
Lecture Notes on Inductive Definitions

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 2
September 2, 2004

These supplementary notes review the notion of an inductive definition
and give some examples of rule induction. References to Robert Harper’s
draft book on Programming Languages: Theory and Practice are given in square
brackets, by chapter or section.

Given our general goal to define and reason about programming lan-
guages, we will have to deal with a variety of description tasks. The first is
to describe the grammar of a language. The second is to describe its static
semantics, usually via some typing rules. The third is to describe its dy-
namic semantics, often via transitions of an abstract machine. On the sur-
face, these appear like very different formalisms (grammars, typing rules,
abstract machines) but it turns out that they can all be viewed as special
cases of inductive definitions [Ch. 1]. Following standard practice, inductive
definitions will be presented via judgments and inference rules providing
evidence for judgments.

The first observation is that context-free grammars can be rewritten in
the form of inference rules [Ch. 3.2]. The basic judgment has the form

s A

where s is a string and A is a non-terminal. This should be read as the
judgment that s is a string of syntactic category A.

As a simple example we consider the language of properly matched
parentheses over the alphabet Σ = {(,) }. This language can be defined by
the grammar

M : : = ε | (M) | M M

with the only non-terminal M . Recall that ε stands for the empty string.
Rewritten as inference rules we have:

LECTURE NOTES SEPTEMBER 2, 2004

L2.2 Inductive Definitions

ε M
m1

s M

(s) M
m2

s1 M s2 M

s1 s2 M
m3

As an example, consider a deduction of () () M .

ε M
m1

() M
m2

ε M
m1

() M
m2

() () M
m3

Our interpretation of these inference rules as an inductive definition of
the judgment s M for a string s means:

s M holds if and only if there is a deduction of s M using rules (m1),
(m2), and (m3).

Based on this interpretation we can prove properties of strings in the syn-
tactic category M by rule induction. To apply rule induction we have to
show that the property in question is preserved by every inference rule
of the judgment s M . That is, we have to show that for each rule, if all
premises satisfy the property then the conclusion also satisfies the prop-
erty. Here is a very simple example.

Theorem 1 (Counting Parentheses)
If s M then s has the same number of left and right parentheses.

Proof: By rule induction. We consider each case in turn.

(Rule m1) Then s = ε.

s has 0 left and 0 right parens Since s = ε

(Rule m2) Then s = (s′) .

s′ M Subderivation
s′ has n′ left and right parens for some n′ By i.h.
s has n′ + 1 left and right parens Since s = (s′)

LECTURE NOTES SEPTEMBER 2, 2004

Inductive Definitions L2.3

(Rule m3) Then s = s1 s2.

s1 M Subderivation
s2 M Subderivation
s1 has n1 left and right parens for some n1 By i.h.
s2 has n2 left and right parens for some n2 By i.h.
s has n1 + n2 left and right parens Since s = s1 s2

�

The grammar we gave, unfortunately, is ambiguous [Ch. 3.3]. For ex-
ample, there are infinitely many derivations that ε M , because

ε = ε ε = ε ε ε = · · ·

In the particular example of this grammar we would be able to avoid rewrit-
ing it if we can show that the abstract syntax tree [Ch. 4] we construct will
be the same, independently of the derivation of a particular judgment.

An alternative is to rewrite the grammar so that it defines the same
language of strings, but the derivation of any particular string is uniquely
determined. The following grammar accomplishes this: 1

L : : = ε | (L) L

One can think of L as a (possibly empty) list of parenthesized expres-
sions, terminated by the empty string. This readily translates into an in-
ductive definition via inference rules.

ε L
l1

s1 L s2 L

(s1) s2 L
l2

Now there are two important questions to ask: (1) is the new grammar
really equivalent to the old one in the sense that it generates the same set of

1An alternative solution, suggested in lecture in 2003, exemplifies the idea of a simul-
taneous inductive definition. It uses two non-terminals L and N , where the category L
corresponds to M , while N is an auxiliary non-terminal.

L : : = ε | N L
N : : = (L)

Note that the new definition arises from substituting out the definition of N in the alterna-
tion for L.

LECTURE NOTES SEPTEMBER 2, 2004

L2.4 Inductive Definitions

strings, and (2) is the new grammar really unambiguous. The latter is left
as a (non-trivial!) exercise; the first one we discuss here.

At a high level we want to show that for any string s, s M iff s L. We
break this down into two lemmas. This is because “if-and-only-if” state-
ments can rarely be proven by a single induction, but require different con-
siderations for the two directions.

We first consider the direction where we assume s M and try to show
s L. When writing out the cases we notice we need an additional lemma.
As is often the case, the presentation of the proof is therefore different from
its order of discovery. To read this proof in a more natural order, skip ahead
to Lemma 3 and pay particular attention to the last step in the case of rule
(m3). That step motivates the following lemma.

Lemma 2 (Concatenation)
If s1 L and s2 L then s1 s2 L.

Proof: By induction on the derivation of s1 L. Note that induction on the
derivation on s2 L will not work in this case!

(Rule l1) Then s1 = ε.

s2 L Assumption
s1 s2 L Since s1 s2 = ε s2 = s2

(Rule l2) Then s1 = (s11) s12.

s11 L Subderivation
s12 L Subderivation
s2 L Assumption
s12 s2 L By i.h.
(s11) s12 s2 L By rule (l2)

�

Now we are ready to prove the left-to-right implication.

Lemma 3
If s M then s L.

Proof: By induction on the derivation of s M .

LECTURE NOTES SEPTEMBER 2, 2004

Inductive Definitions L2.5

(Rule m1) Then s = ε.

s L By rule (l1) since s = ε

(Rule m2) Then s = (s′) .

s′ M Subderivation
s′ L By i.h.
ε L By rule (l1)
(s′) L By rule (l2) and (s′) ε = (s′)

(Rule m3) Then s = s1 s2.

s1 M Subderivation
s2 M Subderivation
s1 L By i.h.
s2 L By i.h.
s1 s2 L By concatenation (Lemma 2)

�

The right-to-left direction presents fewer problems.

Lemma 4
If s L then s M .

Proof: By rule induction on the derivation of s L. There are two cases to
consider.

(Rule l1) Then s = ε.

s M By rule (m1), since s = ε

(Rule l2) Then s = (s1) s2.

s1 L Subderivation
s2 L Subderivation
s1 M By i.h.
(s1) M By rule (m2)
s2 M By i.h.
(s1) s2 M By rule (m3)

LECTURE NOTES SEPTEMBER 2, 2004

L2.6 Inductive Definitions

�

Now we can combine the preceding lemmas into the theorem we were
aiming for.

Theorem 5
s M if and only if s L.

Proof: Immediate from Lemmas 3 and 4. �

Some advice on inductive proofs. Most of the proofs that we will carry
out in the class are by induction. This is simply due to the nature of the
objects we study, which are generally defined inductively. Therefore, when
presented with a conjecture that does not follow immediately from some
lemmas, we first try to prove it by induction as given. This might involve a
choice among several different given objects or derivations over which we
may apply induction. If one of them works we are, of course, done. If not,
we try to analyse the failure in order to decide if (a) we need to seperate out
a lemma to be proven first, (b) we need to generalize the induction hypothesis,
or (c) our conjecture might be false and we should look for a counterexample.

Finding a lemma is usually not too difficult, because it can be suggested
by the gap in the proof attempt you find it impossible to fill. For example, in
the proof of Lemma 3, case (Rule m3), we obtain s1 L and s2 L by induction
hypothesis and have to prove s1 s2 L. Since there are no inference rules
that would allow such a step, but it seems true nonetheless, we prove it as
Lemma 2.

Generalizing the induction hypothesis can be a very tricky balancing
act. The problem is that in an inductive proof, the property we are trying
to establish occurs twice: once as an inductive assumption and once as
a conclusion we are trying to prove. If we strengthen the property, the
induction hypothesis gives us more information, but conclusion becomes
harder to prove. If we weaken the property, the induction hypothesis gives
us less information, but the conclusion is easier to prove. Fortunately, there
are easy cases in which the nature of the mutually recursive judgments
suggested a generalization.

Finding a counterexample greatly varies in difficulty. Mostly, in this
course, counterexamples only arise if there are glaring deficiencies in the
inductive definitions, or rather obvious failure of properties such as type
safety. In other cases it might require a very deep insight into the nature

LECTURE NOTES SEPTEMBER 2, 2004

Inductive Definitions L2.7

of a particular inductive definition and cannot be gleaned directly from a
failed proof attempt. An example of a difficult counterexample is given by
the extra credit Question 2.2 in Assignment 1 of this course. The conjecture
might be that every tautology is a theorem. However, there is very little in
the statement of this theorem or in the definition of tautology and theorem
which would suggest means to either prove or refute it.

Three pitfalls to avoid. The difficulty with inductive proofs is that one
is often blinded by the fact that the proposed conjecture is true. Similarly,
if set up correctly, it will be true that in each case the induction hypothesis
does in fact imply the desired conclusion, but the induction hypothesis may
not be strong enough to prove it. So you must avoid the temptation to
declare something as “clearly true” and prove it instead.

The second kind of mistake in an inductive proof that one often encoun-
ters is a confusion about the direction of an inference rule. If you reason
backwards from what you are trying to prove, you are thinking about the
rules bottom up: “If I only could prove J1 then I could conclude J2, because I
have an inference rule with premise J1 and conclusion J2.” Nonetheless, when
you write down the proof in the end you must use the rule in the proper
direction. If you reason forward from your assumptions using the infer-
ence rules top-down then no confusion can arise. The only exception is the
proof principle of inversion, which you can only employ if (a) you have
established that a derivation of a given judgment J exists, and (b) you con-
sider all possible inference rules whose conclusion matches J . We will see
examples of this form of reasoning later in the course. In no other case can
you use an inference rule “backwards”.

The third mistake to avoid is to apply the induction hypothesis to a
derivation that is not a subderivation of the one you are given. Such rea-
soning is circular and unsound. You must always verify that when you
claim something follows by induction hypothesis, it is in fact legal to apply
it!

How much to write down. Finally, a word on the level of detail in the
proofs we give and the proofs we expect you to provide in the homework
assignments. The proofs in this handout are quite pedantic, but we ask
you to be just as pedantic unless otherwise specified. In particular, you
must show any lemmas you are using, and you must show the generalized
induction hypothesis in an inductive proof (if you need a generalization).
You also must consider all the cases and justify each line carefully. As we

LECTURE NOTES SEPTEMBER 2, 2004

L2.8 Inductive Definitions

gain a certain facility with such proofs, we may relax these requirements
once we are certain you know how to fill in the steps that one might omit,
for example, in a research paper.

Specifications vs. implementations. The grammar of our language of prop-
erly balanced parentheses (and also its formulation as an inductive def-
inition) must be seen as a specification. That is, we define a language of
strings (in the case of the grammar) or the judgment s M (in the case of a
judgment), but we do not immediately provide an implementation. In this
case, such an implementation would be an algorithm for recognizing if a
given string is a properly balanced string of parentheses. Ambiguity in
the grammar, as noted in class, is one obstacle to deriving a parser from
the specification of a grammar. In general, there are large classes of lan-
guages (including those specified by a context-free grammars) for which
we can uniformly generate a parser from a grammar. Here, we will pursue
a different direction, namely writing a parser for this specific language and
proving that it is correct.

Interpreting inference rules as algorithms. To implement a parser, one
would normally pick a programming language and simply write a pro-
gram. However, then we would be faced with the problem of proving the
correctness of that program, which depends on the details of the definition
of the underlying implementation language.

Here we exploit instead that it is also possible to present some algo-
rithms in the form of inference rules. Performing the algorithm corre-
sponds to the search for a deduction of a judgment, as we will see shortly
below. In programming language terminology this approach is called logic
programming.

But first we have to decide on an algorithm for recognizing if a given
string consists of properly matched parentheses. The informal idea of the
parsing process for matching parentheses is quite straightforward: we keep
an integer counter, initialized to zero, and increment it when we see an
opening parenthesis and decrement it when we see a closing parenthe-
sis. We need to check two conditions: (a) the counter never becomes neg-
ative (otherwise there would be too many closing parentheses) and (b)
the counter is zero at the end (otherwise there would be unmatched open
parentheses).

The process of parsing then corresponds to the bottom-construction of

LECTURE NOTES SEPTEMBER 2, 2004

Inductive Definitions L2.9

a derivation for a judgment
k B s

which means that s is a valid string with respect to counter k. More specif-
ically, s is a valid string, given that we have already seen k left parentheses
that have not yet been matched by right parentheses. We assume that k ≥ 0
is an integer. The symbol B has no special meaning here—it is simply used
to separate the integer k from the string s. We now develop the rules for
this two-place (binary) judgment.

First, if the string s is empty then we accept if the counter is 0. This
corresponds to condition (b) mentioned above.

0 B ε
B1

Second, if the string s starts with an opening parenthesis, we increment
the counter by 1. A less operational reading is: if s is a valid string with
respect to k + 1, then (s is a valid string in stack k.

k + 1 B s

k B (s
B2

Finally, if we see a closing parenthesis at the beginning of the string,
then we subtract one from the counter. It is important to check that the
counter remains non-negative; otherwise we might be accepting incorrectly
formed strings. A less operational reading is: if s is a valid string with
counter k > 0 then) s is a valid string with counter k − 1.

k − 1 B s (k > 0)

k B) s
B3

Since these are all the rules, the bottom-up construction of a derivation
will get stuck if the string s begins with a closing parentheses and k is zero.
That is, there is no rule with which we could infer 0 B) s, no matter what
s is. This corresponds to condition (a) mentioned at the beginning of this
discussion.

It is easy to see that this parser is inherently unambiguous. That is,
when we start to construct a derivation of 0 B s in order to parse s, then
at each stage there is at most one rule that can be applied, depending on
whether s is empty (rule B1), starts with an opening parenthesis (rule B2),
or starts with a closing parenthesis (rule B3). Therefore, we can think of the
judgment as describing a deterministic algorithm for parsing a string.

LECTURE NOTES SEPTEMBER 2, 2004

L2.10 Inductive Definitions

This judgment can be related to a push-down automaton. Instead of a
counter k, we would have a stack ((· · · (consisting of k opening parenthe-
ses. It is easy to rewrite the rules above into this form. As an aside, it turns
out that every context-free grammar can be accepted by a (possibly non-
deterministic) pushdown automaton, although the general construction of
a pushdown automaton from a context-free grammar is more complex than
in this particular example.

But does the judgment above really accept the language of properly bal-
anced parentheses? We would like to prove that s M if and only if 0 B s. As
usual, we break this up into two separate lemmas, one for each direction.

For the first direction, we need one further lemma that captures the
essence of the left-to-right processing of the input string and the use of k as
a counter of unmatched open parentheses. This lemma would typically be
conjectured (and then proven) only in reaction to a gap in the proof of the
main theorem, but when written up it should be presented in the opposite
order.

Lemma 6 (Stack)
If k1 B s1 and k2 B s2 then k1 + k2 B s1 s2

Proof: By rule induction on the derivation of k1 B s1.

(Rule B1) Then k1 = 0 and s1 = ε.

k2 B s2 Assumption
k1 + k2 B s1 s2 Since k1 = 0 and s1 = ε

(Rule B2) Then s1 = (s′
1.

k1 + 1 B s′
1 Subderivation

k2 B s2 Assumption
k1 + k2 + 1 B s′

1 s2 By i.h.
k1 + k2 B (s′

1 s2 By rule (B2)

(Rule B3) Then s1 =) s′
1 and k1 > 0.

k1 − 1 B s′
1 Subderivation

k2 B s2 Assumption
k1 + k2 − 1 B s′

1 s2 By i.h.
k1 + k2 > 0 Since k1 > 0, k2 ≥ 0
k1 + k2 B) s′

1 s2 By rule (B3)

LECTURE NOTES SEPTEMBER 2, 2004

Inductive Definitions L2.11

�

Now we can prove the first direction of the correctness theorem for the
parser.

Lemma 7
If s M then 0 B s.

Proof: By rule induction on the derivation of s M .

(Rule m1) Then s = ε.

0 B ε By rule (B1)

(Rule m2) Then s = (s′) .

s′ M Subderivation
0 B s′ By i.h.
0 B ε By rule (B1)
1 B) By rule (B3)
1 B s′) By Lemma 6
0 B (s′) By rule (B2)

(Rule m3) Then s = s1 s2.

s1 M Subderivation
0 B s1 By i.h.
s2 M Subderivation
0 B s2 By i.h.
0 B s1 s2 By Lemma 6

�

In order to prove the other direction (if 0 B s then s M) we first gener-
alize to:

If k B s then (· · · (︸ ︷︷ ︸
k

s M .

This proof (which is left to the reader) requires another lemma, this time
about the M judgment. Finally, putting the two directions together proves
the correctness of our parser.

LECTURE NOTES SEPTEMBER 2, 2004

L2.12 Inductive Definitions

Summary. In this lecture, we introduced the concept of an inductive defi-
nition of a judgment, presented in the form of inference rules. As examples,
we used inductive presentations of grammars and showed how to prove
their equivalence via rule induction. We also sketched how algorithms can
be presented via inference rules, using a parsing algorithm as an example.
This form of presentation for algorithms, where computation is modeled
by search for a deduction, is called logic programming,

LECTURE NOTES SEPTEMBER 2, 2004

Lecture Notes on Abstract Syntax

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 3
September 7, 2004

Grammars, as we have discussed them so far, define a formal language
as a set of strings. We refer to this as the concrete syntax of a language. While
this is necessary in the complete definition of a programming language, it
is only the beginning. We further have to define at least the static semantics
(via typing rules) and the dynamic semantics (via evaluation rules). Then
we have to reason about their relationship to establish, for example, type
soundness. Giving such definitions and proofs on strings is extremely te-
dious and inappropriate; instead we want to give it a more abstract form of
representation. We refer to this layer of representation as the abstract syntax
of a language. An appropriate representation vehicle are terms [Ch. 1].

Given this distinction, we can see that parsing is more than simply rec-
ognizing if a given string lies within the language defined by a grammar.
Instead, parsing in our context should translate a string, given in concrete
syntax, into an abstract syntax term. The converse problem of printing
(or unparsing) is to translate an abstract syntax term into a string repre-
sentation. While the grammar formalism is somewhat unwieldy when it
comes to specifying the translation into abstract syntax, we see that the
mechanism of judgments is quite robust and can specify both parsing and
unparsing quite cleanly.

We begin by reviewing the arithmetic expression language in its con-
crete [Ch. 3] and abstract [Ch. 4] forms. First, the grammar in its unam-
bigous form.1 We implement here the decision that addition and multipli-
cation should be left-associative (so 1+2+3 is parsed as (1+2) +3) and that

1We capitalize the non-terminals to avoid confusion when considering both concrete and
abstract syntax in the same judgment. Also, the syntactic category of Terms (denoted by T)
should not be confused with the terms we use to construct abstract syntax.

LECTURE NOTES SEPTEMBER 7, 2004

L3.2 Abstract Syntax

multiplication has precedence over addition. Such choices are somewhat
arbitrary and dictated by convention rather than any scientific criteria.2

Digits D : : = 0 | · · · | 9
Numbers N : : = D | N D
Expressions E : : = T | E+T
Terms T : : = F | T * F
Factors F : : = N | (E)

Written in the form of five judgments.

0 D · · · 9 D

s D
s N

s1 N s2 D
s1 s2 N

s T
s E

s1 E s2 T
s1+s2 E

s F
s T

s1 T s2 F
s1* s2 T

s N
s F

s E
(s) F

The abstract syntax of the language is much simpler. It can be speci-
fied in the form of a grammar, where the universe we are working over
are terms and not strings. While natural numbers can also be inductively
defined in a variety of ways [Ch 1.3], we take them here as primitive math-
ematical objects.

nat : : = 0 | 1 | · · ·
expr : : = num(nat) | plus (expr, expr) | times (expr, expr)

Presented as two judgments, we have k nat for every natural number k
and the following rule for expressions

2The grammar given in [Ch. 3.2] is slightly different, since there addition and multipli-
cation are assumed to be right associative.

LECTURE NOTES SEPTEMBER 7, 2004

Abstract Syntax L3.3

k nat
num(k) expr

t1 expr t2 expr

plus (t1, t2) expr

t1 expr t2 expr

times (t1, t2) expr

Now we specify the proper relation between concrete and abstract syn-
tax through several simultaneously inductive judgments. Perhaps the eas-
iest way to generate these judgments is to add the corresponding abstract
syntax terms to each of the inference rules defining the concrete syntax.

0 D←→ 0 nat · · · 9 D←→ 9 nat

s D←→ k nat
s N←→ k nat

s1 N←→ k1 nat s2 D←→ k2 nat
s1 s2 N←→ 10k1 + k2 nat

s T←→ t expr

s E←→ t expr

s1 E←→ t1 expr s2 T←→ t2 expr

s1+s2 E←→ plus (t1, t2) expr

s F←→ t expr

s T←→ t expr

s1 T←→ t1 expr s2 F←→ t2 expr

s1* s2 T←→ times (t1, t2) expr

s N←→ k nat
s F←→ num(k) expr

s E←→ t expr

(s) F←→ t expr

When giving a specification of the form above, we should verify that
the basic properties we expect, actually hold. In this case we would like
to check that related strings and terms belong to the correct (concrete or
abstract, respectively) syntactic classes.

