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Preface

These notes started the fall of 2004, when | taught Maths DBerential Calculus, at Community College of Philadekh

The students at that course were Andrea BATEMAN, Kelly BLAER Alexandra LOUIS, Cindy LY, Thoraya SABER,
Stephanilee MAHONEY, Brian McCLINTON, Jessica MENDEZ, laabn PALMER, Leonela TROKA, and Samneak SAK. |
would like to thank them for making me a better teacher withirtbontinuous input and questions.

The main goal of these notes is to initiate students in thdysad Calculus. Chapter 1 introduces most of the notation
used throughout the notes. The central problem is: giveinglg) formula relating two quantities, how can we grapltjca
represent this relationship? This problem is partiallywered in Chapter 2, where we derive formulee for lines, senias,
parabolas and hyperbolas by means of the distance formitkmwthe necessity of the machinery of derivatives. Theives
and equations provide then meaningful examples for funstiohich are introduced in Chapter 3. Once the basic opesati
and transformations of functions are presented, and thie basabulary for the graph of a function is given, the ingidfincy
of the methods of Chapter 2 leads us to look at the graphs ofiurs through the methods of Calculus. The strong deviati
of a function is presented in Chapter 4, where theorems deyggits influence on the graph of a function are proven. In
Chapter 4 we introduce polynomial functions, the Sum RutedBct Rule, and the Chain Rule. A few results from the Theory
of Equations are proved, via the introduction of Taylor paignials. In Chapter 5 we introduce rational functions andva f
algebraic functions. The Quotient Rule is proved in this|itea

| have profitted from conversations with #o¥lason and Alain Schremmer regarding approaches to teptthicourse.
David A. Santos

Please send commentsdeantos@ccp.edu

Things to do

Need to
¢ Write a chapter on exponential and logarithmic functions.

e Write a chapter on goniometric functions.

Weave Taylor and McLaurin

Write a proof of Rolle’s Theorem for polynomials, using Taypmlynomials and the Bolzano’s Theorem.

e Write a section on Lagrange Interpolation.

Write a section on Partial Fractions.

Rewrite the big oh appendix.
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This material may be distributed only subject to the ternts@mditions set forth in the Open Publication License, ioerg.0
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To the Student

These notes are provided for your benefit as an attempt toigggehe salient points of the course. They avery terseaccount

of the main ideas of the course, and are to be used mostlyaotretentral definitions and theorems. The number of exanple
is minimal, and here you will not find exercises. Thetivationor informal ideas of looking at a certain topic, the ideakilig

a topic with another, the worked-out examples, etc., arergia class. Hence these notes are not a substitute to lscyane
must always attend to lectures The order of the notes may not necessarily be the ordemfetldn the class.

There is a certain algebraic fluency that is necessary forusseaat this level. These algebraic prerequisites would be
difficult to codify here, as they vary depending on classoesp and the topic lectured. If at any stage you stumble iebig,
seek help! I am here to help you!

Tutoring can sometimes help, but bear in mind that whoeuerswou may not be familiar with my conventions. Again, |
am here to help! On the same vein, other books may help, batgheach presented here is at times unorthodox and finding
alternative sources might be difficult.

Here are more recommendations:
e Read a section before class discussion, in particular,threadefinitions.

e Class provides the informal discussion, and you will prafini the comments of your classmates, as well as gain
confidence by providing your insights and interpretatioha mpic. Don’t be absent!

e | encourage you to form study groups and to discuss the amsigts. Discuss among yourselves and help each other but
don’t beparasites!Plagiarising your classmates’ answers will only lead yodisaster!

e Once the lecture of a particular topic has been given, takesh flook at the notes of the lecture topic.
e Try to understand a single example well, rather than illedignultiple examples.

e Start working on the distributed homework ahead of time.

e Ask questions during the lecture.There are two main types of questions that you are likely ko as

1. Questions of Correction: Is that a minus sign therd¥ou think that, for example, | have missed out a minus
sign or wroteP where it should have bedd, then by all means, ask. No one likes to carry an error till &/
because the audience failed to point out an error on line h'ttveait till the end of the class to point out an error.
Do it when there is still time to correct it!

2. Questions of Understanding: | don't get ikdmitting that you do not understand something is an actiregu
utmost courage. But if you don't, it is likely that many otkén the audience also don't. On the same vein, if you
feel you can explain a point to an inquiring classmate, | alitbw you time in the lecture to do so. The best way to
ask a question is something like: “How did you get from theoselcstep to the third step?” or “What does it mean
to complete the square?” Asseverations like “I don't untderd” do not help me answer your queries. If | consider
that you are asking the same questions too many times, it malyah you need extra help, in which case we will
settle what to do outside the lecture.

e Don't fall behind! The sequence of topics is closely intéated, with one topic leading to another.
e You will need square-grid paper, a ruler (preferably a Tesgyi some needle thread, and a compass.

e The use of calculators is allowed, especially in the oceasitengthy calculations. However, when graphing, you will
need to provide algebraic/analytic/geometric supportafryarguments. The questions on assignments and exams will
be posed in such a way that it will be of no advantage to havephgng calculator.

e Presentation is critical. Clearly outline your ideas. Whaitimg solutions, outline major steps and write in complete
sentences. As a guide, you may try to emulate the style pexbanthe scant examples furnished in these notes.

1My doctoral adviser used to say “I salq | wrote B, | meantC and it should have bee!




Chapter

Numbers

This chapter introduces essential notation and termiryaiogt will be used throughout these notes.

1.1 The Real Line

1 Definition We will mean by aseta collection of well defined members elementsA subseis a sub-collection of a set. We
denote thaB is a subset oA by the notatiorB C A.

2 Definition Let A be a set. Ifa belongs to the se&k, then we writea € A, read ‘ais an element of.” If a does not belong to
the setA, we writea € A, read ‘ais not an element oA”

We denote the set afatural numbers0,1,2,.. .}l by the symbolN. The natural numbers allow us to count things, and
they have the property that addition and multiplicationiésed within them: that is, if we add or multiply two naturaimbers,
we stay within the natural numbers. Observe that this ismetfior subtraction and division, since, for example, reith— 7
nor 2-- 7 are natural numbers. We say that then that the natural msrebgyclosurewithin multiplication and addition.

By appending the opposite (additive inverse) of every merob® to N we obtain the set
Z={...,—3,-2,-1,0,1,2,3,...}?

of integers The closure of multiplication and addition is retained histextension and now we also have closure under
subtraction and we have also the notiorpositivity. This last property allows us to divide the integers intogtrectly positive

the strictly negativeor zero, and hence introduces @nderingin the rational numbers by definirg< b if and only ifb—a is
positive.

Enter now in the picture theational numberscommonly calledractions which we denote by the symb@l.> They are

the numbers of the forn%I withae€ Z, b e Z, b+#£ 0, that is, the division of two integers, with the divisortiist from zero.

Observe that every rational numb%ris a solution to the equation (withas the unknownlpx—a = 0. It can be shewn that
the rational numbers are precisely those numbers whosmdk@presentation either is finite (e.g.183) or is periodic (e.g.,
0.123=0.123123123..). Notice that every integer is a rational number, sia e g, for anya € Z. Upon reachindQ we
have forgned a system of numbers having closure for the fatlmaetical operations of addition, subtraction, muliialiion, or
division.

Are there numbers which are not rational numbers? Up uriPythagorearisthe ancient Greeks thought that all numbers
were the ratio of two integers. It was then discovered thatiéhgth of the hypothenuse of a right triangle having bogs le

1\We follow common European usage and include 0 among the naturdiers.

27, for the German word@ahlen meaninghumber

3Q for quotients

4 “Reeling and Writhing, of course, to begin with,” the Mock Tlarreplied, “and the different branches of Arithmetic—Aninit, Distraction, Uglification,
and Derision.”

5pythagoras lived approximately from 582 to 500 BC. A legerys $hat the fact that/2 was irrational was secret carefully guarded by the Pytiesyts.
One of them betrayed this secret, and hence was assasdigdiethg drowned from a ship.
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of unit length—which isv'2 in modern notation—could not be represented as the ratinofiritegers, that is, that/2 is
irrational®. Appending the irrational numbers to the rational numbezbtain theeal numbersR.

Observe that/2 is a solution to the equatiof —2 = 0. A further example is¥5, which is a solution to the equation

x> — 3= 0. A more difficult example to visualise 'r% V2+1, which is a solution ta® — 2x3 — 1 = 0.” Any number which is a
solution of an equation of the forapx" + ax"1+...+a,=0is called aralgebraic number

A numberu is anupper boundor a set of numberA if for all a € Awe havea < u. The smallest such upper bound is called
the supremunof the setA. Similarly, a numbet is alower boundfor a set of numberB if for all b € B we havel <b. The
largest such lower bound is called tiléimumof the setB. The real numbers have the following property, which we ente
as an axiom.

3 Axiom (Completeness ofR) Any set of real numbers which is bounded above has a supremumn set of real numbers
which is bounded below has a infimum.

Observe that the rational numbers are not complete. For@eathere is no largest rational number in the set
{xeQ:x2 <2}
sincev/2 is irrational and for any good rational approximation/{a we can always find a better one.

Are there real numbers which are not algebraic? It wash'thid XIXth century when it was discovered that there were
irrational numbers which were not algebraic. These irrstimumbers are calledanscendental numberst was later shewn
that numbers likgr ande are transcendental. In fact, in the XIXth century Georget@goroved that even thougk andR are
both infinite sets, their infinities are in a way “different®dause they cannot be put into a one-to-one correspondence.

Figure 1.1: The Real Line.

Geometrically, each real number can be viewed as a point traiglst line. We make the convention that we orient the real
line with O as the origin, the positive numbers increasingatals the right from 0 and the negative numbers decreasiveyts
the left of 0, as in figurél.1. We append the objeete, which is larger than any real number, and the objeet, which is
smaller than any real number. Lettinge R, we make the following conventions.

(400) + () =+ (1.1)
(—)+(—w) = —x (1.2)
X+ (400) = 400 1.3)
X+ (—00) = —o0 (1.4)

Lo . . . . a .
6An irrational number is thus one that cannot be written as thitignt of two |nteger§3 with b # 0.

"To see this, work backwards:if= \/ v/2+ 1, them = v/2+ 1, which gives(x® — 1)2 = 2, which isx® — 23— 1 =0.
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X(400) =400 if x>0 (1.5)

X(400) =—00 if X< O (1.6)

X(—00) = —00 if x>0 1.7)

X(—) =400 if x<0 (1.8)

i—); —0 (1.9)
Observe that we leave the following undefined:
Foo

Too’ (+0) 4 (=), 0O(£w).

The square of every real numbeiis positivé, that is, for all real numbers we havex? > 0. Introducing the object
i = v/—1—whose square satisfigs= —1, a negative number—and considering the numbers of the do¥ri, with a andb
real numbers, we obtain tliemplex number§.

In summary we have
NcZcQcRcC.

1.2 Intervals

4 Definition An interval | is a subset of the real numbers with the following propeftg:d | andt € I, and ifs< x < t, then

x € |. In other words, intervals are those subsets of real nunvigiighe property that every number between two elements is
also contained in the set. Since there are infinitely manyntids between two different real numbers, intervals witstidict
endpoints contain infinitely many members. Tabléshews the various types of intervals.

Observe that we indicate that the endpoints are includeddansof shading the dots at the endpoints and that the enslpoin
are excluded by not shading the dots at the endpaints.

1.3 Neighbourhood of a point

Before stating the main definition of this section, let ussidar the concept of “nearness.” What does it mean for one poin
to be “near” another point? We could argue that 1 is near taf),fbr some purposes, this distance could be “far.” We could
certainly see that.8 is closer to 0 than 1 is, but then again, for some purposes, ths distance could be “far.” Mentioning a
specific number “near” 0, like 1 or.B fails in what we desire for “nearness” because mentioniggegific point immediately
gives a “static” quality to “nearness”: once you mention adfic point, you could mention infinitely many more pointsiath

are closer than the point you mentioned. The points in theeseze

01, 0.01, 0.001 0.0001,

get closer and closer to 0 with an arbitrary precision. Notiat this sequence approaches 0 through valugsThis arbitrary
precision is what will be the gist of our concept of “nearnef¥earness” is dynamic: it involves the ability of gettirgpser
to a point with any desired degree of accuracy. It is notctati

Again, the points in the sequence

1 1 1 1
2’ 4’ 8’ 16’

8\We use the worgositiveto indicate a quantity> 0, and use the terstrictly positivefor a quantity> 0. Similarly withnegative(< 0) andstrictly negative
(<0).

%It may seem like a silly analogy, but think that[ay b] the brackets are “arms” “huggingtandb, but in]a; b| the “arms” are repulsed. “Hugging” is thus
equivalent to including the endpoint, and “repulsing” isi®glent to excluding the endpoint.




Miscellaneous Notation

Interval Notation Set Notation Graphical Representation
[a; b] {xeR:a<x<b} 4 °
a b
la; b {xeR:a<x<b} o °
a b
[a;b[ {xeR:a<x<b} 4 °
a b
la; b {xeR:a<x<b} o °
a b
la; 400 {xeR:x> a} °
a ~+o00
[&; 4-00] {xeR:x>a} ®
a ~+o00
] —o0; b[ {xeR:x<b} o
—00 b
] — o0; ] {xeR:x<b} °
—00 b
J = o0; oo R
—00 —|—00

Table 1.1: Intervals.

are arbitrarily close to 0, but they “approach” 0 from thd.|€nce again, the sequence

FENRE U S
2’ 3’ 47 5’

approaches 0 from both above and below. After this long pbéanwve may formulate our first definition.

5 Definition The notationx — a, read % tends toa,” means thak is very close, with an arbitrary degree of precisionato
Herex can approach through values smaller or larger thanWe writex — a+ (read ‘x tends taa from the right”) to mean that
x approachea through values larger thamand we writex — a— (read ‘x tends toa from the left”) we mean that approaches
a through values smaller than

6 Definition A neighbourhood of a point & an interval containing.

Notice that the definition of neighbourhood does not ruletbatpossibility that may be an endpoint of the the interval. Our
interests will be mostly on arbitrarily small neighbourkismf a point. Schematically we have a diagram like figug2
a+

/

—00 /é. —+o00
a—

Figure 1.2: A neighbourhood @t

1.4 Miscellaneous Notation

We will often use the symbok=- for “if and only if”, and the symbol—, “implies.” The symbok: meansapproximately
From time to time we use the set theoretic notation below.
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7 Definition Theunionof two setsA andB, is the set e
AUB={x:(xeA)or(xeB)}.
This is read A unionB.” See figurel.3.
Theintersectionof two setsA andB, is
ANB={x:(xeA)and(xe B)}.

This is read A intersectiorB.” See figurel.4.

Figure 1.3:AUB Figure 1.4.ANB

8 Example If A=[-10;2, B=] — »;1], then

ANB=[-10;1, AUB=]—;2].
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Distance and Curves on the Plane

The main objective of this chapter is to introduce the distdiormula for two points on the plane, and by means of thimdee
formula, the linking of certain equations with certain eegwn the plane. Thus the main object of these notes, thaladifige
a graph to a formula, is partially answered.

2.1 Distance on the Real Line

9 Definition Letx € R. Theabsolute value ofx-denoted byx|—is defined by

—x if x<0,
X =

X if x>0.

The absolute value of a real number is thus the distance oféhbnumber to 0, and henpe-y| is the distance betweerand
y on the real line. Below are some properties of the absoluteevalerex,y,t are all real numbers.

—X| < X< |X. (2.)
X=y|=ly—x| (2.2)

V@ = x| (2.3)

X2 = | = X2 (2.4)

X <t <= —t<x<t (t>0) (2.5)
X >t <= x<—-torx>t (t>0) (2.6)
X+yl <X +1yl (2.7)

X = [yl] < [x=Y| (2.8)
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2.2 Distance on the Real Plane

We now turn our attention to the plane, which we denote by ynebel R?.

Consider two pointé& = (x1,¥1),B = (X2,¥2) on the Cartesian plane, as in fig&é. Dropping perpendicular lines ©, as
in the figure, we can find their Euclidean distad@with the aid of the Pythagorean Theorem. For

AB? = AC? + BC?,

translates into

AB= /(0 —x1)2+ (Y2~ y1)2

This motivates the following definition.

10 Definition Let (x1,Y1), (X2,Y2) be points on the Cartesian plane. TBeclidean distanceetween them is given by

d((xa.y1), (%2.¥2)) = |/ (51— %) + (1 — y2)2 (2.9)

Figure 2.1: Distance between two points.

