5(4− t) = 3(t +2) =⇒ t =
7
4
.

➎ Yes. From above, the obvious candidate is(−4,−2). To verify this observe that

(4− t)(−2) = (t +2)(−4)+6t,

regardless of the value oft.

2.5 Parabolas

25 Definition A parabolais the collection of all the points on the plane whose distance from a fixed pointF (called thefocus
of the parabola) is equal to the distance to a fixed lineL (called thedirectrix of the parabola). See figure2.12, whereFD = DP.

We can draw a parabola as follows. Cut a piece of thread as longas the trunk of T-square (see figure2.13). Tie one end to the
end of the trunk of the T-square and tie the other end to the focus, say, using a peg. Slide the crosspiece of the T-square along
the directrix, while maintaining the thread tight against the ruler with a pencil.

b b

b

F
D

P
L

Figure 2.12: Definition of a parabola.

b b

b

Figure 2.13: Drawing a parabola.

1

2

3

−1

−2

−3

1 2 3−1−2−3

Figure 2.14: Example27.

26 Theorem Let d > 0 be a real number. The equation of a parabola with focus at(0,d) and directrixy = −d is y =
x2

4d
.

Proof: Let (x,y) be an arbitrary point on the parabola. Then the distance of(x,y) to the line y= −d is |y+d|.
The distance of(x,y) to the point(0,d) is

√

x2 +(y−d)2. We have

|y+d| =
√

x2 +(y−d)2 =⇒ (|y+d|)2 = x2 +(y−d)2

=⇒ y2 +2yd+d2 = x2 +y2−2yd+d2

=⇒ 4dy= x2

=⇒ y =
x2

4d
,

as wanted.❑
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! Observe that the midpoint of the perpendicular line segmentfrom the focus to the directrix is on the parabola.

We call this point thevertex. For the parabola y=
x2

4d
of Theorem26, the vertex is clearly(0,0).

27 Example Draw the parabolay = x2.

Solution: From Theorem26, we want
1
4d

= 1, that is,d =
1
4

. Following Theorem26, we locate the focus at(0,
1
4
) and the

directrix aty=−1
4

and use a T-square with these references. The vertex of the parabola is at(0,0). The graph is in figure2.14.

2.6 Hyperbolas

28 Definition A hyperbolais the collection of all the points on the plane whose absolute value of the difference of the distances
from two distinct fixed pointsF1 and F2 (called thefoci1 of the hyperbola) is a positive constant. See figure2.15, where
|F1D−F2D| = |F1D′−F2D′|.

We can draw a hyperbola as follows. Put tacks onF1 andF2 and measure the distanceF1F2. Attach piece of thread to one end of
the ruler, and the other toF2, while letting the other end of the ruler to pivot aroundF1. The lengths of the ruler and the thread
must satisfy

length of the ruler− length of the thread< F1F2.

Hold the pencil against the side of the rule and tighten the thread, as in figure2.16.

F1

F2
D

D′

b

b

b

b

Figure 2.15: Definition of a hyperbola.

b

b

b

b

Figure 2.16: Drawing a hyperbola. Figure 2.17: The hyperbolay =
1
x

.

29 Theorem Let c > 0 be a real number. The hyperbola with foci atF1 = (−c,−c) andF2 = (c,c), and whose absolute value

of the difference of the distances from its points to the fociis 2c has equationxy=
c2

2
.

1Foci is the plural offocus.
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Proof: Let (x,y) be an arbitrary point on the hyperbola. Then

|d〈(x,y),(−c,−c)〉−d〈(x,y),(c,c)〉| = 2c

⇐⇒
∣

∣

∣

∣

√

(x+c)2 +(y+c)2−
√

(x−c)2 +(y−c)2

∣

∣

∣

∣

= 2c

⇐⇒ (x+c)2 +(y+c)2 +(x−c)2 +(y−c)2−2
√

(x+c)2 +(y+c)2 ·
√

(x−c)2 +(y−c)2 = 4c2

⇐⇒ 2x2 +2y2 = 2
√

(x2 +y2 +2c2)+(2xc+2yc) ·
√

(x2 +y2 +2c2)− (2xc+2yc)

⇐⇒ 2x2 +2y2 = 2
√

(x2 +y2 +2c2)2− (2xc+2yc)2

⇐⇒ (2x2 +2y2)2 = 4
(

(x2 +y2 +2c2)2− (2xc+2yc)2)

⇐⇒ 4x4 +8x2y2 +4y4 = 4((x4 +y4 +4c4 +2x2y2 +4y2c2 +4x2c2)− (4x2c2 +8xyc2 +4y2c2))

⇐⇒ xy=
c2

2
,

where we have used the identities

(A+B+C)2 = A2 +B2 +C2 +2AB+2AC+2BC and
√

A−B·
√

A+B =
√

A2−B2.

❑

! Observe that the points

(

− c√
2
,− c√

2

)

and

(

c√
2
,

c√
2

)

are on the hyperbola xy=
c2

2
. We call these points

thevertices2 of the hyperbola xy=
c2

2
.

30 Example To draw the hyperbolay =
1
x

we proceed as follows. According to Theorem29, its two foci are at(−
√

2,−
√

2)

and(
√

2,
√

2). Put
length of the ruler− length of the thread= 2

√
2.

By alternately pivoting about these points using the procedure above, we get the picture in figure4.11.

2Verticesis the plural ofvertex.
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Functions

This chapter introduces the central concept of a function. We concentrate on real-valued functions whose domains are subsets
of the real numbers. We will use the curves obtained in the last chapter as examples to see how various transformations affect
the graph of a function.

3.1 Functions

domain

imagerule

target setb

b

b

b

b

b

b

b

Figure 3.1: The main ingredients of a function.

b

(x, f (x))
f (x)

x

Figure 3.2: The graph of a function.

31 Definition By a function f : Dom( f ) → Target( f ) we mean the collection of the following ingredients:

➊ anamefor the function. Usually we use the letterf .

➋ a set of real number inputs—usually an interval or a finite union of intervals—called thedomainof the function. The
domain of f is denoted byDom( f ).

➌ an input parameter, also calledindependent variableor dummy variable. We usually denote a typical input by the letter
x.

➍ a set of possible real number outputs—usually an interval or afinite union of intervals—of the function, called thetarget
setof the function. The target set off is denoted byTarget( f ).

➎ anassignment ruleor formula, assigning toevery input a unique output. This assignment rule forf is usually denoted
by x 7→ f (x). The output ofx under f is also referred to as theimage of x under f, and is denoted byf (x).
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The notation1

f :
Dom( f ) → Target( f )

x 7→ f (x)

read “the functionf , with domainDom( f ), target setTarget( f ), and assignment rulef mappingx to f (x)” conveys all the
above ingredients. See figure3.1.

32 Definition Thegraphof a function f :
Dom( f ) → R

x 7→ f (x)

is the set{(x,y) ∈ R2 : y = f (x)} on the plane. For ellipsis,

we usually saythe graph of f, or the graph y= f (x) or thethe curve y= f (x). See figure3.2.

! From now on, unless otherwise stated, we will takeR as the target set of all the functions below.

It must be emphasised that the uniqueness of the image of an element of the domain is crucial. For example, the diagram in
figure3.3 does notrepresent a function. The element 1 in the domain is assignedto more than one element of the target set.
Also important in the definition of a function is the fact thatall the elementsof the domain must be operated on. For example,
the diagram in3.4 does notrepresent a function. The element 3 in the domain is not assigned to any element of the target
set. Also, by the definition of the graph of a function, thex-axis contains the set of inputs andy-axis has the set of outputs.
Therefore, if a vertical line crosses two or more points of a graph, the graph does not represent a function. See figures3.5and
3.6.

3 8
1 2
2 4

16

Figure 3.3: Not a function.

1
0

3

4

8

Figure 3.4: Not a function. Figure 3.5: Not a function. Figure 3.6: Not a function.

33 Example (The Identity Function) Consider the function

Id :
R → R

x 7→ x

.

This function assigns to every real its own value. ThusId (−1) = −1, Id (0) = 0, Id (4) = 4, etc. By Theorem17, the graph
of identity function is a straight line, and it is given in figure 3.7.

34 Example (The Square Function)Consider the function

Id 2 :
R → R

x 7→ x2
.

1Notice the difference in the arrows. The straight arrow−→ is used to mean that a certain set is associated with another set, whereas the arrow7→ (read
“maps to”) is used to denote that an input becomes a certain output.
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This function assigns to every real its square. ThusId 2(−1) = 1, Id 2(0) = 0, Id 2(2) = 4, etc. By Theorem26, the graph of
the square function is given in figure3.8.

! For ellipsis, we usually refer to the identity functionId :
R → R

x 7→ x

as “the functionId ” or “the function

x 7→ x.” Similarly, in situations when the domain of a function isnot in question, we will simply give the assignment
rule or the name of the function. So we will speak of “the function f ” or“the function x 7→ f (x),” e.g., “the function
Id 2” or “the function x 7→ x2.”

35 Example Consider the function2

f :
[−1;1] → R

x 7→
√

1−x2

.

Then f (−1) = 0, f (0) = 1, f

(

1
2

)

=

√
3

2
≈ .866, etc. By Example14, the graph off is the upper unit semicircle, which is

shewn in figure3.9.

36 Example (The Reciprocal function) Consider the function3

g :
R\{0} → R

x 7→ 1
x

.

Theng(−1) = −1, g(1) = 1, g

(

1
2

)

= 2, etc. By Example30, the graph ofg is the hyperbola shewn in figure3.10.

Figure 3.7:Id Figure 3.8:Id 2

b b

Figure 3.9:x 7→
√

1−x2 Figure 3.10:x 7→ 1
x

3.2 Piecewise Functions

Sometimes the assignment rule of a function varies from interval to interval. We call any such function apiecewise function.

37 Example A function f is only defined forx∈ [−4;4], and it is made of straight lines, as in figure3.11. Find a piecewise
formula for f .

Solution: The first line segmentL1 has slope

slopeL1 =
1− (−3)

−1− (−4)
=

4
3
,

2Since we are concentrating exclusively on real-valued functions, the formula forf only makes sense in the interval[−1;1].
3g only makes sense whenx 6= 0.
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and so the equation of the line containing this line segment is of the formy =
4
3

x+ k1. Since(−1,1) is on the line, 1=

−4
3

+k1 =⇒ k1 =
7
3

, so this line segment is contained in the liney =
4
3

x+
7
3

. The second line segmentL2 has slope

slopeL2 =
1−1

2− (−1)
= 0,

and so this line segment is contained in the liney = 1. Finally, the third line segmentL3 has slope

slopeL3 =
−5−1
4−2

= −3,

and so this line segment is part of the line of the formy=−3x+k2. Since(1,2) is on the line, we have 2=−3+k2 =⇒ k2 = 5,
and so the line segment is contained on the liney = −3x+ 5. Upon assembling all this we see that the piecewise function
required is

f (x) =



















4
3

x+
7
3

if x∈ [−4;−1]

1 if x∈ [−1;2]

−3x+5 if x∈ [2;4]

1

2

3

4

5

6

−1

−2

−3

−4

−5

−6

1 2 3 4 5 6−1−2−3−4−5−6

b

b b

b

L1

L2

L3

Figure 3.11: Example37.

b

Figure 3.12: Example38.

b

b

Figure 3.13: Example39.

Sometimes the pieces in a piecewise function do not connect at a particular point, let us say atx = a. Then we writef (a−)
for the value thatf (x) would have if we used the assignment rule for values very close toa but smaller thana, and f (a+) for
the value thatf (x) would have if we used the assignment rule for values very close toa but larger thana.

38 Example The functionf : R → R is piecewise defined by

f (x) =































−2 if x∈]−∞;−2[

x2 if x∈ [−2;1]

x if x∈]1;4[

5 if x∈ [4;+∞[

Its graph appears in figure3.12. We have, for example,

1. f (−3) = −2

2. f (−2−) = −2

3. f (−2) = (−2)2 = 4

4. f (−2+) = (−2)2 = 4

5. f

(

2
3

)

=

(

2
3

)2

=
4
9

6. f (1−) = (1)2 = 1

7. f (1) = (1)2 = 1

8. f (1+) = 1

9. f (2) = 2

10. f (4−) = 4

11. f (4) = 5

12. f (4+) = 5
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39 Example The functiong : R → R is piecewise defined by

g(x) =



















1
x

if x∈]−∞;−1[

x if x∈ [−1;1]
1
x

if x∈]1;+∞[

Its graph appears in figure3.13. We have, for example,

1. g(−∞) = 0, using1.9

2. g(−1−) =
1
−1

= −1

3. g(−1) = −1

4. g(−1+) = −1

5. g(0) = 0

6. g(1+) =
1
1

= 1

7. g(1) = 1

8. g(1+) = 1

9. g(+∞) = 0, using1.9

3.3 Translations

40 Theorem Let f be a function and letv andh be real numbers. If(x0,y0) is on the graph off , then(x0,y0+v) is on the graph
of g, whereg(x) = f (x)+v, and if(x1,y1) is on the graph off , then(x1−h,y1) is on the graph ofj, where j(x) = f (x+h).

Proof: Let Γ f ,Γg,Γ j denote the graphs of f,g, j respectively.

(x0,y0) ∈ Γ f ⇐⇒ y0 = f (x0) ⇐⇒ y0 +v = f (x0)+v ⇐⇒ y0 +v = g(x0) ⇐⇒ (x0,y0 +v) ∈ Γg.

Similarly,

(x1,y1) ∈ Γ f ⇐⇒ y1 = f (x1) ⇐⇒ y1 = f (x1−h+h) ⇐⇒ y1 = j(x1−h) ⇐⇒ (x1−h,y1) ∈ Γ j .

❑

41 Definition Let f be a function and letv andh be real numbers. We say that the curvey= f (x)+v is avertical translationof
the curvey = f (x). If v > 0 the translation isv up, and ifv < 0, it is v units down. Similarly, we say that the curvey = f (x+h)
is ahorizontal translationof the curvey = f (x). If h > 0, the translation ish units left, and ifh < 0, then the translation ish
units right.
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42 Example If f (x) = x2, then figures3.14, 3.15and3.16shew vertical translations 3 units up and 3 units down, respectively.
Figures3.17, 3.18, and3.19, respectively shew a horizontal translation 3 units right,3 units left, and a simultaneous translation
3 units left and down.

Figure 3.14:y = f (x) = x2 Figure 3.15:y = f (x)+3 =

x2 +3

Figure 3.16:y = f (x)−3 =

x2−3

Figure 3.17:y = f (x−3) =

(x−3)2
Figure 3.18:y = f (x+3) =

(x+3)2
Figure 3.19:y = f (x+ 3)−
3 = (x+3)2−3

43 Example If g(x) = x (figure 3.20), then figures ,3.21 and3.22 shew vertical translations 3 units up and 3 units down,
respectively. Notice than in this caseg(x+ t) = x+ t = g(x)+ t, so a vertical translation byt units has exactly the same graph
as a horizontal translationt units.