Theorem 1
(i) If s D←→ k nat then s D and k nat.

(ii) If s N←→ k nat then s N and k nat.

(iii) If s E←→ t expr then s E and t expr.

(iv) If s T←→ t expr then s T and t expr.

LECTURE NOTES SEPTEMBER 7, 2004

L3.4 Abstract Syntax

(v) If s F←→ t expr then s F and t expr.

Proof: Part (i) follows by cases (there are 10 cases, one for each digit).
Part (ii) follows by rule induction on the given derivation, using (i) in

both cases.
Parts (iii), (iv), and (v) follow by simultaneous rule induction on the

given derivation, using part (ii) in one case. Overall, there are 6 cases. In
each case we can immediately appeal to the induction hypothesis on all
subderivations and construct a derivation of the desired judgment from
the results. �

When implementing such a specification, we generally make a commit-
ment as to what is considered our input and what is our output. As mo-
tivated above, parsing and unparsing (printing) are specifed by this judg-
ment.

Definition 2 (Parsing)
Given a string s, find a term t such that s E ←→ t expr or fail, if no such t
exists.

Obvious analogous definitions exist for the other syntactic categories.
We can further relate parsing into abstract syntax to our definition of the
syntactic categories by ascertaining that if s E then there is an abstract syn-
tax term representing it.

Theorem 3
(i) If s D then there is a k with s D←→ k nat.

(ii) If s N then there is a k with s N←→ k nat.

(iii) If s E then there is a t with s E←→ t expr.

(iv) If s T then there is a t with s T←→ t expr.

(v) If s F then there is a t with s F←→ t expr.

Proof: By cases or straightforward rule induction as in the proof of Theo-
rem 1. �

Now we can refine our notion of ambiguity to take into account the ab-
stract syntax that is constructed. This is slightly more relaxed that requiring
the uniqueness of derivations, because different derivations could still lead
to the same abstract syntax term.

LECTURE NOTES SEPTEMBER 7, 2004

Abstract Syntax L3.5

Definition 4 (Ambiguity of Parsing)
A parsing problem is ambiguous if for a given string s there exist two dis-
tinct terms t1 and t2 such that s E←→ t1 expr and s E←→ t2 expr.

Unparsing is just the reverse of parsing: we are given a term t and have
to find a concrete syntax representation for it. Unparsing is usually total
(every term can be unparsed) and inherently ambiguous (the same term
can be written as several strings). An example of this ambiguity is the in-
sertion of additional redundant parentheses. Therefore, any unparser must
use heuristics to choose among different alternative string representations.

Definition 5 (Unparsing)
Given a term t such that t expr, find a string s such that s E←→ t expr.

The ability to use judgments as the basis for implementation of different
tasks is evidence for their flexibility. Often, it is not difficult to “translate”
a judgment into an implementation in a high-level language such as ML,
although in some cases it might require significant ingenuity and some ad-
vanced techniques.

Our little language of arithmetic expressions serves to illustrate various
ideas, such as the distinction between concrete syntax and abstract syntax,
but it is too simple to exhibit various other phenomena and concepts. One
of the most important one is that of a variable, and the notion of variable
binding and scope. In order to discuss variables in isolation, we extend
our language by a new form of expression to name preliminary results. For
example,

let x = 2* 3 in x+x end

should evaluate to 12, but only compute the value of 2* 3 once.
First, the concrete syntax, showing only the changed or new cases.

Variables X : : = (any identifier)
Factors F : : = N | (E) | let X = E in E end | X

We ignore here the question what constitutes a legal identifier. Presum-
ably it should avoid keywords (such as let , b), special symbols, such as +,
and be surrounded by whitespace. In an actual language implementation a
lexer breaks the input string into keywords, special symbols, numbers, and
identifiers that are the processed by the parser.

The first approach to the abstract syntax would be to simply introduce a
new abstract syntactic category of variable [Ch. 5.1] and a new operator let
with three arguments, let (x, e1, e2), where x is a variable and e1 and e2 are

LECTURE NOTES SEPTEMBER 7, 2004

L3.6 Abstract Syntax

terms representing expressions. Furthermore, we allow an occurrence of a
variable x as a term. However, this approach does not clarify which occur-
rences of a variable are binding occurrences, and to which binder a variable
occurrence refers. For example, to see that

let x = 1 in let x = x+1 in x+x end end

evaluates to 4, we need to know which occurrences of x refer to which val-
ues. Rules for scope resolution [Ch. 5.1] dictate that it should be interpreted
the same as

let x1 = 1 in let x2 = x1+1 in x2+x2 end end

where there is no longer any potential ambiguity. That is, the scope of the
variable x in

let x = s1 in s2 end

is s2 but not s1.
A uniform technique to encode the information about the scope of vari-

ables is called higher-order abstract syntax [Ch. 5]. We add to our language of
terms a construct x.t which binds x in the term t. Every occurrence of x in t
that is not shadowed by another binding x.t′, refers to the shown top-level
abstraction. Such variables are a new primitive concept, and, in particular,
a variable can be used as a term (in addition to the usual operator-based
terms). We would extend our judgment relating concrete and abstract syn-
tax by

x X s1 E←→ t1 expr s2 E←→ t2 expr

let x = s1 in s2 end ←→ let (t1, x.t2) expr
x X

x E←→ x expr

and allow for expressions

x expr

t1 expr t2 expr

let (t1, x.t2) expr

Note that we translate an identifier x to an identically named variable
x in higher-order abstract syntax. Moreover, we view variables in higher-
order abstract syntax as a new kind of term, so we do not check explicitly
the x’s are in fact variables—it is implied that they are.

We emphasize that the laws for scope resolution of let -expressions are
directly encoded in the higher-order abstract representation. We investi-
gate the laws underlying such representations in Lecture 4 [Ch. 5.3].

LECTURE NOTES SEPTEMBER 7, 2004

Abstract Syntax L3.7

We can formulate the language of abstract syntax for arithmetic expres-
sions in a more compact notation as a grammar.

nat : : = 0 | 1 | · · ·
expr : : = num(nat) | plus (expr, expr) | times (expr, expr)

| x | let (expr, x.expr)

As a concrete example, consider the string

let x1 = 1 in let x2 = x1+1 in x2+x2 end end

which, in abstract syntax, would be represented as

let (num(1), x1.let (plus (x1, num(1)), x2.plus (x2, x2)))

LECTURE NOTES SEPTEMBER 7, 2004

Lecture Notes on
Static and Dynamic Semantics

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 4
September 9, 2004

In this lecture we illustrate the basic concepts underlying the static and
dynamic semantics of a programming language on a very simple example:
the language of arithmetic expression augmented by variables and defini-
tions.

The static and dynamic semantics are properties of the abstract syntax
(terms) rather than the concrete syntax (strings). Therefore we will deal
exclusively with abstract syntax here.

The static semantics can further be decomposed into two parts: variable
scope and rules of typing. They determine how to interpret variables, and
discern the meaningful expressions. As we saw in the last lecture, variable
scope is encoded directly into the terms representing the abstract syntax.
In this lecture we further discuss the laws governing variable binding on
terms. The second step will be to give the rules of typing in the form of an
inductively defined judgment. This is not very interesting for arithmetic
expressions, comprising only a single type, but it serves to illustrate the
ideas.

The dynamic semantics varies more greatly between different languages
and different levels of abstraction. We will only give a very brief introduc-
tion here and continue the topic in the next lecture.

The basic principle of variable binding called lexical scoping is that the
name of a bound variable should not matter. In other words, consistently
renaming a variable in a program should not affect its meaning. Everything
below will follow from this principle.

We now make this idea of “consistent renaming of variables” more pre-
cise. The development in [Ch. 5.3] takes simultaneous substitution as a

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004

L4.2 Static and Dynamic Semantics

primitive; we avoid the rather heavy notation by only dealing with a single
substitution at a time. This goes hand in hand with the decision that bind-
ing prefixes such as x.t only ever bind a single variable, and not multiple
ones. We use the notation {y/x}t to denote the result of substituting y for x
in t, yet to be defined. With that we will define renaming of x to y with the
equation

x.t =α y.{y/x}t
which can be applied multiple times, anywhere in a term. For this to pre-
serve the meaning, y most not already occur free in x.t, because otherwise
the free occurrence of y would be captured by the new binder.

As an example, consider the term

let (num(1), x.let (plus (x, num(1)), y.plus (y, x)))

which should evaluate to num(3). It should be clear that renaming y to x
should be disallowed. The resulting term

let (num(1), x.let (plus (x, num(1)), x.plus (x, x)))

means something entirely different and would evaluate to num(4).
To make this side condition more formal, we define the set of free vari-

ables in a term.

FV(x) = {x }
FV(o(t1, . . . , tn)) =

⋃
1≤i≤n FV(ti)

FV(x.t) = FV(t) \ {x }

So before defining the substitution {y/x}t we restate the rule defining
variable renaming, also called α-conversion, with the proper side condi-
tion:

x.t =α y.{y/x}t provided y /∈ FV(t)

Now back to the definition of substitution of one variable y for another
variable x in a term t, {y/x}t. The definition recurses over the structure of
a term.1

{y/x}x = y
{y/x}z = z provided x 6= z

{y/x}o(t1, . . . , tn) = o({y/x}t1, . . . , {y/x}tn)
{y/x}x.t = x.t
{y/x}z.t = x.{y/x}t provided x 6= z and y 6= z
{y/x}y.t undefined provided x 6= y

1It can in fact be seen as yet another form of inductive definition, but we will not formal-
ize this here.

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004

Static and Dynamic Semantics L4.3

Note that substitution is a partial operation. The reason the last case must
be undefined is because any occurrence of x in t would be replaced by y and
thereby captured. As an example while this must be ruled out, reconsider

let (num(1), x.let (plus (x, num(1)), y.plus (y, x)))

which evaluates to num(3). If we were allowed to rename x to y we would
obtain

let (num(1), y.let (plus (y, num(1)), y.plus (y, y)))

which once again means something entirely different and would evaluate
to num(4).

In the operational semantics we need a more general substitution, be-
cause we need to substitute one term for a variable in another term. We
generalize the definition above, taking care to rewrite the side condition
on substitution in a slightly more general, but consistent form, in order to
prohibit variable capture.

{u/x}x = u
{u/x}z = z provided x 6= z

{u/x}o(t1, . . . , tn) = o({u/x}t1, . . . , {u/x}tn)
{u/x}x.t = x.t
{u/x}z.t = z.{u/x}t provided x 6= z and z /∈ FV(u)
{u/x}z.t undefined provided x 6= z and z ∈ FV(u)

In practice we would like to treat substitution as a total operation. This
cannot be justified on terms, but, surprisingly, it works on α-equivalence
classes of terms! Since we want to identify terms that only differ in the
names of their bound variables, this is sufficient for all purposes in the
theory of programming languages. More formally, the following theorem
(which we will not prove) justifies treating substitution as a total operation.

Theorem 1 (Substitution and α-Conversion)
(i) If u =α u′, t =α t′, and {u/x}t and {u′/x}t′ are both defined, then

{u/x}t =α {u′/x}t′.

(ii) Given u, x, and t, then there always exists a t′ =α t such that {u/x}t′
is defined.

We sketch the proof of part (ii), which proceeds by induction on the size
of t. If {u/x}t is defined we choose t′ to be t. Otherwise, then somewhere
the last clause in the definition of substitution applies and there is a binder

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004

L4.4 Static and Dynamic Semantics

z.t1 in t such that z ∈ FV(u). Then we can rename z to a new variable z′

which occurs neither in free in u nor free in z.t1 to obtain z′.t′1. Now we can
continue with z′.{u/x}t′1. by an appeal to the induction hypothesis.

The algorithm described in this proof is in fact the definition of capture-
avoiding substitution which makes sense whenever we are working modulo
α-equivalence classes of terms. Fortunately, this will always be the case for
the remainder of this course.

With the variable binding, renaming, and substitution understood, we
can now formulate a first version of the typing rules for this language. Be-
cause there is only one type, nat , the rules are somewhat trivialized. Their
only purpose for this small language is to verify that an expression e is
closed, that is, FV(e) = { }.

A first judgmental way to express this would be the following2:

k nat
num(k) : nat

e1 : nat e2 : nat
plus (e1, e2) : nat

e1 : nat e2 : nat
times (e1, e2) : nat

e1 : nat {e1/x}e2 : nat

let (e1, x.e2) : nat

While this is perfectly correct, it has the potential problem that it re-checks
e1 for every occurrence of x in e2. This could be avoided by substituting a
fixed value such as num(0) for x and checking the result.

A more common (and more scalable) alternative is to use a new judg-
ment form, a so-called hypothetical judgment. We write it as

J1, . . . , Jn ` J

which means that J follows from assumptions J1, . . . , Jn. Its most basic
property is that

J1, . . . , Ji, . . . Jn ` Ji

always holds, which should be obvious: if an assumption is identical to the
judgment we are trying to derive, we are done. We will nonetheless restate
instances of this general principle for each case.

The particular form of hypothetical judgment we consider is

x1:nat , . . . , xn:nat ` e : nat

which should be read:
2suggested by a student in class

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004

Static and Dynamic Semantics L4.5

Under the assumption that variables x1, . . . , xn stand for natural num-
bers, e has the type of natural number.

We usually abbreviate a whole sequence of assumptions with the letter Γ.3

We write ‘·’ for an empty collection of assumptions, and we abbreviate
·, x:nat by x:nat . In order to avoid ambiguities, we always assume that
all variables declared in a context are distinct.

The typing judgment is defined by the following rules.

x:nat ∈ Γ
Γ ` x : nat

k nat
Γ ` num(k) : nat

Γ ` e1 : nat Γ ` e2 : nat
Γ ` plus (e1, e2) : nat

Γ ` e1 : nat Γ ` e2 : nat
Γ ` times (e1, e2) : nat

Γ ` e1 : nat Γ, x:nat ` e2 : nat

Γ ` let (e1, x.e2) : nat

In the last rule some care has to be taken to make sure that x is not declared
twice in the context. If the variable x bound in let (e1, x.e2) is already de-
clared, we use the assumption that we work modulo α-equivalence classes
and rename the variable x to a fresh variable x′ before applying the rule.

The point of being interested in typing for this small language is only
to guarantee that there are no free variables in a term to the evaluation will
not get stuck. This property can easily be verified.

Theorem 2
If · ` e : nat then FV(e) = { }.

Proof: We cannot prove this directly by rule induction, since the second
premise of the rule for let introduces an assumption. So we generalizing
to

If x1:nat , . . . , xn:nat ` e : nat then FV(e) ⊆ {x1, . . . , xn}.

This generalized statement can be proved easily by rule rule induction. �

Next we would like to give the operational semantics, specifying the
value of an expression. We represent values also as expressions, although
they are restricted to have the form num(k). Generally, when we write an

3In [Ch. 6] this is written instead as Γ ` e ok, where Γ is a set of variables. Since there is
only one type, the two formulations are clearly equivalent.

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004

L4.6 Static and Dynamic Semantics

expression as v we imply that it is a value and therefore has the form num(k)
for some k.

There are multiple ways to specify the operational semantics, for exam-
ple as a structured operational semantics [Ch. 7.1] or as an evaluation se-
mantics [Ch. 7.2]. We give two forms of evaluation semantics here, which
directly relate an expression to its value.

The first way employs a hypothetical judgment in which we make as-
sumptions about the values of variables. It is written as

x1⇓v1, . . . , xn⇓vn ` e ⇓ v.

We call x1⇓v1, . . . , xn⇓vn an environment and denote an environment by η.
It is important that all variables xi in an environment are distinct so that
the value of a variable is uniquely determined.

x⇓v ∈ η

η ` x ⇓ v η ` num(k) ⇓ num(k)

η ` e1 ⇓ num(k1) η ` e2 ⇓ num(k2)
η ` plus (e1, e2) ⇓ num(k1 + k2)

η ` e1 ⇓ num(k1) η ` e2 ⇓ num(k2)
η ` times (e1, e2) ⇓ num(k1 × k2)

η ` e1 ⇓ v1 η, x⇓v1 ` e2 ⇓ v2

η ` let (e1, x.e2) ⇓ v2
(x not declared in η)

In the rule for let we make the assumption that the value of x is v1 while
evaluating e2. One may be concerned that this operational semantics is
partial, in case bound variables with the same name occur nested in a term.
However, since we working with α-equivalences classes of terms we can
always rename the inner bound variable to that the rule for let applies. We
will henceforth not make such a side condition explicit, using the general
convention that we rename bound variables as necessary so that contexts
or environment declare only distinct variables.

An alternative semantics uses substitution instead of environments. For
this judgment we evaluate only closed terms, so no hypothetical judgment
is needed.

No rule for variables x num(k) ⇓ num(k)

e1 ⇓ num(k1) e2 ⇓ num(k2)
plus (e1, e2) ⇓ num(k1 + k2)

e1 ⇓ num(k1) e2 ⇓ num(k2)
times (e1, e2) ⇓ num(k1 × k2)

e1 ⇓ v1 {v1/x}e2 ⇓ v2

let (e1, x.e2) ⇓ v2

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004

Static and Dynamic Semantics L4.7

We postpone a discussion on the relationship between the two forms
of semantics, but we will considered how typing is related to the opera-
tional semantics. Clearly, we cannot pick rules arbitrarily, but typing must
reflect the operational behavior of programs and, conversely, the opera-
tional semantics must reflect typing. As first example of this relationship
we show that well-typed and closed arithmetic expressions always evalu-
ate to a value.

If · ` e : nat then · ` e ⇓ num(k) for some k.

We cannot prove this directly by induction, since the second premise in the
case of the typing rule for let (e1, x.e2) would have the form ·, x:nat ` e2 :
nat . This does not match the induction hypothesis where the context is
required to be empty.

If we look at the rules for typing and evaluation side-by-side, we see
that if we start with an empty context and environment, the set of variables
in the derivations always correspond. We define that η matches Γ if η defines
values for the same variables as are declared in Γ.

Lemma 3 (Evaluation in Environment)
If Γ ` e : nat and η matches Γ then η ` e ⇓ num(k) for some k.

Proof: By rule induction on the derivation of Γ ` e : nat .

(Rule for num(k)) Then

η ` num(k) ⇓ num(k) By rule

(Rule for plus (e1, e2)) Then

Γ ` e1 : nat Subderivation
Γ ` e2 : nat Subderivation
η matches Γ Assumption
η ` e1 ⇓ num(k1) for some k1 By i.h.
η ` e2 ⇓ num(k2) for some k2 By i.h.
η ` plus (e1, e2) ⇓ num(k1 + k2) By rule

(Rule for times (e1, e2)) Analogous to previous case.

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004

L4.8 Static and Dynamic Semantics

(Rule for variable x) Then

x:nat ∈ Γ Subderivation
η matches Γ Assumption
x⇓num(k) for some k By defn. of matching
η ` x ⇓ num(k) By rule

(Rule for let (e1, x.e2)) Then

Γ ` e1 : nat Subderivation
η matches Γ Assumption
η ` e1 ⇓ num(k) By i.h.
η, x⇓num(k) matches Γ, x:nat By defn. of matching
Γ, x:nat ` e2 : nat Subderivation
η, x⇓num(k) ` e2 ⇓ num(k2) By i.h.
η ` let (e1, x.e2) ⇓ num(k2) By rule

�

SUPPLEMENTARY NOTES SEPTEMBER 9, 2004

Lecture Notes on
A Functional Language

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 5
September 14, 2004

We now introduce MinML, a small fragment of ML that serves to illus-
trates key points in its design and key techniques for verifying its prop-
erties. The treatment here is somewhat cursory; see [Ch. 9] for additional
material. Roughly speaking, MinML arises from the arithmetic expression
language by adding booleans, functions, and recursion. Functions are (al-
most) first-class in the sense that they can occur anywhere in an expres-
sion, rather than just at the top-level as in other languages such as C. This
has profound consequences for the required implementation techniques (to
which we will return later), but it does not affect typing in an essential way.

First, we give the grammar for the higher-order abstract syntax. For the
concrete syntax, please refer to Assignment 2.

Types τ : : = int | bool | arrow (τ1, τ2)

Integers n : : = . . . | −1 | 0 | 1 | . . .

Primops o : : = plus | minus | times | negate
| equals | lessthan

Expressions e : : = num(n) | o(e1, . . . , en)
| true | false | if (e, e1, e2)
| let (e1, x.e2)
| fn (τ, x.e) | apply (e1, e2)
| rec (τ, x.e)
| x

Our typing judgment that sorts out the well-formed expressions has the
form Γ ` e : τ , where a context Γ has the form ·, x1:τ1, . . . , xn:τn. It is a hy-

LECTURE NOTES SEPTEMBER 14, 2004

L5.2 A Functional Language

pothetical judgment as explained in the previous lecture. Our assumption
that all variables xi declared in a context must be distinct is still in force,
which means that the rule

x:τ ∈ Γ
Γ ` x : τ

VarTyp

is unambiguous since there can be at most one declaration for x in Γ.
We have already discussed arithmetic expressions; booleans constitute

a similar basic type. Unlike languages such as C, integers and booleans
are strictly separate types, avoiding some common confusions and errors.
Below are the typing rules related to booleans.