11 Example Find the Euclidean distance betweenl, 2) and(—3,8).

Solution:

d((~1,2),(-3,-8)) = /(-1 (-3))2 + (2 8)2 = V40 = 210~ 6.32

2.3 Circles and Semicircles

We now study our first curve on the plane: the circle. We widl et theequationof a circle on the plane is a consequence of
the distance formuld.o.

Here is a way to draw a circle on sand: using a string, tie ithatyou wish to be the centre of the circle. Tighten up the
string now and trace the path followed by the other extrenté®ttring. You now have a circle, whose radius is the length o
the string. Notice then that every point on the circumfeedsat a fixed distance from the centre. This motivates thevitg.

12 Theorem A circle on the plane with radiuR and centrexo, yo) has equation
(X—%0)*+ (Y—yo)* =R, (2.10)

called thecanonical equatioffior a circle of radiufk and centréxg, yo). Conversely, the graph any equation of the f&rh0is
a circle.




Lines

Proof: The point(x,y) belongs to circle of radius R and centf®), yo)

— d<(x7y)7(X07y0)> = R
= \/(X—XO)2+(y—yo)2 = R
= (x=x0)°+y-y?® = R
giving the desired result]
@ T T
( y T T
Xo, I T
\( Yo) s Ve
— + : e H-ANGHHAHH
Figure 2.2: A circle with centre Figure 2.3: Examplé3. Figure 2.4: Examplé4 Figure 2.5: Examplé5

(Xo,Yo) and radiuR.

13 Example The equation of the circle with centfe-1,2) and radius 6 igx+ 1)%+ (y— 2)> = 36. Observe that the points
(=1+6,2) and(—1,2+£6) are on the circle. Thus-7,2) is the left-most point on the circlé5, 2) is the right-most(—1, —4)
is the lower-most, an¢—1,8) is the upper-most. The circle is shewn in figaré.

Solving fory in (x—xo)? + (y — yo)? = R?, we obtain

y=Yo+ /R~ (x—x0)2

The choice of the- sign gives the upper half of the circle (the upper semicjrated the— sign gives the lower semicircle.

14 Example Sketch the curvg = /1 —x2

Solution: Squaringy? = 1—x%. Hencex? +y? = 1. This is the equation of a circle with centre & 0) and radius 1. The
original equation describes the upper semicircle (sineed). The graph is shewn in figute4.

15 Example Sketch the curvg =2 — /8 —x2 — 2x

Solution: We have — 2 = —/8—x2 — 2x. Squaringy — 2)2 = 8—x?—2x. Hence, by completing squares,
XA 2x+1+(y—22=9 — (x+1)2+(y—2)2=09.

This is the equation of a circle with centre(atl,2) and radius 3. The original equation describes the lowerdeste (since
y < 2). The graph is shewn in figuiz5s.

2.4 Lines

16 Definition Letaandb be real number constants.wrtical lineon the plane is a set of the form

{(xy):x=a}.
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Similarly, ahorizontal lineon the plane is a set of the form

{(xy):y=b}.
=
|
BN
(leyl) -----LJ—---------_ ‘
—X—X1
——-—-—X—X —————
Figure 2.6: A vertical line. Figure 2.7: A horizontal line. Figure 2.8: Theorem?7.

17 Theorem The equation of any non-vertical line on the plane can besvriin the formy = mx+ k, wherem andk are real
number constants. Conversely, any equation of the fosrax+ b, wherea, b are fixed real numbers has as a line as a graph.

Proof: If the line is parallel to the x-axis, that is, if it is horiztal, then it is of the form y= b, where b is a
constant and so we may take=a0 and k= b. Consider now a line non-parallel to any of the axes, as iaréig
2.8 and let(x,y), (x1,¥1), (X2,Y¥2) be three given points on the line. By similar triangles weehav

Ya—y1_ Y=\
Xo—X1  X—X1

which, upon rearrangement, gives
(Y21 Y2—Y1
y= (xz—xl)x X1 (xz—x1>+yl’

Yo\ _ Y2—¥1
m= oo kK=—x1 <x2x1> +VY1.

and so we may take

Conversely, consider real numbers<x xp < X3, and let P= (xg,ax +b), Q= (xg,ax +b), and R= (x3,ax3 + b)
be on the graph of the equationyax+ b. We will shew that

d(P.Q)+d(QR) =d(PR).

Since the points,®, R are arbitrary, this means that any three points on the graptihe equation y= ax+ b are
collinear, and so this graph is a line. Then

d(P.Q) = /00 —xa)2 + (a0 — 20)2 = o —xa| 1+ 82 = (30— x1) V1 + 2,

d(Q.R) = |/ (x —x2)2 + (% — a%)2 = [xa — o V1T @2 = (xa — xo) V1T 2,
d(P.Q) = y/(xs = x1)? + (8% — )2 = xa — x| V1 + 2 = (s — x) V1 + &,

from where
d(PQ)+d(Q,R) =d(PR)
follows. This means that the pointgJ? and R lie on a straight line, which finishes the proof of theoteen.d
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The quantity m= % in Theorem7is theslope of the line joiningxy, y1) and(xz,y>). Since y=m(0) +k,
1

”—
the quantity k is the4yntercept of the line joiningxy,y1) and(xz, y2).

Figure 2.9: Examplé8. Figure 2.10: Examplé9.

18 Example By Theoreml7, the equatioty = x represents a line with slope 1 and passing through the oi®intey = x, the
line makes a 45angle with thex-axis, and bisects quadrants | and Ill. See figue

19 Example A line passes through-3,10) and(6, —5). Find its equation and draw it.

Solution: The equation is of the forgn= mx+ k. We must find the slope and tlyantercept. To findn we compute the ratio

_10-(-5) 5

-3-6 3

Thus the equation is of the forgn= —§x+ k and we must now determire To do so, we substitute either point, say the first,

: 5 - 5 . : 5
intoy = —éx—s- k obtaining 10= _é(_3) +k, whencek = 5. The equation sought is thys= —§x+ 5. To draw the graph,

first locate they-intercept (at0,5)). Since the slope isg, move five units down (td0,0)) and three to the right (t@3,0)).
Connect now the pointd,5) and(3,0). The graph appears in figugelQ

2.4.1 Parallel and Perpendicular Lines

The material here will be needed for exampkeand so it is optional if this example is omitted.
20 Definition Two lines are parallel if they have the same slope.

21 Example Find the equation of the line passing througdhO) and parallel to the line joining—1,2) and(2, —4).

Solution: First we compute the slope of the line joiningl, 2) and(2, —4):

2 (4 _
=i T

The line we seek is of the formm= —2x+ k. We now compute thg-intercept, using the fact that the line must pass through
(4,0). This entails solving 8= —2(4) +k, whencek = 8. The equation sought is finaljy= —2x+ 8.

22 Theorem Let y = mx+ k be a line non-parallel to the axes. If the lige= myx+ k; is perpendicular ty = mx+ k then
1
ml == 7&
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Proof: Refer to figure2.11. Since we may translate lines without affecting the angtesben them, we assume
without loss of generality that bothy mx+ k and y= m;x+ k; pass through the origin, giving thuskk; = 0.
Now, the line y= mx meets the vertical line=x 1 at (1,m) and the line y= mx meets this same vertical line at
(1,my) (see figure2.11). By the Pythagorean Theorem

(m—my)? = (14+m?) + (1+m3).

Upon simplifying we gather that mm= —1, which proves the assertiofl

(1,my)

y = mX

Figure 2.11: Theoreri2.

23 Example Find the equation of the line passing throughO) and perpendicular to the line joining-1,2) and(2,—4).

Solution: By the preceding problem, the slope of the linaijaj (—1,2) and(2, —4) is —2. The slope of the perpendicular line
is

m]_ = —a = E
The equation sought has the fogm= g+k. We find they-intercept by solving G= ng k, whencek = —2. The equation of

the perpendicular line is thys= )—2( —2.

24 Example For a given real number associate the straight ling with the equation

Lt (4—t)y= (t+2)x+6t.
Determine so that thd; be parallel to the-axis and determine the equation of the resulting line.
Determinet so that thd; be parallel to theg-axis and determine the equation of the resulting line.
Determinet so that thd; be parallel to the line-5y = 3x— 1.
Determinet so that thd.; be perpendicular to the line5y = 3x— 1.

O o o o O

Is there a pointa, b) belonging to every ling; regardless of the value &?

Solution:

0 Weneed +2=0 = t = —2. In this case
(4—(-2)y=-12 = y=-2.

0 We need 4-t =0 = t =4. In this case

0= (4+2)x+24 = x=—4.
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0 The slope oL is

and the slope of the lineby =3x—1is —g. Therefore we need

t+2 3
4+t — -2 = -3(4-0=5(t+2) — t=-11

O In this case we need

t+2 5 7
i 1-3 54—1t)=3(t+2) =t 2

O Yes. From above, the obvious candidaté-igl, —2). To verify this observe that
(4—1)(—2) = (t+2)(—4)+6t,

regardless of the value of

2.5 Parabolas

25 Definition A parabolais the collection of all the points on the plane whose distdnam a fixed poinE (called thefocus
of the parabola) is equal to the distance to a fixed lirfealled thedirectrix of the parabola). See figukel12 whereFD = DP.

We can draw a parabola as follows. Cut a piece of thread asdstige trunk of T-square (see figlrd 3. Tie one end to the
end of the trunk of the T-square and tie the other end to thesfazay, using a peg. Slide the crosspiece of the T-squang alo
the directrix, while maintaining the thread tight agair tuler with a pencil.

b

Figure 2.12: Definition of a parabola. Figure 2.13: Drawing a parabola. Figure 2.14: Examplé&7.

2

26 Theorem Letd > 0 be a real number. The equation of a parabola with foc(8,d) and directrixy = —d isy = :—d

Proof: Let(x,y) be an arbitrary point on the parabola. Then the distancéxof) to the line y= —d is |y+d].
The distance ofx,y) to the point(0,d) is /X2 + (y — d)2. We have

y+dl=y/¥+(y—d? = (y+d)>=x+(y—d)?
— Y +2yd+d?=x2+y?—2yd+d?
—  4dy=x°
X2
—t y: 57

as wanted[]
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Observe that the midpoint of the perpendicular line segrfrent the focus to the directrix is on the parabola.
2
We call this point thevertex For the parabola y= :—d of Theoren6, the vertex is clearly0,0).

27 Example Draw the parabolg = x°.

. 1 . 1 _ 1
Solution: From Theoren26, we wantE =1, thatis,d = 7 Following Theoren26, we locate the focus 4D, 21) and the

directrix aty = —% and use a T-square with these references. The vertex of tabgla is a(0,0). The graph is in figur@.14

2.6 Hyperbolas

28 Definition A hyperbolais the collection of all the points on the plane whose absolatue of the difference of the distances
from two distinct fixed pointd; and - (called thefoci® of the hyperbola) is a positive constant. See figiire5, where
|F1D — RD| = | D' — RD’|.

We can draw a hyperbola as follows. Put tack$-pandF, and measure the distanEg-,. Attach piece of thread to one end of
the ruler, and the other t&, while letting the other end of the ruler to pivot aroufd The lengths of the ruler and the thread
must satisfy

length of the ruler- length of the threaek F1F.

Hold the pencil against the side of the rule and tighten thestth, as in figur@.16

1

Figure 2.15: Definition of a hyperbola. Figure 2.16: Drawing a hyperbola. Figure 2.17: The hyperbola= "

29 Theorem Letc > 0 be a real number. The hyperbola with fockat= (—c, —c) andF; = (c,c), and whose absolute value
2

of the difference of the distances from its points to the fe@c has equatioxy = %

LFociis the plural offocus
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Proof: Let(x,y) be an arbitrary point on the hyperbola. Then

|d<(X,y), (_Cv _C)> - d<(X,y), (C7 C)>| =2c

= ‘\/(x+c)2+ (y+c)2— \/(x—c)2+(y—c)2 =2c

s (P (Y02 (x— €2+ (y— €2 = 2/ (x+ €2+ (y+ 02/ (x— 02+ (y—0)2 = 4c?

— 242 = 2\/(x2 +y2+2¢?) + (2xc+ 2yc) - \/(x2 +y2+2¢2) — (2xc+ 2yc) @

—= 20427 = 2\/(x2+y2+202)2 — (2xc+2yc)2
= (2 +2¥%)? = 4((+y? +2¢%)2 — (2xc+ 2y0)?)

= X484V + Ayt = A((X* + Y+ Ac + 2Py 4 AyPCP + 4XPC?) — (4X2C% + BxyC + 4yPc?))
2
—n-Z

where we have used the identities

(A+B+C)?=A?B?+C?>+2AB+2AC+2BC and A—B-vVA+B=1A2-B2
0

Observe that the ointé—C —C) and
p \/27 \/é

c ¢ c?
—,—— | are on the hyperbola xy —. We call these points
(\/i ﬂ) P 72 P
thevertices of the hyperbola xy= ;

1 . . .
30 Example To draw the hyperbolg = X we proceed as follows. According to Theor@# its two foci are a(—fo, —V?2)
and(v2,v2). Put
length of the ruler- length of the threae- 2/2.

By alternately pivoting about these points using the pracedbove, we get the picture in figufel 1

2Verticesis the plural ofvertex
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Functions

This chapter introduces the central concept of a functioa.céhcentrate on real-valued functions whose domains aseti
of the real numbers. We will use the curves obtained in theclaapter as examples to see how various transformatioest aff
the graph of a function.

3.1 Functions

target set

Figure 3.1: The main ingredients of a function. Figure 3.2: The graph of a function.

31 Definition By afunction f: Dom(f) — Target(f) we mean the collection of the following ingredients:

0 anamefor the function. Usually we use the lettér

0 a set of real number inputs—usually an interval or a finite mrobintervals—called thelomainof the function. The
domain off is denoted bypom(( f).

O aninput parameter, also calledndependent variabler dummy variableWe usually denote a typical input by the letter
X.

O a set of possible real number outputs—usually an intervafioita union of intervals—of the function, called tkerget
setof the function. The target set dfis denoted bylarget (f).

0 anassignment ruler formula, assigning teevery input a unique output. This assignment rule fdris usually denoted
by x+— f(x). The output ok underf is also referred to as thmage of x under fand is denoted by(x).
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The notationh
Dom(f) — Target(f)
f:
X — f(x)

read “the functionf, with domainDom(f), target seffarget(f), and assignment rulé mappingx to f(x)” conveys all the
above ingredients. See figusel

Dom(f) — R @
32 Definition Thegraphof a functionf : is the set{(x,y) € R?:y= f(x)} on the plane. For ellipsis,
X — f(x)

we usually sayhe graph of f orthe graph y= f(x) or thethe curve y= f(x). See figure3.2

@ From now on, unless otherwise stated, we will t&kas the target set of all the functions below.

It must be emphasised that the uniqueness of the image otarest of the domain is crucial. For example, the diagram in
figure 3.3 does notrepresent a function. The element 1 in the domain is assimatbre than one element of the target set.
Also important in the definition of a function is the fact tladitthe elementsf the domain must be operated on. For example,
the diagram in3.4 does notrepresent a function. The element 3 in the domain is not msdigo any element of the target
set. Also, by the definition of the graph of a function, thaxis contains the set of inputs aghxis has the set of outputs.
Therefore, if a vertical line crosses two or more points ofapd, the graph does not represent a function. See figusesd

3.6

2¢ 4 1 /
et 1 1 | I I | 11 1 r I I |
1 2 . T T T T T T T T T \. T T T
3 8 ' 1 A\
6 4 4
Figure 3.3: Not a function. Figure 3.4: Not a function. Figure 3.5: Not a function. Figure 3.6: Not a function.

33 Example (The Identity Function) Consider the function

This function assigns to every real its own value. Thibg—1) = —1,1d (0) =0, 1d (4) = 4, etc. By Theoreni7, the graph
of identity function is a straight line, and it is given in figB3.7.

34 Example (The Square Function)Consider the function
R — R

Id2: :
X = X

INotice the difference in the arrows. The straight arrew is used to mean that a certain set is associated with anothevtesreas the arrow (read
“maps to”) is used to denote that an input becomes a certaimbutp




Chapter 3

This function assigns to every real its square. Thiu$(—1) = 1, Id 2(0) =0, Id ?(2) = 4, etc. By Theoren26, the graph of
the square function is given in figuges.