Figure 3.20:y = g(x) = x Figure 3.21:y = g(x)+3 = x+3 Figure 3.22:y = g(x)−3 = x−3

44 Definition Given a functionf we write f (−∞) for the value thatf may eventually approach for large (in absolute value)
and negative inputs andf (+∞) for the value thatf may eventually approach for large (in absolute value) and positive input.
The liney = b is a (horizontal)asymptotefor the functionf if either

f (−∞) = b or f (+∞) = b.

45 Definition Let k > 0 be an integer. A functionf has apole of order kat the pointx = a if lim
x→a

(x−a)k−1 f (x) = ±∞ but

lim
x→a

(x−a)k f (x) is finite. Some authors prefer to use the termvertical asymptote, rather than pole.

46 Example Sincex f(x) = 1, f (0−) = −∞, f (0+) = +∞ for f :
R\{0} → R

x 7→ 1
x

, f has a pole of order 1 atx = 0.
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47 Example Figures3.23through3.25exhibit various transformations ofy= a(x) =
1
x

. Notice how the poles and the asymp-

totes move with the various transformations.

Figure 3.23:x 7→ 1
x

Figure 3.24:x 7→ 1
x−1

−1 Figure 3.25:x 7→ 1
x+2

+3

3.4 Distortions

48 Theorem Let f be a function and letV 6= 0 andH 6= 0 be real numbers. If(x0,y0) is on the graph off , then(x0,Vy0) is on

the graph ofg, whereg(x) =V f(x), and if(x1,y1) is on the graph off , then
(x1

H
,y1

)

is on the graph ofj, where j(x) = f (Hx).

Proof: Let Γ f ,Γg,Γ j denote the graphs of f,g, j respectively.

(x0,y0) ∈ Γ f ⇐⇒ y0 = f (x0) ⇐⇒ Vy0 = V f(x0) ⇐⇒ Vy0 = g(x0) ⇐⇒ (x0,Vy0) ∈ Γg.

Similarly,

(x1,y1) ∈ Γ f ⇐⇒ y1 = f (x1) ⇐⇒ y1 = f
(x1

H
·H
)

⇐⇒ y1 = j
(x1

H

)

⇐⇒
(x1

H
,y1

)

∈ Γ j .

❑

49 Definition Let V > 0, H > 0, and let f be a function. The curvey = V f(x) is called avertical distortionof the curve
y= f (x). The graph ofy=V f(x) is avertical dilationof the graph ofy= f (x) if V > 1 and avertical contractionif 0 <V < 1.
The curvey = f (Hx) is called ahorizontal distortionof the curvey = f (x) The graph ofy = f (Hx) is ahorizontal dilationof
the graph ofy = f (x) if 0 < H < 1 and ahorizontal contractionif H > 1.

Figure 3.26: y = a(x) =
√

4−x2

Figure 3.27: y = 2a(x) =

2
√

4−x2

Figure 3.28: y = a(2x) =
√

4−4x2

Figure 3.29:y = a(x−2) =
√

−x2 +4x

Figure 3.30: y = 2a(2x) =

2
√

4−4x2

Figure 3.31: y = 2a(2x) +

1 = 2
√

4−4x2 +1

50 Example Let a(x) =
√

4−x2. If y =
√

4−x2, thenx2 + y2 = 4, which is a circle with centre at(0,0) and radius 2 by

virtue of 2.10. Hencey = a(x) =
√

4−x2 is the upper semicircle of this circle. Figures3.26 through3.31 shew various
transformations of this curve.
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51 Example Draw the graph of the curvey = 2x2−4x+1.

Solution: We complete squares.

y = 2x2−4x+1 ⇐⇒ y
2

= x2−2x+
1
2

⇐⇒ y
2

+1 = x2−2x+1+
1
2

⇐⇒ y
2

+1 = (x−1)2 +
1
2

⇐⇒ y
2

= (x−1)2− 1
2

⇐⇒ y = 2(x−1)2−1,

whence to obtain the graph ofy= 2x2−4x+1 we (i) translatey= x2 one unit right, (ii) dilate the above graph by factor of two,
(iii) translate the above graph one unit down. This succession is seen in figures3.32through3.34.

Figure 3.32:y = (x−1)2 Figure 3.33:y = 2(x−1)2 Figure 3.34:y = 2(x−1)2−1

3.5 Reflexions

52 Theorem Let f be a function If(x0,y0) is on the graph off , then(x0,−y0) is on the graph ofg, whereg(x) = − f (x), and
if (x1,y1) is on the graph off , then(−x1,y1) is on the graph ofj, where j(x) = f (−x).

Proof: Let Γ f ,Γg,Γ j denote the graphs of f,g, j respectively.

(x0,y0) ∈ Γ f ⇐⇒ y0 = f (x0) ⇐⇒ −y0 = − f (x0) ⇐⇒ −y0 = g(x0) ⇐⇒ (x0,−y0) ∈ Γg.

Similarly,

(x1,y1) ∈ Γ f ⇐⇒ y1 = f (x1) ⇐⇒ y1 = f (−(−x1)) ⇐⇒ y1 = j (−x1) ⇐⇒ (−x1,y1) ∈ Γ j .

❑

53 Definition Let f be a function. The curvey=− f (x) is said to be thereflexion of f about the x-axisand the curvey= f (−x)
is said to be thereflexion of f about the y-axis.

54 Example Figures3.35through3.38shew various reflexions about the axes.

55 Theorem Let f be a function If(x0,y0) is on the graph off , then(x0, |y0|) is on the graph ofg, whereg(x) = | f (x)|.

Proof: Let Γ f ,Γg denote the graphs of f,g, respectively.

(x0,y0) ∈ Γ f =⇒ y0 = f (x0) =⇒ |y0| = | f (x0)| =⇒ |y0| = g(x0) =⇒ (x0, |y0|) ∈ Γg.

❑
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56 Example Figures3.39and3.40displayy= x andy= |x| respectively. Figures3.41and3.42shewy= x2−1 andy= |x2−1|
respectively. Figures3.43through3.46exhibit various transformations ofx 7→ 1

x
.

Figure 3.35:y= d(x) = (x−
1)2

Figure 3.36: y = −d(x) =

−(x−1)2
Figure 3.37: y = d(−x) =

(−x−1)2
Figure 3.38:y = −d(−x) =

−(−x−1)2
Figure 3.39:y = f (x) = x Figure 3.40:y = | f (x)|= |x|

Figure 3.41: y = g(x) =

x2−1

Figure 3.42: y = |g(x)| =

|x2−1|

Figure 3.43:x 7→
1
x

Figure 3.44:x 7→
−1

x

Figure 3.45:x 7→
∣

∣

∣

∣

1
x

∣

∣

∣

∣

Figure 3.46:x 7→
−
∣

∣

∣

∣

1
x

∣

∣

∣

∣

Figure 3.47: Example58. The graph of an even function. Figure 3.48: Example58. The graph of an odd function.

3.6 Symmetry

57 Definition A function f is evenif for all x it is verified thatf (x) = f (−x), that is, if the portion of the graph forx < 0 is a
mirror reflexion of the part of the graph forx > 0. This means that the graph off is symmetric about they-axis. A functiong
is odd if for all x it is verified thatg(−x) = −g(x), in other words,g is odd if it is symmetric about the origin. This implies that
the portion of the graph appearing in quadrant I is a 180◦ rotation of the portion of the graph appearing in quadrant III, and the
portion of the graph appearing in quadrant II is a 180◦ rotation of the portion of the graph appearing in quadrant IV.

58 Example The curve in figure3.47is even. The curve in figure3.48is odd.

59 Theorem Let f be a function. Then bothx 7→ f (|x|) andx 7→ f (−|x|) are even functions.
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Proof: Put a(x) = f (|x|). Then a(−x) = f (| − x|) = f (|x|) = a(x), whence x7→ a(x) is even. Similarly, if
b(x) = f (−|x|), then b(−x) = f (−|−x|) = f (−|x|) = b(x) proving that x7→ b(x) is even.❑

Notice that f (x) = f (|x|) for x > 0. Sincex 7→ f (|x|) is even, the graph ofx 7→ f (|x|) is thus obtained by erasing the portion
of the graph ofx 7→ f (x) for x < 0 and reflecting the part forx > 0. Similarly, sincef (x) = f (−|x|) for x < 0, the graph of
x 7→ f (−|x|) is obtained by erasing the portion of the graph ofx 7→ f (x) for x > 0 and reflecting the part forx < 0.

60 Example Figures3.49through3.52exhibit various transformations ofx 7→ (x−1)2−3.

Figure 3.49:y = f (x) = (x−1)2−3 Figure 3.50:y = f (|x|)| = (|x|−1)2−3 Figure 3.51:y = f (−|x|) = (−|x|−1)2−3 Figure 3.52:y = | f (|x|)| = |(|x|−1)2−3|

61 Example Figures6.7through6.9shew a few transformations ofx 7→ 1
x−1

−1.

Figure 3.53:x 7→ 1
x−1

−1 Figure 3.54:x 7→
∣

∣

∣

∣

1
x−1

−1

∣

∣

∣

∣

Figure 3.55:x 7→ 1
|x|−1

−1

3.7 Algebra of Functions

62 Definition Let f andg be two functions and let the pointx be in the intersection of their domains. Thenf +g is their sum,
defined at each pointx by

( f +g)(x) = f (x)+g(x).

The differencef −g is defined by
( f −g)(x) = f (x)−g(x),

and their productf g is defined by
( f g)(x) = f (x) ·g(x).

Furthermore, ifg(x) 6= 0, then their quotient is defined as

(

f
g

)

(x) =
f (x)
g(x)

.
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The compositionf ◦g (“ f composed withg”) is defined at the pointx by

( f ◦g)(x) = f (g(x)).

63 Example Figure3.56shews two functionsx 7→ f (x) = x+1 andx 7→ g(x) = x−1. Figure3.57shews their sumx 7→ 2x,
a line, figure3.58shews the differencex 7→ ( f −g)(x) = 2, a horizontal line, and figure3.59shews their productx 7→ x2−1,

a parabola. We also havex 7→
(

g
f

)

(x) =
x−1
x+1

= 1− 2
x+1

, a hyperbola with pole atx = −1 and asymptote aty = 1 (figure

3.60); x 7→
(

f
g

)

(x) =
x+1
x−1

= 1+
2

x−1
, a hyperbola with pole atx = 1 and asymptote aty = 1 (figure3.61); ( f ◦g) = Id

(figure3.62); andx 7→ ( f ◦ f )(x) = x+2 (figure3.63).

f

g
Figure 3.56:f (x) = x+1 andg(x) = x−1 Figure 3.57:x 7→ ( f +g)(x) = 2x Figure 3.58:x 7→ ( f −g)(x) = 2 Figure 3.59:x 7→ ( f g)(x) = x2−1

Figure 3.60:

(

g
f

)

(x) = 1− 2
x+1

Figure 3.61:

(

f
g

)

(x) = 1+
2

x−1
Figure 3.62:( f ◦g)(x) = x Figure 3.63:( f ◦ f )(x) = x+2

3.8 Behaviour of the Graphs of Functions

So far we have limited our study of functions to those families of functions whose graphs are known to us: lines, parabolas,
hyperbolas, or semicircles. Through some arguments involving symmetry we have been able to extend this collection to
compositions of the above listed functions with the absolute value function. We would now like to increase our repertoire of
functions that we can graph. For that we need the machinery ofCalculus, which will be developed in the subsequent chapters.
This section introduces the basic definitions of the essential features that we will be interested in when we examine the graphs
of more functions.

64 Definition A function f is said to becontinuousat the pointx = a if f (a−) = f (a) = f (a+). It is continuous on the
intervalI if it is continuous on every point ofI .

Heuristically speaking, a continuous function is one whosegraph has no “breaks.”
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65 Example Given that

f (x) =







6+x if x∈]−∞;−2]

3x2 +xa if x∈]−2;+∞[

is continuous, finda.

Solution: Sincef (−2−) = f (−2) = 6−2 = 4 and f (−2+) = 3(−2)2−2a = 12−2a we need

f (−2−) = f (−2+) =⇒ 4 = 12−2a =⇒ a = 4.

The graph off is given in figure3.64.

66 Example Given that

f (x) =











x2−1
x−1

if x 6= 1

a if x = 1

is continuous, finda.

Solution: Forx 6= 1 we havef (x) =
x2−1
x−1

= x+1. Sincef (1−) = 2 and f (1+) = 2 we needa = f (1) = 2. The graph off is

given in figure3.65.

b

Figure 3.64: Example65.

b

Figure 3.65: Example66.

We will accept the following results without proof.

67 Theorem (Bolzano’s Intermediate Value Theorem)If f is continuous on the interval[a;b] and f and there are two dif-
ferent values in this interval for whichf changes sign, thenf is vanishes somewhere in this interval, that is, there isc∈ [a;b]
such thatf (c) = 0.

68 Corollary If f is continuous on the interval[a;b] with f (a) 6= f (b) then f assumes every value betweenf (a) and f (b),
that is, ford with min( f (a), f (b)) ≤ d ≤ max( f (a), f (b)) there isc∈ [a;b] such thatf (c) = d.

69 Theorem (Weierstrass’s Theorem)A continuous function on a finite closed interval[a;b] assumes a maximum value and
a minimum value.

70 Definition A function f is said to beincreasing(respectively,strictly increasing) if a < b =⇒ f (a) ≤ f (b) (respectively,
a < b =⇒ f (a) < f (b)). A function g is said to bedecreasing(respectively,strictly decreasing) if a < b =⇒ g(a) ≤ g(b)
(respectively,a< b =⇒ g(a) < g(b)). A function ismonotonicif it is either (strictly) increasing or decreasing. By theintervals
of monotonicity of a functionwe mean the intervals where the function might be (strictly)increasing or decreasing.

! If the function f is (strictly) increasing, its opposite− f is (strictly) decreasing, and viceversa.

The following theorem is immediate.
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71 Theorem A function f is (strictly) increasing if for alla < b for which it is defined

f (b)− f (a)

b−a
≥ 0 (respectively,

f (b)− f (a)

b−a
> 0).

Similarly, a functiong is (strictly) decreasing if for alla < b for which it is defined

g(b)−g(a)

b−a
≤ 0 (respectively,

g(b)−g(a)

b−a
< 0).

72 Example Prove that an affine functionx 7→ mx+k is strictly increasing ifm> 0 and strictly decreasing ifm< 0.

Solution: This is geometrically obvious. To prove it analytically, put f (x) = mx+k and observe that

f (b)− f (a)

b−a
=

(mb+k)− (ma+k)
b−a

= m.