Γ ` e1 : int Γ ` e2 : int
Γ ` equals (e1, e2) : bool

EqualsTyp

Γ ` true : bool
TrueTyp

Γ ` false : bool
FalseTyp

Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if (e, e1, e2) : τ
IfTyp

Perhaps the only noteworthy point here is that the two branches of a con-
ditional must have the same type. This is because we cannot know at type-
checking time which branch will be taken at run-time. We are therefore
conservative, asserting only that the result of the conditional will definitely
have type τ if each branch has type τ . Later in this class, we will see a
type system that can more accurately analyze conditionals so that, for ex-
ample, if true then 1 else false could be given a type (which is
impossible here).

A more important extension from our first language of arithmetic ex-
pressions is the addition of functions. In mathematics we are used to de-
scribe functions in the form f(x) = e, for example f(x) = x2 + 1. In a func-
tional language we want a notation for the function f itself. The abstract
(mathematical) notation for this concept is λ-abstraction, written f = λx.e.
The above example would be written as f = λx.x2 + 1.

In the concrete syntax of MinML we express λx:τ.e as fn x:t => e ;
in our abstract syntax it is written as fn (τ, x.e). This is an illustration of
the unfortunate situation that we generally have to deal with at least three
ways of expressing the same concepts. One is the mathematical notation,
one is the concrete syntax, and one is the abstract syntax. In research pa-
pers, one mostly uses mathematical notation or pseudo-concrete syntax

LECTURE NOTES SEPTEMBER 14, 2004

A Functional Language L5.3

that really stands for abstract syntax but is easier to read. Inevitably, we
will also start sliding between levels of discourse which is acceptable as
long as we always know what we really mean.

Returning to functions, the typing rules are rather straightforward.

Γ, x:τ1 ` e : τ2

Γ ` fn (τ1, x.e) : arrow (τ1, τ2)
FnTyp

Γ ` e1 : arrow (τ2, τ) Γ ` e2 : τ2

Γ ` apply (e1, e2) : τ
AppTyp

Keep in mind that in the rule FnTyp, the variable x must not already be de-
clared in Γ. We can always rename x in fn (τ, x.e) to satisfy this condition,
because we treat abstract syntax as α-equivalence classes, that is, modulo
variable renaming.

Functions defined with the language given so far are rather limited. For
example, there is no way to define the exponential function from multipli-
cation and addition, because there is no way to express recursion implicit
in the definition

20 = 1
2n = 2 × 2n−1 for n > 0.

We address this problem in the next lecture when we introduce the concept
of recursion.

Below is a summary of the typing rules for the language. We show only
the case of one operator—the others are analogous.

x:τ ∈ Γ
Γ ` x : τ

VarTyp
Γ ` num(n) : int

NumTyp

Γ ` e1 : int Γ ` e2 : int
Γ ` equals (e1, e2) : bool

EqualsTyp

Γ ` true : bool
TrueTyp

Γ ` false : bool
FalseTyp

Γ ` e : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if (e, e1, e2) : τ
IfTyp

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` let (e1, x.e2) : τ2
LetTyp

LECTURE NOTES SEPTEMBER 14, 2004

L5.4 A Functional Language

Γ, x:τ1 ` e : τ2

Γ ` fn (τ1, x.e) : arrow (τ1, τ2)
FnTyp

Γ ` e1 : arrow (τ2, τ) Γ ` e2 : τ2

Γ ` apply (e1, e2) : τ
AppTyp

We specify the operational semantics as a natural semantics also called a
big-step semantics. As the semantics for our small language of expressions, it
relates an expression to its final value (if it has one), but it does not directly
specify each step of evaluation. We use substitution instead of environ-
ments for simplicity, so the judgment has the form e ⇓ v where we assume
that · ` e : τ . We also define the judgment e value which expresses that e is
a value (written v).

Integers This is quite simple and as for arithmetic expressions. First, only
numbers are values.

num(k) value

Then the rules for evaluations; we only show the rules for the primitive
equality operator.

num(k) ⇓ num(k)

e1 ⇓ num(k1) e2 ⇓ num(k2) (k1 = k2)
equals (e1, e2) ⇓ true

e1 ⇓ num(k1) e2 ⇓ num(k2) (k1 6= k2)
equals (e1, e2) ⇓ false

Booleans First, true and false are values.

true value false value

LECTURE NOTES SEPTEMBER 14, 2004

A Functional Language L5.5

Then, the decision on which branch of a conditional to evaluate is based on
the return value of the condition.

true ⇓ true false ⇓ false

e ⇓ true e1 ⇓ v1

if (e, e1, e2) ⇓ v1

e ⇓ false e2 ⇓ v2

if (e, e1, e2) ⇓ v2

Definitions This remains unchanged from the arithmetic expression lan-
guage.

e1 ⇓ v1 {v1/x}e2 ⇓ v2

let (e1, x.e2) ⇓ v2

Functions It is often claimed that functions are “first-class”, but this is not
quite true, since we cannot observe the structure of functions in the same
way we can observe booleans or integers. Therefore, there is no need to
evaluate the body of a function, and in fact we could not since it is not
closed and we would get stuck when encountering the function parameter.
So, any function by itself is a value.

fn (τ, x.e) value

The second question is if we have to evaluate the argument in a function
call before performing the call. Both answers are sensible. In languages like
C, Java, or ML, function arguments are evaluated. This also corresponds to
mathematical practice. For example, a function from integers to integers
takes integers as arguments, not expressions. Of course, we may perform
reasoning to deduce equations involving functions, but this is quite distinct
from computation. In other languages like Haskell, function arguments are
not evaluated. We will discuss this possibility and its applications in more
detail later in this course. Given that we evaluate arguments, we call our
language call-by-value and define it by the following rules.

fn (τ, x.e) ⇓ fn (τ, x.e)

e1 ⇓ fn (τ2, x.e′1) e2 ⇓ v2 {v2/x}e′1 ⇓ v

apply (e1, e2) ⇓ v

LECTURE NOTES SEPTEMBER 14, 2004

L5.6 A Functional Language

Which theorems regarding the operational semantics make sense in this
setting? First, we can state that evaluation, if it terminates, should always
result in a value. Second, we can state that evaluation preserves the type
of the expression all the way to its value. Finally, we want to claim that the
language is deterministic, that is, the value of an expression (if it exists) is
uniquely determined.

1. (Evaluation) If · ` e : τ and e ⇓ v then v value.

2. (Preservation) If · ` e : τ and e ⇓ v, then · ` v : τ

3. (Determinism) If · ` e : τ and e ⇓ v′ and e ⇓ v′′ then v′ = v′′.

We will return to the problem of proving these and similar theorems in
the next lecture. Note that this does not exhaust the possibilities of possible
theorems, and there are many other properties which may be of interest for
specific purposes in the implementation or use of a language.

We conclude the lecture with some discussion on how these inference
rules may be viewed as specifications of algorithms. Interestingly, the eval-
uation judgment can be viewed as an algorithm for evaluating an expres-
sion, and the typing judgment can be viewed as an algorithm for type-
checking. However, not every judgment can be interpreted in this way, so
we must take some care to ensure this kind of reading is meaningful. The
kind of reasoning we apply here is also the kind of reasoning required to
turn the judgments and rules into functional implementations (say, using
ML or Haskell as an implementation language). This sort of analysis is rou-
tine for programming language researchers, but it is rarely made explicit.

We begin with the evaluation judgment. We would like to read the rules
for evaluation as an algorithm for computing the value of an expression. So
we commit to saying that in the judgment e ⇓ v, e is the input (given) and v
is the output (to be computed). Now we analyze each rule to see if we can
see how to compute v given e.

Integers For integers, the analysis is entirely straightforward.

num(k) ⇓ num(k)

LECTURE NOTES SEPTEMBER 14, 2004

A Functional Language L5.7

Given the input num(k) we can indeed compute the (identical) output num(k).

e1 ⇓ num(k1) e2 ⇓ num(k2) (k1 = k2)
equals (e1, e2) ⇓ true

e1 ⇓ num(k1) e2 ⇓ num(k2) (k1 6= k2)
equals (e1, e2) ⇓ false

Given the input equals (e1, e2) we know both e1 and e2. Since e1 is known,
by induction hypothesis1 we can compute k1. From the second premise we
can obtain k2. Then we can compare these values and return either true
or false , depending on which rule applies.

We skip Booleans and definitions, and go right to the most complicated
case of functions.

Functions Function expression evaluate to themselves, so if we know the
input we can return the output.

fn (τ, x.e) ⇓ fn (τ, x.e)

e1 ⇓ fn (τ2, x.e′1) e2 ⇓ v2 {v2/x}e′1 ⇓ v

apply (e1, e2) ⇓ v

For function application, the reasoning is more complex.

We are given apply (e1, e2).
Hence we know e1 and e2.
By i.h. we know fn (τ2, x.e′1).
By i.h. we know v2.
We therefore can calculate {v2/x}e′1
By i.h. we can compute v
Therefore we can return v

For the typing judgment, we can perform a similar analysis. But first we
have to decide what are the inputs, and what are the outputs of the judg-
ment Γ ` e : τ . We might try2 to use both Γ, e, and τ as inputs and decide

1This reasoning could be formally set up as an induction, showing that if e is given then
v can be computed (assuming it exists at all). Even though we do not formalize this, we still
refer to the “induction hypothesis” when analyzing the premises.

2suggested in lecture by a student

LECTURE NOTES SEPTEMBER 14, 2004

L5.8 A Functional Language

if the judgments holds or not (that is, either succeed or fail). Unfortunately,
this does not work for function application apply (e1, e2): we cannot deter-
mine the type of the argument e2.

Γ ` e1 : arrow (τ2, τ) Γ ` e2 : τ2

Γ ` apply (e1, e2) : τ
AppTyp

We assume that Γ, apply (e1, e2) and τ are known. But we cannot apply the
induction hypothesis to the first premise, because τ2 is unknown. Similarly,
we cannot apply the induction hypothesis to the second premise, since τ2

is unknown. We are therefore stuck, which means that we cannot easily
interpret the typing rules for checking a given expression against a given
type.

Fortuntely, we can assume Γ and e as inputs and generate τ as output,
or fail (if the expression is not well-typed). In that case we analyze the rule
as follows.

Γ, apply (e1, e2) are given.
Therefore, e1 and e2 are known.
By i.h. a τ1 such that Γ ` e1 : τ1 can be computed (or we fail).
By i.h. τ2 can be computed from the second premise (or we fail).
Now we check if τ1 = arrow (τ2, τ) for some τ .
If no, we fail.
If yes, we return τ .

Finally, we consider functional abstraction.

Γ, x:τ1 ` e : τ2

Γ ` fn (τ1, x.e) : arrow (τ1, τ2)
FnTyp

Γ, fn (τ1, x.e) are given.
Hence τ1, x, and e are known.
By i.h. τ2 can be computed (or we may fail).
If we succeed, we can construct arrow (τ2, τ2).

This reasoning required that the type τ1 be present in the expression,
otherwise we could not apply the induction hypothesis. This is precisely
the reason why τ1 in in fact required in the syntax. ML does not require
this type, because it performs a much more complicated analysis of expres-
sions called type inference. Briefly, does not compute exact types but creates
placeholders and generates a potentially large set of equational constraints

LECTURE NOTES SEPTEMBER 14, 2004

A Functional Language L5.9

between types and placeholders which must be satisfied for the expression
to be well-typed. It then solves these constraints by an algorithm that re-
sembles Gaussian elimination for solving linear arithmetic equalities. We
will come back to this process in a later lecture.

LECTURE NOTES SEPTEMBER 14, 2004

Lectures Notes on
Type Safety

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 6
September 16, 2004

Before we discuss type safety, we introduce recursion into the language.
Without recursion, the set of functions that can be defined on natural num-
bers is of course very limited. Rather than tying recursion to functions, the
way it is done in [Ch. 9], we introduce it here as a separate concept. In
concrete syntax, we write rec x:t => e for a recursive expression. The
same is represented in abstract syntax as rec (τ, x.e), which makes explicit
that x is a bound variable with scope e. The intuitive meaning of rec (τ, x.e)
is that it should be “equal” to its unfolding, that is, the result of substituting
the whole expressions for x in e. That is, in some sense we would like to
equate rec (τ, x.e) with {rec (τ, x.e)/x}e. In the operational semantics, this
is manifest in the rule

{rec (τ, x.e)/x}e ⇓ v

rec (τ, x.e) ⇓ v

As an example, consider the exponential function

20 = 1
2n = 2× 2n−1 for n > 0.

In order to express this with the recursion construction, we write

rec (arrow (int , int), p.fn (int , n.
if (equals (n, num(0)),

num(1),
times (num(2), apply (p, minus (x, num(1))))).

or, in concrete syntax:

LECTURE NOTES SEPTEMBER 16, 2004

L6.2 Type Safety

rec p:int -> int => fn n:int =>
if n = 0

then 1
else 2 * p (x - 1)

You should convince yourself on the example above that unfolding yields
the correct behavior. As for the typing rule: the whole expression must
have the same type as x, so that the substitution {rec (τ, x.e)/x} makes
sense. The same type τ must also be the type of e, because the value of e is
returned as the value of the recursive expression.

Γ, x:τ ` e : τ

Γ ` rec (τ, x.e) : τ
RecTyp

As in function expressions, the type τ is recorded in the syntax so that type-
checking can be implemented in a simple manner.

In MinML, most useful recursions have the form

rec (arrow (τ1, τ2), f.fn (τ1, x.e)),

because most other recursive expressions will not terminate (try, for ex-
ample, rec (int , x.x)). We therefore introduce a new form of concrete
syntax, fun f(x: τ1): τ2 => e, as “syntactic sugar”. During parsing it
is expanded into rec (arrow (τ1, τ2), f.fn (τ1, x.e)). This means that a fun -
expression does not have first-class status. For example, we do not give
any typing or evaluation rules since we type-check and evaluate the result
of the syntactic expansion, not the original form.

At this point we can prove type preservation and value soundness for
our language in the following form:

1. (Preservation) If · ` e : τ and e ⇓ v then · ` v : τ .

2. (Value Soundness) If e ⇓ v then v value.

There are some other properties of interest, such as v ⇓ v for any value v.
Other natural properties do not hold. For example:

1. (Failure of Termination) There is an e such that · ` e : τ , but there is
no v such that e ⇓ v.

2. (Failure of Reverse Preservation) There are values v and expressions
e such that · ` v : τ and e ⇓ v but not · ` e : τ .

LECTURE NOTES SEPTEMBER 16, 2004

Type Safety L6.3

It is instructive to find such counterexamples and consider the reasons why
neither termination nor reverse preservation can be expected for a practical
programming language.

We will not prove either the positive or negative properties of our lan-
guage in the form given above. The reason is that preservation, while cer-
tainly expected to hold, is somewhat weak as a language property: It only
talks about expressions e that already are known to have a value. For ex-
ample, if we omit the rule for function application (which is at the very
heart of our language), then preservation would still hold! Moreover, any
non-terminating computation is not addressed in this theorem at all.

This means we should look for stronger properties to characterize not
only the relationship of an expression to its final value, but the process of
computation itself. This requires a different form of operational semantics
in which the steps of a computation are made explicit. We write e 7→ e′

for the judgment that e steps to e′, yet to be defined. It is related to the
evaluation judgment in that

e 7→ e1 7→ · · · 7→ en 7→ v for some e1, . . . , en iff e ⇓ v

Before we give the rules, we state the properties we expect the language
to satisfy in the end. This is a useful strategy which can prevent us from
going astray and discovering potential problems with our judgments and
rules early. The main properties are:

1. (Preservation) If · ` e : τ and e 7→ e′ then · ` e′ : τ

2. (Progress) If · ` e : τ then either

(i) e 7→ e′ for some e′, or

(ii) e value

3. (Determinism) If · ` e : τ and e 7→ e′ and e 7→ e′′ then e = e′′.

Usually, preservation and progress together are called type safety. Not
all these properties are of equal importance, and we may have perfectly
well-designed languages in which some of these properties fail. However,
we want to clearly classify languages based on these properties and under-
stand if they hold, or fail to hold.

Preservation. This is the most fundamental property, and it would be dif-
ficult to see how one could accept a type system in which this would fail.

LECTURE NOTES SEPTEMBER 16, 2004

L6.4 Type Safety

Failure of this property amounts to a missing connection between the type
system and the operational semantics, and it is unclear how we would even
interpret the statement that e : τ . If preservation holds, we can usually
interpret a typing judgment as a partial correctness assertion about the ex-
pression:

If expression e has type τ and e evaluates to a value v, then v also has
type τ .

Progress. This property tells us that evaluation of an expression does not
get stuck in any unexpected way: either we have a value (and are done), or
there is a way to proceed. If a language is to satisfy progress it should not
have any expressions whose operational meaning is undefined. For exam-
ple, if we added division to MinML we could simply not specify any transi-
tion rule that would apply for the expression divide (num(k), num(0)). Not
specifying the results of such a computation, however, is a bad idea because
presumably an implementation will do something, but we can no longer
know what. This means the behavior is implementation-dependendent
and code will be unportable. To describe the behavior of such partial ex-
pressions we usually resort to introducing error states or exceptions into
the language.

There are other situations where progress may be violated. For exam-
ple, we may define a non-deterministic language that includes failure (non-
deterministic choice between zero alternatives) as an explicit outcome.

Determinism. There are many languages, specifically those with concur-
rency or explicit non-deterministic choice, for which determinism fails, and
for which it makes no sense to require it. On the other hand, we should al-
ways be aware whether our language is indeed deterministic or not. There
are also situations where the language semantics explicitly violates deter-
minism in order to give the language implementor the freedom to choose
convenient strategies. For example, the Revised5 Definition of Scheme1 states
that the arguments to a function may be evaluated in any order. In fact, the
order of evaluation for every single procedure call may be chosen differ-
ently!

While every implementation conforming to such a specification is pre-
sumably deterministic (and the language satisfies both preservation and
progress), code which accidentally or consciously relies on the order of

1http://www.swiss.ai.mit.edu/˜jaffer/r5rs_toc.html

LECTURE NOTES SEPTEMBER 16, 2004

Type Safety L6.5

evaluation of a particular compiler will be non-portable between Scheme
implementations. Moreover, the language provides absolutely no help in
discovering such inadvisable implementation-dependence. While one is
easily willing to accept this for concurrent languages, where different in-
terleavings of computation steps are an unavoidable fact of life, it is un-
fortunate for a language which could quite easily be deterministic, and is
intended to be used deterministically.

Small-step semantics. An operational semantics that specifies computa-
tion step by step is usually called a small-step semantics. We also call it
structural operational semantics. We retain the value judgment defined in the
last lecture and add the new judgment e 7→ e′, as indicated above. When
presenting the operational semantics, we proceed type by type.

Integers This is straightforward. We evaluate the arguments to a primi-
tive operation from left to right, and apply the operation once all arguments
have been evaluated.

e1 7→ e′1
equals (e1, e2) 7→ equals (e′1, e2)

v1 value e2 7→ e′2
equals (v1, e2) 7→ equals (v1, e

′
2)

(k1 = k2)
equals (num(k1), num(k2)) 7→ true

(k1 6= k2)
equals (num(k1), num(k2)) 7→ false

We refer to the first two as search rules, since they traverse the expression
to “search” for the subterm where the actual computation step takes place.
The latter two are reduction rules.

Booleans For if-then-else we have only one search rule for the condition,
since we never evaluate in the branches before we know which one to take.

e 7→ e′

if (e, e1, e2) 7→ if (e′, e1, e2)

if (true , e1, e2) 7→ e1 if (false , e1, e2) 7→ e2

LECTURE NOTES SEPTEMBER 16, 2004

L6.6 Type Safety

Definitions We proceed as in the expression language with the substitu-
tion semantics. There are no new values, and only one search rule.

e1 7→ e′1
let (e1, x.e2) 7→ let (e′1, x.e2)

v1 value

let (v1, x.e2) 7→ {v1/x}e2

Functions Applications are evaluated from left-to-right, until both the
function and its argument are values. This means the language is a call-
by-value language with a left-to-right evaluation order.

e1 7→ e′1
apply (e1, e2) 7→ apply (e′1, e2)

v1 value e2 7→ e′2
apply (v1, e2) 7→ apply (v1, e

′
2)

v2 value

apply (fn (τ2, x.e), v2) 7→ {v2/x}e

Recursion A recursive expression is evaluated simply by unfolding it.

rec (τ, x.e) 7→ {rec (τ, x.e)/x}e

A recursive expression is never a value, but in a typical use of the form

rec (arrow (τ1, τ2), f.fn (τ1, x.e))

we can make only one step before reaching a value, because unfolding the
rec exposes an fn -abstraction which is always a value. In [Ch. 9], the
recursive expression fun (τ1, τ2, f.x.e) which corresponds to the above is
directly a value. This is appropriate in the case of MinML, but would lead
to difficulties in a more general setting later in the course where we study
recursively defined lists, trees, and other data structures.

Preservation. For the proof of preservation we need two properties about
the substitution operation as it occurs in the cases of let -expressions and
function application. We state them here in a slightly more general form
than we need, but a slightly less general form than what is possible.

LECTURE NOTES SEPTEMBER 16, 2004

Type Safety L6.7

Theorem 1 (Properties of Typing)
(i) (Weakening) If Γ1,Γ2 ` e′ : τ ′ the Γ1, x:τ,Γ2 ` e′ : τ ′.