R — R
For ellipsis, we usually refer to the identity functitmh : as “the functionld ” or “the function

X = X

x— X Similarly, in situations when the domain of a functiomist in question, we will simply give the assignment
rule or the name of the function. So we will speak of “the fiorcf” or“the function x+— f(x),” e.g., “the function
Id 2” or “the function x — x?”

35 Example Consider the function

-1, — R
f:
X — 1-x2
1 V3 . . . .
Thenf(-1) =0, f(0)=1, f 5)=% " .866, etc. By Examplé4, the graph off is the upper unit semicircle, which is

shewn in figures.9.
36 Example (The Reciprocal function) Consider the functioh
R\{0} —
g:

X —

R
1 .
X

Theng(—1)=-1,9(1) =1,9 () = 2, etc. By Exampl&0, the graph ofy is the hyperbola shewn in figufie1Q

. 1
Figure 3.7:1d Figure 3.8:1d 2 Figure 3.9:x+— v 1—x2 Figure 3.10x+— X

3.2 Piecewise Functions

Sometimes the assignment rule of a function varies frommiateo interval. We call any such functionpgecewise function

37 Example A function f is only defined fox € [—4;4], and it is made of straight lines, as in figu8e. 1 Find a piecewise
formula for f.

Solution: The first line segme#; has slope

1-(-3) 4
slope.Z1 = _1_((_‘)1) =3

2Since we are concentrating exclusively on real-valuedtfans, the formula forf only makes sense in the intenjal; 1.
3g only makes sense whent 0.
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and so the equation of the line containing this line segmemif ithe formy = §x+ ki. Since(—1,1) is on the line, 1=

fg +ki = k= g so this line segment is contained in the line gx+ g The second line segmest, has slope
1-1

:0’

and so this line segment is contained in the e 1. Finally, the third line segmen#s has slope

-5-1
slopes=—+ = -3
PeLs=""5 )
and so this line segment is part of the line of the fgrea —3x+ky. Since(1,2) is on the line, we have2 —3+k, = kpy =5, @
and so the line segment is contained on the jyire —3x+ 5. Upon assembling all this we see that the piecewise fumctio

required is
4 7 _
§x+§ if xe [—4;-1]
f)=4 1 if xe [~1;2]
—-3x+5 ifxe[2;4

6 1 + 1
5 1 + o> 1
+ 4 <+ 1
B <+ 1
2 ) T +
SRRV W —
6 -5 -4-F2-l1F1 2\3 4 5 & -+ 1
-2 4 — | 1
21 S T 1
4 1 T
-5 4 gs 1T 34—
6 1
. . Figure 3.13: Exampl&9.
Figure 3.11: Exampl&7. Figure 3.12: Exampl&8.

Sometimes the pieces in a piecewise function do not contegbarticular point, let us say at=a. Then we writef (a—)
for the value thaff (x) would have if we used the assignment rule for values veryedoa but smaller thara, and f (a+) for
the value thaf (x) would have if we used the assignment rule for values veryedioa but larger thara.

38 Example The functionf : R — R is piecewise defined by
-2 ifxe€]—o0; 2]
X ifxe[-2;1

x if x€]1;4]
5 ifxe[4,+o]

f(x) =

Its graph appears in figuf212 We have, for example,

1. f(-3)=-2 4, f(—2+)=(-2%=4 7. f(1) = (1)%=1 10. f(4-) =4
2. f(—2-)=-2 5. f(§> = @)2:3 8. f(l+)=1 11. f(4)=5

3. f(-2)=(-2)2=4 6. f(1-)=(1)?=1 9. f(2) =2 12. f(4+) =5
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39 Example The functiong: R — R is piecewise defined by

1 if x €] —o0;—1]
X
gx)=1q x ifxe[-1;]
1 if X €]1;400]
X
Its graph appears in figu213 We have, for example,
1. g(—) =0, usingl.9 4. 9(-14)=-1 7.9(1)=1
2. g(_l_):_ilz_l 5.9(0)=0 8. g(1+)=1
1
3.9(-1)=-1 6.91+)=7=1 9. g(+) =0, usingl.9

3.3 Translations

40 Theorem Let f be a function and letandh be real numbers. Kfo, yo) is on the graph of, then(xg, Yo+ V) is on the graph
of g, whereg(x) = f(x) +v, and if (x1,y1) is on the graph of,, then(x; — h,y1) is on the graph of, wherej(x) = f(x+h).

Proof. Letl¢,lg,I"j denote the graphs of, §, j respectively.

(X0,Y0) €Tt <= Yo=f(X0) <= Yo+V=f(X0)+V <= Yo+V=0(X) <= (Xo,Yo+V) €lg.

Similarly,

(xuy1) €l <= y1=f(x1) <= y1=f(xx—h+h) <= y1=j(xi—h) <= (xax—h,y1) €T;j.

41 Definition Let f be a function and letandh be real numbers. We say that the cuyve f (x) +vis avertical translationof
the curvey = f(x). If v > 0 the translation is up, and ifv < 0, it is v units down. Similarly, we say that the curye= f(x+ h)
is ahorizontal translatiorof the curvey = f(x). If h > 0, the translation i& units left, and ifh < 0, then the translation is
units right.
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42 Example If f(x) =x?, then figures8.14 3.15and3.16shew vertical translations 3 units up and 3 units down, retsy.
Figures3.17, 3.18 and3.19, respectively shew a horizontal translation 3 units righinits left, and a simultaneous translation
3 units left and down.

Yo Mg

. 2 Figure 3.15:y = f(x) +3= Figure 3.161y = f(x) —3= Figure 3.17:y = f(x—3) = Figure 3.18:y = f(x+3) = Figure 3.19:y = f(x+3) —
Figure 3.14y = f(x) = X’
9 y=10 X243 -3 (x—3)2 (x+3)2 3=(x+3)2-3

43 Example If g(x) = x (figure 3.20), then figures 3.21and3.22 shew vertical translations 3 units up and 3 units down,
respectively. Notice than in this cagé«+t) = x+t = g(x) +t, so a vertical translation Ryunits has exactly the same graph
as a horizontal translatidrunits.

] /o 4

Figure 3.20y =g(x) =x Figure 3.21y=g(x) +3=x+3 Figure 3.22y=g(x) -3=x-3

44 Definition Given a functionf we write f (—oo) for the value thaff may eventually approach for large (in absolute value)
and negative inputs anfi+c) for the value thatf may eventually approach for large (in absolute value) arsitige input.
The liney = biis a (horizontalasymptotdor the functionf if either

f(—w)=b or f(+w)=h.

45 Definition Letk > 0 be an integer. A functiori has apole of order kat the pointx = a if I)Ema(x— a)* 1 (x) = +oo but

)I(ima(x— a)"f (x) is finite. Some authors prefer to use the temntical asymptoterather than pole.

R\{0} — R

46 Example Sincexf(x) =1, f(0—) = —oo, f(0+) = +oo for f : 1 , f has a pole of order 1 at= 0.
X el
X
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. . . . 1 .
47 Example Figures3.23through3.25exhibit various transformations gf= a(x) = " Notice how the poles and the asymp-
totes move with the various transformations.

|
sy == T + =
| |
| |
: 1
_____ L — |
~ | |
|
|
|
|
Fi ure323><»—>} Figure 3.24 EHY Figure 3.25> EE
g . X igure 324 ~ = — igure 3.25x—~ ~= +

3.4 Distortions
48 Theorem Let f be a function and leé¢¥ # 0 andH # 0 be real numbers. [, yo) is on the graph of , then(xp,Vyp) is on
the graph ofy, whereg(x) =V f(x), and if (x1,y1) is on the graph of, then(%,yl) is on the graph of, wherej(x) = f (HXx).
Proof: Letl¢,I4,I"j denote the graphs of, §, j respectively.
(%0,Y0) €Tt <= Yo= f(%0) <= Vo=V (%) <= Vyo=0(x0) < (X0,V¥0) € g
Similarly,
_ (%, _i(® X1 .
(x,y1) €Tt <= n=1fx) < y1="1 (H H) = y1=] (H) = (H ,yl> el;.
0

49 Definition LetV > 0, H > 0, and letf be a function. The curvg =V f(x) is called avertical distortionof the curve
y= f(x). The graph of =V f(x) is avertical dilationof the graph ofy = f(x) if V > 1 and avertical contractionif 0 <V < 1.

The curvey = f(HX) is called ahorizontal distortionof the curvey = f(x) The graph ofy = f(HXx) is ahorizontal dilationof

the graph ofy = f(x) if 0 < H < 1 and ahorizontal contractionf H > 1.

N |

I

Figure 3.26: y = a(x) = Figure 3.27: y = 2a(x) = Figure 3.28: y = a(2x) = Figure 3.29:y = a(x—2) = Figure 3.30:y = 2a(2x) = Figure 3.31:y = 2a(2x) +
\a—x2 2\/4-x2 Va-ax2 \—x2 4 4x 2\/4—4x2 1=2\/4-42 +1

50 Example Let a(x) = v/4—x2. If y=+/4—x2, thenx? +y? = 4, which is a circle with centre dD,0) and radius 2 by
virtue of 2.10 Hencey = a(x) = v4—x2 is the upper semicircle of this circle. Figur8<26 through3.31 shew various
transformations of this curve.
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51 Example Draw the graph of the curve= 2x* — 4x+ 1.

Solution: We complete squares.
1
2
=X"—2X+
3

1
l:X2_2X+1+§

y=2%—4x+1
_|_

1
+1=(x—1)2+=

2
1
—(x_1\2_ =

2(x—1)2—1,

< ONIKNIKNIKNI

[ A

whence to obtain the graph pf= 2x° — 4x+ 1 we (i) translatey = X% one unit right, (ii) dilate the above graph by factor of two,
(iii) translate the above graph one unit down. This sucoesisi seen in figure3.32through3.34

(22
\/

T T T 17T 1 T 1T T T T T 1T 1717 T 1T T T \\\\\V\\\\

Figure 3.32y = (x—1)2 Figure 3.33y = 2(x— 1)2 Figure 3.34y = 2(x—1)2 — 1

3.5 Reflexions

52 Theorem Let f be a function If(xg, yo) is on the graph of, then(xp, —yo) is on the graph of, whereg(x) = — f(x), and
if (x1,y1) is on the graph of, then(—xy, 1) is on the graph of, wherej(x) = f(—Xx).

Proof. Letl¢,lg,I"j denote the graphs of, §, j respectively.

(X0,¥0) €Tt <= Yo=f(%0) <= —Yo=—F(%0) <= —Yo=09(%) < (X0, ~Yo) €Tg.
Similarly,

(xuy1) €Tt <= y1=1x) <= y1=Ff(-(-x)) <= nn=j(-x) < (-x,y1) €T}

O

53 Definition Let f be a function. The curvwe= — f(x) is said to be theeflexion of f about the x-ax&nd the curvg = f(—x)
is said to be theeflexion of f about the y-axis

54 Example Figures3.35through3.38shew various reflexions about the axes.
55 Theorem Let f be a function If(xo, Yo) is on the graph of, then(xo, |yo|) is on the graph of, whereg(x) = | f(X)|.

Proof: Letl ¢,y denote the graphs of, §, respectively.

(X0,¥0) €Tt = Yo = f(x0) == [yo| =[f(%)| = Yol = 9(x0) == (%o, [¥0l) € Tg.
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56 Example Figures3.39and3.40displayy = xandy = |x| respectively. Figure3.41and3.42shewy = x*>—1 andy = [x* — 1|
. . - . . 1
respectively. Figure8.43through3.46exhibit various transformations af— "

/

VAR N A
I AN RS W ﬁ/

;igure 3.35y=d(x) = (x— ii?:iel)sz.%: y = —d(x) = ig:iel)32.37: y=d(-x) = ii(gfie}jg:yi —d(—x) = Figure 3.39y — () — x Figure 3.40y — |1(x)| x| @
T \i/ T T y T |f | i|f
Figure 3.43:x — Figure 3.44:x — Figure 3.45:x +— Figure 3.46:x +—
Figure 3.41: y = g(x) = Figure 3.42: y = |g(x)| = 1 1 1 1
X2 _1 \xz -1 — JE— — |-
X X X X
Figure 3.47: Exampl&8. The graph of an even function. Figure 3.48: Exampl&8. The graph of an odd function.

3.6 Symmetry

57 Definition A function f is evenif for all x it is verified thatf (x) = f(—x), that is, if the portion of the graph for< O is a
mirror reflexion of the part of the graph far> 0. This means that the graph bfis symmetric about thg-axis. A functiong

is oddif for all xitis verified thatg(—x) = —g(x), in other wordsg is odd if it is symmetric about the origin. This implies that
the portion of the graph appearing in quadrant | is a*¥8@ation of the portion of the graph appearing in quadranghd the
portion of the graph appearing in quadrant Il is a“18fiation of the portion of the graph appearing in quadrant IV

58 Example The curve in figure3.47is even. The curve in figurg.48is odd.

59 Theorem Let f be a function. Then both— f(|x|) andx — f(—|x|) are even functions.
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Proof:  Put aXx) = f(|x|). Then §—x) = f(| —x|) = f(|x|) = a(x), whence x- a(x) is even. Similarly, if
b(x) = f(—|x|), then {—x) = f(—| —X|) = f(—|x|) = b(x) proving that x— b(x) is even.JJ

Notice thatf (x) = f(|x|) for x> 0. Sincex — f(|x|) is even, the graph of — f(|x|) is thus obtained by erasing the portion

of the graph o — f(x) for x < 0 and reflecting the part for> 0. Similarly, sincef(x) = f(—|x|) for x < 0, the graph of
x— f(—|x|) is obtained by erasing the portion of the graptxe# f(x) for x > 0 and reflecting the part for< 0.

60 Example Figures3.49through3.52exhibit various transformations &f— (x— 1)2 -3.

|V W y ]

Figure 3.49y = f(x) = (x—1)2 -3 Figure 3.50y = f(|x))| = (x —~1)2 -3 Figure 3.51y = f(—|x|) = (—|x~1)2 —3 Figure 3.52y = |f(|x)| = ()X — 1)2 - 3|

. . 1
61 Example Figures6.7through6.9shew a few transformations &f— 1 1.

. 1
1 Figure 3.54x+— N1

Figure 3.53x+— x% - 1‘ Figure 3.55X —

3.7 Algebra of Functions

62 Definition Let f andg be two functions and let the poirte in the intersection of their domains. Thes g is their sum,
defined at each pointby

(f+9)(x) = f(x) +9(x).
The differencef — g is defined by
(fF=9)(x¥) = f(x) —g(x),
and their producf g is defined by
(fg)(x) = f(x)-g(x).

Furthermore, ig(x) # 0, then their quotient is defined as

(5) =g
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The compositionf og (“ f composed withg”) is defined at the poink by
(fog)(x) = f(g(x)).

63 Example Figure3.56shews two functiong — f(x) = x+ 1 andx+— g(x) = x— 1. Figure3.57 shews their sum — 2x,

a line, figure3.58shews the difference— (f —g)(x) = 2, a horizontal line, and figurg. 59 shews their product — x? — 1,
-1 2 . ,

a parabola. We also hawe— (?) (x) = % =1- X1 a hyperbola with pole at= —1 and asymptote at= 1 (figure

f x+1

3.60; - =—

Oixe <g) ¥ =1

(figure3.62); andx — (f o f)(x) = x+ 2 (figure3.63).

=1+ xle a hyperbola with pole at= 1 and asymptote at= 1 (figure3.61); (fog) = Id

Figure 3.56:f(x) = x+ 1 andg(x) = x—1 Figure 3.57x+— (f +g)(x) = 2x Figure 3.58x+— (f —g)(x) =2 Figure 3.59x+ (fg)(x) = -1

:

(9 2 ) (f
Figure 3-60-(;>(><):17 o1 Figure 3-61-<a) (x) =1+ 1 Figure 3.62:(f og)(x) =x Figure 3.63:(f o f)(x) = x+2

3.8 Behaviour of the Graphs of Functions

So far we have limited our study of functions to those familié functions whose graphs are known to us: lines, parapolas
hyperbolas, or semicircles. Through some arguments im@lgymmetry we have been able to extend this collection to
compositions of the above listed functions with the absolatlue function. We would now like to increase our repeetaif
functions that we can graph. For that we need the machine@atmiulus, which will be developed in the subsequent chapter
This section introduces the basic definitions of the esakfiet@tures that we will be interested in when we examine thplp

of more functions.