Now apply Theorem71.

73 Example Prove thatx 7→ x2 is strictly increasing ifx > 0 and strictly decreasing ifx < 0.

Solution: This is geometrically obvious. To prove it analytically, put t(x) = x2 observe that

t(b)− t(a)

b−a
=

b2−a2

b−a
=

(b−a)(b+a)

b−a
= b+a.

This quantity is strictly negative or strictly positive depending on whethera < b < 0 or 0< a < b. We now apply Theorem71.
We summarise this information by means of the table

x −∞ 0 +∞

f (x) = x2 ց ր
0

b

b

b

b

Figure 3.66: Example75. A convex curve

b

b

b

b

Figure 3.67: Example75. A concave curve.

74 Definition A function f is said to be (midpoint strictly)convexif given a < b we have

f

(

a+b
2

)

<
f (a)+ f (b)

2
.

A functiong is said to be (midpoint strictly)concaveif given a < b we have

g

(

a+b
2

)

>
g(a)+g(b)

2
.

By the intervals of convexity (concavity) of a functionwe mean the intervals where the function is convex (concave). An
inflexion pointis a point where a graph changes convexity.
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! Geometrically speaking, a convex function is one such that if two distinct points on its graph are taken and
the straight line joining these two points drawn, then the midpoint of that straight line is above the graph. In other
words, the graph of the function bends upwards. Notice that if f is convex, then its opposite− f is concave.

75 Example Prove that the square functionx 7→ x2 is convex.

Solution: Putf (x) = x2. We need to prove that

f

(

a+b
2

)

=

(

a+b
2

)2

=
a2 +2ab+b2

4

is strictly smaller than
f (a)+ f (b)

2
=

a2 +b2

2
.

This would occur if
a2 +2ab+b2

4
<

a2 +b2

2
,

that is
a2−2ab+b2

4
> 0.

But since we always have
a2−2ab+b2

4
=

(a−b)2

4
> 0,

and the above steps are reversible, the assertion is proved.Incidentally, this also proves thatx 7→ −x2 is concave. See figures
3.66and3.67.

76 Definition Let f be a function. Iff is defined atx = 0, then(0, f (0)) is its y-intercept. The points(x,0) on thex-axis for
which f (x) = 0, if any, are thex-interceptsof f .

77 Definition A zeroor root of a function f is a solution to the equationf (x) = 0.
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The Strong Derivative of a Function

In this chapter we introduce the concept of the strong derivative. We do not give formulæ—with the exception of example82
where the formula is obtained through a geometric argument—here to calculate derivatives, we scatter those throughout the
text.

4.1 The Strong Derivative

Given a finite number of points, we can find infinitely many curves passing through them. See for example figure4.1, where
we see three very different curvesf ,g,h each simultaneously passing through the pointsA, B, C. Thus plotting a few points of
the graph of a function can give a misleading picture.

b

b

b

A

C

B

f
g

h

Figure 4.1: A few points do not a graph determine.

By the same token, given a formula, the plotting of a few points does not give the salient features of a graph. For example,
let us say that we wanted to graphy = 4x− x3. In figures4.2 through4.5 we have chosen a few selected points on the curve
and interpolated between them through lines. But relying onthis method does not give proof that the graph will not have more
turns or bends, say, or that it will grow indefinitely for values ofx of large magnitude.

Figure 4.2: Four plot
points.

Figure 4.3: Seven plot
points.

Figure 4.4: Ten plot
points.

Figure 4.5: One thousand
plot points.

But for all its faults, the progression of shapes in figures4.2 through4.5 suggests that a “reasonable” graph can be ap-
proximated by a series of straight lines. By a “reasonable” graph we mean one that does not have many sharp turns, does not
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oscillate wildly, does not have many jumps or many asymptotes, and that it is mostly continuous and “smooth.” Admittedly,
these concepts are vague, but we will gain more insight into them as we progress.

How do we choose the lines to approximate a given “reasonable” curve? Given a functionf consider the point(a, f (a)) on
the graph of the function. What happens around this point? If we approacheda through valuesx < a and joined the line with
endpoints(x, f (x)) and(a, f (a)), we would obtain a secant line like that of figure4.6. If we approacheda through valuesx > a
and joined the line with endpoints(a, f (a)) and(x, f (x)), we would obtain a secant line like that of figure4.7. Eventually, on
getting closer to(a, f (a)) we obtain a line just barely grazing the curve—that is, “tangent” to the curve—at the point(a, f (a)),
as in figure4.8.

b

b

a
|

Figure 4.6: Left secant through(a, f (a)).

b
b

a
|

Figure 4.7: Right secant through(a, f (a)).

b

a
|

Figure 4.8: Line grazing(a, f (a)).

In the simplest of cases, if our curve is the lineL : y = mx+k, then in a neighbourhood of the pointx = a the tangent line to
L should be itself! It is not true that every curve we consider would have a unique “tangent line” at every point. For example,
a curve with a sharp edge as asy = |x| at x = 0 in figure4.9or the curve in figure4.10have infinitely many tangents atx = 0.

The curvey =
1
x

is not even defined atx = 0 and hence it does not have a tangent there. On the other hand,the parabolay = x2

is “smooth” atx = 0 and appears to have a unique tangent there.

Figure 4.9: y = |x| is non-
smooth function atx = 0.

Figure 4.10: A non-smooth
function atx = 0.

Figure 4.11:y =
1
x

. Figure 4.12: A smooth func-
tion atx = 0.

Figure 4.13: An increasing
curve.

Figure 4.14: A decreasing
curve.

Figure 4.15: Convex curve. Figure 4.16: Concave curve.

! Notice that gathering tangent lines at diverse points of a curve also gives us information about the monotonic-
ity and convexity of the curve. If the tangent line at a point to a curve has positive slope, then the curve appears
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to increase. If inside an open interval the curve appears to have a maximum or a minimum point, then the tangent
line there appears to be horizontal, that is, its slope is0. It decreases otherwise (see figures4.13and4.14). It also
appears that if the slope of the tangent to a curve increases,that is, if the tangent lies always below the curve, then
the curve is convex. Otherwise it is concave (see figures4.15and4.16).

Given now the formula for a functionf and a point(a, f (a)) on the graph off , how do we determine the tangent line tof
at (a, f (a))? Recall that ifε → 0, thena+ ε is in a neighbourhood ofa. The slope of the secant line joining(a+ ε, f (a+ ε))
and(a, f (a)) is

f (a+ ε)− f (a)

ε
(4.1)

We denote the value—if there is one—of4.1— asx→ ε by f ′(a). Hence for fixed but smallε we have

f (a+ ε)− f (a)

ε
≈ f ′(a) =⇒ f (a+ ε) ≈ f (a)+ f ′(a)ε.

There is, generally, an error in taking the dextral side as anapproximation for the sinistral side on the above formula. We will
settle for having an error of the order ofO(ε2), which will normally will be a good compromise for most of theformulæ we
will encounter. This prepares the ground for our main definition of this section.

78 Definition Let f be a function and leta∈ Dom( f ). When there is a numberf ′(a) such that

f (a+ ε) = f (a)+ f ′(a)ε +O(ε2) as ε → 0

then we say that the functionf has astrong derivative f′(a) or that f is strongly differentiableatx = a. If we consider the set
{x∈ Dom( f ) : f ′(x) exists} then we may form the functionx 7→ f ′(x) with domainDom

(

f ′
)

= {x∈ Dom( f ) : f ′(x) exists}.

We call the functionf ′ thestrong derivativeof f . We will also often use the symbol
d
dx

f (x) to denote the functionx 7→ f ′(x).

79 Definition If f ′ is itself differentiable, then the function( f ′)′ = f ′′ is thesecond derivativeof f . It is also denoted by
d2

dx2 f (x). We similarly define the third, fourth, etc., derivatives. It is customary to denote the first three derivatives of a

function with primes, as inf ′, f ′′, f ′′′, and any higher derivative with either roman numbers or withthe order of the derivative
enclosed in parenthesis, as inf iv, f v or f (4), f (5), etc.

4.2 Graphical Differentiation

Before we attack the problem of deducing the formula for the derivative of a function through the formula of the function,let
us address the problem of obtaining an approximate value forthe derivative of a function through the graph of the function. It is
possible to estimate graphically the strong derivative of the function by appealing to the interpretation that the strong derivative
of a function at given point is the value of the slope of the tangent at that given point.

80 Example Find an approximate graph for the derivative off given in figure4.17.

Solution: Observe that from the remarks following figure4.16, we expectf ′ to be positive in[−1.4;−0.6], since f increases
there. We expectf ′ to be 0 atx = −0.6, since f appears to have a (local) maximum there. We expectf ′ to be negative in
[−0.6;0;6] since f decreases there. We expectf ′ to be 0 atx = 0.6, sincef appears to have a (local) minimum there. Finally
we expectf ′ to be positive for[0.6;1.4] since f is increasing there.

We now perform the following steps.

1. We first divide up the domain off into intervals of the same length, in this case we will take intervals of length 0.2.

2. For each endpointx of an interval above, we look at the point(x, f (x)) on the graph off .

3. We place a ruler so that it is tangent to the curve at(x, f (x)).

4. We find the slope of the ruler. Recall that any two points on the tangent line (the ruler) can serve to find the slope.

5. We tabulate the slopes obtained and we plot these values, obtaining thereby an approximate graph off ′.
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In our case we obtain the following (approximate) values forf ′(x).

x −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

f ′(x) 4.88 3.32 2 0.92 0.08 −0.52 −0.88 −1 −0.88 −0.52 0.08 0.92 2 3.32 4.88

An approximate graph of the strong derivative appears in figure4.18.
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−1

0

1

2

−2 −1 0 1 2

Figure 4.17: Example80. y = f (x)

−2

−1

0

1

2

−2 −1 0 1 2

Figure 4.18: Example80. y = f ′(x)

81 Example Figure4.20gives an approximate graph of the strong derivative of the graph appearing in figure4.19.

−1

0

1

−1 0 1

Figure 4.19: Example81. y = f (x)

−1

0

1

−1 0 1

Figure 4.20: Example81. y = f ′(x)

To obtain it, we have served ourselves of the table below.

x −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

f ′(x) 0.3 0.4 0.5 0.6 1.0 +∞ 1.0 0.6 0.5 0.4 0.3

82 Example Consider the functionx 7→
√

1−x2 for x∈ [−1;1]. From example35, its graph is the upper unit semicircle. A

line from the origin to a point(a,b) on the circle has equationy =
b
a

x (assumeab 6= 0). Since a line tangent to the semicircle

at (a,b) is perpendicular to the liney =
b
a

x, the slope of the perpendicular line is−a
b

in view of Theorem22. Hence the
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strong derivative at the pointx = a is −a
b

. Sinceb =
√

1−a2, we find that fora∈]−1;1[, the strong derivative whenx = a

is − a√
1−a2

. We will shew how to graph the functionx 7→ − x√
1−x2

in example??, but for now, an approximate tabulation

gives

x −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

f ′(x) +∞ 1.33 0.75 0.44 0.20 0 −0.20 −0.44 −0.75 −1.33 −∞

The approximate graph appears in figure4.22.
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0

1

−1 0 1

Figure 4.21: Example82. y = f (x)

−1

0

1

−1 0 1

Figure 4.22: Example82. y = f ′(x)

4.3 Derivatives and Graphs

In this section we prove the remarks following figure4.16which will be the main tools for graphing in subsequent chapters.

83 Theorem If f is strongly differentiable atx then f is continuous atx.

Proof: We have f(x+ ε) = f (x)+ f ′(x)ε + O(ε2). If ε > 0 andε → 0 then f(x+ ε) = f (x+) and similarly if
ε < 0 andε → 0 f (x+ ε) = f (x−). Hence we have f(x+) = f (x) = f (x−), and f is continuous at x.❑

84 Theorem Let f be strongly differentiable atx. If f ′(x) > 0 then f is increasing in a neighbourhood ofx, if f ′(x) < 0 then
f is decreasing in a neighbourhood ofx.

Proof: We have f(x+ ε)− f (x) = f ′(x)ε +O(ε2). For ε very small, this means that

f (x+ ε)− f (x) ≈ f ′(x)ε,

that is, the sign of f(x+ε)− f (x) is the same as the sign of f′(x)ε. Thus ifε > 0and f′(x)> 0, then f(x+ε)> f (x),
that is, f is increasing. Ifε > 0 and f′(x) < 0, then f(x+ ε) < f (x), that is, f is decreasing. Similar conclusions
are reached when consideringε < 0 and the theorem is proved.❑

85 Definition If f is strongly differentiable atx and f ′(x) = 0, then we say thatx is astationary point of f .

86 Definition If there is a pointa for which f (x) ≤ f (a) for all x in a neighbourhood centred atx = a then we say thatf has a
local maximumatx = a. Similarly, if there is a pointb for which f (x) ≥ f (b) for all x in a neighbourhood centred atx = b then
we say thatf has alocal minimumatx = b.

87 Theorem If f is strongly differentiable atx = a, f ′(a) = 0, andf ′ changes from+ to− in a neighbourhood ofa thenx = a
is a local maximum. Iff is strongly differentiable atx = b, f ′(b) = 0, and f ′ changes from− to + in a neighbourhood ofb
thenx = b is a local minimum.
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Proof: By Theorem84, when f′ changes from+ to−, f is increasing and then decreasing in a neighbourhood of
x= a. By Weierstrass’s Theorem (Theorem69), f assumes a maximum on a closed neighbourhood containing a. It
cannot be to the left of a since the function is increasing there, and it cannot be to the right of a since the function
is decreasing there. Hence the maximum must be at x= a and so f(x) ≤ f (a) for x in a neighbourhood of a. The
result just obtained applied to− f yields the second half of the theorem.❑

88 Example The graph of the strong derivativef ′ of a function f is given in figure4.23. Then according to Theorem87 f has
a local minimum atx = −2 andx = 2, and a local maximum atx = 0 andx = 4.

1

2

3

4

5

6

−1

−2

−3

1 2 3 4 5 6−1−2−3−4

Figure 4.23: Example88.

89 Lemma If f ′ increases in a neighbourhood ofx, then f is convex in a neighbourhood ofx. Similarly, if f ′ decreases in a
neighbourhood ofx, then f is concave in a neighbourhood ofx.

Proof: Let ε > 0. Then
f (x) = f (x− ε + ε) = f (x− ε)+ f ′(x− ε)ε +O(ε2),

f (x) = f (x+ ε − ε) = f (x+ ε)− f ′(x+ ε)ε +O(ε2).