(ii) (Substitution)
If Γ1, x:τ,Γ2 ` e′ : τ ′ and · ` e : τ then Γ1,Γ2 ` {e/x}e′ : τ ′.

Proof: Property (i) follows directly by rule induction on the given deriva-
tion: we can insert the additional hypothesis in every hypothetical judg-
ment occuring in the derivation without invalidating any rule applications.

Property (ii) allso follows by a rule induction on the given derivation of
Γ1, x:τ,Γ2 ` e′ : τ ′. Since typing and substitution are both compositional
over the structure of the term, the only interesting cases is where e′ is the
variable x.

Case: (Rule VarTyp) with e′ = x. Then τ ′ = τ and {v/x}e′ = {v/x}x = v.
So we have to show Γ1,Γ2 ` v : τ . But our assumption is · ` v : τ so we can
conclude this by weakening (Property (i)). �

Both the weakening and substitution properties arise directly from the
nature of reasoning from assumption. They are special cases of very gen-
eral properties of hypothetical judgments.

Weakening is a valid principle, because when we reason from assump-
tion nothing compels us to actually use any given assumption. Therefore
we can always add more assumptions without invalidating our conclusion.

Substitution is a valid principle, because we can always replace the use
of an assumption by its derivation.

The proof below requires the use of the proof principle of inversion. Say
in the course of a proof you have established that a certain judgment J
has a derivation. If you can see, purely syntactically, that there is only one
possible inference rule that could have been used to conclude J , then we
know the premises of the rule must also be hold. It is called inversion
because in a strange way we go from a derivation of the conclusion to a
derivation of the premises. The proof of preservation below uses inversion
essentially in each case, applying it to the given typing derivation for e.
Since the typing judgment is syntax-directed, and there is exactly one rule
for each kind of expression, it is usually straightforward to apply inversion.

A word of caution: many mistakes arise in proofs because inversion is
used incorrectly. Remember: you can only apply it if you already know, ei-
ther from and assumption or the induction hypothesis, that a certain jnudg-
ment must have a derivation.

LECTURE NOTES SEPTEMBER 16, 2004

L6.8 Type Safety

Theorem 2 (Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ .

Proof: By rule induction on the derivation of e 7→ e′. In each case we
apply inversion to the given typing derivation and then apply either the
induction hypothesis or directly construct a typing derivation for e′.

Critical in this proof is the syntax-directed nature of the typing rules: for
each construct in the language there is exactly one typing rule. Preservation
is significantly harder for languages that do not have this property, and
there are many advanced type systems that are not a priori syntax-directed.

We only show the cases for booleans and functions, leaving integers
and let -expressions to the reader.

Case

e1 7→ e′1
if (e1, e2, e3) 7→ if (e′1, e2, e3)

This case is typical for search rules, which compute on some subexpression.

e1 7→ e′1 Subderivation
· ` if (e1, e2, e3) : τ Assumption
· ` e1 : bool and · ` e2 : τ and · ` e3 : τ By inversion
· ` e′1 : bool By i.h.
· ` if (e′1, e2, e3) : τ By rule

Case

if (true , e2, e3) 7→ e2

· ` if (true , e2, e3) : τ Assumption
· ` true : bool and · ` e2 : τ and · ` e3 : τ By inversion
· ` e2 : τ In line above

Case

if (false , e2, e3) 7→ e3

Symmetric to the previous case.

LECTURE NOTES SEPTEMBER 16, 2004

Type Safety L6.9

Case

e1 7→ e′1
apply (e1, e2) 7→ apply (e′1, e2)

e1 7→ e′1 Subderivation
· ` apply (e1, e2) : τ Assumption
· ` e1 : arrow (τ ′, τ) and · ` e2 : τ ′ for some τ ′ By inversion
· ` e′1 : arrow (τ ′, τ) By i.h.
· ` apply (e′1, e2) : τ By rule

Case

v1 value e2 7→ e′2
apply (v1, e2) 7→ apply (v1, e

′
2)

Analogous to the previous case.

Case

v2 value

apply (fn (τ2, x.e1), v2) 7→ {v2/x}e1

· ` apply (fn (τ2, x.e1), v2) : τ Assumption
· ` fn (τ2, x.e1) : arrow (τ ′, τ) and · ` v2 : τ ′ for some τ ′ By inversion
·, x:τ ′ ` e1 : τ and τ2 = τ By inversion
· ` {v2/x}e1 : τ By substitution property

Case

rec (τ ′, x.e′) 7→ {rec (τ ′, x.e′)/x}e′

· ` rec (τ ′, x.e′) : τ Assumption
·, x:τ ` e′ : τ and τ ′ = τ By inversion
· ` {rec (τ, x.e′)/x}e′ By substitution property

�

In summary, in MinML preservation comes down to two observations:
(1) for the search rules, we just use the induction hypothesis, and (2) for
reduction rules, the interesting cases rely on the substitution property. The
latter states that substuting a (closed) expression of type τ for a variable of

LECTURE NOTES SEPTEMBER 16, 2004

L6.10 Type Safety

type τ in an expression of type τ ′ preserves the type of that expression as
τ ′.

In the next lecture we show the proof of the progress theorem and also
extend our language with more type constructors that will be necessary to
represent more complex data types.

LECTURE NOTES SEPTEMBER 16, 2004

Lectures Notes on
Progress

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 7
September 21, 2004

In this lecture we prove the progress property for MinML, discuss type
safety, and consider which other language features may be desirable or un-
desirable in a language definition. We also consider how we have to change
the operational semantics and the statement of the progress theorem when
run-time errors are permitted in the language, such as division by zero. As
a reminder, type safety consists of preservation (proved in the last lecture)
and progress in the following form.

1. (Preservation) If · ` e : τ and e 7→ e′ then · ` e′ : τ

2. (Progress) If · ` e : τ then either

(i) e 7→ e′ for some e′, or

(ii) e value

3. (Determinism) If · ` e : τ and e 7→ e′ and e 7→ e′′ then e′ = e′′.

Determinism is of particular interest for sequential languages, where we
generally expect it to hold.

Not all these properties are of equal importance, and we may have
perfectly well-designed languages in which some of these properties fail.
However, we want to clearly classify languages based on these properties
and understand if they hold, or fail to hold. Please consult the notes of the
previous lecture for a further discussion of some of these issues.

LECTURE NOTES SEPTEMBER 21, 2004

L7.2 Progress

Progress. We now turn our attention to the progress theorem. This asserts
that the computation of closed well-typed expressions will never get stuck,
although it is quite possible that it does not terminate. For example,

rec (int , x.x)

reduces in one step to itself.
The critical observation behind the proof of the progress theorem is that

a value of function type will indeed be a function, a value of boolean type
will indeed by either true or false , etc. If that were not the case, then we
might reach an expression such as

apply (num(0), num(1))

which is a stuck expression because num(0) and num(1) are values, so nei-
ther any of the search rules nor the reduction rule for application can be
applied. We state these critical properties as an inversion lemmas, because
they are not immediately syntactically obvious.

Lemma 1 (Value Inversion)
(i) If · ` v : int and v value then v = num(n) for some integer n.

(ii) If · ` v : bool and v value then v = true or v = false .

(iii) If · ` v : arrow (τ1, τ2) and v value then v = fn (τ1, x.e) for some x.e.

Proof: We distinguish cases on v value and then apply inversion to the
given typing judgment. We show only the proof of property (ii).

Case: v = num(n). Then we would have · ` num(n) : bool , which is
impossible by inspection of the typing rules.

Case: v = true . Then we are done, since, indeed v = true or v =
false .

Case: v = false . Symmetric to the previous case.

Case: v = fn (τ, x.e). As in the first case, this is impossible by inspection
of the typing rules. �

The preceding value inversion lemmas is also called the canonical forms
theorem [Ch. 10.2]. Now we can prove the progress theorem.

LECTURE NOTES SEPTEMBER 21, 2004

Progress L7.3

Theorem 2 (Progress)
If · ` e : τ then

(i) either e 7→ e′ for some e′,

(ii) or e value.

Proof: By rule induction on the given typing derivation. Again, we show
only the cases for booleans and functions.

Case
x:τ ∈ ·
· ` x : τ

VarTyp

This case is impossible since the context is empty.

Case

· ` true : bool
TrueTyp

Then true value.

Case

· ` false : bool
FalseTyp

Then false value.

Case
· ` e1 : bool · ` e2 : τ · ` e3 : τ

· ` if (e1, e2, e3) : τ
IfTyp

In this case it is clear that if (e1, e2, e3) cannot be a value, so we have to
show that if (e1, e2, e3) 7→ e′ for some e′.

Either e1 7→ e′1 for some e′1 or e1 value By i.h.

e1 7→ e′1 First subcase
if (e1, e2, e3) 7→ if (e′1, e2, e3) By rule

e1 value Second subcase
e1 = true or e1 = false By value inversion

e1 = true First subsubcase
if (true , e2, e3) 7→ e2 By rule

e1 = false Second subsubcase
if (false , e2, e3) 7→ e3 By rule

LECTURE NOTES SEPTEMBER 21, 2004

L7.4 Progress

Case

·, x:τ1 ` e2 : τ2

· ` fn (τ1, x.e2) : arrow (τ1, τ2)
FnTyp

Then fn (τ1, x.e2) value.

Case

· ` e1 : arrow (τ2, τ) · ` e2 : τ2

· ` apply (e1, e2) : τ
AppTyp

Either e1 7→ e′1 for some e′1 or e1 value By i.h.

e1 7→ e′1 First subcase
apply (e1, e2) 7→ apply (e′1, e2) By rule

e1 value Second subcase
Either e2 7→ e′2 for some e′2 or e2 value By i.h.

e2 7→ e′2 First subsubcase
apply (e1, e2) 7→ apply (e1, e

′
2) By rule (since e1 value)

e2 value Second subsubcase
e1 = fn (τ2, x.e′1) By value inversion
apply (e1, e2) 7→ {e2/x}e′1 By rule (since e2 value)

Case

·, x:τ ` e′ : τ

· ` rec (τ, x.e′) : τ
RecTyp

rec (τ, x.e′) 7→ {rec (τ, x.e′)/x}e′ By rule

�

Determinism. We will leave the proof of determinism to the reader—it is
not difficult given all the examples and techniques we have seen so far.

Call-by-Value vs. Call-by-Name. The MinML language as described so
far is a call-by-value language because the argument of a function call is

LECTURE NOTES SEPTEMBER 21, 2004

Progress L7.5

evaluated before passed to the function. This is captured the following
rules.

e1 7→ e′1
apply (e1, e2) 7→ apply (e′1, e2)

cbv.1

v1 value e2 7→ e′2
apply (v1, e2) 7→ apply (v1, e

′
2)

cbv.2

v2 value

apply (fn (τ2, x.e1), v2) 7→ {v2/x}e1
cbv.f

We can create a call-by-name variant by not permitting the evaluation of
the argument (rule cbv.2 disappears), but just passing it into the function
(replace cbv.r by cbn.r). The first rule just carries over.

e1 7→ e′1
apply (e1, e2) 7→ apply (e′1, e2)

cbn.1

apply (fn (τ1, x.e1), e2) 7→ {e2/x}e cbn.f

Evaluation Order. Our specification of MinML requires the we first eval-
uate e1 and then e2 in application apply (e1, e2). We can also reduce from
right to left by switching the two search rules. The last one remains the
same.

e2 7→ e′2
apply (e1, e

′
2) 7→ apply (e1, e

′
2)

cbvr.1

e1 7→ e′1 v2 value

apply (e1, v2) 7→ apply (e′1, v2)
cbvr.2

v2 value

apply (fn (τ2, x.e1), v2) 7→ {v2/x}e1
cbvr.f

The O’Caml dialect of ML indeed evaluates from right-to-left, while Stan-
dard ML evaluates from left-to-right. There does not seem to be an intrinsic
reason to prefer one over the other, except perhaps that evaluating a term
in the order it is written appears slightly more natural.

Accounting for Errors 1 It is not always possible to avoid run-time errors,
due to limitations in type systems. To illustrate how they can be accounted

1This section adapted from notes by Daniel Spoonhower, Fall 2003.

LECTURE NOTES SEPTEMBER 21, 2004

L7.6 Progress

for we will add another primitive operator over integers, division. Unlike
addition, subtraction, and multiplication, the division of integers is a partial
function. That is, it does not yield a result for all possible inputs. In partic-
ular, consider the expression div(num(2), num(0)) . We would like to
include division in our type-safe language, but so far we have no way of
accounting for what “happens” when we evaluate a division by zero.

(One possibility is to add an additional value of type int that is the
result of such an expression. This value is sometimes called “NaN” or “not-
a-number” when it appears in specifications of floating-point arithmetic. If
we were to do so, however, we would have other problems to consider; for
example, what is the result of num(1) = NaN ?)

We will add a new expression to our language, shown below, to cap-
ture the state when an expression is “undefined”. (This expression is also
sometimes known wrong or as the “stuck state.”)

e ::= . . . | error

(Is error a value? Why or why not? It may become more clear when we
introduce a typing rule for error below.)

With error in hand, we can give an evaluation rule that applies to the
expression above.

div(num(k), num(0)) 7→ error
DivZero

We haven’t quite finished with evaluation yet, however: consider the
following expression:

if(div(num(2), num(0)),...) 7→ if(error,...) 7→ ?

Even though we’ve made progress with division, we still are stuck at the
if . We will need to add new rules to propagate errors through all of our
existing constructs. Analogously to our search evaluation rules, we add:

apply(error , e2) 7→ error
v1 value

apply(v1, error) 7→ error

if(error , e1, e2) 7→ error let(error , x.e) 7→ error

v1 value . . . vj−1 value
o(v1, . . . , vj−1, error , ej+1, . . . , en) 7→ error

Here, o stands for a primitive operations with n arguments.

LECTURE NOTES SEPTEMBER 21, 2004

Progress L7.7

Typing For Errors Before we can go ahead and extend our safety proof,
we must give a type to our new expression. Since no actual computation is
performed once we have encountered an error , we can assign any type to
an expression that has failed (i.e., there is no way to distinguish one error
from another).

Γ ` error : τ
ErrorTyp

Preservation

If · ` e : τ and e 7→ e′ then · ` e′ : τ . We have previously shown this proof
by induction over the derivation of e 7→ e′, so we have six new cases to
consider. We show only two.

Rule DivZero e′ = error
There are no assumptions to this rule, so we have no subderivations to

consider. However, we only need to show that · ` e′ : τ . Since e′ = error ,
this is easy enough.

· ` error : τ By rule

Rule IfError e′ = error
Again we have no assumptions and so, again, no subderivations. In

fact, this case looks just like the last case!

· ` error : τ By rule

All of our new cases for preservation look exactly like this since each
evaluates (in one step) to the error expression. With these new cases, our
extended proof of preservation is complete.

Progress

Here we must extend the theorem: if · ` e : τ then either

i. e value or

ii. e 7→ e′ for some e′ or

iii. e is error

This proof was given by rule induction over the derivation of · ` e : τ ,
and we have one new typing rule to consider, so we have one additional
case.

LECTURE NOTES SEPTEMBER 21, 2004

L7.8 Progress

Rule ErrorTyp e = error

e is error By assumption

Easy enough! Have we finished? No, because we have extended the in-
duction hypothesis, we have an additional subcase to consider each time
we applied it.

Consider the case for IfTyp:

...
· ` e : bool

...
· ` e1 : τ

...
· ` e2 : τ

· ` if(e, e1, e2) : τ

Previously, we applied the induction hypothesis to the first subderivation
to conclude:

Either e value or e 7→ e′

Now must must consider each of:

Either e value or e 7→ e′ or e is error

The first two subcases are identical to those in our old proof, but we must
finish the third.

e is error By case (iii) of i.h.
if(error , e1, e2) 7→ error By rule

We have shown that there is a step to be made and so progress is main-
tained.

In each of the applications of the induction hypothesis, we will have
a new subcase, and (if we’ve set things up correctly) we should have a
new rule to apply. If we find a subcase and no rule to apply, it probably
means that we’ve forgotten a rule; conversely, if a new rule doesn’t apply
anywhere, it was probably unnecessary.

(Is it clear now why we don’t want error to be a value? Think about
value inversion with respect to error .)

LECTURE NOTES SEPTEMBER 21, 2004

Lecture Notes on Aggregate Data Structures

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 8
September 23, 2004

In this lecture we discuss various language extensions which make MinML
a more realistic language without changing its basic character. In the sec-
ond part of the lecture we also consider an environment-based semantics
in which we avoid explicit application of substitution to give the semantics
a more realistic character and discuss some common mistakes in language
definition.

Products. Introducing products just means adding pairs and a unit ele-
ment to the language [Ch. 19.1]. We could also directly add n-ary prod-
ucts, but we will instead discuss records later when we talk about object-
oriented programming. MinML is a call-by-value language. For consistency
with the basic choice, the pair constructor also evaluates its arguments—
otherwise we would be dealing with lazy pairs.1 In addition to the pair
constructor, we can extract the first and second component of a pair.2

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` pair (e1, e2) : cross (τ1, τ2)

Γ ` e : cross (τ1, τ2)
Γ ` fst (e) : τ1

Γ ` e : cross (τ1, τ2)
Γ ` snd (e) : τ2

We often adopt a more mathematical notation according to the table
at the end of these notes. However, it is important to remember that the

1See Assignment 3
2An alternative treatment is given in [Ch. 19.1], where the destructor provides access to

both components of a pair simultaneously.

LECTURE NOTES SEPTEMBER 23, 2004

L8.2 Aggregate Data Structures

mathematical shorthand is just that: it is just a different way to shorten
higher-order abstract syntax or make it easier to read.

A pair is a value if both components are values. If not, we can use the
search rules to reduce, using a left-to-right order. Finally, the reduction
rules extract the corresponding component of a pair.

e1 value e2 value

pair (e1, e2) value

e1 7→ e′
1

pair (e1, e2) 7→ pair (e′
1, e2)

v1 value e2 7→ e′
2

pair (v1, e2) 7→ pair (v1, e
′
2)

e 7→ e′

fst (e) 7→ fst (e′)
e 7→ e′

snd (e) 7→ snd (e′)

v1 value v2 value

fst (pair (v1, v2)) 7→ v1

v1 value v2 value

snd (pair (v1, v2)) 7→ v2

Since it is at the core of the progress property, we make the value inversion
property explicit.

If · ` v : cross (τ1, τ2) and v value then v = pair (v1, v2) for
some v1 value and v2 value.

Unit Type. For the unit type we only have a constructor but no destructor,
since there are no components to extract.3

Γ ` unitel : unit

The unit types does not yield any new search or reduction rules, only a new
value. At first it may not seem very useful, but we will see an application
when we add references to the language.

unitel value

The value inversion property is also simple.

If · ` v : unit then v = unitel .
3A so-called check construct is possible but not necessary; see [Ch. 19.1].

LECTURE NOTES SEPTEMBER 23, 2004

Aggregate Data Structures L8.3

Sums. Unions, as one might know them from the C programming lan-
guage, are inherently not type safe. They can be abused in order to access
the underlying representations of data structures and intentionally violate
any kind of abstraction that might be provided by the language. Consider,
for example, the following snippet from C.

union {
float f;
int i;

} unsafe;

unsafe.f = 5.67e-5;
printf("%d", unsafe.i);

Here we set the member of the union as a floating point number and then
print the underlying bit pattern as if it represented an integer. Of course,
much more egregious examples can be imagined here.

In a type-safe language we replace unions by disjoint sums. In the im-
plementation, the members of a disjoint sum type are tagged with their
origin so we can safely distinguish the cases. In order for every expression
to have a unique type, we also need to index the corresponding injection
operator with their target type. We avoid this complication here, postpon-
ing the issue of how to perform type-checking to a future lecture.

Γ ` e1 : τ1

Γ ` inl (e1) : sum(τ1, τ2)
Γ ` e2 : τ2

Γ ` inr (e2) : sum(τ1, τ2)

Γ ` e : sum(τ1, τ2) Γ, x1:τ1 ` e1 : σ Γ, x2:τ2 ` e2 : σ

Γ ` case (e, x1.e1, x2.e2) : σ

Note that we require both branches of a case -expression to have the same
type σ, just as for a conditional, because we cannot be sure at type-checking

LECTURE NOTES SEPTEMBER 23, 2004

L8.4 Aggregate Data Structures

time which branch will be taken at run time.

e1 value

inl (e1) value

e2 value

inr (e2) value

e 7→ e′

case (e, x1.e1, x2.e2) 7→ case (e′, x1.e1, x2.e2)

v1 value

case (inl (v1), x1.e1, x2.e2) 7→ {v1/x1}e1

v2 value

case (inr (v2), x1.e1, x2.e2) 7→ {v2/x2}e2

We also state the value inversion property.

If · ` v : sum(τ1, τ2) then either v = inl (v1) with v1 value or
v = inr (v2) with v2 value.

Void type. The empty type void can be thought of as a zero-ary sum. It
has no values, and can only be given to expressions that do not terminate.
For example,

Γ, x:void ` x : void

Γ ` rec (void , x.x) : void

The value inversion property here just expresses that there are no values
of void type.