64 Definition A function f is said to becontinuousat the pointx = a if f(a—) = f(a) = f(a+). It is continuous on the
intervall if it is continuous on every point df

Heuristically speaking, a continuous function is one whgrsgh has no “breaks.”
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65 Example Given that

f(x) =

6-+X if X €] —o0; -2
32 +xa if x| —2;+o0]

is continuous, fincw.

Solution: Sincef (—2—) = f(—2) =6—2=4 andf(—2+) = 3(—2)? — 2a= 12— 2awe need
f(—2-)=1(-2+) = 4=12-2a = a=4.

The graph off is given in figure3.64

66 Example Given that

if x#£A1
a ifx=1
is continuous, fincw.

2

Solution: Forx # 1 we havef (x) = ); _1

=X+ 1. Sincef(1-) =2 andf(1+) = 2 we needh = f(1) = 2. The graph off is @
given in figure3.65

Figure 3.64: Examplé5. Figure 3.65: Examplé6.

We will accept the following results without proof.

67 Theorem (Bolzano’s Intermediate Value Theorem)If f is continuous on the intervédd; b] and f and there are two dif-
ferent values in this interval for which changes sign, thehis vanishes somewhere in this interval, that is, thexedda; b]
such thatf(c) = 0.

68 Corollary If f is continuous on the intervad; b] with f(a) # f(b) then f assumes every value betweéfa) and f (b),
that is, ford with min(f(a), f(b)) <d < max(f(a), f(b)) there isc € [a;b] such thatf (c) = d.

69 Theorem (Weierstrass’s Theorem)A continuous function on a finite closed interyajb] assumes a maximum value and
a minimum value.

70 Definition A function f is said to bencreasing(respectivelystrictly increasing if a< b = f(a) < f(b) (respectively,
a<b = f(a) < f(b)). Afunctiongis said to bedecreasingrespectivelystrictly decreasinyif a<b — g(a) < g(b)

(respectivelya < b = g(a) < g(b)). A function ismonotonidf it is either (strictly) increasing or decreasing. By theervals
of monotonicity of a functiowe mean the intervals where the function might be (striétigfeasing or decreasing.

If the function f is (strictly) increasing, its oppositef is (strictly) decreasing, and viceversa.

The following theorem is immediate.
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71 Theorem A function f is (strictly) increasing if for alb < b for which it is defined

f(b)— f(a) . f(b)—f(a)

—— 7> —_ .

b a 2 0 (respectively b a 0)
Similarly, a functiong is (strictly) decreasing if for ath < b for which it is defined
9(b) —g(a) 9(b) —g(a)

<0 (respectively <0).

b—a b—a

72 Example Prove that an affine function— mx+ Kk is strictly increasing ifm > 0 and strictly decreasing if < O.

Solution: This is geometrically obvious. To prove it analgtly, put f (x) = mx+k and observe that

f(b)—f(a) _ (mb+k)—(ma+K)

b—a b—a

Now apply Theorent L
73 Example Prove thak — x? is strictly increasing ik > 0 and strictly decreasing i< 0.

Solution: This is geometrically obvious. To prove it analgtly, putt(x) = x? observe that
t(b)—t(a) b*-a? (b—a)(b+a)
b-a  b-a b—a

This quantity is strictly negative or strictly positive deqling on whethest < b < 0 or 0< a < b. We now apply Theorerl.
We summarise this information by means of the table

b+a

Figure 3.66: Exampl@&5. A convex curve Figure 3.67: Exampl&5. A concave curve.

74 Definition A function f is said to be (midpoint strictlygonvexf given a < b we have

¢ <a;b> - f(a)erf(b).

A function g is said to be (midpoint strictlyyoncavef given a < b we have

o(25) > 9210,

By the intervals of convexity (concavity) of a functiove mean the intervals where the function is convex (concaye)
inflexion pointis a point where a graph changes convexity.
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Geometrically speaking, a convex function is one such fiatd distinct points on its graph are taken and
the straight line joining these two points drawn, then thdpoint of that straight line is above the graph. In other
words, the graph of the function bends upwards. Notice thits convex, then its oppositef is concave.

75 Example Prove that the square functian— x? is convex.

Solution: Putf (x) = x*. We need to prove that

¢ (atb) _ (atb\? a’+2abip?
2 ) \2 )~ 4

is strictly smaller than
f(a)+f(b) a?+b?
2 2

This would occur if
a?+2ab+b? a?+b?

4 2

that is

a2 — 2ab+b?

—F——>0.

4
But since we always have @
a’—2ab+b?> (a—b)?
= > 0,
4 4

and the above steps are reversible, the assertion is provedentally, this also proves that— —x? is concave. See figures
3.66and3.67.

76 Definition Let f be a function. Iff is defined ak = 0, then(0, f(0)) is its y-intercept The points(x,0) on thex-axis for
which f(x) = 0, if any, are the-interceptof f.

77 Definition A zeroor root of a functionf is a solution to the equatiof{x) = 0.
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The Strong Derivative of a Function

In this chapter we introduce the concept of the strong diévizaWe do not give formulae—with the exception of exampie
where the formula is obtained through a geometric argumeste-to calculate derivatives, we scatter those throughaut t
text.

4.1 The Strong Derivative

Given a finite number of points, we can find infinitely many @s\passing through them. See for example figutewhere
we see three very different curvégsg, h each simultaneously passing through the poitB, C. Thus plotting a few points of
the graph of a function can give a misleading picture.

Figure 4.1: A few points do not a graph determine.

By the same token, given a formula, the plotting of a few podues not give the salient features of a graph. For example,
let us say that we wanted to graph= 4x — x3. In figures4.2 through4.5we have chosen a few selected points on the curve
and interpolated between them through lines. But relyingh@sxmethod does not give proof that the graph will not haveemo
turns or bends, say, or that it will grow indefinitely for vatiofx of large magnitude.

-
=
=
:

=
<
=
<

Figure 4.2: Four plot Figure 4.3: Seven plot Figure 4.4: Ten plot Figure 4.5: One thousand
points. points. points. plot points.

But for all its faults, the progression of shapes in figuteadthrough4.5 suggests that a “reasonable” graph can be ap-
proximated by a series of straight lines. By a “reasonabtap we mean one that does not have many sharp turns, does not
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oscillate wildly, does not have many jumps or many asymptaed that it is mostly continuous and “smooth.” Admittedly
these concepts are vague, but we will gain more insight emtas we progress.

How do we choose the lines to approximate a given “reasohablee? Given a functiorf consider the pointa, f(a)) on
the graph of the function. What happens around this point?elapproached through valuex < a and joined the line with
endpointgx, f(x)) and(a, f(a)), we would obtain a secant line like that of figuté. If we approached through valuex > a
and joined the line with endpoints, f(a)) and(x, f(x)), we would obtain a secant line like that of figut&’. Eventually, on
getting closer tda, f (a)) we obtain a line just barely grazing the curve—that is, “tantyto the curve—at the poir(@, f (a)),
as in figure4.8.

d

Figure 4.6: Left secant through, f (a)). Figure 4.7: Right secant through, f(a)). Figure 4.8: Line grazinga, f (a)).

In the simplest of cases, if our curve is the liney = mx+ k, then in a neighbourhood of the poit a the tangent line to
L should be itself! It is not true that every curve we consideuld have a unique “tangent line” at every point. For example
a curve with a sharp edge asyas |x| atx = 0 in figure4.9 or the curve in figurel.10have infinitely many tangents at= 0.

1. , .
The curvey = = is not even defined at= 0 and hence it does not have a tangent there. On the otherthamiraboly = x?
is “smooth” atx = 0 and appears to have a unigue tangent there.

o+

Figure 4.9: y = |x| is non- Figure 4.10: A non-smooth Figure 4.11y — } Figure 4.12: A smooth func-
smooth function ax = 0. function atx = 0. X tion atx = 0.

Figure 4.13: An increasing Figure 4.14: A decreasing Figure 4.15: Convex curve. Figure 4.16: Concave curve.
curve. curve.

Notice that gathering tangent lines at diverse points of wewlso gives us information about the monotonic-
ity and convexity of the curve. If the tangent line at a poin&tcurve has positive slope, then the curve appears
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to increase. If inside an open interval the curve appearsaeeha maximum or a minimum point, then the tangent
line there appears to be horizontal, that is, its slop8.i$t decreases otherwise (see figufe$3and4.14). It also
appears that if the slope of the tangent to a curve increabasjs, if the tangent lies always below the curve, then
the curve is convex. Otherwise it is concave (see figlEsand4.16).

Given now the formula for a functioh and a pointa, f (a)) on the graph off, how do we determine the tangent linefto
at(a, f(a))? Recall that iff — 0, thena+ ¢ is in a neighbourhood d. The slope of the secant line joinirig+ €, f(a+¢€))
and(a, f(a)) is

f(a+e)—f(a)
£
We denote the value—if there is one—bfi— asx — € by f’(a). Hence for fixed but smalt we have

f(a+¢€)—f(a)
€

(4.1)

~ f'(a) = f(a+¢)~f(a)+ f'(a)e.

There is, generally, an error in taking the dextral side aapproximation for the sinistral side on the above formula Wil
settle for having an error of the order @(52), which will normally will be a good compromise for most of tfmmulee we
will encounter. This prepares the ground for our main dedinibf this section.

78 Definition Let f be a function and lea € Dom(f). When there is a numbéf(a) such that
flate)=f(a)+f'(a)e+0(?) as &—0

then we say that the functiohhas astrong derivative f(a) or thatf is strongly differentiableatx = a. If we consider the set
{xe Dom(f): f'(x) exists then we may form the function— f’(x) with domainDom (') = {x € Dom(f) : '(x) existg. @

We call the functionf’ the strong derivativeof f. We will also often use the symb% f (x) to denote the functior — f’(x).

79 Definition If f’ is itself differentiable, then the functioff’)’ = f” is thesecond derivativef f. It is also denoted by

o - , . L , -
52 f(x). We similarly define the third, fourth, etc., derivatived. id customary to denote the first three derivatives of a

function with primes, as irf’, f”, f"/, and any higher derivative with either roman numbers or Withorder of the derivative
enclosed in parenthesis, asfitf, fY or {4, f® etc.

4.2 Graphical Differentiation

Before we attack the problem of deducing the formula for thevdtive of a function through the formula of the functidet,
us address the problem of obtaining an approximate valudéaterivative of a function through the graph of the funtitt is
possible to estimate graphically the strong derivativéhefftinction by appealing to the interpretation that thergjrderivative
of a function at given point is the value of the slope of thegtant at that given point.

80 Example Find an approximate graph for the derivativefafiven in figure4.17.

Solution: Observe that from the remarks following figuré6 we expectf’ to be positive if—1.4;—0.6], sincef increases
there. We expect’ to be 0 atx = —0.6, sincef appears to have a (local) maximum there. We exgétd be negative in
[—0.6;0; 6 sincef decreases there. We expdcto be 0 atx = 0.6, sincef appears to have a (local) minimum there. Finally
we expectf’ to be positive forf0.6; 1.4] sincef is increasing there.

We now perform the following steps.

1. We first divide up the domain dfinto intervals of the same length, in this case we will takervals of length @.

2. For each endpointof an interval above, we look at the poipt f (X)) on the graph of.

3. We place a ruler so that it is tangent to the curveat(x)).

4. We find the slope of the ruler. Recall that any two pointshentangent line (the ruler) can serve to find the slope.
5

. We tabulate the slopes obtained and we plot these valb&snimg thereby an approximate graphféf
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In our case we obtain the following (approximate) valuesff¢x).

x |-14 -12 -1 -08 -06 -04 -02 0 02 04 06 08 1 12 14
f'(x)| 488 332 2 092 008 -052 -088 -1 -088 —-052 008 092 2 332 488

An approximate graph of the strong derivative appears indéiguL8

\ |
\ |
1 I 1
/ \ /
/ / \
/ d \ /
/ \ /
\ | |/
B || B \ 4
Figure 4.17: Exampl&0. y = f(x) Figure 4.18: Exampl&0. y = f'(x)

81 Example Figure4.20gives an approximate graph of the strong derivative of tllgappearing in figuré.19

\

Figure 4.19: Exampl8L. y = f(x) Figure 4.20: Exampl€l y = f’(x)

To obtain it, we have served ourselves of the table below.

x |-10 -08 -06 -04 -02 00 02 04 06 08 10
f'(x) 03 04 05 06 10 +» 10 06 05 04 03

82 Example Consider the function — /1 — x2 for x € [-1;1]. From examples5, its graph is the upper unit semicircle. A
line from the origin to a pointa,b) on the circle has equation= g‘x (assumab # 0). Since a line tangent to the semicircle

at (a,b) is perpendicular to the ling = gx, the slope of the perpendicular IineJ}s%1 in view of Theorem22. Hence the
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o . .oa . . o
strong derivative at the point= a is b Sinceb = \/1— a2, we find that fora €] — 1; 1], the strong derivative whex= a

a
is —————. We will shew how to graph the function— —
T2 grap

gives

in example??, but for now, an approximate tabulation

X
V1—x?

x |-10 -08 -06 -04 -02 00 0.2 04 0.6 08 10
f'(x) | +o 133 Q75 044 020 0 -020 -044 -075 -133 -

The approximate graph appears in figdra2

Figure 4.21: Exampl82. y = f(x) Figure 4.22: Exampl€2. y = f’(x)

4.3 Derivatives and Graphs

In this section we prove the remarks following figyré 6which will be the main tools for graphing in subsequent chept
83 Theorem If f is strongly differentiable at thenf is continuous ax.

Proof: We have fx+¢) = f(x)+ f'(x)e+O(g?). If £ > 0ande — O then f(x+ &) = f(x+) and similarly if
e<0ande — 0 f(x+¢€) = f(x—). Hence we have(k+) = f(x) = f(x—), and f is continuous at XJ

84 Theorem Let f be strongly differentiable at If f'(x) > 0 thenf is increasing in a neighbourhood xfif f'(x) < 0 then
f is decreasing in a neighbourhoodof

Proof: We have fx+ &) — f(x) = f'(x)& + O(&?). For & very small, this means that
f(x+e)—f(x) ~ f'(x)¢,

thatis, the sign of fx+ &) — f(x) is the same as the sign df(X)e. Thusife >0and f'(x) >0, then f(x+¢€) > f(x),
that is, f is increasing. 1€ > 0and f(x) <0, then f(x+¢) < f(x), thatis, f is decreasing. Similar conclusions
are reached when considerirgg< 0 and the theorem is proved]

85 Definition If f is strongly differentiable at and f’(x) = 0, then we say thatis astationary point of f.

86 Definition If there is a point for which f(x) < f(a) for all xin a neighbourhood centredsat a then we say that has a
local maximunmatx = a. Similarly, if there is a poinb for which f(x) > f(b) for all xin a neighbourhood centredyat b then
we say thatf has docal minimumatx = b.

87 Theorem If f is strongly differentiable at= a, f'(a) = 0, andf’ changes fromt to — in a neighbourhood dd thenx = a
is a local maximum. Iff is strongly differentiable at = b, f'(b) = 0, andf’ changes from- to + in a neighbourhood ab
thenx = bis a local minimum.
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Proof: By Theoren84, when f changes from- to —, f is increasing and then decreasing in a neighbourhood of
X = a. By Weierstrass’s Theorem (Theoréf), f assumes a maximum on a closed neighbourhood containiiig a
cannot be to the left of a since the function is increasingeth@nd it cannot be to the right of a since the function
is decreasing there. Hence the maximum must be-atyand so fx) < f(a) for x in a neighbourhood of a. The
result just obtained applied te f yields the second half of the theoreimh.

88 Example The graph of the strong derivativié of a functionf is given in figure4.23 Then according to Theore&Y f has
a local minimum ak = —2 andx = 2, and a local maximum at= 0 andx = 4.

N oW A OO
I I |

Figure 4.23: Exampl&8.

89 Lemma If f’ increases in a neighbourhoodxfthenf is convex in a neighbourhood &f Similarly, if f' decreases in a
neighbourhood of, thenf is concave in a neighbourhood xf

Proof: Lete > 0. Then
f(x)=f(x—e+€)=f(x—g)+ f'(x—€)e + O(£?), @
f(x+e—g)=f(x+¢&)—f'(x+e)e+0O(?).

Adding,
2f(x) = f(x+ &)+ f(x—&)+ (f'(x—¢&) — f'(x+¢€)) e+ O(?).