Adding,
2 f (x) = f (x+ ε)+ f (x− ε)+

(

f ′(x− ε)− f ′(x+ ε)
)

ε +O(ε2).

For ε very small we then have

2 f (x) ≈ f (x+ ε)+ f (x− ε)+
(

f ′(x− ε)− f ′(x+ ε)
)

ε.

If f ′ is increasing then f′(x− ε)− f ′(x+ ε) < 0. Sinceε > 0 this implies that

2 f (x) < f (x+ ε)+ f (x− ε),

which means that f is convex in a neighbourhood of x. This result now applied to− f gives the second half of the
theorem.❑

90 Theorem A twice strongly differentiable -functionf is convex in a neighbourhood ofx = a if f ′′(a) > 0. It is concave in a
neighbourhood ofx = b if f ′′(b) < 0.

Proof: This follows from Lemma89and Theorem84. ❑



35

Chapter 5
Polynomial Functions

In this chapter we study polynomials and their graphs. In order to do the latter, we demonstrate the Power Rule, the Sum Rule,
the Product Rule, and the Chain Rule for derivatives. We alsostudy some algebraic topics related to the roots of a polynomial.

5.1 Power Functions and the Power Rule

By apower functionwe mean a function of the formx 7→ xα , whereα ∈ R. In this chapter we will only study the case whenα
is a positive integer.

If n is a positive integer, we are interested in how to graphx 7→ xn. We have already encountered a few instances of power
functions. Forn = 0, the functionx 7→ 1 is a constant function, whose graph is the straight liney = 1 parallel to thex-axis.
For n = 1, the functionx 7→ x is the identity function, whose graph is the straight liney = x, which bisects the first and third
quadrant. Forn = 2, we have the square functionx 7→ x2 whose graph is the parabolay = x2 encountered in example27. We
reproduce their graphs below in figures5.1through5.3for easy reference.

Figure 5.1:x 7→ 1. Figure 5.2:x 7→ x. Figure 5.3:x 7→ x2.

By the groundwork from the preceding chapter, we know we can gather information about the monotonicity and convexity
of the functionx 7→ xn by studying its first and second derivatives. For that we firstestablish a series of lemmata.

91 Lemma The strong derivative of a constant function is the 0 function. In symbols, if f is a function with assignment rule
f (x) = k, constant, then for allx, f ′(x) = 0.

Proof: We have
f (x+ ε) = k = k+0· ε +0ε2,

which proves the assertion.❑

! For ellipsis we will write(k)′ = 0 or
d
dx

k = 0.

92 Lemma The strong derivative of the identity functionx 7→ x is the constant functionx 7→ 1.
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Proof: If f (x) = x we have
f (x+ ε) = x+ ε = x+1· ε +0ε2,

and so f′(x) = 1. ❑

! For ellipsis we will write(x)′ = 1 or
d
dx

x = 1.

93 Lemma The strong derivative of the square functionx 7→ x2 is the functionx 7→ 2x.

Proof: If f (x) = x2 we have

f (x+ ε) = (x+ ε)2 = x2 +2xε + ε2 = f (x)+2xε +O(ε2),

proving the assertion. For ellipsis we will write(x2)′ = 2x or
d
dx

x2 = 2x. ❑

94 Lemma The strong derivative of the cubic functionx 7→ x3 is the functionx 7→ 3x2.

Proof: If f (x) = x3 we have, using Lemma93,

(x+ ε)3 = (x+ ε)(x2 +2xε +O(ε2))

= x3 +2x2ε +O(xε2)+x2ε +2xε2 +O(ε3)

= x3 +3x2ε +O(ε2),

asε → 0, and so(x3)′ = 3x2 (or
d
dx

x3 = 3x2). ❑

We will now see that the pattern

d
dx

x0 = 0,
d
dx

x1 = 1,
d
dx

x2 = 2x,
d
dx

x3 = 3x2,

is preserved for higher powers of the exponent. Arguing as inLemma94, we obtain the following theorem.

95 Theorem (Power Rule) If n is a positive integer,
d
dx

xn = nxn−1.

Proof: If the strong derivative of
d
dx

xn = dn(x), we have

(x+ ε)n+1 = (x+ ε)
(

xn +dn(x)ε +O(ε2)
)

= xn+1 +(xdn(x)+xn)ε +O(ε2)

from where the strong derivative of xn+1 is xdn(x)+xn. Since d1(x) = 1, we have by recurrence,

d2(x) = xd1(x)+x1 = x ·1+x = 2x

d3(x) = xd2(x)+x2 = x · (2x)+x2 = 3x2

d4(x) = xd3(x)+x3 = x · (3x2)+x3 = 4x3

d5(x) = xd4(x)+x4 = x · (4x3)+x4 = 5x4

d6(x) = xd5(x)+x5 = x · (5x4)+x5 = 6x5

d7(x) = xd6(x)+x6 = x · (6x5)+x6 = 7x6,

and so, by recursion, dn(x) = nxn−1. ❑
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96 Example We have
d
dx

x3 = 3x2,
d
dx

x7 = 7x6,
d
dx

x1000= 1000x999,

etc.

Figure 5.4:y = x2. Figure 5.5:y = x4. Figure 5.6:y = x6. Figure 5.7:y = x3. Figure 5.8:y = x5. Figure 5.9:y = x7.

We now address the problem of how to graphx 7→ xn.

97 Theorem Let n≥ 2 be an integer andf (x) = xn. Then

• if n is even,f is convex,f is decreasing forx < 0, and f is increasing forx > 0. Also, f (−∞) = f (+∞) = +∞.

• if n is odd, f is increasing,f is concave forx < 0, and f is convex forx > 0. Also, f (−∞) = −∞ and f (+∞) = +∞.

Proof: If n ≥ 2 is even, n−1≥ 1 is odd, and n−2 is even. Now f′(x) = nxn−1 and f′′(x) = n(n−1)xn−2. Since
xn−2 > 0 for all x 6= 0, f ′′(x) > 0 for x 6= 0 and so it is convex. Since x< 0 =⇒ xn−1 < 0 =⇒ f ′(x) < 0, f is
decreasing for x< 0. A similar argument shews that f is increasing for x> 0. It is clear that f(−∞) = f (+∞) =
+∞. If n ≥ 3 is odd, n−1 ≥ 1 is even, and n−2 is odd. Now f′(x) = nxn−1 and f′′(x) = n(n−1)xn−2. Since

xn−1 > 0 for all x 6= 0, f ′(x) > 0 for x 6= 0 and so it is increasing. Since x< 0 =⇒ xn−2 < 0 =⇒ f ′′(x) < 0,
f is concave for x< 0. A similar argument shews that f is convex for x> 0. It is clear that f(−∞) = −∞ and
f (+∞) = +∞. ❑

The graphs ofy = x2, y = x4, y = x6, etc., resemble one other. For−1≤ x≤ 1, the higher the exponent, the flatter the graph
(closer to thex-axis) will be, since

|x| < 1 =⇒ ·· · < x6 < x4 < x2 < 1.

For |x| ≥ 1, the higher the exponent, the steeper the graph will be since

|x| > 1 =⇒ ·· · > x6 > x4 > x2 > 1.

Similarly for the graphs ofy = x3, y = x5, y = x7 etc. This information is summarised in the tables below.

x −∞ 0 +∞

ր
f (x) = xn 0

ր

Table 5.1:x 7→ xn, with n > 0 integer and odd.

x −∞ 0 +∞

ց ր
f (x) = xn 0

Table 5.2:x 7→ xn, with n > 0 integer and even.
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98 Example Figures5.10through5.12shew a few transformations of the functionx 7→ x3.

Figure 5.10:y = (x−1)3 +1 Figure 5.11:y = |(x−1)3 +1| Figure 5.12:y = (|x|−1)3 +1

5.2 Sum Rule

In this section we prove two more differentiation rules.

99 Theorem (Constant-Times-Function Rule)If k∈ R is a real number constant, andf is a strongly differentiable function
atx, thenk f is strongly differentiable atx and(k f)′(x) = k f ′(x).

Proof: We have

(k f)(x+ ε) = k( f (x+ ε))

= k
(

f (x)+ f ′(x)ε +O(ε2)
)

= k f(x)+k f ′(x)ε +O(ε2),

from where the theorem follows.❑

100 Example We have proved that(x2)′ = 2x. Hence(−3x2)′ = −3(x2)′ = −3(2x) = −6x.

101 Theorem (Sum Rule)If f ,g are strongly differentiable functions atx, then f +g is strongly differentiable atx and

( f +g)′(x) = f ′(x)+g′(x).

Proof: We have

f (x+ ε)+g(x+ ε) = ( f (x)+ f ′(x)ε +O(ε2))+(g(x)+g′(x)ε +O(ε2))

= ( f (x)+g(x))+( f ′(x)+g′(x))ε +O(ε2),

from where the theorem follows.❑

102 Example We have proved that(x2)′ = 2x and that(x)′ = 1. Hence(x2 +x)′ = (x2)′ +(x)′ = 2x+1.

103 Example Let f (x) = 2x3−x2 +5x−1. Find f ′(1) and f ′′(−1).

Solution: We have
f ′(x) = 2(3x2)−2x+5 = 6x2−2x+5, f ′′(x) = 2(6x)−2 = 12x−2.

Hencef ′(1) = 9 and f ′′(−1) = −14.
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5.3 Affine Functions

104 Definition Let m,k be real number constants. A function of the formx 7→ mx+ k is called anaffine function. In the
particular case thatm= 0, we callx 7→ k a constant function. If, however,k = 0, then we call the functionx 7→ mx a linear
function.

By virtue of Theorem17, the graph of the functionx 7→ mx+ k is a straight line. Since the derivative ofx 7→ mx+ k is
(mx+ k)′ = m, we see thatx 7→ mx+ k is strictly increasing ifm> 0 and strictly decreasing ifm< 0 in view of Theorem84.

If m 6= 0 thenmx+ k = 0 =⇒ x = − k
m

, meaning thatx 7→ mx+ k has a unique zero (crosses thex-axis) atx = − k
m

. This

information is summarised in the following tables.

x −∞ − k
m

+∞

ր
f (x) = mx+k 0

ր

Table 5.3:x 7→ mx+k, with m> 0.

x −∞ − k
m

+∞

ց
f (x) = mx+k 0

ց

Table 5.4:x 7→ mx+k, with m< 0.

5.4 Quadratic Functions

105 Definition Let a,b,c be real numbers, witha 6= 0. A function of the form

f :
R → R

x 7→ ax2 +bx+c

is called aquadratic function.

106 Theorem Let a 6= 0,b,c be real numbers and letx 7→ ax2 +bx+c be a quadratic function. Then its graph is a parabola. If

a > 0 the parabola has a local minimum atx = − b
2a

and it is convex. Ifa < 0 the parabola has a local maximum atx = − b
2a

and it is concave.

Proof: Put f(x) = ax2 +bx+c. Completing squares,

ax2 +bx+c = a

(

x2 +2
b
2a

x+
b2

4a2

)

+c− b2

4a

= a

(

x+
b
2a

)2

+
4ac−b2

4a
,

and hence this is a horizontal translation− b
2a

units and a vertical translation
4ac−b2

4a
units of the square function

x 7→ x2 and so it follows from example34and Theorems40and48, that the graph of f is a parabola.

We have f′(x) = 2ax+b. Assume first that a> 0. Then

f ′(x) > 0 ⇐⇒ x > − b
2a

, f ′(x) < 0 ⇐⇒ x < − b
2a

.

Thus the function decreases for values<− b
2a

and increases otherwise. Hence in view of Theorem87, it must have

a minimum at x= − b
2a

. Since f′′(x) = 2a > 0, f is convex by virtue of Theorem90. The case when a< 0 can be

similarly treated.❑
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The information of Theorem106is summarised in the following tables.

x −∞ − b
2a

+∞

ց ր
f (x) = ax2 +bx+c 0

Table 5.5:x 7→ ax2 +bx+c, with a > 0.

x −∞ − b
2a

+∞

f (x) = ax2 +bx+c 0

ր ց

Table 5.6:x 7→ ax2 +bx+c, with a < 0.

107 Definition The point

(

− b
2a

,
4ac−b2

4a

)

lies on the parabola and it is called thevertexof the parabolay = ax2 +bx+ c.

The quantityb2−4ac is called thediscriminantof ax2 +bx+c. The equation

y = a

(

x+
b
2a

)2

+
4ac−b2

4a

is called thecanonical equation of the parabola y= ax2 +bx+c.

!The parabola x7→ ax2 +bx+c is symmetric about the vertical line x= − b
2a

passing through its vertex.

Figure 5.13: No real zeroes. Figure 5.14: One real zero. Figure 5.15: Two real zeros.

108 Corollary (Quadratic Formula) The roots of the equationax2 +bx+c = 0 are given by the formula

ax2 +bx+c = 0 ⇐⇒ x =
−b±

√
b2−4ac

2a
(5.1)

If a 6= 0,b,c are real numbers andb2−4ac= 0, the parabolax 7→ ax2 +bx+ c is tangent to thex-axis and has one (repeated)
real root. Ifb2−4ac> 0 then the parabola has two distinct real roots. Finally, ifb2−4ac< 0 the parabola has two complex
roots.

Proof: By Theorem106we have

ax2 +bx+c = a

(

x+
b
2a

)2

+
4ac−b2

4a
,
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and so

ax2 +bx+c = 0 ⇐⇒
(

x+
b
2a

)2

=
b2−4ac

4a2

⇐⇒ x+
b
2a

= ±
√

b2−4ac
2|a|

⇐⇒ x =
−b±

√
b2−4ac

2a
,

where we have dropped the absolute values on the last line because the only effect of having a< 0 is to change
from± to∓.

If b2−4ac= 0 then the vertex of the parabola is at

(

− b
2a

,0

)

on the x-axis, and so the parabola is tangent there.

Also, x= − b
2a

would be the only root of this equation. This is illustrated in figure5.14.

If b2−4ac> 0, then
√

b2−4ac is a real number6= 0 and so
−b−

√
b2−4ac

2a
and

−b+
√

b2−4ac
2a

are distinct

numbers. This is illustrated in figure5.15.

If b2 − 4ac < 0, then
√

b2−4ac is a complex number6= 0 and so
−b−

√
b2−4ac

2a
and

−b+
√

b2−4ac
2a

are

distinct complex numbers. This is illustrated in figure5.13. ❑

! If a quadratic has real roots, then the vertex lies on a line crossing the midpoint between the roots.

109 Example Consider the quadratic functionf (x) = x2−5x+3.

➊ Find f ′(x). Solve f ′(x) = 0 and hence find the vertex of
f . Determine the intervals of monotonicity off .

➋ Write this parabola in canonical form.

➌ Determinef ′′(x) and find the convexity intervals off .