If · ` v : void then we have a contradiction.

In this lecture we did not explicitly revisit the cases in the proof of the
preservation and progress theorem, but the cases follow exactly the previ-
ously established patterns.

Environment-Based Semantics. So far, most of our semantic specifica-
tions rely on substitution as a primitive operation. From the point of view
of implementation, this is impractical, because a program would be copied
many times. So we seek an alternative semantics in which substitutions are
not carried out explicitly, but an association between variables and their
values is maintained. Such a data structure is called an environment. Care
has to be taken to ensure that the intended meaning of the program (as

LECTURE NOTES SEPTEMBER 23, 2004

Aggregate Data Structures L8.5

given by the specification with substitution) is not changed. We have al-
ready discussed such a semantics in Lecture 4 for arithmetic expressions.

Because we are in a call-by-value language, environments η bind vari-
ables to values.

Environments η : : = · | η, x=v

The basic intuition regarding typing is that if Γ ` e : τ , then e should
be evaluated in an environment which supplies bindings of appropriate
type for all the variables declared in Γ. We therefere formalize this as a
judgment, writing η : Γ if the bindings of variables to values in η match
the context Γ. We make the general assumption that a variable x is bound
only once in an environment, which corresponds to the assumption that a
variable x is declared only once in a context. If necessary, we can rename
bound variables in order to maintain this invariant.

· : ·
η : Γ · ` v : τ v value

(η, x=v) : (Γ, x:τ)

Note that the values v bound in an environment are closed, that is, they
contain no free variables. This means that expressions are evaluated in an
environment, but the resulting values must be closed. This creates a dif-
ficulty when we come to the evaluation of function expressions. Relaxing
this restriction, however, causes even more serious problems.4

We start with integers and let-bindings, the latter of which is an explicit
motivation for the introduction of environments. Here we assume some
primitive operators o (such as plus and times) and their mathematical
counterparts fo. For simplicity, we just write binary operators here.

x⇓v ∈ η

η ` x ⇓ v
e.var

η ` num(k) ⇓ num(k)
e.num

η ` e1 ⇓ num(k1) η ` e2 ⇓ num(k2) (fo(k1, k2) = k)
η ` o(e1, e2) ⇓ num(k)

e.o

η ` e1 ⇓ v1 η, x⇓v1 ` e2 ⇓ v2

η ` let (e1, x.e2) ⇓ v2
e.let (x not declared in η)

Next we come to functions. Before we state these rules let’s explicitly
state the preservation property we expect to hold at the end. Note that
there is no progress property, because it cannot be formulated very easily
on the big-step semantics.

4This is known in the Lisp community as the upward funarg problem.

LECTURE NOTES SEPTEMBER 23, 2004

L8.6 Aggregate Data Structures

Preservation. If Γ ` e : τ and η : Γ and η ` e ⇓ v then · ` v : τ .

Note in particular here the formal expression of the intuition above that
the output v must be closed. The following rule

η ` fn (τ, x.e) ⇓ fn (τ, x.e)
e.fn?

would be incorrect because fn (τ, x.e) can refer to variables defined in η
which would “leak” into the output value, violating the closedness con-
dition of the preservation theorem. Instead we need to create a so-called
closure which pairs up a function with its environment, representing a new
form of value. We write

〈〈η; fn (τ, x.e)〉〉

for the closure of fn (τ, x.e) over the environment η.
There are no evaluation rules for closures (they are values), and the

typing rules have to “guess” a context that matches the environment. Note
that we always type values in the empty environment.

〈〈η; fn (τ, x.e)〉〉 value

η : Γ Γ ` fn (τ, x.e) : τ ′

· ` 〈〈η; fn (τ, x.e)〉〉 : τ ′

Note that function expressions like fn (τ, x.e) are no longer values–only
function closures are values. We now modify the incorrect rule by build-
ing a closure instead and write down the right evaluation rule for function
application.

η ` fn (τ, x.e) ⇓ 〈〈η; fn (τ, x.e)〉〉 e.fn

η ` e1 ⇓ 〈〈η′; fn (τ2, x.e′
1)〉〉 η ` e2 ⇓ v2 η′, x=v2 ` e′

1 ⇓ v

η ` apply (e1, e2) ⇓ v
e.app

Note that every aspect of this rule is critical: evaluation of e1 returns
a closure instead of a function expression, and the body of the function is
evaluated in environment found in the closure extended by the binding
for x. By our general convention about variables, x may not already be
declared in the environment η′ so the new one is well-formed. This can al-
ways be achieved by the tacit renaming of the bound variable so it differens
from the variables in η′.

One interesting problems that arises in this context is the treatment of
recursion. There are a number of ways to avoid explicit substitutions, such

LECTURE NOTES SEPTEMBER 23, 2004

Aggregate Data Structures L8.7

as creating recursive environments, or allowing bindings of variables to un-
evaluated expressions, to be evaluated when they are looked up. The solu-
tion taken in Standard ML is to syntactically restrict recursion to functional
expressions and declare the resulting functions rec (arrow (τ1, τ2), f.fn (τ1, x.e))
to be values. This is the solution taken in the notes [Ch. 9].

LECTURE NOTES SEPTEMBER 23, 2004

L8.8 Aggregate Data Structures

Higher-Order
Abstract Syntax Concrete Syntax Mathematical Syntax

arrow (τ1, τ2) τ1 -> τ2 τ1 → τ2

cross (τ1, τ2) τ1* τ2 τ1 × τ2

unit unit 1
sum(τ1, τ2) τ1+τ2 τ1 + τ2

void void 0

pair (e1, e2) (e1, e2) 〈e1, e2〉
fst (e) #1 e π1 e
snd (e) #2 e π2 e
unitel () 〈 〉
inl (e1) inl (e1) inlτ1+τ2(e1)
inr (e2) inr (e2) inrτ1+τ2(e2)
case (e, x1.e1, x2.e2) case e

of inl (x1) => e1

| inr (x2) => e2

esac

case(e, x1.e1, x2.e2)

abort (e) abort (e) abortτ (e)

LECTURE NOTES SEPTEMBER 23, 2004

Supplementary Notes on
An Abstract Machine

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 9
Sep 28, 2004

In this lecture we introduce a somewhat lower-level semantics for MinML
in the form of an abstract machine [Ch. 11]. In this machine we make the con-
trol flow explicit, rather than encoding it in the search rules as in the first
operational semantics. Besides getting closer to an actual implementation,
it will allow us to easily define constructs to capture the current continua-
tion [Ch. 12].

Abstract machines have recently gained in popularity through the as-
cendency of the Java programming language. The standard model is that
we compile Java source to Java bytecode, which may be transmitted over
networks (for example, as an “applet”), and then interpreted via the Java
abstract machine. The use of an abstract machine here plays two important
roles: (1) the byte code is portable to any architecture with an interpreter,
and (2) the received code can be easily checked for illegal operations. This
is type-checking of the abstract machine code goes hand in hand with some
residual checking that has to go on while the code is interpreted. Note that
traditional type-checking as we have discussed it so far needs to be aug-
mented significantly, for example, to prevent the normally type-safe oper-
ation of reformatting the hard disk.

The kind of abstract machine we present here is a variant of the C-
machine [Ch. 11.1] with two kinds of states: those that attempt to evaluate
an expression, and those that return a value that has been computed. Its
main component, however, is the same: a run-time stack that records what
remains to be done after the current subexpression has been fully evalu-
ated. The stack consists of frames which represent the action to be taken by
the abstract machine once the current expression has been evaluated. We
treat here the fragment with pairs, functions, and booleans (see [Ch. 11.1]

SUPPLEMENTARY NOTES SEP 28, 2004

L9.2 An Abstract Machine

for a treatment of primitive operators).
We begin by defining the syntax in the form of (abstract syntax) gram-

mar. As we have seen before, this can also be written in the form of judg-
ments. When we use v we imply that v must be a value.

States s : : = k > e evaluate e under k
| k < v return v to k

Stacks k : : = • empty stack
| k . f stack k with top f

Frames f : : = o(�, e2) | o(v1,�) primops
| pair (�, e2) | pair (v1,�) pairs
| fst (�) | snd (�) projections
| apply (�, e2) | apply (v1,�) applications
| if (�, e1, e2) conditional

A hole � in the top stack frame is intended to hold the value returned
by evaluation of the current expression. It corresponds to the place in an
expression where evaluation can take place and thus implements the search
rules of the structured operational semantics.

The main judgment defining the abstract machine is

s 7→c s′

expressing that state s makes a transition to state s′ in one step. The initial
state of the machine has the form • > e, a final state has the form • < v. In
general, we define our machine so that if

e = e1 7→ · · · 7→ en = v

according to our operational semantics then for any stack k which should
have

k > e 7→c · · · 7→c k < v

As we will see, the operational semantics and the abstract machine do not
take the same number of steps. This is because the operational semantics
does not step at all for values, while the abstract machine will take some
steps to go from k > v to k < v.

Before we give the transitions of the C-machine, it is useful to think
about typing and which properties besides the operational ones above we
want to hold. First, we need to type states. A state k > e should require
that (1) e is closed (since we are evaluating it), (2) that e is well-typed, say, of

SUPPLEMENTARY NOTES SEP 28, 2004

An Abstract Machine L9.3

type τ , and (3) that k is a stack that expects a value of type τ to be returned
to it. We also keep track of the type of the final result returned when both e
and k are finished. Finally, a frame accepts a value (to be placed in its hole)
and eventually passes value to the rest of the stack. These considerations
yields the following typing judgments

s : σ state s returns a final answer of type σ
k : τ ⇒ σ stack k expects a value of type τ and returns a final answer of type σ
f : τ ⇒ σ frame r expects a value of type τ and computes a value of type σ

We use the notation τ ⇒ σ as a suggestive notation, but you should keep in
mind that frames f are not formally functions in our semantics. However,
frames and stack can be formally related to functions, but we will not make
this relationship explicit here.

With these definition, we can write out the rules. We have added some
parentheses to make the reading of the judgments less ambiguous.

k : τ ⇒ σ · ` e : τ
(k > e) : σ

k : τ ⇒ σ · ` v : τ v value
(k < v) : σ

• : τ ⇒ τ

k : τ ′ ⇒ σ f : τ ⇒ τ ′

(k . f) : τ ⇒ σ

We show the typing rules for the individual frames as they are introduced
in the operational semantics below.

We now give the transitions, organized by the type structure of the lan-
guage.

Integers.

k > num(n) 7→c k < num(n)

k > o(e1, e2) 7→c k . o(�, e2) > e1

k . o(�, e2) < v1 7→c k . o(v1,�) > e2

k . o(num(n1),�) < num(n2) 7→c k < num(n)
(n = fo(n1, n2))

· ` e2 : int
o(�, e2) : int ⇒ int

· ` v1 : int v1 value

o(v1,�) : int ⇒ int

SUPPLEMENTARY NOTES SEP 28, 2004

L9.4 An Abstract Machine

Products.

k > pair (e1, e2) 7→c k . pair (�, e2) > e1

k . pair (�, e2) < v1 7→c k . pair (v1,�) > e2

k . pair (v1,�) < v2 7→c k < pair (v1, v2)

k > fst (e) 7→c k . fst (�) > e
k . fst (�) < pair (v1, v2) 7→c k < v1

k > snd (e) 7→c k . snd (�) > e
k . snd (�) < pair (v1, v2) 7→c k < v2

· ` e2 : τ2

pair (�, e2) : τ1 ⇒ τ1 × τ2

· ` v1 : τ1 v1 value

pair (v1,�) : τ2 ⇒ τ1 × τ2

fst (�) : τ1 × τ2 ⇒ τ1 snd (�) : τ1 × τ2 ⇒ τ2

Functions.

k > fn (τ, x.e) 7→c k < fn (τ, x.e)

k > apply (e1, e2) 7→c k . apply (�, e2) > e1

k . apply (�, e2) < v1 7→c k . apply (v1,�) > e2

k . apply (v1,�) < v2 7→c k > {v2/x}e
(v1 = fn (τ, x.e))

· ` e2 : τ2

apply (�, e2) : (τ2 → τ1) ⇒ τ1

· ` v1 : τ2 → τ1 v1 value

apply (v1,�) : τ2 ⇒ τ1

Recursion.

k > rec (τ, x.e) 7→c k > {rec (τ, x.e)/x}e

Conditionals.

k > true 7→c k < true
k > false 7→c k < false
k > if (e, e1, e2) 7→c k . if (�, e1, e2) > e
k . if (�, e1, e2) < true 7→c k > e1

k . if (�, e1, e2) < false 7→c k > e2

· ` e1 : τ · ` e2 : τ

if (�, e1, e2) : bool ⇒ τ

SUPPLEMENTARY NOTES SEP 28, 2004

An Abstract Machine L9.5

As an example, consider the evaluation of

(fn x:int => x) 0

• > apply (fn (int , x.x), num(0))
7→c • . apply (�, num(0)) > fn (int , x.x)
7→c • . apply (�, num(0)) < fn (int , x.x)
7→c • . apply (fn (int , x.x),�) > num(0)
7→c • . apply (fn (int , x.x),�) < num(0)
7→c • > num(0)
7→c • < num(0)

Note that in the second-to-last step, {num(0)/x}x = num(0)
Before talking about the correctness of the C-machine, we state the progress

and preservation theorems we expect. We do not prove these properties
here, since they introduce no new techniques. Critical for progress is once
again the value inversion lemma, as it is for the structural operational se-
mantics.

Theorem 1 (Preservation and Progress for C-Machine)
(i) (Preservation) If s : σ and s 7→c s′ then s′ : σ.

(ii) (Progress) If s : σ then either

(a) s = (• < v) for some value v, or

(b) s 7→c s′ for some state s′.

Proving the correctness of the C-machine is complicated by the fact that
the two machines step at different rates. We further have to account for
the stack. However, in the overall statement of the correctness theorem,
these problems may not be apparent. In order to state the theorem, we
first define the multi-step versions of the two transition judgments. This is
just the reflexive and transitive closure of the single-step relation. We only
define this formally for the abstract machine; other transition relations can
similarly be extended to multiple steps [Ch. 2].

s 7→∗
c s′ s steps to s′ in zero or more steps

s 7→∗
c s

refl
s 7→c s′ s′ 7→∗

c s′′

s 7→∗
c s′′ step

We take certain elementary properties of the multi-step transition rela-
tion for granted and use them tacitly. We give here only one, as an example.

SUPPLEMENTARY NOTES SEP 28, 2004

L9.6 An Abstract Machine

Theorem 2 (Transitivity)
If s 7→∗

c s′ and s′ 7→∗
c s′′ then s 7→∗

c s′′.

Proof: By straightforward rule induction on the derivation of s 7→∗
c s′. �

Theorem 3 (Correctness of C-Machine)
e 7→∗ v if and only if • > e 7→∗

c • < v

As usual, we cannot prove this directly, but we need to generalize it. In
this case we also need two lemmas.

Lemma 4 (Determinism)
If s 7→c s′ and s 7→c s′′ then s′ = s′′.

Proof: By cases on the two given judgments. This is a degenerate case of
rule induction, since the 7→c judgment is defined only by axioms. �

Lemma 5 (Value Computation)
(i) k > v 7→∗

c k < v

(ii) If k > v 7→∗
c • < a then the computation decomposes into

k > v 7→∗
c k < v and k < v 7→∗

c • < a

Proof: Part (i) follows by induction on the structure of v.1 Part (ii) then
follows from part (i) by determinism. We show the proof of part (i) in detail.

Cases: v = num(n), v = true , v = false , or v = fn (τ, x.e). Then the
result is immediate by a single step of the abstract machine.

Case: v = pair (v1, v2). Then

k > pair (v1, v2)

7→c k . pair (�, v2) > v1 By rule

7→∗
c k . pair (�, v2) < v1 By i.h. on v1

7→c k . pair (v1,�) > v2 By rule

7→∗
c k . pair (v1,�) < v2 By i.h. on v2

7→c k < pair (v1, v2) By rule

1Equivalently, we could say: By rule induction on the derivation of v value.

SUPPLEMENTARY NOTES SEP 28, 2004

An Abstract Machine L9.7

�

Now we are in a position to prove the generalization that directly relates
a single step in the original semantics to possibly several steps in the C-
machine. The easiest way to arrive at the particular generalization we have
below it to try to prove our overal theorem directly and then allow for
a general stack k (instead of forcing the empty stack •). Looking ahead
at how this (and the value computation) lemma are used in the proof of
Theorem 7 is quite instructive.

We express that if e 7→ e′, then under any stack k, if the evaluation of
e′ yields the final answer a, then the evaluation of e also yields the final
answer a.

Lemma 6 (Completeness Lemma for the C-Machine)
If e 7→ e′ and k > e′ 7→∗

c • < a then k > e 7→∗
c • < a.

Proof: The proof is by rule induction on the derivation of e 7→ e′.
Below, when we claim a step follow “by inversion” it is because exactly

one of the rules could be applied as the first step. Technically, this is an
inversion on the definition of 7→∗

c (rule step must have been applied), fol-
lowed by an second inversion on the (single) first step that could have been
taken.

We show only the cases for products, since all other cases follow a sim-
ilar pattern.

For the search rules, we apply inversion until we have uncovered a sub-
computation of the abstract machine to which we can apply the induction
hypothesis. Then we reconstitute the full computation.

For the reduction rules, we directly construct the needed computation,
possibly applying to the value computation lemma, part (i).

Case:

e1 7→ e′
1

pair (e1, e2) 7→ pair (e′
1, e2)

e1 7→ e′
1 Subderivation

k > pair (e′
1, e2) 7→∗

c • < a Assumption
k > pair (e′

1, e2) 7→c k . pair (�, e2) > e′
1 7→∗

c • < a By inversion
k . pair (�, e2) > e1 7→∗

c • < a By i.h.
k > pair (e1, e2) 7→c k . pair (�, e2) > e1 7→∗

c • < a By rule

SUPPLEMENTARY NOTES SEP 28, 2004

L9.8 An Abstract Machine

Case:

v1 value e2 7→ e′
2

pair (v1, e2) 7→ pair (v1, e
′
2)

e1 7→ e′
1 Subderivation

k > pair (v1, e
′
2) 7→∗

c • < a Assumption
k > pair (v1, e

′
2) 7→c k . pair (�, e′

2) > v1 7→∗
c • < a By inversion

k . pair (�, e′
2) > v1 7→∗

c k . pair (�, e′
2) < v1 7→∗

c • < a
By value computation (ii)

k . pair (�, e′
2) < v1 7→c k . pair (v1,�) > e′

2 7→∗
c • < a By inversion

k . pair (v1,�) > e2 7→∗
c • < a By i.h.

k . pair (�, e2) < v1 7→∗
c • < a By rule

k . pair (�, e2) > v1 7→∗
c • < a By value computation (i)

k > pair (v1, e2) 7→c k . pair (�, e2) > v1 7→∗
c • < a By rule

Case:

e1 7→ e′
1

fst (e1) 7→ fst (e′
1)

e1 7→ e′
1 Subderivation

k > fst (e′
1) 7→∗

c • < a Assumption
k > fst (e′

1) 7→c k . fst (�) > e′
1 7→∗

c • < a By inversion
k . fst (�) > e1 7→∗

c • < a By i.h.
k > fst (e1) 7→c k . fst (�) > e1 7→∗

c • < a By rule

Case:

v1 value v2 value

fst (pair (v1, v2)) 7→ v1

k < v1 7→∗
c • < a Assumption

k > fst (pair (v1, v2))
7→c k . fst (�) > pair (v1, v2) By rule
7→∗

c k . fst (�) < pair (v1, v2) By value computation (i)
7→c k < v1 By rule
7→∗

c • < a By assumption

SUPPLEMENTARY NOTES SEP 28, 2004

An Abstract Machine L9.9

Case:

v1 value v2 value

snd (pair (v1, v2)) 7→ v2

k < v2 7→∗
c • < a Assumption

k > snd (pair (v1, v2))
7→c k . snd (�) > pair (v1, v2) By rule
7→∗

c k . snd (�) < pair (v1, v2) By value computation (i)
7→c k < v2 By rule
7→∗

c • < a By assumption

�

We do not show the proof in the other direction, which is a minor vari-
ant of the one in [Ch. 11.1]. We now return to the overall correctness theo-
rem.

Theorem 7 (Correctness of C-Machine)
(i) If e 7→∗ v then • > e 7→∗

c • < v.

(ii) If • > e 7→∗
c • < v then e 7→∗ v.

Proof: We show part (i) and omit part (ii) (see [Ch. 11.1]). The proof of
part (i) is by induction on the derivation of e 7→∗ v.

Case:

v 7→∗ v
refl

• > v 7→∗
c • < v By value computation (i)

Case:

e 7→ e′ e′ 7→∗ v
e 7→∗ v

step

• > e′ 7→∗
c • < v By i.h.

• > e 7→∗
c • < v By completeness lemma

�

SUPPLEMENTARY NOTES SEP 28, 2004

Supplementary Notes on
Continuations

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 10
September 30, 2004

In this lecture we first introduce exceptions [Ch. 13] and then continua-
tions [Ch. 12], two advanced control construct available in some functional
languages.

Exceptions are a standard construct in ML and other languages such as
Java. We give here only a particularly simple form; a more elaborate form
is pursued in Assignment 4. It is particularly easy to describe now that our
abstract machines makes a control stack explicit.