For € very small we then have
2f() ~ f(x+&)+ f(x—g)+ (f'(x—¢g)— f'(x+¢))e.
If f" is increasing then ‘{x— ¢) — f'(x+ €) < 0. Sincee > 0 this implies that
2f(x) < f(x+¢€)+f(x—¢g),

which means that f is convex in a neighbourhood of x. Thidtresw applied to—f gives the second half of the
theorem.d

90 Theorem A twice strongly differentiable -functior is convex in a neighbourhood &f= aif f”(a) > 0. Itis concave in a
neighbourhood ok = bif f”(b) < 0.

Proof: This follows from Lemm&9 and Theoren84. O
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Polynomial Functions

In this chapter we study polynomials and their graphs. Ireotd do the latter, we demonstrate the Power Rule, the Sue Rul
the Product Rule, and the Chain Rule for derivatives. We stisdy some algebraic topics related to the roots of a polyalom

5.1 Power Functions and the Power Rule

By a power functionve mean a function of the formi— x%, wherea € R. In this chapter we will only study the case when
is a positive integer.

If nis a positive integer, we are interested in how to graph x". We have already encountered a few instances of power
functions. Fom = 0, the functionx — 1 is a constant function, whose graph is the straightyirel parallel to thex-axis.
Forn =1, the functionx — x is the identity function, whose graph is the straight ljne x, which bisects the first and third
quadrant. Fon = 2, we have the square functian— x*> whose graph is the parabofa= x* encountered in exampl&7. We
reproduce their graphs below in figured through5.3 for easy reference.

Figure 5.1:x+— 1. Figure 5.2:x+— X. Figure 5.3:x+— X2.

By the groundwork from the preceding chapter, we know we @dhey information about the monotonicity and convexity
of the functionx — X" by studying its first and second derivatives. For that we éissablish a series of lemmata.

91 Lemma The strong derivative of a constant function is the 0 functim symbols, iff is a function with assignment rule
f(x) = k, constant, then for ak, f'(x) = 0.

Proof: We have
f(x+&) =k=k+0-£+0¢2,

which proves the assertionl

For ellipsis we will write(k)’ = 0 or dgx k=0.

92 Lemma The strong derivative of the identity function— x is the constant functior— 1.
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Proof: If f(x) =x we have
f(x+&) =x+&e=x+1-£+0¢?

andso f(x) =10

o T d
For ellipsis we will write(x) = 1 or w <= 1

93 Lemma The strong derivative of the square functiors x° is the functionx — 2x.

Proof: If f(x) = x*> we have

f(Xx+&) = (X+ €)% = X2+ 2xe 4 €2 = f(X) 4 2xe + O(£?),

. . . L d
proving the assertion. For ellipsis we will er(exz)’ =2xor i X2 =2x. 0

94 Lemma The strong derivative of the cubic functian— X is the functionx — 3x.

Proof: If f(x) = x° we have, using Lemn@s,

(x+€) (X% 4 2xg + O(€?))
= X3+ 2% 4 O(xe?) + xPe + 2xe2 4+ O(3)
= xX+3x%e+0(g?),

(x+¢)3

ase — 0, and so(x®)' = 3x? (or % X =3x%). 0

We will now see that the pattern

d d d, d 4

dxX 0, dxx 1, dxX 2X, dxx 3%,

is preserved for higher powers of the exponent. Arguing a®mma94, we obtain the following theorem.

. o d
95 Theorem (Power Rule)If nis a positive mteger& X' =L

Proof: If the strong derivative ofc%( X" = dn(X), we have

(x+&)™t = (x+€) (X"+dn(x)€ +O(£?))
= X1 (xdh(X) +X") £ + O(?)

from where the strong derivative ot is xdh(x) 4+ x". Since d(x) = 1, we have by recurrence,

(X)) = xd(X)+x =x-1+x = 2

B(X) = xbX)+X =x-(20+x = 3
da(x) = xBX)+xX =x-3)+x> = 43
ds(x) = xdy(¥)+x* =x- () +x* = 5¢
ds(x) = XB(X)+X =x-(x)+xX° = 6
d(x) = xdX)+xX® =x-(6)+x = DS,

and so, by recursion,ix) = nx""1. O
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96 Example We have

d a_ap2
dxX3 3%,

etc.

S ol ol ol

5

Figure 5.4:y:x2‘ Figure 5.5:y:x4. Figure 5,6:y:x6. Figure 5‘7:y:x3, Figure 5.8y =x°. Figure 5.9:y:x7.

We now address the problem of how to graph: x".

97 Theorem Letn > 2 be an integer anél(x) = x". Then
e if nis even,f is convex,f is decreasing fox < 0, andf is increasing fox > 0. Also, f(—c) = f(+) = 4.
e if nis odd,f is increasingf is concave fox < 0, andf is convex forx > 0. Also, f(—) = —co and f (4+o0) = 0.
Proof: Ifn>2iseven, n-1>1is odd, and n-2is even. Now ‘{x) = nxX"~ and ’(x) = n(n— 1)x"~2. Since
X2 > 0forall x #£0, f(x) > 0 for x 0 and so it is convex. Sincex0 — x"1<0 = f/(x) <0, fis

decreasing for x 0. A similar argument shews that f is increasing fas0. It is clear that f(—o) = f(+) = @
4. Ifn>3is odd, n—-1> 1is even, and r- 2 is odd. Now f(x) = nX"! and ’(x) = n(n— 1)x"2. Since

X"~ > 0forall x # 0, f/(x) > 0 for x# 0 and so it is increasing. Sincex0 — x"2 <0 — f"(x) <0,
f is concave for x 0. A similar argument shews that f is convex for)0. It is clear that f(—w) = —c and
f(-|—oo) = +o00, []

The graphs of = X2, y = x*, y = x°, etc., resemble one other. Fefl < x < 1, the higher the exponent, the flatter the graph
(closer to thex-axis) will be, since
X<l= - <X®<xt<x<l

For|x| > 1, the higher the exponent, the steeper the graph will besinc
X>1= - >xX>x*>x>1

Similarly for the graphs of = X%, y = x°, y = x’ etc. This information is summarised in the tables below.

X —00 0 +o0

f(x) =x" 0

f(x) =x" 0
y (x)

Table 5.2:x — X", with n > 0 integer and even.
Table 5.1:x — X", with n > 0 integer and odd.
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98 Example Figures5.10through5.12shew a few transformations of the functirr- x°.

Figure 5.10y = (x—1)3+1 Figure 5.11y = |(x—1)3+ 1| Figure 5.12y = (x| - 1)3+1

5.2 Sum Rule

In this section we prove two more differentiation rules.

99 Theorem (Constant-Times-Function Rule)If k € R is a real number constant, aiids a strongly differentiable function
atx, thenkf is strongly differentiable atand (kf)’(x) = kf'(x).

Proof: We have
(kf)(x+¢&) = k(f(x+¢))

= K(f(X) + f'(x)e+0(e?)) @
= kf(x)+kf'(x)e+0O(e?),
from where the theorem followBl

100 Example We have proved thdt®)’ = 2x. Hence(—3x%) = —3(x?)' = —3(2x) = —6x.

101 Theorem (Sum Rule)If f,gare strongly differentiable functions atthenf + g is strongly differentiable at and
(f+9)'(x) =)+ ().

Proof: We have
f(x+&)+gx+e&) = (F(X)+ ' (X)e+0(2))+ (g(x) +d (X)& + O(£?))
(F(x)+9() + (f'(x) +d (X)) e + O(e?),

from where the theorem followgl
102 Example We have proved thdi?)’ = 2x and that(x)’ = 1. Hence(x?> +x)' = (x?)' + (X)' = 2x+1.
103 Example Let f(x) = 2 —x? +5x— 1. Find f'(1) and f”(—1).
Solution: We have

f/(X) =2(3¢) —2x+5=6x>—2x+5,  f"(x) =2(6x) —2=1X%—2.
Hencef’(1) = 9 andf”(-1) = —14.
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5.3 Affine Functions

104 Definition Let m k be real number constants. A function of the foxm> mx+ k is called anaffine function In the
particular case than = 0, we callx — k a constant function If, however,k = 0, then we call the functior — mxa linear

function

By virtue of Theoreml7, the graph of the functiom — mx+ Kk is a straight line. Since the derivative pf— mx+k is
(mx+ k)" = m, we see thak — mx+ kK is strictly increasing ifn > 0 and strictly decreasing ifi < 0 in view of TheorenB4.

k . . . k .

If m+# 0 thenmx+k=0 — x= ——, meaning thak — mx+ k has a unique zero (crosses thaxis) atx = ~m This
information is summarised in the following tables.

k Kk

X —00 — +00 X —0o —— +-00
m
/ N\
f(X) = mx+k 0 f(X) = mx+k 0
/ N\
Table 5.3:x — mx+k, withm> 0. Table 5.4:x — mx+k, withm< 0.
5.4 Quadratic Functions
105 Definition Leta, b,c be real numbers, with # 0. A function of the form
‘. R — R
X adibxic

is called aquadratic function @

106 Theorem Leta # 0, b, ¢ be real numbers and lgt— ax® + bx+ ¢ be a quadratic function. Then its graph is a parabola. If
b

- b - .
a > 0 the parabola has a local minimumxat % and it is convex. la < 0 the parabola has a local maximunmxat %

and it is concave.

Proof: Put f(x) = ax + bx+c. Completing squares,

2 2
ad+bx+c = a<x2+2bx+b> +c—b—

2a 432 4a
_ . x—x—B 2+4ac—b2
o 2a da ’

. . b . _4ac—b> .
and hence this is a horizontal translatlequz—a units and a vertical translathT units of the square function

x — X2 and so it follows from exampl&4 and Theoremg0and48, that the graph of f is a parabola.

We have f(x) = 2ax+b. Assume first that a 0. Then

b b
! _ !/ _
f'(x) >0 < x> %’ f'(X) <0 <= x< -

. b . . L .
Thus the function decreases for vallslesrZI and increases otherwise. Hence in view of The®&nit must have

- b _. . .
a minimum at x= ——. Since f'(x) =2a> 0, f is convex by virtue of Theore@®. The case when & 0 can be
similarly treated.(]
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The information of Theoremi06is summarised in the following tables.

X —o00 ,B +o00 X —o00 —E —+o00
2a 2a
\ Vs f(x) =ad+bx+c 0
f(x) = ax +bx+c 0 V4 N
Table 5.5:x — ax? + bx+c, with a> 0. Table 5.6:x — ax + bx+c, with a < 0.

b 4ac—p?
2a’ 4a
The quantityb® — 4acis called thediscriminantof ax* + bx+ c. The equation

< b)2 dac— b?
y=a(x+—| +

107 Definition The point( ) lies on the parabola and it is called thertexof the parabolg = ax? + bx+c.

2a 4a

is called thecanonical equation of the parabola=y ax® + bx+-c.

) . - b . .
The parabola x— ax’ + bx+ ¢ is symmetric about the vertical Ilne:x—% passing through its vertex.

Figure 5.13: No real zeroes. Figure 5.14: One real zero. Figure 5.15: Two real zeros.

108 Corollary (Quadratic Formula) The roots of the equatice? + bx+ ¢ = 0 are given by the formula

—b+vb?2—4ac

ad+bx+c=0 < x=
2a

(5.1)

If a+ 0,b,c are real numbers artif — 4ac = 0, the parabola — ax? + bx+ c is tangent to the-axis and has one (repeated)
real root. Ifb? —4ac > 0 then the parabola has two distinct real roots. Finallp?i- 4ac < 0 the parabola has two complex
roots.

Proof: By Theoreml06we have

b )2 4ac—b?
+
2a

X +b = —
axX +bx+c=al x+ PR
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and so 5 )
b bs —4ac
a)(2+bX+C—0 <~ <X+2a> 7?
b Vb2 —4ac
= Xt—=t———
2a 2|a
—b++v/b?—4ac
X= I
2a
where we have dropped the absolute values on the last lineuseahe only effect of having<aO is to change
from =+ to .

. b . .
If b? — 4ac = 0 then the vertex of the parabola is éFZa’ O) on the x-axis, and so the parabola is tangent there.

Also, x= ~%a would be the only root of this equation. This is illustratedigure5.14

b—vb? —4ac and —b++vbZ2—4ac
2a

If b? — 4ac > 0, then/b2 — 4ac is a real numbet 0 and so— 22

numbers. This is illustrated in figuie 15

are distinct

. —b—+vb%2 -4 —b+vb? —4a
If b?> — 4ac < 0, then /b2 —4ac is a complex numbe 0 and so 2 ac and i >a ¢ are

distinct complex numbers. This is illustrated in figGré3 O

If a quadratic has real roots, then the vertex lies on a linessing the midpoint between the roots.

109 Example Consider the quadratic functidi{x) = X2 — 5X+ 3.

0 Find f'(x). Solvef’(x) = 0 and hence find the vertex of [ Find thex-intercepts ang-intercepts off.
f. Determine the intervals of monotonicity 6f
O Write this parabola in canonical form. 0 Graphy = f(x), y = [f(x)|, andy = f([x]).

0 Determinef”(x) and find the convexity intervals df. O Determine the set of real numberfor which f(x) > 0. @

Solution:

5 5 5 13 .
0 We havef’(x) =2x—5. Now, X—5=0 = x= > At x = - we havef () = ——, whence the vertex is at

2 2 4
5 13

5
f'(x) >0 = 2x-5>0 = x> >

and f will be increasing foxx > g It will be decreasing fok < g

0 Completing squares

5\%2 13
= 2— = —_— _——
y=Xx —5x+3 (x 2) e

O We havef”(x) = (2x)" = 2. Sincef”(x) = 2 > 0 for all real values, f is concave for all real values &f
0 Forx=0, f(0) =0?—5-0+3=3, and hencg = f(0) = 3 is they-intercept. By the quadratic formula,

~(-5)+ /(52 41)(3) _ 5+ VI3

p— 2_ f— =
f(X) =0 <= X*—5x+3=0 < X 200) 5

Observe thatS—T\/TS ~ 0.697224362 ane'?”rzi\/f3 ~ 4.302775638.
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O The graphs appear in figurésl6through5.18

o 5-v13 5++v13
O From the graph in figuré.16 x2—5x+3>0forvalue9<61—oo; 5 [ X € +2 ;+oo[
I | Ll L Il ] I I | Ll Ll 1 |
T T T U\ LI L L ML AR
Figure 5.16y = x*> — 5x+ 3 Figure 5.17y = |x? — 5x+ 3| Figure 5.18y = [x|> - 5|x| + 3

110 Corollary If a# 0,b,c are real numbers andhf — 4ac < 0, thenax? + bx+ ¢ has the same sign as
Proof: Since
ax +bx+c=a x+£ 2+M
N 2a 4a2 '

2 _p2
and4ac—b? > 0, <<x+ 221) + Aa;{zb) > 0 and so aX + bx+ ¢ has the same sign as @.

111 Example Prove that the quantitg(x) = 2x% + x+ 1 is positive regardless of the valueof

Solution: The discriminant is?— 4(2)(1) = —7 < 0, hence the roots are complex. By Corolldry0, since its leading
coefficient is 2> 0, q(x) > 0 regardless of the value af Another way of seeing this is to complete squares and nidtiee

inequality

nN? 7 7
2x2 1=2 = — >
+ X+ <x+4> +t52 g

. 1\?, . .
since (x+ 4> being the square of a real numberi9.

By Corollary 108§ if a# 0,b, c are real numbers andhif — 4ac# 0 then the numbers

—b—+vb2—4ac —b++vb?—4ac
T2 and =%

1 ) 1 E 3

any quadratic can be written in the form

bx

ax +bx+c= a(x2+ P ;) =a(x— (rL+r2)X+r1rz) = ax—ro)(x—rz).

We calla(x—r1)(x—rz) afactorisationof the quadrati@? -+ bx+c.
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112 Example A quadratic polynomiap has 1+ v/5 as roots and it satisfigg1) = 2. Find its equation.

Solution: Observe that the sum of the roots is
ri+r,=1-v5+14v5=2

and the product of the roots is

rr=(1-v5)(1+v5) =1-(V5?=1-5=-4"

Hencep has the form
P(X) =a (X2 — (r1+r2)x+r1rz) = a(x* — 2x—4).

Since
2=p(1) = 2=a(12-2(1)-4) — a=—=

the polynomial sought is
2
() =—¢ (X2 —2x—4).

5.5 Product Rule and Chain Rule

We now develop tools for differentiating more complex foteau

113 Theorem (Product Rule) If f, g are are strongly differentiable functionsxatthen fg is strongly differentiable atx and
then(fg)'(x) = '(x)g(x) + f (X)g ().