➍ Find thex-intercepts andy-intercepts off .

➎ Graphy = f (x), y = | f (x)|, andy = f (|x|).

➏ Determine the set of real numbersx for which f (x) > 0.

Solution:

➊ We have f ′(x) = 2x− 5. Now, 2x− 5 = 0 =⇒ x =
5
2

. At x =
5
2

we have f

(

5
2

)

= −13
4

, whence the vertex is at
(

5
2
,−13

4

)

. Also,

f ′(x) > 0 =⇒ 2x−5 > 0 =⇒ x >
5
2
,

and f will be increasing forx >
5
2

. It will be decreasing forx <
5
2

.

➋ Completing squares

y = x2−5x+3 =

(

x− 5
2

)2

− 13
4

.

➌ We havef ′′(x) = (2x)′ = 2. Sincef ′′(x) = 2 > 0 for all real valuesx, f is concave for all real values ofx.

➍ For x = 0, f (0) = 02−5·0+3 = 3, and hencey = f (0) = 3 is they-intercept. By the quadratic formula,

f (x) = 0 ⇐⇒ x2−5x+3 = 0 ⇐⇒ x =
−(−5)±

√

(−5)2−4(1)(3)

2(1)
=

5±
√

13
2

.

Observe that
5−

√
13

2
≈ 0.697224362 and

5+
√

13
2

≈ 4.302775638.
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➎ The graphs appear in figures5.16through5.18.

➏ From the graph in figure5.16, x2−5x+3 > 0 for valuesx∈
]

−∞ ;
5−

√
13

2

[

or x∈
]

5+
√

13
2

;+∞

[

.

Figure 5.16:y = x2−5x+3 Figure 5.17:y = |x2−5x+3| Figure 5.18:y = |x|2−5|x|+3

110 Corollary If a 6= 0,b,c are real numbers and ifb2−4ac< 0, thenax2 +bx+c has the same sign asa.

Proof: Since

ax2 +bx+c = a

(

(

x+
b
2a

)2

+
4ac−b2

4a2

)

,

and4ac−b2 > 0,

(

(

x+
b
2a

)2

+
4ac−b2

4a2

)

> 0 and so ax2 +bx+c has the same sign as a.❑

111 Example Prove that the quantityq(x) = 2x2 +x+1 is positive regardless of the value ofx.

Solution: The discriminant is 12 − 4(2)(1) = −7 < 0, hence the roots are complex. By Corollary110, since its leading
coefficient is 2> 0, q(x) > 0 regardless of the value ofx. Another way of seeing this is to complete squares and noticethe
inequality

2x2 +x+1 = 2

(

x+
1
4

)2

+
7
8
≥ 7

8
,

since

(

x+
1
4

)2

being the square of a real number, is≥ 0.

By Corollary108, if a 6= 0,b,c are real numbers and ifb2−4ac 6= 0 then the numbers

r1 =
−b−

√
b2−4ac

2a
and r2 =

−b+
√

b2−4ac
2a

are distinct solutions of the equationax2 +bx+c = 0. Since

r1 + r2 = −b
a
, and r1r2 =

c
a
,

any quadratic can be written in the form

ax2 +bx+c = a

(

x2 +
bx
a

+
c
a

)

= a
(

x2− (r1 + r2)x+ r1r2
)

= a(x− r1)(x− r2).

We calla(x− r1)(x− r2) a factorisationof the quadraticax2 +bx+c.
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112 Example A quadratic polynomialp has 1±
√

5 as roots and it satisfiesp(1) = 2. Find its equation.

Solution: Observe that the sum of the roots is

r1 + r2 = 1−
√

5+1+
√

5 = 2

and the product of the roots is
r1r2 = (1−

√
5)(1+

√
5) = 1− (

√
5)2 = 1−5 = −4.1

Hencep has the form
p(x) = a

(

x2− (r1 + r2)x+ r1r2
)

= a(x2−2x−4).

Since

2 = p(1) =⇒ 2 = a(12−2(1)−4) =⇒ a = −2
5
,

the polynomial sought is

p(x) = −2
5

(

x2−2x−4
)

.

5.5 Product Rule and Chain Rule

We now develop tools for differentiating more complex formulæ.

113 Theorem (Product Rule) If f ,g are are strongly differentiable functions atx, then f g is strongly differentiable atx and
then( f g)′(x) = f ′(x)g(x)+ f (x)g′(x).

Proof: We have

f (x+ ε)g(x+ ε) =
(

f (x)+ f ′(x)ε +O(ε2)
)(

g(x)+g′(x)ε +O(ε2)
)

= f (x)g(x)+
(

f ′(x)g(x)+ f (x)g′(x)
)

ε +O(ε2),

from where the theorem follows.❑

! It is not true in general that( f g)′ = f ′g′.

114 Example Let f (x) = x3 andg(x) = x4. Then from the Product Rule

(x7)′ = (x3 ·x4)′ = x4(x3)′ +x3(x4)′ = x4(3x2)+x4(4x2) = 3x6 +4x6 = 7x6,

which is what we expect from the Power Rule.

By recurrence we can apply the product rule to more than two functions.

115 Example

(x(x+x2)(1+x+x2))′ = (x)′(x+x2)(1+x+x2)+x(x+x2)′(1+x+x2)+x(x+x2)(1+x+x2)′

= 1(x+x2)(1+x+x2)+x(1+2x)(1+x+x2)+x(x+x2)(1+2x)

= (x+2x2 +2x3 +x4)+(x+3x2 +3x3 +2x4)+(x2 +3x3 +2x4)

= 2x+6x2 +8x3 +5x4.

116 Theorem (Chain Rule) If g is strongly differentiable atx and f is strongly differentiable atg(x), then f ◦g is strongly
differentiable atx and( f ◦g)′(x) = f ′ (g(x))g′(x)

1As a shortcut for this multiplication you may wish to recall thedifference of squares identity: (a−b)(a+b) = a2−b2.
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Proof: We have, puttingε1 = g′(x)ε +O(ε2),

f (g(x+ ε)) = f (g(x)+g′(x)ε +O(ε2))

= f (g(x)+ ε1)

= f (g(x))+ f ′(g(x))ε1 +O(ε2
1)

= f (g(x))+ f ′(g(x))(g′(x)ε +O(ε2))+O((g′(x)ε +O(ε2))2)

= f (g(x))+ f ′ (g(x))g′(x)ε +O(ε2)

and the theorem follows.❑

117 Example Considerh(x) = (x+1)2. Thenh(x) = ( f ◦g)(x) with f (x) = x2 andg(x) = x+1. Hence

((x+1)2)′ = ( f ◦g)′(x) = f ′(g(x))g′(x) = 2(x+1)1(1) = 2x+2.

118 Example
((x2 +x)3)′ = 3(x2 +x)2(2x+1).

119 Example Using the Product Rule and the Chain Rule,

(x(x+a)2)′ = (x+a)2(x)′ +x((x+a)2)′ = (x+a)2 +2x(x+a) = (x+a)(3x+a).

120 Example Using the Product Rule and the Chain Rule,

(x(x+a)2(x+b)3)′ = (x+a)2(x+b)3(x)′ +x(x+b)3((x+a)2)′ +x(x+a)2((x+b)3)′

= (x+a)2(x+b)3 +2x(x+a)(x+b)3 +3x(x+a)2(x+b)2

= (x+a)(x+b)2((x+a)(x+b)+2x(x+b)+3x(x+a))

= (x+a)(x+b)2(6x2 +x(4a+3b)+ab).

121 Example Let f be strongly differentiable withf (4) = a and f ′(4) = b. If g(x) = x2 f (x2), find g′(2).

Solution: Using both the Product Rule and the Chain Rule

g′(x) = 2x f(x2)+x2 f ′(x2)(2x) = 2x f(x2)+2x3 f ′(x2).

Henceg′(2) = 2(2) f (4)+2(8) f ′(4) = 4a+16b.

5.6 Polynomials

5.6.1 Roots

In sections5.3and5.4we learned how to find the roots of equations (in the unknownx) of the typeax+b= 0 andax2+bx+c=
0, respectively. We would like to see what can be done for equations where the power ofx is higher than 2. We recall that

122 Definition A polynomial p(x) of degreen∈ N is an expression of the form

p(x) = anxn +an−1xn−1 + · · ·+a1x+a0, an 6= 0, ak ∈ R,

where theak are constants. If theak are all integers then we say thatp has integer coefficients, and we writep(x) ∈ Z[x]; if the
ak are real numbers then we say thatp has real coefficients and we writep(x) ∈ R[x]; etc. The degree of the polynomialp is
denoted by degp. The coefficientan is called theleading coefficientof p(x). A root of p is a solution to the equationp(x) = 0.

123 Example Here are a few examples of polynomials.
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• a(x) = 2x+1∈ Z[x], is a polynomial of degree 1, and leading coefficient 2. It hasx = −1
2

as its only root. A polynomial

of degree 1 is also known as anaffine function.

• b(x) = πx2 + x−
√

3∈ R[x], is a polynomial of degree 2 and leading coefficientπ. By the quadratic formulab has the
two roots

x =
−1+

√

1+4π
√

3
2π

and x =
−1−

√

1+4π
√

3
2π

.

A polynomial of degree 2 is also called aquadratic polynomialor quadratic function.

• C(x) = 1≡ 1·x02, is a constant polynomial, of degree 0. It has no roots, sinceit is never zero.

124 Theorem The degree of the product of two polynomials is the sum of their degrees. In symbols, ifp,q are polynomials,
degpq= degp+degq.

Proof: If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0, and q(x) = bmxm+ bm−1xm−1 + · · ·+ b1x+ b0, with an 6= 0
and bm 6= 0 then upon multiplication,

p(x)q(x) = (anxn +an−1xn−1 + · · ·+a1x+a0)(bmxm+bm−1xm−1 + · · ·+b1x+b0) = anbmxm+n + · · ·+,

with non-vanishing leading coefficient anbm. ❑

125 Example The polynomialp(x) = (1+2x+3x3)4(1−2x2)5 has leading coefficient 34(−2)5 = −2592 and degree 3·4+
2·5 = 22.

126 Example What is the degree of the polynomial identically equal to 0? Put p(x) ≡ 0 and, say,q(x) = x+ 1. Then by
Theorem124we must have degpq= degp+degq = degp+1. But pq is identically 0, and hence degpq= degp. But if degp
were finite then

degp = degpq= degp+1 =⇒ 0 = 13,

nonsense. Thus the 0-polynomial does not have any finite degree. We attach to it, by convention, degree−∞.

127 Definition If all the roots of a polynomial are inZ (integer roots), then we say that thepolynomial splits or factors over
Z. If all the roots of a polynomial are inQ (rational roots), then we say that thepolynomial splits or factors overQ. If all the
roots of a polynomial are inC (complex roots), then we say that thepolynomial splits (factors) overC.

! SinceZ ⊂ Q ⊂ R ⊂ C, any polynomial splitting on a smaller set immediately splits over a larger set.

128 Example The polynomiall(x) = x2−1= (x−1)(x+1) splits overZ. The polynomialp(x) = 4x2−1= (2x−1)(2x+1)

splits overQ but not overZ. The polynomialq(x) = x2−2 = (x−
√

2)(x+
√

2) splits overR but not overQ. The polynomial
r(x) = x2 +1 = (x− i)(x+ i) splits overC but not overR. Herei =

√
−1 is the imaginary unit.

5.6.2 Taylor Polynomials

In order to motivate the following theorem, let us consider the next example.

129 Example Write x2 as a sum of powers ofx−1.

Solution: Observe thatx = x−1+1 and use the identity(a+b)2 = a2 +2ab+b2 to obtain

x2 = (x−1+1)2 = (x−1)2 +2(x−1)+1.

If such an identity is not known, one can proceed as follows, giving an idea of a general procedure. Put

x2 = a+b(x−1)+c(x−1)2,

2The symbol≡ is read “identically equal to” and it means that both expressions are always the same, regardless of the value of the input parameter.
3Much to the chagrin of our Vice-President for Academic Affairs—who claims that 1= 2—it is not true that 0= 1.
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where we stop at the second power sincex2 has degree 2. Letx = 1. Then 1= a. Differentiate to obtain

2x = b+2c(x−1).

Let againx = 1. This gives 2= b. Differentiate a second time to obtain

2 = 2c,

whencec = 1. Hence we havea = 1,b = 2,c = 1 and so

x2 = a+b(x−1)+c(x−1)2 = 1+2(x−1)+(x−1)2,

as before.

130 Theorem (Taylor Polynomials) Let a∈ R. Then any polynomialp(x) of degreen can be written as

p(x) = b0 +b1(x−a)+b2(x−a)2 + · · ·+bn(x−a)n,

for some constantsbk.

Proof: First observe that we stop at(x−a)n since p has degree n. Differentiating k times we obtain

p(k)(x)= bkk! + (k+1)(k) · · ·(2)bk+1(x−a) + · · · + (n)(n−1) · · ·(n−k+1)bn(x−a)n−k.4

Letting x= a we obtain

bk =
p(k)(a)

k!
,

proving the theorem.❑

131 Definition The expansion

p(x) = p(a)+ p′(a)(x−a)+
p′′(a)

2!
(x−a)2 + · · ·+ p(n)(a)

n!
(x−a)n (5.2)

is known as theTaylor polynomial expansionaboutx = a of p.

132 Example Find the Taylor polynomial expansion aboutx = −2 of p(x) = x3 +2x+1.

Solution: We have
p′(x) = 3x2 +2, p′′(x) = 6x, p′′′(x) = 6.

Hence
p(−2) = −11, p′(−2) = 14, p′′(−2) = −12, p′′′(−2) = 6,

and

x3 +2x+1 = −11+14(x+2)+
−12

2
(x+2)2 +

6
6
(x+2)3 = −11+14(x+2)−6(x+2)2 +(x+2)3.

5.6.3 Ruffini’s Factor Theorem

133 Theorem (Ruffini’s Factor Theorem) The polynomialp(x) is divisible byx−a if and only if p(a) = 0. Thus if p is a
polynomial of degreen, thenp(a) = 0 if and only if p(x) = (x−a)q(x) for some polynomialq of degreen−1.

Proof: The Taylor expansion of p about x= a is

p(x) = p(a)+(x−a)

(

p′(a)+
p′′(a)

2!
(x−a)+ · · ·+ p(n)(a)

n!
(x−a)n−1

)

,

from where the result quickly follows.❑

4The symbolk!—read “k factorial”—is the product 1·2· · ·k. Thus for example 5!= 1·2·3·4·5 = 120. We define 0!= 1.
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134 Example Find the value ofa so that the polynomial

t(x) = x3−3ax2 +2

be divisible byx+1.