We introduce a new form of state

k � fail

which signals that we are propagating an exception upwards in the con-
trol stack k, looking for a handler or stopping at the empty stack. This
“uncaught exception” is a particularly common form of implementing run-
time errors. We do not distinguish different exceptions, only failure.

We have two new forms of expressions fail 1 and try (e1, e2) (with
concrete syntax try e1 owe2). Informally, try (e1, e2) evaluates e1 and re-
turns its value. If the evaluation of e1 fails, that is, an exception is raised,
then we evaluate e2 instead and returns its value (or propagate its excep-
tion). These rules are formalized in the C-machine as follows.

k > try (e1, e2) 7→c k . try (�, e2) > e1

k . try (�, e2) < v1 7→c k < v1

k > fail 7→c k � fail
k . f � fail 7→c k � fail for f 6= try (�,)
k . try (�, e2) � fail 7→c k > e2

1A type should be included here in order to preserve the property that every well-typed
expression has a unique type, but we prefer not to complicate the syntax at this point.

LECTURE NOTES SEPTEMBER 30, 2004

L10.2 Continuations

In order to verify that these rules are sensible, we should prove appro-
priate progress and preservation theorems. In order to do this, we need to
introduce some typing judgments for machine states and the new forms of
expressions. First, expressions:

Γ ` fail : τ

Γ ` e1 : τ Γ ` e2 : τ

Γ ` try (e1, e1) : τ

We can now state (without proof) the preservation and progress prop-
erties. The proofs follow previous patterns (see [Ch. 13]).

1. (Preservation) If s : σ and s 7→ s′ then s′ : σ.

2. (Progress) If s : σ then either

(i) s 7→ s′ for some s′, or

(ii) s = • < v with v value, or

(iii) s = • � fail.

The manner in which the C-machine operates with respect to exceptions
may seem a bit unrealistic, since the stack is unwound frame by frame.
However, in languages like Java this is not an unusual implementation
method. In ML, there is more frequently a second stack containing only
handlers for exceptions. The handler at the top of the stack is innermost
and a fail expression can jump to it directly.

Overall, such a machine should be equivalent to the specification of
exceptions above, but potentially more efficient. Often, we want to describe
several aspects of execution behavior of a language constructs in several
different machines, keeping the first as high-level as possible. However, we
will not pursue this further, but move on to the discussion of continuations.
Continuations are more flexible, but also more dangerous than exceptions.

Continuations are part of the definition of Scheme and are implemented
as a library in Standard ML of New Jersey, even though they are not part of
the definition of Standard ML. Continuations have been described as the
goto of functional languages, since they allow non-local transfer of control.
While they are powerful, programs that exploit continuations can difficult
to reason about and their gratuitous use should therefore be avoided.

There are two basic constructs, given here with concrete and abstract
syntax. We ignore issues of type-checking in the concrete syntax.2

2See Assignment 4 for details on concrete syntax.

LECTURE NOTES SEPTEMBER 30, 2004

Continuations L10.3

callcc x => e callcc (x.e)
throw e1 to e2 throw (e1, e2)

In brief, callcc x => e captures the stack (= continuation) k in effect at
the time the callcc is executed and substitutes cont (k) for x in e. we can
later transfer control to k by throwing a value v to k with throw v to cont (k).
Note that the stack k we capture can be returned past the point in which it
was in effect. As a result, throw can effect a kind of “time travel”. While
this can lead to programs that are very difficult to understand, it has multi-
ple legitimate uses. One pattern of usage is as an alternative to exceptions,
another is to implement co-routines or threads. Another use is to achieve
backtracking.

As a starting example we consider simple arithmetic expressions.

(a) 1 + callcc x => 2 + (throw 3 to x) 7→∗
c 4

(b) 1 + callcc x => 2 7→∗
c 3

(c) 1 + callcc x => if (throw 2 to x) then 3 else 4 fi
7→∗

c 3

Example (a) shows an upward use of continuations similar to excep-
tions, where the addition of 2 + � is bypassed and discarded when we
throw to x.

Example (b) illustrates that captured continuations need not be used in
which case the normal control flow remains in effect.

Example (c) demonstrates that a throw expression can occur anywhere;
its type does not need to be tied to the type of the surrounding expres-
sion. This is because a throw expression never returns normally—it al-
ways passes control to its continuation argument.

With this intuition we can describe the operational semantics, followed
by the typing rules.

k > callcc (x.e) 7→c k > {cont (k)/x}e

k > throw (e1, e2) 7→c k . throw (�, e2) > e1

k . throw (�, e2) < v1 7→c k . throw (v1,�) > e2

k . throw (v1,�) < cont (k2) 7→c k2 < v1

k > cont (k′) 7→c k < cont (k′)

The typing rules can be derived from the need to make sure both preser-
vation and progress to hold. First, the constructs that can appear in the
source.

LECTURE NOTES SEPTEMBER 30, 2004

L10.4 Continuations

Γ, x:τ cont ` e : τ

Γ ` callcc (x.e) : τ

Γ ` e1 : τ1 Γ ` e2 : τ1 cont

Γ ` throw (e1, e2) : τ

Finally, the rules for continuation values that can only arise during com-
putation. They are needed to check the machine state, even though they are
not needed to type-check the input.

k : τ ⇒ σ
Γ ` cont (k) : τ cont

It looks like there could be a problem here, because σ, the final answer
type of the continuation, does not appear in the conclusion. Fortunately, it
works, but only because the final answer type σ of all continuations that
may occur in a computation will be equal. To be precise, if we want to be
talk about typing intermediate states of the computation, we would need
to pass along the final answer type σ through the typing judgments.

As a more advanced example, consider the problem of composing a
function with a continuation. This can also be viewed as explicitly pushing
a frame onto a stack, represented by a continuation. Even though we have
not yet discussed polymorphism, we will phrase it as a generic problem:

Write a function

compose : (’a -> ’b) -> ’b cont -> ’a cont

so that compose F K returns a continuation K1. Throwing
a value v to K1 should first compute F v and then throw the
resulting value v′ to K.

To understand the solution, we analyze the intended behavior of K1.
When given a value v, it first applies F to v. So

K1 = K2 . apply (F,�)

for some K2. Then, it needs to throw the result to K. So

K2 = K3 . throw (�,K)

LECTURE NOTES SEPTEMBER 30, 2004

Continuations L10.5

and therefore

K1 = K3 . throw (�,K) . apply (F,�)

for some K3.
How can we create such a continuation? The expression

throw (F . . .) to K

will create a continuation of the form above. This continuation will be the
stack precisely when the hole “. . .” is reached. So we need to capture it
there:

throw (F (callcc k1 => . . .)) to K

The next conundrum is how to return k1 as the result of the compose func-
tion, now that we have captured it. Certainly, we can not just replace . . . by
k1 , because the F would be applied (which is not only wrong, but also not
type-correct). Instead we have to throw k1 out of the local context! In or-
der to throw it to the right place, we have to name the continuation in effect
when the compose is called.

callcc r =>
throw (F (callcc k1 => throw k1 to r)) to K

Now it only remains to abstract over F and K, where we take the liberty of
writing a curried function directly in our language.

fun compose (f:’a -> ’b) (k:’b cont) : ’a cont is
callcc r =>

throw (f (callcc k1 => throw k1 to r)) to k
end

In order to verify the correctness of this function, we can just calculate,
using the operational semantics, what happens when compose is applied
to two values F and K under some stack K0. This is a very useful exercise,
because the correctness of many opaque functions can be verified in this
way (and many incorrect functions discovered).

LECTURE NOTES SEPTEMBER 30, 2004

L10.6 Continuations

K0 > apply (apply (compose, F),K)
7→∗

c K0 > callcc (r.throw (, apply (F, callcc (k1.throw (, k1, r))),K))
7→c K0 > throw (, apply (F, callcc (k1.throw (, k1, cont (K0)))),K)
7→c K0 . throw (,�,K) > apply (F, callcc (k1.throw (, k1, cont (K0))))
7→∗

c K0 . throw (,�,K) . apply (F,�) > callcc (k1.throw (, k1, cont (K0)))

At this point, we define

K1 = K0 . throw (,�,K) . apply (F,�)

and continue
7→c K1 > throw (,K1, cont (K0))
7→c K0 < K1

By looking at K1 we can see hat it exactly satisfies our specification.
Interestingly, K3 from our earlier motivation turns out to be K0, the con-
tinuation in effect at the evaluation of compose. Note that if F terminates
normally, then that part of the continuation is discarded because K is in-
stalled instead as specified. However, if F raises an exception, control is
returned back to the point where the compose was called, rather than to
the place where the resulting continuation was invoked (at least in our se-
mantics). This is an example of the rather unpleasant interactions that can
take place between exceptions and continuations.

See the code3 for a rendering of this in Standard ML of New Jersey,
where we have slightly different primitives. The translations are as given
below. Note that, in particular, the arguments to throw are reversed which
may be significant in some circumstances because of the left-to-right eval-
uation order.

Concrete MinML Abstract MinML SML of NJ

callcc x => e callcc (x.e) callcc (fn x => e)
throw e1 to e2 throw (e1, e2) throw e2 e1

For a simpler and quite practical example for the use of continuation
refer to the implementation of threads given in the textbook [Ch. 12.3]. A
runnable version of this code can be found at the same location as the ex-
ample above.

3http://www.cs.cmu.edu/˜fp/courses/312/code/10-continuations/

LECTURE NOTES SEPTEMBER 30, 2004

Supplementary Notes on
Parametric Polymorphism

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 11
September 30, 2003

After an excursion into advanced control constructs, we return to the
basic questions of type systems in the next couple of lectures. The first
one addresses a weakness of the language we have presented so far: every
expression has exactly one type. Some functions (such as the identity func-
tion fn x => x) should clearly be applicable at more than one type. We
call such function polymorphic. We later distinguish two principal forms of
polymorphism, namely parameteric and ad hoc polymorphism.

Briefly, a polymorphic construct is said to be parametric if it behaves the
same at all its types. The identity function is an example of a function that
is parametric in this sense. A function such as addition also has more than
one type, at least + : int * int -> int and + : float * float
-> float , but the function behaves differently at these two types: one
implementation manipulates floating point representations the other inte-
gers.

Besides pure functions, there are many data structure (such as lists)
whose element types should be arbitrary. We achieved this so far by mak-
ing lists primitive in the language, but this trick does not extend when we
try to write interesting programs over lists. For example, the following map
function is clearly too specalized.

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

L11.2 Parametric Polymorphism

rec map : (int -> bool) -> int list -> bool list =>
fn f : int -> bool =>

fn l : int list =>
case l

of nil => nil[bool]
| cons(x,l’) => cons(f(x),map f l’)

It should work for any f : τ → σ, l : τ list and return a result of type
σ list . The importance of this kind of generic programming varies from
language to language and application to application. It has always been
considered central in functional programming in order to avoid unneces-
sary code duplication. In object-oriented programming it does not appear
as critical, because subtyping and the class hierarchy allow some form of
polymorphic programming. Nonetheless, the Java language has recently
decided to add “generics” to its next revision—we will discuss later how
this relates to parametric polymorphism as we present it here.

There are different ways to approach polymorphism. In its intrinsic
form we allow polymorphic functions, but we are careful to engineer the
language so that every function still has a unique type. This may sound
contradictory, but it is in fact possible with a suitable extension of the ex-
pression language. In its extrinsic form, we allow an expresson to have
multiple types, but we ensure that there is a principal type that subsumes
(in a suitable sense) all other types an expression might have. The poly-
morphism of ML is extrinsic; nonetheless, we present it in its intrinsic form
first.

The idea is to think of the map function above not only takes f and l
as arguments, but also the type τ and σ. Fortunately, this does not mean
we actually have to pass them at run-time, as we discuss later. We write
Fn t => e for a function that take a type as an argument. The (bound) type
variable t stands for that argument in the body, e. The type of such a func-
tion is written a ∀t.τ , where τ is the type of the body. To apply a function
e to a type argument τ (called instantiation), we write e [τ] . We also in-
troduce a short, mathematical notation for functions that are not recursive,
called λ-abstraction.

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

Parametric Polymorphism L11.3

Concrete Abstract Mathematical

All t. τ All (t.τ) ∀t.τ
Fn t => e Fn(t.e) Λt.e
e [τ] Inst (e, τ) e[τ]

fn x: τ => e fn (τ, x.e) λx:τ. e

Using this notation, we can rewrite the example above.

Fn t => Fn s =>
rec map : (t -> s) -> t list -> s list =>

fn f : t -> s =>
fn l : t list =>

case l
of nil => nil[s]

| cons(x,l’) => cons(f(x),map f l’)

In order to formalize the typing rules, recall the judgment τ type. So far,
this judgment was quite straightforward, with rules such as

τ1 type τ2 type

arrow (τ1, τ2) type

τ type

list (τ) type int type

Now, types may contain type variables. An example is the type of the
identity function, which is ∀t.t → t, or the type of the map function, which
is ∀t.∀s.(t → s) → list (t) → list (s). So the typing judgment becomes
hypothetical, that is, we may reason from assumption t type for variables t.
In all the rules above, they are simply propagated (we show the example of
the function type). In addition, we have new rule for universal quantifica-
tion.

τ1 type τ2 type

arrow (τ1, τ2) type

Γ, t type ` τ type

Γ ` All (t.τ) type

In addition, the notion of hypothetical judgments yields the rule for
type variables

Γ1, t type,Γ2 ` t type

and a substitution property.

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

L11.4 Parametric Polymorphism

Lemma 1 (Type Substitution in Types)
If Γ1 ` τ type and Γ1, t type,Γ2 ` σ type then Γ1, {τ/t}Γ2 ` {τ/t}σ type.

This is the idea behind higher-order abstract syntax and hypothetical
judgments, applied now to the language of types. Note that even though
we wrote Γ above, only assumptions of the form t type will actually be
relevant to the well-formedness of types.

Now we can present the typing rules proper.

Γ, t type ` e : σ

Γ ` Fn(t.e) : All (t.σ)

Γ ` e : All (t.σ) Γ ` τ type

Γ ` Inst (e, τ) : {τ/t}σ

Let us consider the example of the polymorphic identity function to
understand the substitution taking place in the last rule. You should read
this derivation bottom-up to understand the process of type-checking.

t type, x:t ` x : t
t type ` fn (t, x.x) : arrow (t, t)

· ` Fn(t.fn (t, x.x)) : All (t.arrow (t, t))

If we abbreviate the identity function by id then it must be instantiated
by (apply to) a type before it can be applied to an expression argument.

· ` id : ∀t.t → t
· ` id [int] : int → int
· ` id [int] 3 : int

· ` id : ∀t.t → t
· ` id [bool] : bool → bool
· ` id [bool] true : bool

· ` id : ∀t.t → t
· ` id [int] : int → int
· 6` id [int] true : int

Using mathematical notation:

t type, x:t ` x : t
t type ` λx:t. x : t → t

· ` Λt. λx:t. x : ∀t.t → t

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

Parametric Polymorphism L11.5

As should be clear from these rules, assumptions of the form t type
also must appear while typing expression, since expressions contain types.
Therefore, we need a second substitution property:

Lemma 2 (Type Substitution in Expressions)
If Γ1 ` τ type and Γ1, t type,Γ2 ` e : σ then Γ1, {τ/t}Γ2 ` {τ/t}e : {τ/t}σ.

Note that we must substitute into Γ2, because the type variable t may
occur in some declaration x:σ in Γ2.

In the operational semantics we have a choice on whether to declare a
type abstraction Fn t => e to be a value, or to reduce e. Intuitively, the latter
cannot get stuck because t is a type variable not an ordinary variable, and
therefore is never needed in evaluation. Even though it seems consistent,
we know if now language that supports such evaluation in the presence of
free type variables. This decision yields the following rules:

Fn(t.e) value

Inst (Fn(t.e), τ) 7→ {τ/t}e
e 7→ e′

Inst (e, τ) 7→ Inst (e′, τ)

From this it is routine to prove the progress and preservation theorems.
For preservation, we need the type substitution lemmas stated earlier in
this lecture. For progress, we need a new value inversion property.

Lemma 3 (Polymorphic Value Inversion)
If · ` v : All (t.τ) and v value then v = Fn(t.e′) for some e′.

Theorem 4 (Preservation)
If · ` e : τ and e 7→ e′ then · ` e′ : τ .

Proof: By rule induction on the transition derivation for e. In the case of
the reduction of a polymorphic function to a type argument, we need the
type substitution property. �

Theorem 5 (Progress)
If · ` e : τ then either

(i) e value, or

(ii) e 7→ e′ for some e′

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

L11.6 Parametric Polymorphism

Proof: By rule induction on the typing derivation for e. We need poly-
morphic value inversion to show that all cases for a type instantiation are
covered. �

In our language the polymorphism is parametric, which means that the
operation of a polymorphic function is independent of the type that it is ap-
plied to. Formalizing this observation requires some advanced techniques
that we will not discuss in this course.

This can be contrasted with ad hoc polymorphism, in which the func-
tion may compute differently at different types. For example, if the func-
tion + is overloaded, so it has type int × int → int and also type
float × float → float , then we need to have two different implemen-
tations of the function. Another example may be a toString function
whose behavior depends on the type of the argument.

Parametric polymorphism can often be implemented in a way that avoids
carrying types at run-time. This is important because we do not want poly-
morphic functions to be inherently less efficient than ordinary functions.
ML has the property that all polymorphic functions are parametric with
polymorphic equality as the only exception. Ignoring polymorphic equal-
ity, this means we can avoid carrying type information at run-time. In prac-
tice, some time information is usually retained in order to support garbage
collection or some optimization. How to best implement polymorphic lan-
guages is still an area of active research.

ML-style polymorphism is not quite as general as the one described
here. This is so that polymorphic type inference remains decidable and has
principal types. See [Ch 20.2] for a further discussion. We will return to the
issue of type inference later in this course.

Parametric polymorphism, even in the restricted form in which it is
present in ML, can be dangerous when the language also has effects such
as mutable references. The most straightforward rules for polymorphism
in its extrinsic form (where expressions have multiple types) are

Γ, t type ` e : σ e value

Γ ` e : All (t.σ)

Γ ` e : All (t.σ) Γ ` τ type

Γ ` e : {τ/t}σ

The only change to the previous system is that we do not allow types in
expressions, and that the expression e remains the same for type abstraction

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

Parametric Polymorphism L11.7

and application. In this system, when the language includes effects, the
generalization rule must be restricted to values or it will be unsound. The
prototypical example is the following ML code:

let val r = ref (fn x => x)
in

r := (fn x => x + 1);
(!r) true

end

Even though (fn x => x) : α → α we can not conclude that r :
∀α.(α → α)ref. If that were allowed, both the assignment to r and the
dereferencing of r would be well-typed, even though the code obviously
violates types safety. In our rule above, the restriction of e to values would
rule out this generalation (ref (fn x => x) is not a value).

SUPPLEMENTARY NOTES SEPTEMBER 30, 2003

Lecture Notes on
Data Abstraction

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 12
October 7, 2004

One of the most important ideas in programming is data abstraction. It
refers to the property that clients of library code cannot access the internal
data structures of the library implementation. The implementation remains
abstract. Data abstraction is inherently a static property, that is, a property
that must be verified before the program is run. This is because during
execution the internal data structures of the library are, of course, present
and must be manipulated by the running code. Hence, data abstraction is
very closely tied to type-checking [Ch. 21].

Modern languages, such as ML and Java, support data abstraction, al-
though the degree to which it is supported (or how easy it is to achieve)
varies. Lower-level languages such as C do not support data abstraction
because various unsafe constructs can be exploited in order to expose repre-
sentations. This can have the undesirable effect that authors of widely used
library code cannot change their implementations because such a change
would break client code. Furthermore, ill-behaved clients can change the
representation of a data type, potentially breaking the internal invariants of
the library. Even the presence of a well-documented application program-
mers interface (API) is not much help if it can be easily circumvented due
to weaknesses in the programming language.

In ML, abstraction is supported primarily at the level of modules. This
can be justified in two ways: first, data abstraction is mostly a question of
program interfaces and therefore it arises naturally at the point where we
have to consider program composition and modules. Second, the ML core
language has been carefully designed so that no type information needs
to be supplied by the programmer: full type inference is decidable. In the
presence of data abstraction this no longer makes sense since, as we will

SUPPLEMENTARY NOTES OCTOBER 7, 2004

L12.2 Data Abstraction

see, an implementation does not uniquely determine its interface.
So how is data abstraction enforced in ML? Consider the following

skeletal signature, presenting a very simple interface to an implementation
of queues containing only integers.

signature QUEUE =
sig

type q
val empty : q
val enq : int * q -> q
val deq : q -> q * int (* may raise Empty *)

end;

This signature declares a type q which is abstract (no implementation
of q is given). It then presents three operations on elements of this type. An
implementation of this interface is a structure that matches the signature.
Here is an extremely inefficient one.

structure Q :> QUEUE =
struct

type q = int list
val empty = nil
fun enq (x,l) = x::l
fun deq l = deq’ (rev l)
and deq’ (y::k) = (rev k, y)

| deq’ (nil) = raise Empty
end;

Note that we use opaque ascription :> QUEUE, which is Standard ML’s
way to guarantee data abstraction. No client can see the definition of the
type Q.q . For example, the last line in the following example fails type-
checking.

val q21 = Q.enq (2, Q.enq (1, Q.empty));
val (q2, 1) = Q.deq q21;
val = hd q21; (* TYPE ERROR HERE *)

SUPPLEMENTARY NOTES OCTOBER 7, 2004

Data Abstraction L12.3

This is because hd can operate only on lists, while q21 is only known to
have type Q.q . The implementation of Q.q as int list is hidden from
the type-checker in order to ensure data abstraction. This means we can
replace Qwith a more efficient implementation by a pair of lists,

structure Q :> QUEUE =
struct

type q = int list * int list
val empty = (nil, nil)
fun enq (x, (back, front)) = (x::back, front)
fun deq (back, x::front) = ((back, front), x)

| deq (back as :: , nil) = deq (nil, rev back)
| deq (nil, nil) = raise Empty

end;

and any client code will continue to work (although it may now work much
faster).