Proof: We have

fix+e)gx+e) = (f(x)+f'(xe+0(e?) (9(x) +g ()& +O(e%))
F990) + (f'(0909 + f (g (x)) & +O(e?),

from where the theorem followBl

Itis not true in general that(fg)’ = f'g'.
114 Example Let f(x) = x® andg(x) = x*. Then from the Product Rule
(X)) = (- xH =x403) 33 =x4(3) +x4(4x%) = BE + 48 =18,

which is what we expect from the Power Rule.
By recurrence we can apply the product rule to more than twotfons.
115 Example

(XXX (L4 Xx+X2)) = (X)) (XH2) (L4 X4X) +X(X+X2) (L4 X4 X2) + X(X+X°) (1 +x+x2)’
= I(XHX) (14 X+X2) +X(1+2X) (1 +X+X2) + X(X+ X%) (14 2X)
= (X+2C+ 2+ x4 (x+ 3+ 3C + 2 + (6 + 33 + 2¢)
= 2x+6x*+83+5¢".

116 Theorem (Chain Rule) If g is strongly differentiable at and f is strongly differentiable ag(x), then f o g is strongly
differentiable a and(f o g)’(x) = f'(g(x)) g’ (x)

1As a shortcut for this multiplication you may wish to recall tiference of squares identitya— b)(a+ b) = a®> — b?.




Polynomials

Proof: We have, putting; = ¢ (x)& + O(£?),

flox+e)) =

)e1+ O(&2)
X))(d' (x)& +O(£%)) + O((d (x)£ + O(£2))?)
"(9(x)) g (x)&+O(?)

X)
)
and the theorem followsl]

117 Example Considem(x) = (x+1)2. Thenh(x) = (f o g)(x) with f(x) = x? andg(x) = x+ 1. Hence

(x+1)2) = (fog) (x) = £(gx))g () = 2(x+1)}(1) = 2x+2.

118 Example
(0% 4x)3) =30 +x)?(2x+1).

119 Example Using the Product Rule and the Chain Rule,

(x(x+a)?) = (x+a)2(x)' +x((x+a)?) = (x+a)? + 2X(x+a) = (x+a)(3x+a).

120 Example Using the Product Rule and the Chain Rule,

3(%)" + x(x+b)3((x+a)?) +x(x+a)?((x+b)3)
3+ 2x(x4a) (x+ b)3 + 3x(x+ a)?(x+ b)?
2((x+a)(x+b) 4+ 2x(x+b) 4+ 3x(x+ a))

2(6x% 4 x(4a+ 3b) + ab).

(x(x+a)?(x+b)3) x+a)2(x+

b)
x+a)%(x+b)

x+a)(x+b

(
(
( )
(x+a)(x+b)

121 Example Let f be strongly differentiable withi (4) = aand f’(4) = b. If g(x) = x*f(x?), find ¢/ (2).

Solution: Using both the Product Rule and the Chain Rule
g (x) = 2xF () + X2 £/ () (2x) = 2xF(x%) + 23/ (x).

Henced (2) = 2(2) f (4) +2(8) f'(4) = 4a+ 16b.

5.6 Polynomials

5.6.1 Roots

In sections.3and5.4we learned how to find the roots of equations (in the unkneyat the typeax-+b = 0 andax® + bx+c =
0, respectively. We would like to see what can be done for timpusmwhere the power ofis higher than 2. We recall that

122 Definition A polynomial gx) of degreen € N is an expression of the form
P(X) = anX"+an-1X" P+ fax+a, an#0,  &ER,

where thegy are constants. If thay are all integers then we say thahas integer coefficients, and we wripéx) € Z[x]; if the
ay are real numbers then we say tipeltas real coefficients and we wrigx) € R[x]; etc. The degree of the polynomiplis
denoted by dep. The coefficient, is called thdeading coefficienof p(x). A rootof pis a solution to the equatiop(x) = 0.

123 Example Here are a few examples of polynomials.
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e a(x) =2x+1¢€ Z[x|, is a polynomial of degree 1, and leading coefficient 2. It>haf5—5 as its only root. A polynomial
of degree 1 is also known as affine function

e b(x) = mé+x—vV3¢e R[x], is a polynomial of degree 2 and leading coefficintBy the quadratic formula has the

two roots
(o TitVitamys o -1 V1443
N 21 N 21 '

A polynomial of degree 2 is also callecjaadratic polynomiabr quadratic function

e C(x) = 1=1-x%, is a constant polynomial, of degree 0. It has no roots, siriseever zero.

124 Theorem The degree of the product of two polynomials is the sum ofrttiegrees. In symbols, f,q are polynomials,
degpq= degp+ degq.

Proof:  If p(x) = anX" + an_1X"" + -+« + arx+ ap, and o(x) = byX™ + by_1x™ + - + byx+ bo, with &, # 0
and hy, # 0 then upon multiplication,

POIG(X) = (anx" +an-1X" 1 + -+ + 21X+ a0) (BrX™ + b 1X™ 4+ 4+ bax+bo) = BbrX™ "+ 4,
with non-vanishing leading coefficienila,. O

125 Example The polynomialp(x) = (1+ 2x+ 3x)*(1— 2x?)® has leading coefficient'8—2)° = —2592 and degree-3 +
2-5=22.

126 Example What is the degree of the polynomial identically equal to 02 ) = 0 and, sayq(x) = x+ 1. Then by
Theoreml24we must have degg = degp+ degq = degp+ 1. But pgis identically 0, and hence deg|= degp. But if degp
were finite then

degp = degpq=degp+1 = 0=15,

nonsense. Thus the 0-polynomial does not have any finiteedeyve attach to it, by convention, degree.

127 Definition If all the roots of a polynomial are il (integer roots), then we say that thelynomial splits or factors over
Z. If all the roots of a polynomial are i@ (rational roots), then we say that thelynomial splits or factors ove. If all the
roots of a polynomial are i€ (complex roots), then we say that thelynomial splits (factors) ovet.

SinceZ C Q C R C C, any polynomial splitting on a smaller set immediatelytspiver a larger set. @

128 Example The polynomial (x) = x? — 1= (x— 1)(x+ 1) splits overZ. The polynomialp(x) = 4x* — 1 = (2x—1)(2x+1)

splits overQ but not overZ. The polynomiaky(x) = x2 — 2 = (x— v/2)(x+ v'2) splits overR but not overQ. The polynomial
r(x) =x2+1= (x—i)(x+1i) splits overC but not overR. Herei = v/—1 is the imaginary unit.
5.6.2 Taylor Polynomials

In order to motivate the following theorem, let us consider hext example.
129 Example Write x* as a sum of powers of— 1.
Solution: Observe that=x— 1+ 1 and use the identitja+ b)? = a? + 2ab+ b? to obtain
= (x—14+1)2=(x-1)2+2(x—1)+1.
If such an identity is not known, one can proceed as followang an idea of a general procedure. Put

x> =a+b(x—1)+c(x—1)2,

2The symbol= is read “identically equal to” and it means that both exp@ssare always the same, regardless of the value of the inparhpter.
3Much to the chagrin of our Vice-President for Academic Aflairwho claims that & 2—it is not true that 6= 1.
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where we stop at the second power sirtéas degree 2. Let= 1. Then 1= a. Differentiate to obtain
2X=Db+2c(x—1).
Let againx = 1. This gives 2= b. Differentiate a second time to obtain
2=2c,
whencec = 1. Hence we hava=1,b=2,c=1 and so
X =a+b(x—1)+c(x—1)2=142(x—1) + (x—1)%,

as before.

130 Theorem (Taylor Polynomials) Let a € R. Then any polynomiap(x) of degreen can be written as
p(x) = bo+ by (x—a) + ba(x—a)*+ -+ by(x—a)",

for some constantg.

Proof: First observe that we stop & — a)" since p has degree n. Differentiating k times we obtain

PP =bk  +  (k+D)(K)-(Qbea(x—a)  + -+ (M(n—1)---(n—k+1)by(x—a)" K4
Letting x= a we obtain
p¥(a)
bk = Kl
proving the theoren]
131 Definition The expansion
/(a (M (a
) = p(a) + @) (x-a) + L xa o P @ g (5.2)

is known as th&@aylor polynomial expansioaboutx = a of p.
132 Example Find the Taylor polynomial expansion about —2 of p(x) = X+ 2x+41.

Solution: We have

Hence
p(—2) = —-11, p’(—2) =14, p”(—2) =-12 p”’(—2) =6,

and
3 —12 2 6 3 2 3
X +2x+1:711+14(x+2)+—2 (x+2) +6(x+2) = —11+414(x+2) — 6(x+2)° + (x+2)°.

5.6.3 Ruffini’s Factor Theorem

133 Theorem (Ruffini’s Factor Theorem) The polynomialp(x) is divisible byx — a if and only if p(a) = 0. Thus ifpis a
polynomial of degree@, thenp(a) = 0 if and only if p(x) = (x— a)q(x) for some polynomiat of degreen— 1.

Proof. The Taylor expansion of p aboutxa is

mw—mm+um(mm+w@um+m+“wmum“ﬁ,

from where the result quickly followsl

4The symbok!—read ‘k factorial’—is the product 12---k. Thus for example 5& 1-2-3-4-5= 120. We define O 1.
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134 Example Find the value of so that the polynomial
t(x) =x°—3ax +2

be divisible byx+ 1.

Solution: By Ruffini’s Theoreni33 we must have

135 Definition Leta be a root of a polynomigb. We say that is a root ofmultiplicity mif p(x) is divisible by (x—a)™ but
not by (x—a)™". This means thap can be written in the fornp(x) = (x — a)Mq(x) for some polynomiaty with g(a) # 0.

136 Corollary The numbesis a root of multiplicitym if an only if

p@)=p@=p'@@)=-=p"Y@=0  p™(a)#0.
Proof: This follows immediately by considering the Taylor expamsif p about x= a. [

137 Example Factor the polynomiap(x) = x> — 5x* 4+ 11x% — 13x? 4 8x — 2 overZ|x].

Solution: We see thai(1) = 0, p'(1) =0, p’(1) = 0, p”/(1) # 0. Hence(x— 1)% = x® — 3x? + 3x— 1 dividesp. By long division

X2 —2x+2
=32 +3x—1) xX°—5x + 11 — 13+ 8x— 2
43 -3 %

— 2 +8x% —12¢% +8x
¢ — 6 +6x2—2x
2¢ — B2+ 6x—2
—23 46X —6x+2
0

and so
X =5+ 103 - 13 4+ 8x— 2= (x— 1)3(X — 2x+ 2).

Observe thax? — 2x+ 2 does not factor oveZ[x] and hence we are finished. @

138 Corollary If a polynomial of degre@ had any roots at all, then it has at masbots.

Proof: Ifit had at least nt 1 roots then it would have at leastinl factors of degred and hence degreen1 at
least, a contradiction[]

Notice that the above theorem only says that if a polynonaaldny roots, then it must have at most its degree number t3f roo
It does not say that a polynomial must possess a root. Thabblhomials have at least one root is much more difficult to
prove. We will quote the theorem, without a proof.

139 Theorem (Fundamental Theorem of Algebra)A polynomial of degree at least one with complex number coieffits
has at least one complex root.

The Fundamental Theorem of Algebra implies then that a pohyal of degree n hasxactlyn roots (counting
multiplicity).

A more useful form of Ruffini's Theorem is given in the follavg corollary.
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140 Corollary If the polynomialp with integer coefficients,
p(X) = anX" +an_1x" T+ + arx+ ao.

. S S. . . L
has a rational roott 0) (heref is assumed to be in lowest terms), ttedividesag andt dividesay,.

Proof: We are given that

s g g1 s
0= p(f) =an (m) +an-1 <t”1) +---+a1(f) +ao.
Clearing denominators,

0=ans"+a,_18" 4 +ast" 1 +apt".
This last equality implies that

—agt" = s(ans" 4 an_18" 2t + - 4-agt" ).

Since both sides are integers, and since s and t have no &ict@ommon, then s must dividg &Ve also gather
that

—a,s" =t(an 18" 4 +agst" 2 4 apt" Y,

from where we deduce that t divideg aoncluding the proofl]

141 Example Factorisea(x) = X3 — 3x— 5x% 4 15 overZ[x] and overR|[x.

Solution: By Corollaryl40, if a(x) has integer roots then they must be in the{set, 1, —3, 3, —5,5}. We testa(+1),a(+3),a(+5)
to see which ones vanish. We find tlaéb) = 0. By the Factor Theorenx,— 5 dividesa(x). Using long division,

NG -3
x—5) x3—5x*—3x+15
—x3 4+ 5%

—3x+15
3x—15

0

we find

a(x) =x3 —3x—5x* 4+ 15= (x—5)(x* - 3),

which is the required factorisation ov&fx]. The factorisation oveR[x] is then

a(x) =x° — 3x—5x2 + 15 = (x— 5)(x— V/3)(x+ V/3).

142 Example Factoriseb(x) = x> — x* — 4x+ 4 overZ[x] and overR[X.

Solution: By Corollary140, if b(x) has integer roots then they must be in the{sel,1,—2,2,—4,4}. We quickly see that
b(1) =0, and so, by the Factor Theorert; 1 dividesb(x). By long division

x* —4
x—1) X —x'—4ax+4
—x°+x!

—4x+4
4x—4

0
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we see that
b(x) = (x—1)(X* — 4) = (x—1)(* ~ 2) (2 +2),

which is the desired factorisation ov&fx]. The factorisation oveR is seen to be
b(X) = (x— 1) (x— V2)(x+ V2)(x* +2).
Since the discriminant o + 2 is —8 < 0, x* + 2 does not split oveR.

143 Lemma Complex roots of a polynomial with real coefficients occucanjugate pairs, that is, {f is a polynomial with
real coefficients and ifi+ vi is a root ofp, then its conjugate — vi is also a root fop. Herei = v/ —1 is the imaginary unit.

Proof: Assume
p(X) = ag+arx+ - - + anX"

and that gu+ vi) = 0. Since the conjugate of a real number is itself, and conjegas multiplicative (Theorem
190), we have

0 =20
= p(u+vi)
= ag+ay(u+Vvi)+---+an(u+vi)"
= @ -+ay(utVi)+- - +an(u+vi?
= aptag(u—Vi)+---+ap(u—vi)"
= p(u—vi),

whence u-vi is also a root.[
Since the complex pair rooi+ vi would give the polynomial with real coefficients
(X—U—Vi)(X— u+vi) = x% — 2ux+ (U? +V?),

we deduce the following theorem.
144 Theorem Any polynomial with real coefficients can be factored in then

AX—r1)™ (x—12)M2 - (X — 1) ™ (3 + agx+ by )™ (X2 + apx 4 bp)™2 - - (3% + ax+by)™,

where each factor is distinct, thma, | are positive integers arl r;, g, b; are real numbers.

5.7 Graphs of Polynomials

We start with the following theorem, which we will state watht proof.
145 Theorem A polynomial functionx— p(x) is an everywhere continuous function.

146 Theorem Let p(x) = axX" + a1 X"+ 4aix+ag an = 0, be a polynomial with real number coefficients. Then
p(—o0) = (signum(an))(—1)"%o,  p(+o0) = (signum(an))ee.
Thus a polynomial of odd degree will have opposite signs &ues of large magnitude and different sign, and a polynbofiia

even degree will have the same sign for values of large madmiand different sign.

Proof: If x £ Othen

~ a
P(X) = anX" +an_1X" T+ -+ ax+ag = anx” (1+%+-~+an1+%

) ~ anX",

since as x— 4o, the quantity in parenthesis tends tand so the eventual sign of)p is determined by ",
which gives the resultl
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147 Corollary A polynomial of odd degree with real number coefficients glsvaas a real root.

Proof:  Since a polynomial of odd degree eventually changes sigoe si is continuous, the corollary follows
from Bolzano’s Intermediate Value Theorém O

148 Example Consider the polynomigh(x) = x® + 4x% 4+ x — 6.
1. Prove thap splits overZ and find its factorisation. Also, determine yténtercept.
. Determinep(—o) and p(+co)

. Findp’ and determine the intervals of monotonicitymf

2

3

4. Determine any local extrema pf

5. Findp” and determine the inflexion points pfand its convexity intervals.
6

. Obtain an approximate graph pf

Solution:

1. By Corollary14Q0, if there are integral roots g they must divide—6. A quick inspection shews th@(1) = 0 and so
x— 1 dividesp(x). By long division
X2 +5x+6
x—1) xX+4¢ +x-6
-3 X
5 +x
— 5x% 4 5x
6Xx—6
—6X+6
0

whence
p(X) = (x— 1) (X2 4 5x+6) = (x— 1)(x+2)(x+3).