Solution: By Ruffini’s Theorem133, we must have

0 = t(−1) = (−1)3−3a(−1)2 +2 =⇒ a =
1
3
.

135 Definition Let a be a root of a polynomialp. We say thata is a root ofmultiplicity m if p(x) is divisible by(x−a)m but
not by(x−a)m+1. This means thatp can be written in the formp(x) = (x−a)mq(x) for some polynomialq with q(a) 6= 0.

136 Corollary The numbera is a root of multiplicitym if an only if

p(a) = p′(a) = p′′(a) = · · · = p(m−1)(a) = 0, p(m)(a) 6= 0.

Proof: This follows immediately by considering the Taylor expansion of p about x= a. ❑

137 Example Factor the polynomialp(x) = x5−5x4 +11x3−13x2 +8x−2 overZ[x].

Solution: We see thatp(1) = 0, p′(1) = 0, p′′(1) = 0, p′′′(1) 6= 0. Hence(x−1)3 = x3−3x2+3x−1 dividesp. By long division

x2−2x+2

x3−3x2 +3x−1
)

x5−5x4 +11x3−13x2 +8x−2
−x5 +3x4 −3x3 +x2

−2x4 +8x3−12x2 +8x
2x4 −6x3 +6x2−2x

2x3 −6x2 +6x−2
−2x3 +6x2−6x+2

0

and so
x5−5x4 +11x3−13x2 +8x−2 = (x−1)3(x2−2x+2).

Observe thatx2−2x+2 does not factor overZ[x] and hence we are finished.

138 Corollary If a polynomial of degreen had any roots at all, then it has at mostn roots.

Proof: If it had at least n+1 roots then it would have at least n+1 factors of degree1 and hence degree n+1 at
least, a contradiction.❑

Notice that the above theorem only says that if a polynomial has any roots, then it must have at most its degree number of roots.
It does not say that a polynomial must possess a root. That allpolynomials have at least one root is much more difficult to
prove. We will quote the theorem, without a proof.

139 Theorem (Fundamental Theorem of Algebra)A polynomial of degree at least one with complex number coefficients
has at least one complex root.

! The Fundamental Theorem of Algebra implies then that a polynomial of degree n hasexactlyn roots (counting
multiplicity).

A more useful form of Ruffini’s Theorem is given in the following corollary.
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140 Corollary If the polynomialp with integer coefficients,

p(x) = anxn +an−1xn−1 + · · ·+a1x+a0.

has a rational root
s
t
∈ Q (here

s
t

is assumed to be in lowest terms), thens dividesa0 andt dividesan.

Proof: We are given that

0 = p
(s

t

)

= an

(

sn

tn

)

+an−1

(

sn−1

tn−1

)

+ · · ·+a1

(s
t

)

+a0.

Clearing denominators,
0 = ansn +an−1sn−1t + · · ·+a1stn−1 +a0t

n.

This last equality implies that

−a0t
n = s(ansn−1 +an−1sn−2t + · · ·+a1t

n−1).

Since both sides are integers, and since s and t have no factors in common, then s must divide a0. We also gather
that

−ansn = t(an−1sn−1 + · · ·+a1stn−2 +a0t
n−1),

from where we deduce that t divides an, concluding the proof.❑

141 Example Factorisea(x) = x3−3x−5x2 +15 overZ[x] and overR[x].

Solution: By Corollary140, if a(x) has integer roots then they must be in the set{−1,1,−3,3,−5,5}. We testa(±1),a(±3),a(±5)
to see which ones vanish. We find thata(5) = 0. By the Factor Theorem,x−5 dividesa(x). Using long division,

x2 −3

x−5
)

x3−5x2−3x+15
−x3 +5x2

−3x+15
3x−15

0

we find

a(x) = x3−3x−5x2 +15= (x−5)(x2−3),

which is the required factorisation overZ[x]. The factorisation overR[x] is then

a(x) = x3−3x−5x2 +15= (x−5)(x−
√

3)(x+
√

3).

142 Example Factoriseb(x) = x5−x4−4x+4 overZ[x] and overR[x].

Solution: By Corollary140, if b(x) has integer roots then they must be in the set{−1,1,−2,2,−4,4}. We quickly see that
b(1) = 0, and so, by the Factor Theorem,x−1 dividesb(x). By long division

x4 −4

x−1
)

x5−x4−4x+4
−x5 +x4

−4x+4
4x−4

0
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we see that
b(x) = (x−1)(x4−4) = (x−1)(x2−2)(x2 +2),

which is the desired factorisation overZ[x]. The factorisation overR is seen to be

b(x) = (x−1)(x−
√

2)(x+
√

2)(x2 +2).

Since the discriminant ofx2 +2 is−8 < 0, x2 +2 does not split overR.

143 Lemma Complex roots of a polynomial with real coefficients occur inconjugate pairs, that is, ifp is a polynomial with
real coefficients and ifu+vi is a root ofp, then its conjugateu−vi is also a root forp. Herei =

√
−1 is the imaginary unit.

Proof: Assume
p(x) = a0 +a1x+ · · ·+anxn

and that p(u+vi) = 0. Since the conjugate of a real number is itself, and conjugation is multiplicative (Theorem
190), we have

0 = 0

= p(u+vi)

= a0 +a1(u+vi)+ · · ·+an(u+vi)n

= a0 +a1(u+vi)+ · · ·+an(u+vi)n

= a0 +a1(u−vi)+ · · ·+an(u−vi)n

= p(u−vi),

whence u−vi is also a root.❑

Since the complex pair rootu±vi would give the polynomial with real coefficients

(x−u−vi)(x−u+vi) = x2−2ux+(u2 +v2),

we deduce the following theorem.

144 Theorem Any polynomial with real coefficients can be factored in the form

A(x− r1)
m1(x− r2)

m2 · · ·(x− rk)
mk(x2 +a1x+b1)

n1(x2 +a2x+b2)
n2 · · ·(x2 +al x+bl )

nl ,

where each factor is distinct, themi , lk are positive integers andA, r i ,ai ,bi are real numbers.

5.7 Graphs of Polynomials

We start with the following theorem, which we will state without proof.

145 Theorem A polynomial functionx 7→ p(x) is an everywhere continuous function.

146 Theorem Let p(x) = anxn +an−1xn−1 + · · ·+a1x+a0 an 6= 0, be a polynomial with real number coefficients. Then

p(−∞) = (signum(an))(−1)n∞, p(+∞) = (signum(an))∞.

Thus a polynomial of odd degree will have opposite signs for values of large magnitude and different sign, and a polynomial of
even degree will have the same sign for values of large magnitude and different sign.

Proof: If x 6= 0 then

p(x) = anxn +an−1xn−1 + · · ·+a1x+a0 = anxn
(

1+
an−1

x
+ · · ·+ a1

xn−1 +
a0

xn

)

∼ anxn,

since as x→±∞, the quantity in parenthesis tends to1 and so the eventual sign of p(x) is determined by anxn,
which gives the result.❑
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147 Corollary A polynomial of odd degree with real number coefficients always has a real root.

Proof: Since a polynomial of odd degree eventually changes sign, since it is continuous, the corollary follows
from Bolzano’s Intermediate Value Theorem67. ❑

148 Example Consider the polynomialp(x) = x3 +4x2 +x−6.

1. Prove thatp splits overZ and find its factorisation. Also, determine itsy-intercept.

2. Determinep(−∞) andp(+∞)

3. Findp′ and determine the intervals of monotonicity ofp.

4. Determine any local extrema ofp.

5. Findp′′ and determine the inflexion points ofp and its convexity intervals.

6. Obtain an approximate graph ofp.

Solution:

1. By Corollary140, if there are integral roots ofp they must divide−6. A quick inspection shews thatp(1) = 0 and so
x−1 dividesp(x). By long division

x2 +5x+6

x−1
)

x3 +4x2 +x−6
−x3 +x2

5x2 +x
−5x2 +5x

6x−6
−6x+6

0

whence
p(x) = (x−1)(x2 +5x+6) = (x−1)(x+2)(x+3).

This means thatp crosses thex-axis atx = −3, x = −2, andx = 1. Itsy-intercept is(0, p(0)) = (0,−6).

2. Since the leading coefficient ofp is 1> 0 and sincep has odd degree, by Theorem146, p(x)∼ (x)(x)(x) = x3, asx→ +∞
and sop(−∞) = −∞ andp(+∞) = +∞.

3. p′(x) = 3x2 +8x+1, whose graph is a convex parabola. Using the Quadratic Formula

3x2 +8x+1 = 0 ⇐⇒ x =
−4−

√
13

3
or x =

−4+
√

13
3

and sox≈−2.54 orx≈−0.13. Sincep′ is a convex parabola this means that

p′(x) > 0 ⇐⇒ x∈
]

−∞ ;
−4−

√
13

3

[

∪
]

−4+
√

13
3

;+∞

[

,

and sop is increasing (approximately) in the intervals]−∞ ;−2.54[ and]−0.13 ;+∞[.

4. Since atx = −2.54 p′ changes sign from+ to −, p has a local maximum there by virtue of Theorem87, which is
p(−2.54) ≈ 0.88. Also, p′ changes sign from− to + at x = −0.13 and sop has a local minimum there, which is
p(−0.13) ≈−6.06.

5. We findp′′(x) = 6x+ 8. Now, p′′(x) = 0 =⇒ x = −4
3
≈ −1.33 andp(−1.33) ≈ −2.61. Hencep changes convexity

(approximately) at(−1.33,−2.61).

6. The graph ofp can be found in figure5.19.
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149 Example Consider the polynomialp(x) = x3 +x+1.

1. Prove thatp is strictly increasing.

2. Prove thatp has no positive roots.

3. Determinep(−∞) andp(+∞)

4. Prove thatp has a unique real root and find an interval[a;b] of length<
1
4

containing this root.

5. Findp′′ and determine the inflexion points ofp and its convexity intervals.

6. Obtain an approximate graph ofp.

Solution:

1. We havep′(x) = 3x2 + 1≥ 1 > 0 sincex2 is always positive.5 Since the derivative ofp is always strictly positive,p is
always strictly increasing.

2. Sincep is strictly increasing,p(x) > p(0) = 1 for x > 0. Hence valuesx > 0 can never makep zero.

3. By Theorem146, p(−∞) = −∞ andp(+∞) = +∞.

4. Sincep changes sign, it must have a root. Sincep is strictly increasing, it can cross thex-axis only once. Now, observe
that

p(0) = 1, p(−1) = −1

so the root must lie in[−1;0]. We bisect this interval and findp(−0.5) ≈ 0.375, so the root must lie in[−1;−0.5]. We
again bisect this interval and find thatp(−0.75) ≈ −0.171875, so the root must lie in[−0.75;−0.5]. Again, we bisect
this interval and find thatp(−0.625)≈ 0.13, so the root must lie in[−0.75;−0.625]. We now stop since we have reached
an interval of within the desired length.

5. p′′(x) = 6x and sop is convex forx > 0 and concave forx < 0.

6. An approximate graph is shewn in figure5.20
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Figure 5.19: Example148.
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Figure 5.20: Example149.

We now consider polynomials with real number coefficients and that split inR. Such polynomials have the form

p(x) = a(x− r1)
m1(x− r2)

m2 · · ·(x− rk)
mk,

wherea 6= 0 and ther i are real numbers and themi ≥ 1 are integers. Graphing such polynomials will be achieved by referring
to the following theorem.

5Another way of seeing that 3x2 +1 > 0 always is by checking its discriminant.
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150 Theorem Let a 6= 0 and ther i are real numbers and themi be positive integers. Then the graph of the polynomial

p(x) = a(x− r1)
m1(x− r2)

m2 · · ·(x− rk)
mk,

• crosses thex-axis atx = r i if mi is odd.

• is tangent to thex-axis atx = r i if mi is even.

• has a convexity change atx = r i if mi ≥ 3 andmi is odd.

Proof: Since the local behaviour of p(x) is that of c(x− r i)
mi (where c is a real number constant) near ri , the

theorem follows at once from Theorem97. ❑

151 Example Make a rough sketch of the graph ofy = (x+ 2)x(x−1). Determine where it achieves its local extrema and
their values. Determine where it changes convexity.

Solution: We havep(x) = (x+2)x(x−1) ∼ (x) ·x(x) = x3, asx→ +∞. Hencep(−∞) = (−∞)3 = −∞ andp(+∞) = (+∞)3 =
+∞. This means that for large negative values ofx the graph will be on the negative side of they-axis and that for large positive
values ofx the graph will be on the positive side of they-axis. By Theorem150, the graph crosses thex-axis atx = −2, x = 0,
andx = 1.

Now, by the Product Rule,

p′(x) = x(x−1)+(x+2)(x−1)+(x+2)x

= 3x2 +2x−2.

Using the quadratic formula,

3x2 +2x−2 = 0 =⇒ x = −1
3
−

√
7

3
≈−1.22; x = −1

3
+

√
7

3
≈ 0.55.

From geometrical considerations,x≈−1.22 will be thex-coordinate of a local maximum, withy-coordinatep(−1.22) ≈ 2.11
andx≈ 0.55 will be thex-coordinate of a local minimum, withy-coordinatep(0.55) ≈−0.63.

Also
p′′(x) = 6x+2,

so p′′(x) > 0 for x > −1
3

andp′′(x) < 0 for x < −1
3

. This means thatp is convex forx > −1
3

and concave forx < −1
3

. The

graph is shewn in figure5.21.

152 Example Make a rough sketch of the graph ofy = (x+2)3x2(1−2x).

Solution: We have(x+2)3x2(1−2x)∼ x3 ·x2(−2x) =−2x6. Hence ifp(x) = (x+2)3x2(1−2x) thenp(−∞) =−2(−∞)6 =−∞
and p(+∞) = −2(+∞)6 = −∞, which means that for both large positive and negative values of x the graph will be on the
negative side of they-axis. By Theorem150, in a neighbourhood ofx = −2, p(x) ∼ 20(x+2)3, so the graph crosses thex-axis
changing convexity atx = −2. In a neighbourhood of 0,p(x) ∼ 8x2 and the graph is tangent to thex-axis atx = 0. In a

neighbourhood ofx =
1
2

, p(x) ∼ 25
16

(1−2x), and so the graph crosses thex-axis atx =
1
2

.

Now,

p′(x) = 3(x+2)2x2(1−2x)+2(x+2)3x(1−2x)−2(x+2)3x2

= x(x+2)2(3x(1−2x)+2(x+2)(1−2x)−2(x+2)x)

= −x(x+2)2(12x2 +7x−4),

and p′(x) = 0 whenx = 0,−2, − 7
24

+

√
241
24

≈ 0.36, − 7
24

−
√

241
24

≈ −0.94. From geometrical considerations,x = 0 and

x = −2 are local minima, both withy-coordinatey = 0, and bothx ≈ 0.36 (with correspondingy = p(0.36) ≈ 0.48) and
x≈−0.94 (with correspondingy-coordinatey = p(−0.94) ≈ 3.03) are local maxima. The graph is shewn in figure5.22.
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153 Example Make a rough sketch of the graph ofy = (x+2)2x(1−x)2.