In order to avoid the complications of a full module system, we intro-
duce existential types ∃t.τ , where t is a bound type variable. t represents the
abstract type and τ represents the type of the operations on t. Returning to
the example, the signature

signature QUEUE =
sig

type q
val empty : q
val enq : int * q -> q
val deq : q -> q * int (* may raise Empty *)

end;

is represented by the type

∃q.q × (int × q → q)× (q → q × int).

Except for the missing names empty , enq , and deq , this carries the same
information as the signature.

A value of an existential type is a tuple whose first component is the im-
plementation of the type, and the second component is an implementation
of the operations on that type. We write this as pack (σ, e). For the sake of
brevity, we show only part of the example:

SUPPLEMENTARY NOTES OCTOBER 7, 2004

L12.4 Data Abstraction

structure Q :> QUEUE =
struct

type q = int list
val empty = nil
...

end;

is represented as

pack (int list , pair (nil , . . .)) : ∃q.q × · · ·

In contrast, the second implementation

structure Q :> QUEUE =
struct

type q = int list * int list
val empty = (nil, nil)
fun enq (x, (back, front)) = (x::back, front)
fun deq (back, x::front) = ((back, front), x)

| deq (back as :: , nil) = deq (nil, rev back)
| deq (nil, nil) = raise Empty

end;

looks like

pack (int list × int list , pair (pair (nil , nil), . . .)) : ∃q.q × · · ·

From these examples we can deduce the typing rules. First, existential
types introduce a new bound type variable.

Γ, t type ` τ type

Γ ` ∃t.τ type

Second, the package that implements an existential type requires that the
operations on the type respect the definition of the type. This is modeled
in the rule by substituting the implementation type for the type variable in
the body of the existential.

Γ ` σ type Γ ` e : {σ/t}τ
Γ ` pack (σ, e) : ∃t.τ

SUPPLEMENTARY NOTES OCTOBER 7, 2004

Data Abstraction L12.5

For example, if we take the first implementation above, the first two
lines below justify the third.

· ` int list type
· ` pair (nil , . . .) : int list × · · ·
· ` pack (int list , pair (nil , . . .)) : ∃q.q × · · ·

In the second implementation, we need the implementation of q to have
type int list × int list .

· ` int list × int list type
· ` pair (pair (nil , nil), . . .) : (int list × int list)× · · ·
· ` pack (int list × int list , pair (pair (nil , nil), . . .)) : ∃q.q × · · ·

Next we have to consider how make the implementation of an abstract
type available. In ML, a structure is available when a definition structure
S = ... is made at the top level. Here, we need an explicit construct to
open a package to make it available to a client. Given a package e : ∃t.τ , we
write open (e, t.x.e′) to make e available to the client e′. Here, t is a bound
type variable that refers to the abstract type (and remains abstract in e′) and
x is a bound variable that stands for the implementation of the operations
on the type. In our example, fst (e) denotes the implementation of empty ,
fst (snd (e)) stands for the implementation of enq , etc.

This leads us to the following rule:

Γ ` e : ∃t.τ Γ, t type, x:τ ` e′ : σ Γ ` σ type

Γ ` open (e, t.x.e′) : σ

We have added the explicit premise that Γ ` σ type to emphasize that t
must not occur already in Γ or σ: every time we open a package, or multi-
ple package, we obtain a new type, different from all types already known.
This generativity means that even multiple instances of the exact same struc-
ture are not recognized to have the same implementation type: any one of
them could be replaced by another one without affecting the correctness of
the client code.

The property of data abstraction can be seen in the rule above: the code
e′ can use the library code e, but during type-checking only a type vari-
able t is visible, not the implementation type. This means the code in e′ is
parametric in t, which guarantees data abstraction.

The operational semantics is straightforward and does not add any new
ideas to those previously discussed. This confirms that the importance

SUPPLEMENTARY NOTES OCTOBER 7, 2004

L12.6 Data Abstraction

of data abstraction lies in compile-time type-checking, not in the runtime
properties of the language.

e 7→ e′

pack (τ, e) 7→ pack (τ, e′)
v value

pack (τ, v) value

e1 7→ e′
1

open (e1, t.x.e2) 7→ open (e′
1, t.x.e2)

v1 value

open (pack (τ, v1), t.x.e2) 7→ {v1/x}{τ/t}e2

Observe that before the evaluation of the body of an open expression,
we substitute τ for t, making the abstract type concrete. However, we know
that e2 was type-checked without knowing τ , so this does not violate data
abstraction.

The progress and preservation theorems do not introduce any new ideas.
For the type substitution we need a type substitution property that was
given in Lecture 11 on Parametric Polymorphism.

Combining parametric polymorphism and data abstraction, that is, uni-
versal and existential types can be interesting and fruitful. For example,
assume we would like to allows queues to have elements of arbitrary type
s. This would be specified as

∀a.∃q.q × (a× q → q)× (q → q × a).

For example, the implementation of a queue by a single list would then
have the form

Fn(a.pack (a list , 〈Inst (nil , a), . . .〉))

Note that the type

∃q.∀a.q × (a× q → q)× (q → q × a)

would be incorrect, because we cannot choose the implementation type for
q before we know the type a.

As another example, assume we want to widen the interface to also
export double-ended queues q’ with some additional operations that we
leave unspecified here. Then the type would have the form

∃q.∃q′.q × q′ × · · · .

SUPPLEMENTARY NOTES OCTOBER 7, 2004

Data Abstraction L12.7

The implementation would provide definitions for both q and q′, as in

pack (int list , pack (int list , . . .)).

Next we return to the question of type-checking. Consider1

pack (int , pair (fn (int , x.x + 1), fn (int , x.x− 1))).

This package has 16 different types; we show four of them here:

∃t.(t → t)× (t → t)
∃t.(int → t)× (t → int)
∃t.(t → int)× (int → t)
∃t.(int → int)× (int → int)

While not all of these are meaningful, they are all different and the type-
checker has no way of guessing which one the programmer may have
meant. This is inherent: an implementation does not determine its inter-
face. However, we can check an implementation against an interface, which
is precisely what bi-directional type-checking achieves. We have not for-
mally presented the technique in these notes and postpone its discussion
for now.

1using infix notation for addition and subtraction

SUPPLEMENTARY NOTES OCTOBER 7, 2004

Lecture Notes on
Recursive Types

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 13
October 12, 2004

In the last two lectures we have seen two critical concepts of program-
ming languages: parametric polymorphism (modeled by universal types)
and data abstraction (modeled by existential types). These provide quan-
tification over types, but they do not allow us to define types recursively.
Clearly, this is needed in a practical language. Common data structures
such as lists or trees are defined inductively, which is a restricted case of
general recursion in the definition of types [Ch. 19.3].

So far, we have considered how to add a particular recursive type, namely
lists, to our language as a primitive by giving constructors (nil and cons),
a discriminating destructor (listcase). For a realistic language, this ap-
proach is unsatisfactory because we would have to extend the language
itself every time we needed a new data type. Instead we would like to
have a uniform construct to define new recursive types as we need them.
In ML, this is accomplished with the datatype construct. Here we use
a somewhat lower-level primitive—we return to the question how this is
related to ML at the end of this lecture.

As a first, simple non-recursive example, consider how we might imple-
ment a three-element type.

datatype Color = Red | Green | Blue;

LECTURE NOTES OCTOBER 12, 2004

L13.2 Recursive Types

Using the singleton type 1 (unit , in ML), we can define

Color = 1 + (1 + 1)
Red : Color = inl ()
Green : Color = inr(inl ())
Blue : Color = inr(inr ())
ccase : ∀s.Color → (1 → s) → (1 → s) → (1 → s) → s

= Λs.λc.λy1.λy2.λy3.
case c

of inl(c1) ⇒ y1 c1

| inr(c2) ⇒ case c2

of inl(z2) ⇒ y2 z2

| inr(z3) ⇒ y3 z3

Recall the notation λx.e for a non-recursive function and Λt.e for a type
abstraction. The ccase constructs invokes one of its arguments y1, y2, or y3,
depending on whether the argument c represents red, green, or blue.

If we try to apply the technique, for example, to represent natural num-
bers as they would be given in ML by

datatype Nat = Zero | Succ of Nat;

we would have
Nat = 1 + (1 + (1 + · · ·))

where
n : Nat = inr(. . . (inr(︸ ︷︷ ︸

n times

inl ())))

In order to make this definition recursive instead of infinitary we would
write

Nat ' 1 + Nat

where we leave the mathematical status of ' purposely vague, but one
should read τ ' σ as “τ is isomorphic to σ”. Just as with the recursion at the
level of expressions, it is more convenient to write this out as an explicit
definition using a recursion operator.

Nat = µt.1 + t

We can unwind a recursive type µt.σ to {µt.σ/t}σ to obtain an isomorphic
type.

Nat = µt.1 + t ' {µt.1 + t/t}1 + t = 1 + µt.1 + t = 1 + Nat

LECTURE NOTES OCTOBER 12, 2004

Recursive Types L13.3

In order to obtain a reasonable system for type-checking, we have con-
structors and destructors for recursive types. They can be considered “wit-
nesses” for the unrolling of a recursive type.

Γ ` e : {µt.τ/t}τ Γ ` µt.τ type

Γ ` roll(e) : µt.τ

Γ ` e : µt.τ

Γ ` unroll(e) : {µt.τ/t}τ

The operational semantics and values are straightforward; the difficulty
of recursive types lies entirely in the complexity of the substitution that
takes place during the unrolling of a recursive type.

e 7→ e′

roll(e) 7→ roll(e′)
v value

roll(v) value

e 7→ e′

unroll(e) 7→ unroll(e′)
v value

unroll(roll(v)) 7→ v

Now we can go back to the definition of specific recursive types, using
natural numbers built from zero and successor as the first example.

Nat = µt.1 + t
Zero : Nat = roll(inl ())
Succ : Nat → Nat = λx.roll(inr x)
ncase : ∀s.Nat → (1 → s) → (nat → s) → s

= Λs.λn.λy1.λy2.
case unroll(n)

of inl(z1) ⇒ y1 z1

| inr(z2) ⇒ y2 z2

In the definition of ncase we see that z1 : 1 and z2 : Nat , so that y2 is really
applies to the predecessor of n, while y1 is just applied to the unit element.

Polymorphic recursive types can be defined in a similar manner. As an
example, we consider lists with elements of type r.

r List = µt.1 + r × t
Nil : ∀r.r List

= Λr.roll(inl ())
Cons : ∀r.r × r List → r List

= Λs.λp.roll(inr p)
lcase : ∀s.∀r.r List → (1 → s) → (r × r List → s) → s

= Λs.Λr.λl.λy1.λy2.
case unroll(l)

of inl(z1) ⇒ y1 z1

| inr(z2) ⇒ y2 z2

LECTURE NOTES OCTOBER 12, 2004

L13.4 Recursive Types

If we go back to the first example, it is easy to see that representation of
data types does not quite match their use in ML. This is because we can see
the complete implementation of the type, for example, Color = 1 + (1 + 1).
This leads to a loss of data abstraction and confusion between different data
types. Consider another ML data type

Answer = Yes | No | Maybe;

This would also be represented by

Answer = 1 + (1 + 1)

which is the same as Color . Perhaps this does not seem problematic until
we realize that Yes = Red! This is obviously meaningless and creates in-
compatibilities, for example, if we decide to change the order of definition
of the elements of the data types.

Fortunately, we already have the tool of data abstraction to avoid this
kind of confusion. We therefore combine recursive types with existential types
to model the datatype construct of ML. Using the first example,

datatype Color = Red | Green | Blue;

we would represent this

∃c.c× c× c× ∀s.c → (1 → s) → (1 → s) → (1 → s) → s

The implementation will have the form

pack (1 + (1 + 1), pair (inl (), pair (inr(inl ()), . . .)))

Upon opening an implementation of this type we can give its components
the usual names. With this strategy, Color and Answer can no longer be
confused.

We close this section with a curiosity regarding recursive types. We
can use them to type a simple, non-terminating expression that does not
employ recursive functions! The pure λ-calculus version of this function is
(λx.x x) (λx.x x). Our example is just slight more complicated because of
the need to roll and unroll recursive types.

LECTURE NOTES OCTOBER 12, 2004

Recursive Types L13.5

We define

ω = µt.t → t
x:ω ` unroll(x) : ω → ω
x:ω ` unroll(x) x : ω
· ` λx.unroll(x) x : ω → ω
· ` roll(λx.unroll(x) x) : ω
· ` (λx.unroll(x) x) roll(λx.unroll(x) x) : ω

When we execute this term we obtain

(λx.unroll(x) x) roll(λx.unroll(x) x)
7→ unroll(roll(λx.unroll(x) x)) (roll(λx.unroll(x) x))
7→ (λx.unroll(x) x) (roll(λx.unroll(x) x))

so it reduces to itself in two steps.
While we will probably not prove this in this course, recursive types are

necessary for such an example. For any other (pure) type construct we have
introduced so far, all functions are terminating if we do not use recursion
at the level of expressions.

LECTURE NOTES OCTOBER 12, 2004

Lecture Notes on
Subtyping

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 14
October 19, 2004

Subtyping is a fundamental idea in the design of programming lan-
guages. It can allow us to write more concise and readable programs by
eliminating the need to convert explicitly between elements of types. It can
also be used to express more properties of programs. Finally, it is absolutely
fundamental in object-oriented programming where the notion of subclass
is closely tied to the notion of subtype.

Which subtyping relationships we want to integrate into a language
depends on many factors. Besides some theoretical properties we want
to satisfy, we also have to consider the pragmatics of type-checking and
the operational semantics. In this lecture we are interested in isolating the
fundamental principles that must underly various forms of subtyping. We
will then see different instances of how these principles can be applied in
practice.

We write τ ≤ σ to express that τ is a subtype of σ. The fundamental
principle of subtyping says:

If τ ≤ σ then wherever a value of type σ is required, we can use a
value of type τ instead.

This can be refined into two more specific statements, depending on the
form of subtyping used.

Subset Interpretation. If τ ≤ σ then every value of type τ is also a
value of type σ.

LECTURE NOTES OCTOBER 19, 2004

L14.2 Subtyping

As an example, consider both empty and non-empty lists as subtypes
of the type of lists. This is because an empty list is clearly a list, and a non-
empty lists is also a list. One can see that with a subset interpretation of
subtyping one can track properties of values.

Coercion Interpretation. If τ ≤ σ then every value of type τ can be
converted (coerced) to a value of type σ in a unique way.

As an example, consider integers as a subtype of floating point num-
bers. This interpretation is possible because there is a unique way we can
convert an integer to a corresponding floating point representation (ignor-
ing questions of size bounds). Therefore, coercive subtyping allows us to
omit explicit calls to functions that perform the coercion. However, we
have to be careful to guarantee the coerced value is unique, because oth-
erwise the result of a computation may be ambiguous. For example, if
we want to say that both integers and floating point numbers are also a
subtype of strings, and the coercion yields the printed representation, we
violate the uniqueness guarantee. This is because we can coerce 3 to "3"
since int ≤ string or 3 to 3.0 and then to "3.0" using first int ≤ float and
then float ≤ string. We call a language that satisfies the uniqueness property
coherent; incoherent languages are poor from the design point of view and
can lead to many practical problems. We therefore require the coherence
from the start.

Note that both forms of subtyping satisfy the fundamental principle,
but that the coercion interpretation is more difficult to achieve than subset
interpretation, because we have to verify uniqueness of coercions. Because
it is somewhat richer, we concentrate in this lecture on working out a con-
crete system of subtyping under the coercion interpretation.

First, some general laws that are independent of whether we choose a
subset or coercion interpretation. The defining property of subtyping can
be expressed in the calculus by the rule of subsumption.

Γ ` e : τ τ ≤ σ
Γ ` e : σ

subsume

Secondly, we have reflexivity and transitivity of subtyping.

τ ≤ τ
refl

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
trans

Let us carefully justify these principles. Under the subset interpretation
τ ≤ τ follows from A ⊆ A for any set of values A. Transitivity follows from

LECTURE NOTES OCTOBER 19, 2004

Subtyping L14.3

the transitivity of the subset relation. Under the coercion interpretation,
the identity function coerces from τ to τ for any τ . And we can validate
transitivity by composition of functions.

To make the latter considerations concrete, we annotate the subtyping
judgment with a coercion and we calculate this coercion in each case. We
write f : τ ≤ σ is f is a coercion from τ to σ. Note that coercions f are
always closed, that is, contain no free variables, so no context is necessary.

λx.x : τ ≤ τ
refl

f : τ1 ≤ τ2 g : τ2 ≤ τ3

λx.g(f(x)) : τ1 ≤ τ3
trans

The three laws we have are essentially all the general laws that can be
formulated in this manner. Coherence is stated in a way that is similar to a
substitution principle.

Coherence. If f : τ ≤ σ and g : τ ≤ σ then f ' g : τ → σ.

Here, extensional equality f ' g : τ is defined inductively on type τ .
Note that all coercions should terminate and not have any effects. We show
the cases for functions, pairs, and primitive types.

1. e ' e′ : int if e 7→∗ num(n) and e′ 7→∗ num(n′) and n = n′.

2. e ' e′ : τ1 × τ2 if fst (e) ' fst (e′) : τ1 and snd (e) ' snd (e′) : τ2.

3. e ' e′ : τ1 → τ2 if for any e1 ' e′
1 : τ1 we have e e1 ' e′ e′

1 : τ2.

As a particular example of subtyping, consider int ≤ float. We call the
particular coercion itof : int→ float.

int ≤ float itof : int ≤ float

In order to use these functions, consider two versions of the addition
operation: one for integers and one for floating point numbers. We avoid
overloading here, which is subject of another lecture.

Γ ` e1 : int Γ ` e2 : int
Γ ` e1 + e2 : int

Γ ` e1 : float Γ ` e2 : float
Γ ` e1 +. e2 : float

Now an expression such as 2 + 3.0 is ill-typed, since the second argu-
ment is a floating point number and floating point numbers in general can-
not be coerced to integers. However, the expression 2 +. 3.0 is well-typed

LECTURE NOTES OCTOBER 19, 2004

L14.4 Subtyping

because the first argument 2 can be coerced to the floating point number
2.0 by applying itof. Concretely:

` 2 : int int ≤ float
` 2 : float ` 3.0 : float

` 2 +. 3.0 : float

So far we have avoided a discussion of the operational semantics, but
we can see that (a) under the subset interpretation the operational seman-
tics remains the same as without subtyping, and (b) under the coercion in-
terpretation the operational semantics must apply the coercion functions.
That is, we cannot define the operational semantics directly on expressions,
because only the subtyping derivation will contain the necessary infor-
mation on how and where to apply the coercions. We do not formalize
the translation from subtyping derivations with coercions to the language
without, but we show it by example. In the case above we have

` 2 : int itof : int ≤ float

` itof(2) : float ` 3.0 : float

` itof(2) +. 3.0 : float

The subsumption rule with annotations then looks like

Γ ` e : τ f : τ ≤ σ

Γ ` f(e) : σ

so we interpret f : τ ≤ σ as f : τ → σ. However, typing derivations
are not unique. As written, however, it is not quite right because the source
code does not contain f , only the result of type checking. This process is
generally called elaboration and will occupy us further in the next section.
Writing out coercions as we did above, we could have

` 2 : int

λx.x : int ≤ int itof : int ≤ float

λy.itof((λx.x)(y)) : int ≤ float

` (λy.itof((λx.x)(y)))(2) : float ` 3.0 : float

` (λy.itof((λx.x)(y)))(2) +. 3.0 : float

This alternative compilation will behave identically to the first one, itof
and λy.itof((λx.x)(y)) are observationally equivalent. To see this, apply
both sides to a value v. Then the one side yiels itof(v), the other side

(λy.itof((λx.x)(y)))v 7→ itof((λx.x)v) 7→ itof(v)

LECTURE NOTES OCTOBER 19, 2004

Subtyping L14.5

The fact that the particular chosen typing derivation does not affect the
behavior of the compiled expressions (where coercions are explicit) is the
subject of the coherence theorem for a language. This is a more precise ex-
pression of the “uniqueness” required in the defining property for coercive
subtyping.