This means thap crosses tha-axis atx = —3,x = —2, andx = 1. Itsy-intercept is(0, p(0)) = (0, —6).

2. Since the leading coefficient pfis 1> 0 and since has odd degree, by Theorem6, p(x) ~ (X)(x)(X) = X, asx — +
and sop(—) = —oo andp(+) = +-co.

3. pP(x) = 3x?+8x+ 1, whose graph is a convex parabola. Using the Quadratictfarm

4-VI3 44V

4+ 8X+1=0 < X= r
+ oX+ 3 3

and sax ~ —2.54 orx ~ —0.13. Sincep’ is a convex parabola this means that

p(X)>0 «— xe]—oo;_df_?)\/ﬁlu _42\/f3 ;+°°[,

and sop is increasing (approximately) in the intervédseo ; —2.54] and]—0.13 ;+oo[.

4. Since atx = —2.54 p’ changes sign from- to —, p has a local maximum there by virtue of Theor&m which is
p(—2.54) ~ 0.88. Also, p' changes sign from- to + atx = —0.13 and sop has a local minimum there, which is
p(—0.13) ~ —6.06.

' 4 :
5. We findp”(x) = 6x+8. Now, p”(x) =0 = x= -3~ —1.33 andp(—1.33) &~ —2.61. Hencep changes convexity
(approximately) at—1.33,—2.61).

6. The graph op can be found in figur&.19
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149 Example Consider the polynomigh(x) = x>+ x+ 1.
1. Prove thapis strictly increasing.
2. Prove thap has no positive roots.

3. Determinep(—o) and p(+)
4. Prove thap has a unique real root and find an interfab] of length< % containing this root.

5. Findp” and determine the inflexion points pfand its convexity intervals.

6. Obtain an approximate graph pf

Solution:

1. We havep'(x) = 3x*+1 > 1 > 0 sincex? is always positive. Since the derivative op is always strictly positivep is
always strictly increasing.

2. Sincep s strictly increasingp(x) > p(0) = 1 for x > 0. Hence values > 0 can never make zero.
3. By Theorenil46, p(—o) = —o0 and p(+w) = .

4. Sincep changes sign, it must have a root. Sinxis strictly increasing, it can cross tleaxis only once. Now, observe
that

pO)=1  p(-1)=-1

so the root must lie ii—1;0]. We bisect this interval and finp(—0.5) ~ 0.375, so the root must lie if-1;—0.5]. We
again bisect this interval and find that—0.75) ~ —0.171875, so the root must lie [r-0.75;—0.5]. Again, we bisect
this interval and find thap(—0.625) ~ 0.13, so the root must lie ir-0.75;—0.625. We now stop since we have reached
an interval of within the desired length.

5. p’(x) = 6x and sop is convex forx > 0 and concave fax < 0.

6. An approximate graph is shewn in figls£0

O R, N W A O O N

o R, N W A O O N

|
[N
| B
|
[N

NN B
-
1
-7-6-5-4-3-2-10 1 2 3 4 5 6 7 -7-6-5-4-3-2-10 1 2 3 4 5 6 7

Figure 5.19: Examplé48 Figure 5.20: Exampl&49.

We now consider polynomials with real number coefficients @rat split inR. Such polynomials have the form
p(X) = a(x—r1)M™M(x—r)™ .- (x—r)™,

wherea # 0 and ther; are real numbers and ting > 1 are integers. Graphing such polynomials will be achieweteberring
to the following theorem.

5Another way of seeing thab@+ 1 > 0 always is by checking its discriminant.
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150 Theorem Let a # 0 and ther; are real numbers and ting be positive integers. Then the graph of the polynomial
p(X) = a(x—r1)M™M(x—r)™ ... (x—r )",
e crosses the-axis atx = r; if my is odd.
e is tangent to the-axis atx = r; if m; is even.

e has a convexity change =&t r; if my > 3 andm; is odd.

Proof:  Since the local behaviour of(p) is that of dx—r;)™ (where c is a real number constant) neas the
theorem follows at once from Theorém O

151 Example Make a rough sketch of the graph & (Xx+ 2)x(x— 1). Determine where it achieves its local extrema and

their values. Determine where it changes convexity.

Solution: We havep(x) = (X+ 2)x(x— 1) ~ (x) - X(X) = X%, asx — +o. Hencep(—w) = (—0)3 = —co andp(+o) = (+)3 =

+o00. This means that for large negative values tiie graph will be on the negative side of §raxis and that for large positive

values ofx the graph will be on the positive side of tit@xis. By Theoreni50, the graph crosses theaxis atx = —2,x =0,
andx=1.

Now, by the Product Rule,

P(x) = X(x—1)+(X+2)(x—1)+ (x+2)x
= I+ 2x-2
Using the quadratic formula,
L 2x—2=0 — x:f%—nglzz; X:f%JrgzO.SS.

From geometrical considerationss —1.22 will be thex-coordinate of a local maximum, witzcoordinatep(—1.22) ~ 2.11
andx ~ 0.55 will be thex-coordinate of a local minimum, witjrcoordinatep(0.55) ~ —0.63.

Also
p’(x) = 6x+2,

1 1 . . 1 1
sop”(x) > 0 forx > -3 andp”(x) < 0 for x < -3 This means thap is convex forx > -3 and concave fox < -3 The
graph is shewn in figurg.21

152 Example Make a rough sketch of the graphyf= (x+2)3x%(1— 2x).

Solution: We havéx+2)3x?(1—2x) ~ x3-x?(—2x) = —2x°. Hence ifp(x) = (x+2)3x?(1—2x) thenp(—o) = —2(—®)® = —w
and p(4o) = —2(+oo)6 = —oo, which means that for both large positive and negative wbfex the graph will be on the
negative side of thg-axis. By Theoremi50, in a neighbourhood of = —2, p(x) ~ 20(x+2)3, so the graph crosses tkexis
changing convexity ax = —2. In a neighbourhood of 0p(x) ~ 8x? and the graph is tangent to theaxis atx = 0. In a

neighbourhood ok = % p(x) ~ i—g(l— 2x), and so the graph crosses thaxis atx = %
Now,
PX) = 3(x+2)2(1—2x) +2(x+2)3%(1 — 2x) — 2(x+ 2)3%®
= X(X+2)%(3%(1— 2X) + 2(x+ 2) (1 — 2X) — 2(x+ 2)X)
= —X(x+2)%(12¢+7x—4),
7 241 7 241 . . .
andp’(x) = 0 whenx = 0, -2, ~%a + >z~ 0.36, 24" ag * —0.94. From geometrical considerations= 0 and

x = —2 are local minima, both witly-coordinatey = 0, and bothx ~ 0.36 (with correspondiny = p(0.36) ~ 0.48) and
x~ —0.94 (with corresponding-coordinatey = p(—0.94) = 3.03) are local maxima. The graph is shewn in figbra2.
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153 Example Make a rough sketch of the graphy= (x+2)2x(1 —x)2.

Solution: The dominant term ¢k + 2)?x(1—x)? is X2 -x(—x)2 = x°. Hence ifp(x) = (x+2)?x(1—x)? thenp(—c0) = (—w)° =
—o0 and p(+) = (+0)° = 4+, which means that for large negative values dfie graph will be on the negative side of the
y-axis and for large positive values wthe graph will be on the positive side of tii@axis. By Theoremi 50, the graph crosses

. . ) 1 .
the x-axis changing convexity at= —2, it is tangent to the-axis atx = 0 and it crosses the-axis atx = > The graph is
shewn in figures.23

Figure 5.21y = (x+2)x(x—1). Figure 5.22y = (x+2)3x2(1— 2x). Figure 5.23y = (x+2)2x(1—x)2.
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Rational Functions and Algebraic Functions

6.1 Inverse Power Functions

. . . . 1 : :
We now proceed to investigate the behaviour of functionbeftypex — i wheren > 0 is an integer.

o . . 1. . 1
154 Theorem The strong derivative of the reciprocal functiep- M is the functionx — e

Proof: Put f(x) = % and gx) = x. Observe that'gx) = 1 and f(x)g(x) = 1. Hence by the product rule

0= 3 1= 19900+ (G () =xV'(9 +

dx

and solving for f(x) we obtain f(x) = —X—lz.

_ 1 ' .
An alternate proof from the definition proceeds as followst f(x) = X and x# 0. First observe the algebraic
identity
1 t2
— =1-t+-—".
1+t T

Hence, if x£ 0 is fixed,

111 e @1
X+€ X 1l+g/x X X X (l+g/x))°
X] 2 1

Now, sincee — 0 we will have, eventuallyg| < —. Hence-= < ———— < 2. This means that
- Vel <3 3" (1re/x)

€2 1 )
2 Txem ~ OE)
where the implied constant depends on (the fixed value ofjdksa
1 1 ¢ 2y _1_¢ 2
x+£_x<1 X+O(e ))_x x2+o(8 )

from where the assertion followEl

155 Theorem If n > 0 is an integer ana £ 0,
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, h(x) = i Then h= f og. By the Chain Rule (Theorehi6) and Theoremi 54,
Xn

X | =

Proof: Let f(x) =x", g(x) =

00 = Figg 0 =n (1) () =g =™

X X2
as it was to be demonstrated.

Theorem®5 and 155say that ifa is an integer, therix?)’ = ax® 1,

With the derivatives of reciprocal powers determined, we maw address how to graph them.
156 Theorem Letn > O be an integer. Then
. 1. . . .
e if nisevenx— v is increasing fox < 0, decreasing fox > 0 and convex for alk # 0.

v 1. .
e if nis odd,x+— v is decreasing for alt # 0, concave fox < 0, and convex fok > 0.

1 .
Thusx — v has a pole of ordam atx = 0 and a horizontal asymptoteat 0.
1 n(n+1
Proof: Leth(x) = il By Theoreni55, W (x) = — i and H'(x) = (Xn+2 )

n+2is odd. Hence tix) > 0 for x # O, proving that h is increasing and’fx) has the same sign as x, proving that
h is concave for x 0 and convex for x> 0. A similar argument is used for when n is even, completingtbef.

. If nis odd, then n-1is even and

O

Figure 6.1: X — Figure 6.2: X — Figure 6.3: X — Figure 6.4: X — Figure 6.5: X — Figure 6.6: X —

1 1 1 1 1 1

X X2 x3 x4 x5 x6

. 1 I

157 Example A few functionsx — v are shewn in figure8.1through6.6.
[ 1]
| 1]
| 1]
| 1]
| | |

_ — = @
| A
| L\
| i1\
| il
| | |
| [
Fi 6.7: L 1 Figure 6.8:x+— i—1 Fi ure69'x»—»ifl
igure 6. .x»—»mf g .8: 1 g .9: -1

. . 1
158 Example Figures6.7through6.9shew a few transformations gf— "




The Quotient Rule

6.2 The Quotient Rule

159 Theorem If g is strongly differentiable at andg(x) # 0 then
1\’ g
= X)=— .
(a) ¥ ="

Proof: Letax) = )—1( Thené =aog. By the Chain Rule (Theoreiri6) and Theoren??,

as we needed to shei.

160 Corollary (Quotient Rule) If f,gare strongly differentiable atand ifg(x) # 0, then
£\’ f/ f(x
(>(X): <><> (g (x)

Proof: Using the Product Rule (Theorebi3 and Theoreni59,

(@ - (3

.01 1\’
= f (X)g(1X)+f(X) 9>g,(2)
= g+ 109 (i)
_ P(x¥9(x) — f()g (%)
(9(x))? ’
as desired[]
161 Example Findb/(x) if b(x) = 1(;”(;)"2
Solution: Use the Quotient Rule and the Chain Rule:
, (14+2X) (X —Xx2)? — (14+x+x2)(2(1— 2x) (x — x?))
bi(x) = (x—x2)4
(A2 (x=x%) — (14+x+x)(2(1 - 2x))
B (x—x2)3
243X+ 323
N I

6.3 Rational Functions

162 Definition By arational function x— r(x) we mean a functionwhose assignment rule is of thex) =

andq(x) # 0 are polynomials.

We now provide a few examples of graphing rational functions

X2

163 Example Draw the curvexi— ——.
xc+1

P(X)

ax)’

wherep(x)




Chapter 6

Solution: Puta(x) = _*_ Observe thaaé(—x) = —a(x), which means that is an odd function and hence symmetric about

x2+1
the origin. Also
() = (4+1)—x(2x)  1-x2  (1-x)(1+X)
O (@+1)2 (412 (x2+1)2
Since(x? +1)? is always positive@’ changes sign when-1x? = (1—x)(1+ x) changes sign. Hen@(x) > 0 if x € [-1;1]
anda’(x) < 0 otherwise. This means thats increasing fox € [—1; 1] and decreasing otherwise. Moreover
d 1-x3  —2x(x®+1)2—-2(2)(1—x*)(x*+1) 2X(x*—3)

Y= ez @ 1) S e

Again a” will change sign when @x? — 3) = x(x— v/3)(x+ v/3) changes sign. By means of a sign diagram we see that
a’(x) > 0 forx € [-v/3;0 U [v/3;4], and soa is convex forx € [—v/3;0 U [v/3;+w[ and concave otherwise. The graph is

shewn in figures.10

2

) X X 1
Figure 6.10X+— ——— i i — X2
g 2 +1 Figure 6.11x— il Figure 6.12X+— x“+ 2

164 Example Draw the curvex— ——.
xe+1

2
Solution: Putb(x) = XZX—H Observe thab(—x) = b(x), which means thab is an even function and hence symmetric about

they-axis. Also
b(x) = (2)(x+1)—2x(x3) 2
B (x2+1)2 C(R+1)%
Since(x?+ 1)? is always positiveh’ changes sign whenchanges sign. Hend#(x) > 0 if x> 0 andb/(x) < 0 otherwise. This
means thab is increasing fox > 0 and decreasing otherwise. Moreover
d 2x 20 +1)2—2(2X)(2X)(x* +1) 2—-6x°

009 = 5 0C+1)2 02+ 1)% T2+ 1%

Again b” will change sign when 2 6x*> = 2(1- \@X)(l+ \/§x) changes sign. By means of a sign diagram we see that

b”(x) > 0forx e [— 1] , and sdo is convex forx € [ 1] and concave otherwise. The graph is shewn in figure
6.11

1 1
V3'V3 V33
, 1
165 Example Draw the curvex — x-+ 2

| ) | . | ®
Solution: Putc(x) = x2 + 2 Observe that(—x) = c(x), which means that is an even function and hence symmetric about

they-axis. Also
_ _ 2
¢ :ingg _ 2(x43 1) _ 2 1)(x—21)(x +1)
X X X
We make a sign diagram investigating the sign changes oéarx = —1, x = 0, andx = 1. From this we gather thatis
increasing fox € [—1;0[U[1;+[. Moreover

' d 2 6

dx




Rational Functions

We see that” is always positive and hence it is always convex. The graghésvn in figures.12

p(x)

Analogous to theoreri50, we now consider rational functions— r(x) = @ wherep andq are polynomials with no

factors in common and splitting iR.

166 Theorem Leta +# 0 and the are real numbers and the be positive integers. Then the rational function with assignt
rule
(x—ag)M(x—a)™ - (x—aK)™

(X— bl)nl(X— bz)nz e (X— b )n| ’

rix)=K

e has zeroes at= & and poles ax = b;.

e crosses the-axis atx = g if my is odd.

e is tangent to the-axis atx = g; if my is even.

¢ has a convexity change =&t g if m; > 3 andmy is odd.

e bothr(bj—) andr(b;+) blow to infinity. If nj is even, then they have the same sign infinitghi+) = r(bj—) = +o
orr(bi+) =r(bi—) = —oo. If nj is odd, then they have different sign infinity(bj+) = —r(bj—) = 4+ or r(bi+) =
—r(bj—) = —co.