Solution: The dominant term of(x+2)2x(1−x)2 is x2 ·x(−x)2 = x5. Hence ifp(x) = (x+2)2x(1−x)2 thenp(−∞) = (−∞)5 =
−∞ andp(+∞) = (+∞)5 = +∞, which means that for large negative values ofx the graph will be on the negative side of the
y-axis and for large positive values ofx the graph will be on the positive side of they-axis. By Theorem150, the graph crosses

the x-axis changing convexity atx = −2, it is tangent to thex-axis atx = 0 and it crosses thex-axis atx =
1
2

. The graph is

shewn in figure5.23.

Figure 5.21:y = (x+2)x(x−1). Figure 5.22:y = (x+2)3x2(1−2x). Figure 5.23:y = (x+2)2x(1−x)2.
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Rational Functions and Algebraic Functions

6.1 Inverse Power Functions

We now proceed to investigate the behaviour of functions of the typex 7→ 1
xn , wheren > 0 is an integer.

154 Theorem The strong derivative of the reciprocal functionx 7→ 1
x

is the functionx 7→ − 1
x2 .

Proof: Put f(x) =
1
x

and g(x) = x. Observe that g′(x) = 1 and f(x)g(x) = 1. Hence by the product rule

0 =
d
dx

1 = f ′(x)g(x)+ f (x)g′(x) = x f ′(x)+
1
x
,

and solving for f′(x) we obtain f′(x) = − 1
x2 .

An alternate proof from the definition proceeds as follows. Let f(x) =
1
x

and x 6= 0. First observe the algebraic

identity
1

1+ t
= 1− t +

t2

1+ t
.

Hence, if x6= 0 is fixed,
1

x+ ε
=

1
x
· 1
1+ ε/x

=
1
x

(

1− ε
x

+
ε2

x2 · 1
(1+ ε/x)

)

.

Now, sinceε → 0 we will have, eventually,|ε| < |x|
2

. Hence
2
3

<
1

(1+ ε/x)
< 2. This means that

ε2

x2 · 1
(1+ ε/x)

= O(ε2),

where the implied constant depends on (the fixed value of) x, and so

1
x+ ε

=
1
x

(

1− ε
x

+O(ε2)
)

=
1
x
− ε

x2 +O(ε2),

from where the assertion follows.❑

155 Theorem If n > 0 is an integer andx 6= 0,

(

1
xn

)′
=
(

x−n)′ = −nx−n−1.
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Proof: Let f(x) = xn, g(x) =
1
x

, h(x) =
1
xn . Then h= f ◦g. By the Chain Rule (Theorem116) and Theorem154,

h′(x) = f ′(g(x))g′(x) = n

(

1
x

)n−1(

− 1
x2

)

= − n
xn+1 = −nx−n−1,

as it was to be demonstrated.❑

! Theorems95and155say that ifα is an integer, then(xα)′ = αxα−1.

With the derivatives of reciprocal powers determined, we can now address how to graph them.

156 Theorem Let n > 0 be an integer. Then

• if n is even,x 7→ 1
xn is increasing forx < 0, decreasing forx > 0 and convex for allx 6= 0.

• if n is odd,x 7→ 1
xn is decreasing for allx 6= 0, concave forx < 0, and convex forx > 0.

Thusx 7→ 1
xn has a pole of ordern atx = 0 and a horizontal asymptote aty = 0.

Proof: Let h(x) =
1
xn . By Theorem155, h′(x) = − n

xn+1 and h′′(x) =
n(n+1)

xn+2 . If n is odd, then n+1 is even and

n+2 is odd. Hence h′(x) > 0 for x 6= 0, proving that h is increasing and h′′(x) has the same sign as x, proving that
h is concave for x< 0 and convex for x> 0. A similar argument is used for when n is even, completing theproof.
❑

Figure 6.1: x 7→
1
x

Figure 6.2: x 7→
1
x2

Figure 6.3: x 7→
1
x3

Figure 6.4: x 7→
1
x4

Figure 6.5: x 7→
1
x5

Figure 6.6: x 7→
1
x6

157 Example A few functionsx 7→ 1
xn are shewn in figures6.1through6.6.

Figure 6.7:x 7→ 1
x−1

−1 Figure 6.8:x 7→
∣

∣

∣

∣

1
x−1

−1

∣

∣

∣

∣

Figure 6.9:x 7→ 1
|x|−1

−1

158 Example Figures6.7through6.9shew a few transformations ofx 7→ 1
x

.
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6.2 The Quotient Rule

159 Theorem If g is strongly differentiable atx andg(x) 6= 0 then

(

1
g

)′
(x) = − g′(x)

(g(x))2 .

Proof: Let a(x) =
1
x

. Then
1
g

= a◦g. By the Chain Rule (Theorem116) and Theorem??,

(

1
g

)′
(x) = a′(g(x))g′(x) = − g′(x)

(g(x))2 ,

as we needed to shew.❑

160 Corollary (Quotient Rule) If f ,g are strongly differentiable atx and ifg(x) 6= 0, then

(

f
g

)′
(x) =

f ′(x)g(x)− f (x)g′(x)
(g(x))2 .

Proof: Using the Product Rule (Theorem113) and Theorem159,

(

f
g

)′
(x) =

(

f · 1
g

)′
(x)

= f ′(x)
1

g(x)
+ f (x)

(

1
g

)′
(x)

= f ′(x)
1

g(x)
+ f (x)

(

− g′(x)
(g(x))2

)

=
f ′(x)g(x)− f (x)g′(x)

(g(x))2 ,

as desired.❑

161 Example Find b′(x) if b(x) =
1+x+x2

(x−x2)2

Solution: Use the Quotient Rule and the Chain Rule:

b′(x) =
(1+2x)(x−x2)2− (1+x+x2)(2(1−2x)(x−x2))

(x−x2)4

=
(1+2x)(x−x2)− (1+x+x2)(2(1−2x))

(x−x2)3

= −−2+3x+3x2 +2x3

(x−x2)3 .

6.3 Rational Functions

162 Definition By a rational function x7→ r(x) we mean a functionr whose assignment rule is of ther(x) =
p(x)
q(x)

, wherep(x)

andq(x) 6= 0 are polynomials.

We now provide a few examples of graphing rational functions.

163 Example Draw the curvex 7→ x2

x2 +1
.
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Solution: Puta(x) =
x

x2 +1
. Observe thata(−x) = −a(x), which means thata is an odd function and hence symmetric about

the origin. Also

a′(x) =
(x2 +1)−x(2x)

(x2 +1)2 =
1−x2

(x2 +1)2 =
(1−x)(1+x)

(x2 +1)2 .

Since(x2 +1)2 is always positive,a′ changes sign when 1− x2 = (1− x)(1+ x) changes sign. Hencea′(x) ≥ 0 if x∈ [−1;1]
anda′(x) < 0 otherwise. This means thata is increasing forx∈ [−1;1] and decreasing otherwise. Moreover

a′′(x) =
d
dx

1−x2

(x2 +1)2 =
−2x(x2 +1)2−2(2x)(1−x2)(x2 +1)

(x2 +1)4 =
2x(x2−3)

(x2 +1)3 .

Again a′′ will change sign when 2x(x2 − 3) = x(x−
√

3)(x+
√

3) changes sign. By means of a sign diagram we see that
a′′(x) ≥ 0 for x ∈ [−

√
3;0]∪ [

√
3;+∞[, and soa is convex forx ∈ [−

√
3;0]∪ [

√
3;+∞[ and concave otherwise. The graph is

shewn in figure6.10.

Figure 6.10:x 7→ x
x2 +1 Figure 6.11:x 7→ x2

x2 +1
Figure 6.12:x 7→ x2 +

1
x2

164 Example Draw the curvex 7→ x2

x2 +1
.

Solution: Putb(x) =
x2

x2 +1
. Observe thatb(−x) = b(x), which means thatb is an even function and hence symmetric about

they-axis. Also

b′(x) =
(2x)(x2 +1)−2x(x2)

(x2 +1)2 =
2x

(x2 +1)2 .

Since(x2+1)2 is always positive,b′ changes sign whenx changes sign. Henceb′(x)≥ 0 if x≥ 0 andb′(x) < 0 otherwise. This
means thatb is increasing forx≥ 0 and decreasing otherwise. Moreover

b′′(x) =
d
dx

2x
(x2 +1)2 =

2(x2 +1)2−2(2x)(2x)(x2 +1)

(x2 +1)4 =
2−6x2

(x2 +1)3 .

Again b′′ will change sign when 2− 6x2 = 2(1−
√

3x)(1+
√

3x) changes sign. By means of a sign diagram we see that

b′′(x) ≥ 0 for x∈
[

− 1√
3

;
1√
3

]

, and sob is convex forx∈
[

− 1√
3

;
1√
3

]

and concave otherwise. The graph is shewn in figure

6.11.

165 Example Draw the curvex 7→ x2 +
1
x2 .

Solution: Putc(x) = x2 +
1
x2 . Observe thatc(−x) = c(x), which means thatc is an even function and hence symmetric about

they-axis. Also

c′(x) = 2x− 2
x3 =

2(x4−1)

x3 =
2(x−1)(x+1)(x2 +1)

x3 .

We make a sign diagram investigating the sign changes ofc′ nearx = −1, x = 0, andx = 1. From this we gather thatc is
increasing forx∈ [−1;0[∪[1;+∞[. Moreover

c′′(x) =
d
dx

(

2x− 2
x3

)

= 2+
6
x4 .



58

Rational Functions

We see thatc′′ is always positive and hence it is always convex. The graph isshewn in figure6.12.

Analogous to theorem150, we now consider rational functionsx 7→ r(x) =
p(x)
q(x)

wherep andq are polynomials with no

factors in common and splitting inR.

166 Theorem Let a 6= 0 and ther i are real numbers and themi be positive integers. Then the rational function with assignment
rule

r(x) = K
(x−a1)

m1(x−a2)
m2 · · ·(x−ak)

mk

(x−b1)n1(x−b2)n2 · · ·(x−bl )nl
,

• has zeroes atx = ai and poles atx = b j .

• crosses thex-axis atx = ai if mi is odd.

• is tangent to thex-axis atx = ai if mi is even.

• has a convexity change atx = ai if mi ≥ 3 andmi is odd.

• both r(b j−) and r(b j+) blow to infinity. If ni is even, then they have the same sign infinity:r(bi+) = r(bi−) = +∞
or r(bi+) = r(bi−) = −∞. If ni is odd, then they have different sign infinity:r(bi+) = −r(bi−) = +∞ or r(bi+) =
−r(bi−) = −∞.

Proof: Since the local behaviour of r(x) is that of c(x− r i)
ti (where c is a real number constant) near ri , the

theorem follows at once from Theorem97and156. ❑

167 Example Draw a rough sketch ofx 7→ (x−1)2(x+2)

(x+1)(x−2)2 .

Solution: Putr(x) =
(x−1)2(x+2)

(x+1)(x−2)2 . By Theorem166, r has zeroes atx = 1, andx = −2, and poles atx = −1 andx = 2. As

x→ 1, r(x)∼ 3
2
(x−1)2, hence the graph ofr is tangent to the axes, and positive, aroundx= 2. Asx→−2, r(x)∼− 9

16
(x+2),

hence the graph ofr crosses thex-axis atx = −2, coming from positivey-values on the left ofx = −2 and going to negative

y=values on the right ofx = −2. As x→−1, r(x) ∼ 4
9(x+1)

, hence the graph ofr blows to−∞ to the left ofx = −1 and to

+∞ to the right ofx = −1. As x→ 2, r(x) ∼ 4
3(x−2)2 , hence the graph ofr blows to+∞ both from the left and the right of

x = 2. Also we observe that

r(x) ∼ (x)2(x)
(x)(x)2 =

x3

x3 = 1,

and hencer has the horizontal asymptotey = 1. The graph ofr can be found in figure6.13.

168 Example Draw a rough sketch ofx 7→ (x−3/4)2(x+3/4)2

(x+1)(x−1)
.

Solution: Putr(x) =
(x−3/4)2(x+3/4)2

(x+1)(x−1)
. First observe thatr(x) = r(−x), and sor is even. By Theorem166, r has zeroes

at x = ±3
4

, and poles atx = ±1. As x→ 3
4

, r(x) ∼ −36
7

(x−3/4)2, hence the graph ofr is tangent to the axes, and negative,

aroundx = 3/4, and similar behaviour occurs aroundx = −3
4

. As x→ 1, r(x) ∼ 49
512(x−1)

, hence the graph ofr blows to−∞

to the left ofx = 1 and to+∞ to the right ofx = 1. Asx→−1, r(x) ∼− 49
512(x−1)

, hence the graph ofr blows to+∞ to the

left of x = −1 and to−∞ to the right ofx = −1. Also, asx→ +∞,

r(x) ∼ (x)2(x)2

(x)(x)
= x2,
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sor(+∞) = +∞ andr(−∞) = +∞. The graph ofr can be found in figure6.14.

Figure 6.13:x 7→ (x−1)2(x+2)

(x+1)(x−2)2 Figure 6.14:x 7→ (x−3/4)2(x+3/4)2

(x+1)(x−1)

6.4 Algebraic Functions

169 Definition We will call algebraic functiona function whose assignment rule can be obtained from a rational function by
a finite combination of additions, subtractions, multiplications, divisions, exponentiations to a rational power.

170 Theorem Let q 6= 0 be an integer. The strong derivative of the functionx 7→ x1/q is the functionx 7→ 1
q
·x1/q−1, whenever

this last makes sense.

Proof: Put f(x) = x1/q, assuming this quantity is real. Then( f (x))q = x. Differentiating both sides using the
Chain Rule we have

q( f (x))q−1 f ′(x) = =⇒ qx(q−1)/q f ′(x) = 1.

Solving for f′ gives

f ′(x) =
1
q
·x1/q−1,

if this quantity is a real number, proving the result.❑

! Theorems95, 155, and170, when combined with the Chain Rule, say that ifα is a rational number, then
(xα)′ = αxα−1.

With the derivatives of rational powers determined, we can now address how to graph them.

171 Theorem Let |q| ≥ 2 be an integer. If

• if q is even thenx 7→ x1/q is increasing and concave forq≥ 2 and decreasing and convex forq≤−2 for all x > 0 and it
is undefined forx < 0.

• if q is odd thenx 7→ x1/q is everywhere increasing and convex forx < 0 but concave forx > 0 if q≥ 3. If q≤ −3 then
x 7→ x1/q is decreasing and concave forx < 0 and increasing and convex forx > 0.

Proof: Let h(x) = x1/q. By Theorem170, h′(x) =
x(1−q)/q

q
and h′′(x) =

(1−q)x(2q−1)/q

q2 .
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Assume first that q is even. Then x1/q is not real for x< 0 so we assume that x> 0. The quantity h′(x) =
x(1−q)/q

q

is > 0 for q≥ 2 and negative for q≤−2. If q≥ 2 then h′′(x) =
(1−q)x(2q−1)/q

q2 < 0 and if q≤−2 then h′′(x) > 0.

Hence h is increasing and concave for q≥ 2 and decreasing and convex for q≤−2

Assume now that q is odd. Then1−q is even and the sign of the quantity h′(x) =
1
q
·
(

x1/q
)1−q

is depends on

the sign of
1
q

. Since2q−1 is odd, the sign of h′′(x) =
(1−q)x(2q−1)/q

q2 is signum((1−q)(x)). We have: if q≥ 3,

h′(x) > 0, h′′(x) < 0 for x > 0 and h′′(x) > 0 for x < 0. Hence for q≥ 3, h is increasing and it is convex for x< 0
but concave for x> 0. If q ≤−3 then h is decreasing and it is concave for x< 0 and decreasing convex for x> 0.
❑

A few of the functionsx 7→ x1/q are shewn in figures6.15through6.26.

Figure 6.15:x 7→
x1/2

Figure 6.16:x 7→
x−1/2

Figure 6.17:x 7→
x1/4

Figure 6.18:x 7→
x−1/4

Figure 6.19:x 7→
x1/6

Figure 6.20:x 7→
x−1/6

Figure 6.21:x 7→
x1/3

Figure 6.22:x 7→
x−1/3

Figure 6.23:x 7→
x1/5

Figure 6.24:x 7→
x−1/5

Figure 6.25:x 7→
x1/7

Figure 6.26:x 7→
x−1/7

We finish this section with an example.

172 Example Consider the functiony = f (x) =
√

x−1+
√

2−x.

1. For whichx will the output of f be a real number?

2. Find f ′(x).

3. By examiningf ′, prove thatf increases forx <
3
2

and decreasing forx >
3
2

.

4. Prove that for allx in the domain off one hasf (x) ≤
√

2.

5. Find f ′′(x).

6. Determine in which intervalsf is convex or concave.

7. Graphf .
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Solution:

1. We need, simultaneously,x≥ 1 and 2≥ x. This means thatx∈ [1;2].

2. Via the Chain Rule:

d
dx

(x−1)1/2 +(2−x)1/2 =
1
2
(x−1)−1/2− 1

2
(2−x)−1/2 =

1

2(x−1)1/2
− 1

2(2−x)1/2

3. f has a stationary point whenf ′(x) = 0, that is, if

1

2(x−1)1/2
=

1

2(2−x)1/2
=⇒ x−1 = 2−x =⇒ x =

3
2
,

so f ′ has only one zero in[1;2]. Since f ′ is continuous in]1;2[ and has only one zero there, it must be negative in a

portion of the interval and positive in the other. Examiningvalues in]1;
3
2
[ we see thatf ′ is positive for there and negative

in ]
3
2

;2[.

4. By the above,x =
3
2

is a global maximum in[1;2], and hence

f (x) ≤ f

(

3
2

)

=

√

3
2
−1

√

2− 3
2

= 2

√

1
2

=
√

2.

5. Via the Chain Rule:

f ′′(x) =
d
dx

1
2
(x−1)−1/2− 1

2
(2−x)−1/2 = −1

4
(x−1)−3/2− 1

4
(2−x)−3/2 = − 1

4(x−1)3/2
− 1

4(2−x)3/2
.

6. Observe that

f ′′(x) = − 1

4(x−1)3/2
− 1

4(2−x)3/2
= −1

4

(

1

(x−1)3/2
+

1

(2−x)3/2

)

.

Since the quantity in parenthesis is always positive,f ′′ is always negative, and hence it is everywhere concave.

7. The graph appears in figure6.27.

0

1

2

3

0 1 2 3

Figure 6.27:y =
√

x−1+
√

2−x
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Big O Notation

We will now study the order of magnitude of functions, in other words, how big functions are in a neighbourhood of a point.

173 Definition Let f ,g be two functions. We write

f (x) = O(g(x)) as x→ a,

read “f (x) is big oh ofg(x) asx tends toa” if there is a positive constantC such that for allx sufficiently close toa we have
| f (x)| ≤ C|g(x)|. An equation of the typef (x) = h(x)+ O(g(x)) means thatf (x)−h(x) = O(g(x)). Hereh(x) is called the
principal termandO(g(x)) is called theerror term.

We are mainly interested in the above definition whena = 0 ora = +∞.

174 Example As x→ +∞, we havex+x2 = O(x2). In fact, if 1< x thenx < x2 which means that

x+x2 < x2 +x2 = 2x2.

Thus for anyx larger than 1,x+x2 is bounded by a constant timesx2.

175 Example As x→ 0, we havex+x2 = O(x). In fact, if |x| < 1, thenx2 < |x| < 1, and hence

|x+x2| < |x|+ |x2| < |x|+ |x| = 2|x|

when|x| < 1.

! The equality f(x) = O(g(x)) is not symmetric. For example, as x→ +∞ we have x= O(x2) but x2 6= O(x).

We have the following theorem.

176 Theorem Let r,sbe real numbers withr < s. If x→ +∞ thenxr = O(xs). If x→ 0 thenxs = O(xr).

Proof: First observe that s− r > 0. Now, if |x| > 1, then|x|s−r > 1 since we are raising a number larger than1
to a positive power. Thus

|x| > 1 =⇒ |x|s−r > 1 =⇒ |x|s > |x|r =⇒ xr = O(xs),

for |x| > 1 and certainly as x→ +∞.

Also, if |x| < 1, then|x|s−r < 1 since we are raising a number smaller than1 to a positive power. Thus

|x| < 1 =⇒ |x|s−r < 1 =⇒ |x|s < |x|r =⇒ xs = O(xr).

❑
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The following properties of theO symbol are easy to prove and will be left as an exercise.

177 Theorem TheO symbol has the following properties.

f (x) = O( f (x)) (A.1)

kO( f (x)) = O( f (x)) (A.2)

O( f (x))+O( f (x)) = O( f (x)) (A.3)

O(O( f (x))) = O( f (x)) (A.4)

O( f (x))O(g(x)) = O( f (x)g(x)) (A.5)

O( f (x)g(x)) = f (x)O(g(x)) (A.6)

(A.7)

178 Example As x→ +∞ we haveO(x3)+O(x4) = O(x4), since thex4 term dominates over thex3 for largex.

179 Example As x→ 0 we haveO(x3)+O(x4) = O(x3), since thex3 term dominates over thex4 for smallx.

180 Example x+2x2 +3x3 = O(x3) asx→ +∞. This means that forx sufficiently large,x+2x2 +3x3 is dominated byx3.

181 Example x+2x2 +3x3 = O(x) asx→ 0. This means that forx sufficiently small,x+2x2 +3x3 is dominated byx.

182 Example We have, asx→ +∞,

(2x3 +O(x))(−3x2 +O(x)) = −6x5 +O(−3x3)+O(2x4)+O(x2)

= −6x5 +O(x3)+O(x4)+O(x2)

= −6x5 +O(x4).

Sometimes it is more important to know which term in a given sum dominates when the variable tends to a determinate quantity.
In the next definition we will concentrate in the cases when the variable tends to 0 or+∞.

183 Definition If
0≤ n1 < n2 < · · · < nq

is a sequence of integers then the polynomial

an1xn1 +an2xn2 + · · ·+anqxnq

has dominant terman1xn1 asx→ 0 and we write

an1xn1 +an2xn2 + · · ·+anqxnq ∼ an1xn1, x→ 0,

read “an1xn1 +an2xn2 + · · ·+anqxnq is asymptotic to an1xn1 asx→ 0.”

Similarly, if x→±∞ then the polynomial

an1xn1 +an2xn2 + · · ·+anqxnq

has dominant termanqxnq asx→±∞ and we write

an1xn1 +an2xn2 + · · ·+anqxnq ∼ anqxnq, x→±∞,

read “an1xn1 +an2xn2 + · · ·+anqxnq is asymptotic to anqxnq asx→±∞.”

184 Example We have
4x+3x2 +2x3 +x4 ∼ 4x, x→ 0,

1+4x+3x2 +2x3 +x4 ∼ 1, x→ 0,

4x+3x2 +2x3 +x4 ∼ x4, x→±∞,

etc.
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Complex Numbers

B.1 Arithmetic of Complex Numbers

We use the symboli to denote theimaginary unit i=
√
−1. Theni2 = −1.

185 Example Find
√
−25.

Solution:
√
−25= 5i.

Sincei0 = 1, i1 = i, i2 = −1, i3 = −i, i4 = 1, i5 = i, etc., the powers ofi repeat themselves cyclically in a cycle of period 4.

186 Definition If a,b are real numbers then the objecta+bi is called acomplex number.

We use the symbolC to denote the set of all complex numbers. Ifa,b,c,d ∈ R, then the sum of the complex numbersa+bi
andc+di is naturally defined as

(a+bi)+(c+di) = (a+c)+(b+d)i (B.1)

The product ofa+bi andc+di is obtained by multiplying the binomials:

(a+bi)(c+di) = ac+adi+bci+bdi2 = (ac−bd)+(ad+bc)i (B.2)

187 Example Find the sum(4+3i)+(5−2i) and the product(4+3i)(5−2i).

Solution: One has
(4+3i)+(5−2i) = 9+ i

and
(4+3i)(5−2i) = 20−8i +15i −6i2 = 20+7i +6 = 26+7i.

188 Definition Let z∈ C,(a,b) ∈ R2 with z= a+bi. Theconjugatez of z is defined by

z= a+bi = a−bi (B.3)

189 Example The conjugate of 5+3i is 5+3i = 5−3i. The conjugate of 2−4i is 2−4i = 2+4i.

! The conjugate of a real number is itself, that is, if a∈ R, thena = a. Also, the conjugate of the conjugate of a
number is the number, that is,z= z.

64
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190 Theorem The functionz : C → C, z 7→ z is multiplicative, that is, ifz1,z2 are complex numbers, then

z1z2 = z1 ·z2 (B.4)

Proof: Let z1 = a+bi,z2 = c+di where a,b,c,d are real numbers. Then

z1z2 = (a+bi)(c+di)

= (ac−bd)+(ad+bc)i

= (ac−bd)− (ad+bc)i

Also,

z1 ·z2 = (a+bi)(c+di)

= (a−bi)(c−di)

= ac−adi−bci+bdi2

= (ac−bd)− (ad+bc)i,

which establishes the equality between the two quantities.❑

191 Example Express the quotient
2+3i
3−5i

in the forma+bi.

Solution: One has
2+3i
3−5i

=
2+3i
3−5i

· 3+5i
3+5i

=
−9+19i

34
=

−9
34

+
19i
34

192 Definition Themodulus|a+bi| of a+bi is defined by

|a+bi| =
√

(a+bi)(a+bi) =
√

a2 +b2 (B.5)

Observe thatz 7→ |z| is a function mappingC to R+.

193 Example Find |7+3i|.

Solution: |7+3i| =
√

(7+3i)(7−3i) =
√

72 +32 =
√

58.

194 Example Find |
√

7+3i|.

Solution: |
√

7+3i| =
√

(
√

7+3i)(
√

7−3i) =
√

7+32 = 4.

195 Theorem The functionz 7→ |z|, C → R+ is multiplicative. That is, ifz1,z2 are complex numbers then

|z1z2| = |z1||z2| (B.6)

Proof: By Theorem190, conjugation is multiplicative, hence

|z1z2| =
√

z1z2z1z2

=
√

z1z2z1 ·z2

=
√

z1z1z2z2

=
√

z1z1
√

z2z2

= |z1||z2|

whence the assertion follows.❑
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Equations involving Complex Numbers

196 Example Write (22 +32)(52 +72) as the sum of two squares.

Solution: The idea is to write 22 +32 = |2+3i|2, 52 +72 = |5+7i|2 and use the multiplicativity of the modulus. Now

(22 +32)(52 +72) = |2+3i|2|5+7i|2

= |(2+3i)(5+7i)|2

= |−11+29i|2

= 112 +292

B.2 Equations involving Complex Numbers

Recall that ifux2 +vx+w = 0 with u 6= 0, then the roots of this equation are given by theQuadratic Formula

x = − v
2u

±
√

v2−4uw
2u

(B.7)

The quantityv2−4uw under the square root is called thediscriminantof the quadratic equationux2 +vx+w = 0. If u,v,w
are real numbers and this discriminant is negative, one obtains complex roots.

Complex numbers thus occur naturally in the solution of quadratic equations. Sincei2 = −1, one sees thatx = i is a root of
the equationx2 +1 = 0. Similary,x = −i is also a root ofx2 +1.

197 Example Solve 2x2 +6x+5 = 0

Solution: Using the quadratic formula

x = −6
4
±

√
−4
4

= −3
2
± i

1
2

In solving the problems that follow, the student might profitfrom the following identities.

s2− t2 = (s− t)(s+ t) (B.8)

s2k− t2k = (sk− tk)(sk + tk), k∈ N (B.9)

s3− t3 = (s− t)(s2 +st+ t2) (B.10)

s3 + t3 = (s+ t)(s2−st+ t2) (B.11)

198 Example Solve the equationx4−16= 0.

Solution: One hasx4 − 16 = (x2 − 4)(x2 + 4) = (x− 2)(x+ 2)(x2 + 4). Thus eitherx = −2,x = 2 or x2 + 4 = 0. This last
equation has roots±2i. The four roots ofx4−16= 0 are thusx = −2,x = 2,x = −2i,x = 2i.

199 Example Find the roots ofx3−1 = 0.

Solution:x3−1= (x−1)(x2+x+1). If x 6= 1, the two solutions tox2+x+1= 0 can be obtained using the quadratic formula,

gettingx = −1
2
± i

√
3

2
.

200 Example Find the roots ofx3 +8 = 0.
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Solution:x3 +8 = (x+2)(x2−2x+4). Thus eitherx = −2 or x2−2x+4 = 0. Using the quadratic formula, one sees that the
solutions of this last equation arex = 1± i

√
3.

201 Example Solve the equationx4 +9x2 +20= 0.

Solution: One sees that
x4 +9x2 +20= (x2 +4)(x2 +5) = 0

Thus eitherx2 +4 = 0, in which casex = ±2i or x2 +5 = 0 in which casex = ±i
√

5. The four roots arex = ±2i,±i
√

5
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