Proof:  Since the local behaviour ofx) is that of dx —r;)' (where c is a real number constant) neay the
theorem follows at once from Theor&mand156 [

_1)2
167 Example Draw a rough sketch of — 7()( D" (x+2) .
(X+1)(x—2)2
(x—1)2(x+2)
(X+1)(x—2)?
X—1,r(X) ~ é(x— 1)2, hence the graph ofis tangent to the axes, and positive, aromre2. Asx — —2,r(x) ~ —%(H 2),
hence the graph af crosses the-axis atx = —2, coming from positive/-values on the left ok = —2 and going to negative

Solution: Putr(x) = . By Theoreml66, r has zeroes at= 1, andx = —2, and poles at= —1 andx= 2. As

. 4
y=values on the right ok = —2. Asx— —1,r(x) ~ CTRETR hence the graph afblows to—o to the left ofx = —1 and to
+oo to the right ofx = —1. Asx— 2,r(X) ~ Ax=2)2" hence the graph afblows to+ both from the left and the right of
x = 2. Also we observe that
(02(q) _ x°

"0~ gz T b

and hence has the horizontal asymptoge= 1. The graph of can be found in figuré.13

_ 2 2
168 Example Draw a rough sketch ofi— (x=3/4)7(x+ 3/4)

(X+1)(x—1)
_ 2 2
Solution: Putr(x) = (x (ff':)[) E);+i§4) . First observe that(x) = r(—x), and sor is even. By Theorem66, r has zeroes
atx= i%, and poles ax= £1. Asx— 2 r(x) ~ —3—76(x— 3/4)2, hence the graph afis tangent to the axes, and negative,@
- . 4
aroundx = 3/4, and similar behaviour occurs arouxe: —g. Asx— 1,r(x) ~ 512()(9_1) hence the graph ofblows to—c
. 4
to the left ofx = 1 and to+o to the right ofx = 1. Asx — —1,r(x) ~ —512()(9_1), hence the graph afblows to+ to the

left of x = —1 and to—oo to the right ofx = —1. Also, asx — +oo,
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SOr(+00) = 400 andr(—) = +oo. The graph of can be found in figuré.14

(x—12(x+2)
X+ D) (x—272

(x—3/4)%(x+3/4)?

Figure 6.14x+— T Dx-1)

Figure 6.13x —

6.4 Algebraic Functions

169 Definition We will call algebraic functiora function whose assignment rule can be obtained from analtfanction by
a finite combination of additions, subtractions, multigtions, divisions, exponentiations to a rational power.

. o . . . 1
170 Theorem Let q # 0 be an integer. The strong derivative of the functien x4 is the functiorx — q -x¥4-1 whenever

this last makes sense.

Proof: Put f(x) = x'/9, assuming this quantity is real. Théf(x))9 = x. Differentiating both sides using the
Chain Rule we have
a(f )T/ (x) = = g/ (x) = L.

Solving for f gives
1
f/(x) = = -x¥91,
(x) q

if this quantity is a real number, proving the restult.

Theorems5, 155 and 170, when combined with the Chain Rule, say that ifs a rational number, then
(XC{)/ — C{Xail.

With the derivatives of rational powers determined, we caw address how to graph them.

171 Theorem Let|q| > 2 be an integer. If

e if gis even therx— x9 is increasing and concave fqr> 2 and decreasing and convex fp —2 for all x > 0 and it @
is undefined fox < 0.

e if g is odd therx — x*9 is everywhere increasing and convex for: 0 but concave fok > 0 if q > 3. If < —3 then
X — xY%js decreasing and concave fox 0 and increasing and convex for> 0.

(1-a)/a (1-— q)x(2q71>/q

Proof: Let h(x) = x¥/9. By Theorem 70, H (x) = X and H'(x) = 7




Algebraic Functions

(1-9)/q
Assume first that g is even. The%s not real for x< 0 so we assume thatx 0. The quantity {x) = X

q
. . (1—q)x2a-1)/a .
is > 0 for g > 2 and negative for ¢ —2. If g > 2 then H (x) = ~————— < 0and if g< —2then H(x) > 0.

Hence h is increasing and concave for@ and decreasing and convex forg—2

1—
Assume now that g is odd. Thén-q is even and the sign of the quantity) = % . (xl/q) ‘ is depends on

(1 — q)X(qul)/q
2

the sign 0%. Since2q— 1is odd, the sign of h(x) = is signum((1—q)(x)). We have: if ¢> 3,

h'(x) > 0, h”(x) < 0 for x > 0 and H'(x) > 0 for x < 0. Hence for g> 3, h is increasing and it is convex for«0
but concave for x> 0. If g < —3 then h is decreasing and it is concave for0 and decreasing convex forxo0.

-

A few of the functionsc — x%/9 are shewn in figures.15through6.26

=T

N
R

Figure 6.15:x — Figure 6.16:x +— Figure 6.17:x +— Figure 6.18:x +— Figure 6.19:x — Figure 6.20:X +—
12 x—1/2 /4 - L/4 <1/6 1/6

I G S GO S

Figure 6.21:x — Figure 6.22:x +— Figure 6.23:x+— Figure 6.24:x +— Figure 6.25:x — Figure 6.26:X —
/3 x—1/3 ¥L/5 x—1/5 7 L7

We finish this section with an example.

172 Example Consider the functiog = f(x) = vVX—1+v2—X.
1. For whichx will the output of f be a real number?

2. Find f'(x).

- . 3 . 3
3. By examiningf’, prove thatf increases fok < > and decreasing fot > >

Prove that for alk in the domain off one hasf (x) < v/2.
Find f”(x).

Determine in which interval§ is convex or concave.

N oo o A

Graphf.
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Solution:

1. We need, simultaneousk/> 1 and 2> x. This means that € [1;2.

2. Via the Chain Rule:

dgx (x—1)Y2 4 (2-x¥2=

1 _ 1
2(x—1)Y2  2(2—x)/2

(xfl)‘l/zf%(zfx)‘l/zz

NI =

3. f has a stationary point whefii(x) = 0, that is, if

1 = 1 :>x—1—2—x=>x—§
2(x—1)12  2(2—x)1/2 B 2

so f’ has only one zero ifil;2]. Sincef’ is continuous in1;2[ and has only one zero there, it must be negative in a
portion of the interval and positive in the other. Examiniadues in1; E[We see thaf' is positive for there and negative

4. By the abovex = g is a global maximum inl1; 2], and hence
3 3 3 1
< —_ = _— _——_-= — = .
f(x)_f<2> ,/2 1,/2 > z\fz V2

1 1
_171/2_72_ 71/2:_7
e

5. Via the Chain Rule:
_d1

b d 1 1
700 = dx 2

4(x—1)%2  4(2—x)32

(x—1)7%2— %(Z—X)’?’/Z =

6. Observe that

£1(x) = — 1 B 1 1 1 N 1
C 4(x—=1)32 42-x)32 4\ (x—-1)32 (2—x)32)"
Since the quantity in parenthesis is always positiVeis always negative, and hence it is everywhere concave.

7. The graph appears in figuse27.

Figure 6.27y = vx—1++v2—Xx
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Big O Notation

We will now study the order of magnitude of functions, in athrds, how big functions are in a neighbourhood of a point.

173 Definition Let f,g be two functions. We write
f(x) =0O(g(x)) as Xx—a,
read “f (x) is big oh ofg(x) asx tends toa” if there is a positive constar@ such that for alk sufficiently close taa we have

|f(x)] <Clg(x)|. An equation of the typd (x) = h(x) + O(g(x)) means thaf (x) — h(x) = O(g(x)). Hereh(x) is called the
principal termandO(g(x)) is called theerror term

We are mainly interested in the above definition whea0 ora = +oo.

174 Example As x — +o, we havex+x? = O(x?). In fact, if 1 < x thenx < x? which means that
X+ X2 < X4 X2 = 244,
Thus for anyx larger than 1x+ x? is bounded by a constant time&s
175 Example As x — 0, we havex+x% = O(x). In fact, if |x| < 1, thenx® < |x| < 1, and hence
X4 X2| < [X| 4 ¥°| < x|+ x| = 2|x]

when|x| < 1.

The equality {x) = O(g(x)) is not symmetric. For example, asx+o we have x= O(x“) but O(x).
h l i i | h %) but ¥ #

We have the following theorem.
176 Theorem Letr,sbe real numbers with < s. If X — +o0 thenx’ = O(x®). If x — 0 thenx® = O(X").

Proof: First observe thats-r > 0. Now, if X > 1, then|x|*™" > 1 since we are raising a number larger than
to a positive power. Thus

X>1= X>">1= [x°>[x" = X =0(x°),

for |x| > 1 and certainly as x— +oo.

Also, if x| < 1, then|x|>™" < 1 since we are raising a number smaller thato a positive power. Thus

X <l= X°"<1= [X°<|x" = x*=0(X).
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The following properties of th® symbol are easy to prove and will be left as an exercise.

177 Theorem The O symbol has the following properties.

f(x) = O(f(x) (A1)

kO(f(x)) = O(f(x)) (A.2)
O(f(¥)+0(f(x) = O(f(x)) (A-3)
O(0(f(x)) = O(f(x)) (A.4)
O(f(x)0(g(x)) = O(f(x)g(x) (A.5)
O(f(¥g(x) = f(x)0(g(x) (A-6)
(A.7)

178 Example As x — -+ we haveO(x®) + O(x*) = O(x*), since the* term dominates over thé for largex.

179 Example As x — 0 we haveO(x%) + O(x*) = O(x%), since thec term dominates over thé for smallx.

180 Example x+2x% 4 3x® = O(x®) asx — +oo. This means that fax sufficiently largex+ 2x* + 3x® is dominated byc.
181 Example x+2x* +3x> = O(x) asx — 0. This means that for sufficiently smallx+ 2x2 + 3x® is dominated by.

182 Example We have, ag — +oo,
(23 +0(X)(=3%+0(x)) = —6x°+0(—3x%) +0(2x*) +0(x?)
= —6x4+003) +0(x" +0(x?)
—6x° 4+ 0(xH).

Sometimes it is more important to know which term in a givem silominates when the variable tends to a determinate quantit
In the next definition we will concentrate in the cases whenvdriable tends to 0 orco.

183 Definition If
0<n <M< - <ng

is a sequence of integers then the polynomial

an, X" + 80, X2 + - - + 8 X
has dominant terranlxnl asx — 0 and we write

an, X" 4 8, X2 4 - -+ + @ X9 ~ an, X", x— 0,
read ‘an, X"t 4 an, X + - - - + ap, X9 is asymptotic to g x™ asx — 0.”
Similarly, if x — 4o then the polynomial

an, X" + 8, X"2 + - - ++ 8 X"

has dominant terranqxnq asx — 4o and we write
an, X" + 8, X2 4 - - + 8 X" ~ @ X, X — Foo,

read ‘an, X" 4 an, X" + - - - + @y, X" is asymptotic to g X" asx — F-co.”

184 Example We have
A+ 3+ 2+ X ~4x, x— 0,

1+4x+3C+2¢+x4~1, x—0,
A+ 3+ 2+ X ~ ¢, x— o, @

etc.




Appendix

Complex Numbers

B.1 Arithmetic of Complex Numbers

We use the symbalto denote thémaginary unit i= v/—1. Theni? = —1.
185 Example Find v/ —25.

Solution: v —25= 5i.

Sincei®=1,it =i,i?=—1,i® = —i,i* = 1,i° =1, etc., the powers dfrepeat themselves cyclically in a cycle of period 4.

186 Definition If a, b are real numbers then the object bi is called acomplex number

We use the symbdT to denote the set of all complex numbersa b, c,d € R, then the sum of the complex numbers bi
andc+di is naturally defined as
(a+bi)+ (c+di) = (a+c)+ (b+d)i (B.1)

The product ok + bi andc+ di is obtained by multiplying the binomials:

(a+bi)(c+di) = ac+adi+ bci+ bdi* = (ac— bd) + (ad+ bo)i (B.2)

187 Example Find the sun(4+ 3i) + (5— 2i) and the product4 + 3i)(5— 2i).

Solution: One has
(4+3i)+(5—-2i) =9+i

and
(4+3i)(5—2i) = 20— 8i 4+ 15 — 6% = 20+ 7i + 6 = 26+ 7i.

188 Definition Letze C, (a,b) € R? with z= a+ bi. Theconjugatez of zis defined by

z=a+bi=a-bi (B.3)

189 Example The conjugate of § 3i is 5+ 3i = 5— 3i. The conjugate of 2 4i is2—4i = 2+ 4i.

The conjugate of a real number is itself, that is, €&, thena= a. Also, the conjugate of the conjugate of a
number is the number, that B= z

64
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190 Theorem The functionz: C — C, z+— zis multiplicative, that is, ifz, z, are complex humbers, then

N =72

Proof: Letz = a+ bi,z = c+diwhere ab,c,d are real numbers. Then

7z = (a+bi)(c+di)
= (ac—bd)+ (ad+bc)i
= (ac—bd)— (ad+bc)i
Also,
71-7 = (a+bi)(c+di)

= (a—hi)(c—di)

= ac—adi—bci+bdP

= (ac—hd) - (ad+ bo)i,
which establishes the equality between the two quantifies.

. 2430, .
191 Example Express the quoﬂer%t—g: in the forma+ bi.

Solution: One has . . . . .
2+3i 243 3+5 -9+19 -9 19

3.5 3-5 315 34 34 34

192 Definition Themodulusia+ bi| of a+ bi is defined by

la+bi| = /(a+bi)(a+ bi) = Va2 + b2

Observe thar — |z| is a function mapping” to R ..

193 Example Find |7+ 3i].

Solution: |7+ 3i| = 1/(7+3i)(7—3i) = \/72+ 3% = V/58.

194 Example Find |v/7 + 3il.

Solution:|V7 + 3i| = \/(\ﬁ+3i)(ﬁ—3i) =\V7+3R =4

195 Theorem The functionz— |z, C — R is multiplicative. That is, ifz;,z, are complex numbers then

|2122| = |z |2

Proof: By Theoreml 90, conjugation is multiplicative, hence

lznz| = Vaznazn
= Vaznz zn
= Vazaznzn
= Vazavzzn
= |allz]

whence the assertion follows.

(B.4)

(B.5)

(B.6)




Equations involving Complex Numbers

196 Example Write (2% +3%)(5? + 72) as the sum of two squares.

Solution: The idea is to write?2+ 3% = |2+ 3i|?, 524 72 = |5+ 7i|? and use the multiplicativity of the modulus. Now

(2+3)(52+7%) = |243i%5+7i|?
= [(2+3i)(5+7i)?
= |-11+29?
= 12129

B.2 Egquations involving Complex Numbers

Recall that ifux® + vx+w = 0 with u # 0, then the roots of this equation are given by (headratic Formula

vV VV2—4duw
X=—rt—— (B.7)
2u 2u
The quantity? — 4uw under the square root is called ttiscriminantof the quadratic equatiomé + vx-+w = 0. If u,v,w
are real numbers and this discriminant is negative, onarabt@mmplex roots.

Complex numbers thus occur naturally in the solution of qaiclequations. Sind@ = —1, one sees that= i is a root of
the equation? + 1 = 0. Similary,x = —i is also a root ok® + 1.

197 Example Solve 22 +6x+5=0

Solution: Using the quadratic formula

6 v—-4 3..1
Xi_ZiTi_éilé

In solving the problems that follow, the student might prisfiim the following identities.

& —t2 = (s—t)(s+1) (B.8)
Kt = (K-t (& +t4), ke N (B.9)
S —t3 = (s—t)(P +st+t?) (B.10)

S 413 = (s41)( —st+1?) (B.11)

198 Example Solve the equatior* — 16 = 0.

Solution: One has* — 16 = (x* — 4)(x* + 4) = (x— 2)(x+ 2)(x* + 4). Thus eithex = —2,x = 2 or x> + 4 = 0. This last
equation has root&2i. The four roots ok* — 16 = 0 are thusx = —2,x = 2,x = —2i,x = 2i.

199 Example Find the roots ok® — 1= 0.

Solution:x®> —1 = (x—1)(x® +x+1). If x# 1, the two solutions t& +x+ 1 = 0 can be obtained using the quadratic formula,

. 1 .3
gettingx = 3 j:l?.

200 Example Find the roots ok® + 8 = 0.
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Solution: x3 4 8 = (x+2)(x*> — 2x+4). Thus eithex = —2 orx? — 2x+4 = 0. Using the quadratic formula, one sees that the
solutions of this last equation axe= 1+iv/3.

201 Example Solve the equatior® + 9x*> + 20= 0.

Solution: One sees that
X+ 9% +20= (x> 4+ 4)(x*+5)=0

Thus eithex? + 4 = 0, in which casex = +2i or X2 + 5= 0 in which casex= +iv/5. The four roots ar& = +2i, +i/5
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