At this point we have general laws for typing (subsumption) and sub-
typing (reflexivity and transitivity). But how does subtyping interact with
pairs, functions, and other constructs? We start with pairs. We can coerce a
value of type τ1×τ2 to a value of type σ1×σ2 if we can coerce the individual
components appropriately. That is:

τ1 ≤ σ1 τ2 ≤ σ2

τ1 × τ2 ≤ σ1 × σ2

With explicit coercions:

f1 : τ1 ≤ σ1 f2 : τ2 ≤ σ2

λp.pair (f1(fst (p)), f2(snd (p))) : τ1 × τ2 ≤ σ1 × σ2

Functions are somewhat trickier. We know that int ≤ float. It should
therefore be clear that int → int ≤ int → float, because we can coerce the
output of the function of the left to the required output for the function on
the right. So

λh.λx.itof(h(x)) : int→ int ≤ int→ float

Perhaps surprisingly, we have

float→ int ≤ int→ int

because we can obtain a function of the type on the right from a function
on the left by coercing the argument:

λh.λx.h(itof(x)) : float→ int ≤ int→ int

Putting these two ideas together we get

λh.λx.itof(h(itof(x))) : float→ int ≤ int→ float

In the general case, we obtain the following rule:

σ1 ≤ τ1 τ2 ≤ σ2

τ1 → τ2 ≤ σ1 → σ2

LECTURE NOTES OCTOBER 19, 2004

L14.6 Subtyping

With coercion functions:

f1 : σ1 ≤ τ1 f2 : τ2 ≤ σ2

λh.λx.f2(h(f1(x))) : τ1 → τ2 ≤ σ1 → σ2

The fact that the subtyping relationship flips in the left premise is called
contravariance. We say that function subtyping is contravariant in the argu-
ment and covariant in the result. Subtyping of pairs, on the other hand, is
covariant in both components.

Mutable reference can be neither covariant nor contravariant. As simple
counterexamples, consider the following pieces of code.

The first one assumes that τ ref ≤ σ ref if σ ≤ τ , that is reference sub-
typing is contravariant.

let val r = ref 2.1 (* r : float ref *)
in

!r
end : int (* using float ref <: int ref *)

Clearly, this is incorrect and violates preservation.
Conversely if we assume subtyping is covariant, that is, τ ref ≤ σ ref if

τ ≤ σ, then

let val r = ref 3 (* r : int ref *)
in

r := 2.1; (* using int ref <: float ref *)
!r

end : int

To avoid these counterexamples we make mutable references non-variant.

τ ≤ σ σ ≤ τ
τ ref ≤ σ ref

More detailed analyses of references are possible. In particular, we can
decompose them into “sources” from which we can only read and “sinks”
to which we can only write. Sources are covariant and sinks are contravari-
ant. Since we can both read from and write to mutable references, they
must be non-variant. We will not develop this formally here.

Note that non-variance of references is an important issue in object-
oriented languages. For example, in Java every element of an array acts

LECTURE NOTES OCTOBER 19, 2004

Subtyping L14.7

like a reference and should therefore be non-variant. However, in Java, ar-
rays are co-variant, so run-time checks on types of assigments to arrays or
mutable fields are necessary in order to save type preservation. In particu-
lar, every time one writes to an array of objects in Java, a dynamic tag-check
is required, because arrays are co-variant in the element type. Fortunately,
this is possible because in Java and other object-oriented languages there
is enough information at run-time to perform this check reasonably effi-
ciently.

There are other type constructors that must be non-variant. For exam-
ple, if we define (in ML)

datatype ’a func = F of ’a -> ’a

then the rule
τ ≤ σ σ ≤ τ
τ func ≤ σ func

is forced by the occurrence of ’a in both a co-variant and contra-variant
position in the argument to the constructor F.

Conversely, a type such as

datatype ’a singleton = Unit of unit

has only a single element, Unit , independently of the instantiation of ’a .
Therefore we can pose, for arbitrary τ and σ, that

τ singleton ≤ σ singleton

without fear of compromising soundness.

LECTURE NOTES OCTOBER 19, 2004

Lecture Notes on
Bidirectional Type Checking

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 17
October 21, 2004

At the beginning of this class we were quite careful to guarantee that
every well-typed expression has a unique type. We relaxed our vigilance a
bit when we came to constructs such as universal types, existential types,
and recursive types, essentially because the question of unique typing be-
came less obvious or, as in the case of existential types, impossible without
excessive annotations.

In this lecture we first recall the notion of modes and mode correctness
that allow us to interpret inference rules as an algorithm. We then apply
this idea to develop an algorithm that propagates type information through
an abstract syntax tree in two directions, allowing for a more natural type-
checking algorithm we call bidirectional.

In either case, it is convenient to think of type checking as the process
of bottom-up construction of a typing derivation. In that way, we can inter-
pret a set of typing rules as describing an algorithm, although some restric-
tion on the rules will be necessary (not every set of rules naturally describes
an algorithm).

The idea behind modes is to label the constituents of a judgment as
either input or output. For example, the typing judgment Γ ` e : τ should
be such that Γ and e are input and τ is output (if it exists). We then have to
check each rule to see if the annotations as input and output are consistent
with a bottom-up reading of the rule. This proceeds as follows, assuming at
first a single-premise inference rule. We refer to constituents of a judgment
as either known or free during a particular stage of proof construction.

1. Assume each input constituent of the conclusion is known.

LECTURE NOTES OCTOBER 21, 2004

L17.2 Bidirectional Type Checking

2. Show that each input constituent of the premise is known, and each
output constituent of the premise is still free (unknown).

3. Assume that each output constituent of the premise is known.

4. Show that each output constituent of the conclusion is known.

Given the intuitive interpretation of an algorithm as proceeding by bottom-
up proof construction, this method of checking should make some sense
intuitively. As an example, consider the rule for functions.

Γ, x:τ1 ` e : τ2

Γ ` fn (τ1, x.e) : τ1 → τ2
FnTyp

with the mode
Γ+ ` e+ : τ−

where we have marked inputs with + and outputs with - .

1. We assume that Γ, τ1, and x.e are known.

2. We show that Γ, x:τ1 and e are known and τ2 is free, all of which
follow from assumptions made in step 1.

3. We assume that τ2 is also known.

4. We show that τ1 and τ2 are known, which follows from the assump-
tions made in steps 1 and 3.

Consequently our rule for function types is mode correct with respect
to the given mode. If we had omitted the type τ1 in the syntax for function
abstraction, then the rule would not be mode correct: we would fail in step
2 because Γ, x:τ1 is not known because τ1 is not known.

For inference rules with multiple premises we analyze the premises
from left to right. For each premise we first show that all inputs are known
and outputs are free, then assume all outputs are known before checking
the next premise. After the last premise has been checked we still have
to show that the outputs of the conclusion are all known by now. As an
example, consider the rule for function application.

Γ ` e1 : τ2 → τ Γ ` e2 : τ2

Γ ` apply (e1, e2) : τ
AppTyp

Applying our technique, checking actually fails:

LECTURE NOTES OCTOBER 21, 2004

Bidirectional Type Checking L17.3

1. We assume that Γ, e1 and e2 are known.

2. We show that Γ and e1 are known and τ2 and τ are free, all which
holds.

3. We assume that τ2 and τ are known.

4. We show that Γ and e2 are known and τ2 is free. This latter check
fails, because τ2 is known at this point.

Consequently have to rewrite the rule slightly. This rewrite should be
obvious if you have implemented this rule in ML: we actually first generate
a type τ ′2 for e2 and then compare it to the domain type τ2 of e1.

Γ ` e1 : τ2 → τ Γ ` e2 : τ ′2 τ ′2 = τ2

Γ ` apply (e1, e2) : τ
AppTyp

We consider all constitutents of the equality check to be input (τ+ = σ+).
This now checks correctly as follows:

1. We assume that Γ, e1 and e2 are known.

2. We show that Γ and e1 are known and τ2 and τ is free, all which holds.

3. We assume that τ2 and τ are known.

4. We show that Γ and e2 are known and τ ′2 is free, all which holds.

5. We assume that τ ′2 is known.

6. We show that τ2 and τ ′2 are known, which is true.

7. We assume the outputs of the equality to be known, but there are no
output so there are no new assumption.

8. We show that τ (output in the conclusion) is known, which is true.

Now we can examine other language constructs and typing rules from
the same perspective to arrive at a bottom-up inference system for type
checking. We forego this exercise here, and instead consider what can be
gained by introducing two mutually recursive judgments: one for expres-
sions that have enough information to synthesize a type, and one for situ-
ations where we know what type to expect so we propagate it downward
in the tree.

LECTURE NOTES OCTOBER 21, 2004

L17.4 Bidirectional Type Checking

Γ+ ` e+ ↑ τ− e synthesizes τ
Γ+ ` e+ ↓ τ+ e checks against τ
τ+ v σ+ τ is a subtype of σ

The subtype judgment is the same as τ ≤ σ, except that we omit the rule
of transitivity which is not mode correct; the other two look significantly
different from a pure synthesis judgment.

Generally, for constructors of a type we can propagate the type informa-
tion downward into the term, which means it should be used in the analysis
judgment e+ ↓ τ+. Conversely, the destructors generate a result of a smaller
type from a constituent of larger type and can therefore be used for synthe-
sis, propagating information upward.

We consider some examples. First, functions. A function constructor
will be checked, and application synthesizes, in accordance with the rea-
soning above.

Γ, x:τ1 ` e ↓ τ2

Γ ` fn (τ1, x.e) ↓ τ1 → τ2

Γ ` e1 ↑ τ2 → τ1 Γ ` e2 ↓ τ2

Γ ` apply (e1, e2) ↑ τ1

Careful checking against the desired modes is required. In particular,
the order of the premises in the rule for application is critical so that τ2 is
available to check e2. Note that unlike in the case of pure synthesis, no
subtype checking is required at the application rule. Instead, this must be
handled implicitly in the definition of Γ ` e2 ↓ τ2. In fact, we will need a
general rule that mediates between the two directions. This rule replaces
subsumption in the general system.

Γ ` e ↑ τ τ v σ

Γ ` e ↓ σ

Note that the modes are correct: Γ, e, and σ are known as inputs in
the conclusion. This means that Γ and e are known and τ is free, so the
first premise is mode-correct. This yields a τ as output (if successful). This
means we can now check if τ v σ, since both τ and σ are known.

For sums, the situation is slightly trickier, but not much. Again, the
constructors are checked against a given type.

Γ ` e ↓ τ1

Γ ` inl (e) ↓ τ1+τ2

Γ ` e ↓ τ2

Γ ` inr (e) ↓ τ1+τ2

LECTURE NOTES OCTOBER 21, 2004

Bidirectional Type Checking L17.5

For the destructor, we go from e ↑ τ1+τ2 to the two assumptions x1:τ1

and x2:τ2 in the two branches. These assumptions should be seen as syn-
thesis, variable synthesize their type from the declarations in Γ (which are
given).

Γ1, x:τ,Γ2 ` x ↑ τ

Γ ` e ↑ τ1+τ2 Γ, x:τ1 ` e1 ↓ σ Γ, x:τ2 ` e2 ↓ σ

Γ ` case (e, x1.e1, x2.e2) ↓ σ

Here, both branches are checked against the same type σ. This avoids
the need for computing the least upper bound, because one branch might
synthesize σ1, the other σ2, but they are checked separately against σ. So σ
must be an upper bound, but since we don’t have to synthesize a principal
type we never need to compute the least upper bound.

Finally, we consider recursive types. The simple idea that construc-
tors (here: roll) should be checked against a type and destructors (here:
unroll) should synthesize a type avoids any annotation on the type.

Γ ` e ↓ {µt.σ/t}σ
Γ ` roll(e) ↓ µt.σ

Γ ` e ↑ µt.σ

Γ ` unroll(e) ↑ {µt.σ/t}σ

This seems too good to be true, because so far we have not needed any
type information in the terms! However, there are still a multitude of situ-
ations where we need a type, namely where an expression requires a type
to be checked, but we are in synthesis mode. Because of our general phi-
losophy, this happens precisely where a destructor is meets a constructors,
that is, where we can apply reduction in the operational semantics! For
example, in the expression

(fn x => x) 3

the function part of the application is required to synthesize, but fn x =>
x can only be checked.

The general solution is to allow a type annotation at the place where
synthesis and analysis judgments meet in the opposite direction from the
subsumption rule shown before. This means we require a new form of
syntax, e : τ , and this is the only place in an expression where a type needs
to occur. Then the example above becomes

LECTURE NOTES OCTOBER 21, 2004

L17.6 Bidirectional Type Checking

(fn x => x : int -> int) 3

From this example it should be clear that bidirectional checking is not
necessarily advantageous over pure synthesis, at least with the simple strat-
egy we have employed so far.

Γ ` e ↓ τ

Γ ` (e : τ) ↑ τ

Looking back at our earlier example, we obtain:

nat = µt.1+t
zero = roll (inl (unitel)) : nat
succ = fn (x.roll (inr (x))) : nat → nat

One reason this seems to work reasonably well in practice that code
rarely contains explicit redexes. Programmers instead tend to turn them
into definitions, which then need to be annotated. So the rule of thumb is
that in typical programs one needs to annotate the outermost functions and
recursions, and the local functions and recursions, but not much else.

With these ideas in place, one can prove a general soundness and com-
pleteness theorem with respect to the original subtyping system. We will
not do this here, but move on to discuss the form of subtyping that is
amenable to an algorithmic interpretation. In other words, we want to
write out a judgment τ v σ which holds if and only if τ ≤ σ, but which is
mode-correct when both τ and σ are given.

The difficulty in the ordinary subtyping rules is transitivity

τ ≤ σ σ ≤ ρ
τ ≤ ρ Trans

which is not well-moded: σ is an input in the premise, but unknown. So
we have to design a set of rules that get by without the rule of transitivity.
We write this new judgment as τ v σ. The idea is to eliminate transitivity
and reflexivity and just have decomposition rules except for the primitive
coercion from int to float.1 We will not write the coercions explicitly for the

1In Assignment 6, a slightly different choice has been made to account for type variables
which we ignore here.

LECTURE NOTES OCTOBER 21, 2004

Bidirectional Type Checking L17.7

sake of brevity.

int v float

int v int float v float bool v bool

σ1 v τ1 τ2 v σ2

τ1 → τ2 v σ1 → σ2

τ1 v σ1 τ2 v σ2

τ1 × τ2 v σ1 × σ2 1 v 1

τ1 v σ1 τ2 v σ2

τ1 + τ2 v σ1 + σ2 0 v 0

Note that these are well-moded with τ+ v σ+. We have ignored here uni-
versal, existential and recursive types: adding them requires some poten-
tially difficult choices that we would like to avoid for now.

Now we need to show that the algorithmic formulation of subtyping
(τ v σ) coincides with the original specification of subtyping (τ ≤ σ). We
do this in several steps.

Lemma 1 (Soundness of algorithmic subtyping)
If τ v σ then τ ≤ σ.

Proof: By straightforward induction on the structure of the given deriva-
tion. �

Next we need two properties of algorithmic subtyping. Note that these
arise from the attempt to prove the completeness of algorithmic subtyping,
but must nonetheless be presented first.

Lemma 2 (Reflexivity and transitivity of algorithmic subtyping)
(i) τ v τ for any τ .

(ii) If τ v σ and σ v ρ then τ v ρ.

Proof: For (i), by induction on the structure of τ .
For (ii), by simultaneous induction on the structure of the two given

derivations D of τ v σ and E of σ v ρ. We show one representative cases;
all others are similar or simpler.

LECTURE NOTES OCTOBER 21, 2004

L17.8 Bidirectional Type Checking

Case: D =
σ1 v τ1 τ2 v σ2

τ1 → τ2 v σ1 → σ2
and E =

ρ1 v σ1 σ2 v ρ2

σ1 → σ2 v ρ1 → ρ2
. Then

ρ1 v τ1 By i.h.
τ2 v ρ2 By i.h.
τ1 → τ2 v ρ1 → ρ2 By rule

�

Now we are ready to prove the completeness of algorithmic subtyping.

Lemma 3 (Completeness of algorithmic subtyping)
If τ ≤ σ then τ v σ.

Proof: By straightforward induction over the derivation of τ ≤ σ. For
reflexivity, we apply Lemma 2, part (i). For transitivity we appeal to the
induction hypothesis and apply Lemma 2, part (ii). In all other cases we
just apply the induction hypothesis and then the corresponding algorith-
mic subtyping rule. �

Summarizing the results above we obtain:

Theorem 4 (Correctness of algorithmic subtyping)
τ ≤ σ if and only if τ v σ.

LECTURE NOTES OCTOBER 21, 2004

Lecture Notes on
Mutable Storage

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 16
October 26, 2004

After several lectures on extensions to the type system that are indepen-
dent from computational mechanism, we now consider mutable storage as
a computational effect. This is a counterpart to the study of exceptions and
continuations which are control effects.

We will look at mutable storage from two different points of view: one,
where essentially all of MinML becomes an imperative language and one
where we use the type system to isolate effects (next lecture). The former
approach is taken in ML, that latter in Haskell.

To add effects in the style of ML, we add a new type τ ref and three
new expressions to create a mutable cell (ref(e)), to write to the cell (e1 :=
e2), and read the contents of the cell (!e). There is only a small deviation
from the semantics of Standard ML here in that updating a cell returns
its new value instead of the unit element. We also need to introduce cell
labels themselves so we can uniquely identify them. We write l for locations.
Locations are assigned types in a store typing Λ.

Store Typings Λ : := · | Λ, l:τ

Locations never appear in the input program, but they can arise during
evaluation, when cells are allocated using the ref(e) construct. We there-
fore need to thread the store typing through the typing judgment which
now has the form Λ; Γ ` e : τ . We obtain the following rules, which should
be familiar from Standard ML. We use here the concrete, rather than the
abstract syntax, in order to present the assignment and dereferencing oper-
ations.

LECTURE NOTES OCTOBER 26, 2004

L16.2 Mutable Storage

Λ; Γ ` e : τ

Λ; Γ ` ref(e) : τ ref

Λ; Γ ` e1 : τ ref Λ; Γ ` e2 : τ

Λ; Γ ` e1 := e2 : τ

Λ; Γ ` e : τ ref

Λ; Γ ` !e : τ
l:τ in Λ

Λ; Γ ` loc(l) : τ ref

It is important to keep in mind the difference between locations and
variables. Expressions that we evaluate are always closed with respect to
variables (we substitute for them), but they may contain references l to lo-
cations.

To describe the operational semantics, we need to model the store. We
think of it simply as a mapping from locations to values and we denote it
by M for memory.

Stores M : : = · | M, l=v

Note that in the evaluation of a functional program in a real compiler
there are many other uses of memory (heap and stack, for example), while
the store only contains the mutable cells. As usual, we assume that all
locations in a store are distinct.

In this approach to modeling mutable storage, the evaluation of any
expression can potentially have an effect. This means we need to change
our basic model of computation to add a store. We replace the ordinary
transition judgment e 7→ e′ by

〈M, e〉 7→ 〈M ′, e′〉

which asserts that expression e in store M steps to expression e′ with store
M ′. First, we have to take care of changing all prior rules to thread through
the store. Fortunately, this is quite systematic. We show only the cases for
functions.

〈M, e1〉 7→ 〈M ′, e′1〉
〈M, apply (e1, e2)〉 7→ 〈M ′, apply (e′1, e2)〉

v1 value 〈M, e2〉 7→ 〈M ′, e′2〉
〈M, apply (v1, e2)〉 7→ 〈M ′, apply (v1, e

′
2)〉

v2 value

〈M, apply (fn (τ2, x.e), v2)〉 7→ 〈M, {v2/x}e〉

LECTURE NOTES OCTOBER 26, 2004

Mutable Storage L16.3

For the new operations we have to be careful about the evaluation order,
and also take into account that evaluating, say, the initializer of a new cell
may actually change the store.

〈M, e〉 7→ 〈M ′, e′〉
〈M, ref(e)〉 7→ 〈M ′, ref(e′)〉

v value
〈M, ref(v)〉 7→ 〈(M, l=v), loc(l)〉 loc(l) value

〈M, e1〉 7→ 〈M ′, e′1〉
〈M, e1 := e2〉 7→ 〈M ′, e′1 := e2〉

v1 value 〈M, e2〉 7→ 〈M ′, e′2〉
〈M,v1 := e2〉 7→ 〈M ′, v1 := e′2〉

M = (M1, l=v1,M2) and M ′ = (M1, l=v2,M2)
〈M, loc(l) := v2〉 7→ 〈M ′, v2〉

〈M, e〉 7→ 〈M ′, e′〉
〈M, !e〉 7→ 〈M ′, !e′〉

M = (M1, l=v,M2)
〈M, !loc(l)〉 7→ 〈M,v〉

In order to state type preservation and progress we need to define well-
formed machine states which in turn requires validity for the memory con-
figuration. For that, we need to check that each cell contains a value of
the type prescribed by the store typing. The value stored in each cell can
reference other cells which can in turn refer back to the first cell. In other
words, the pointer structure of memory can be cyclic. We therefore need
to check the contents of each cell knowing the typing of all locations. The
judgment has the form Λ0; · ` M : Λ, where we intend Λ0 to range over the
whole store typing will we verify on the right-hand side that each cell has
the prescribed type.

Λ0; · ` (·) : (·)
Λ0; · ` M : Λ Λ0; · ` v : τ v value

Λ0; · ` (M, l=v) : (Λ, l:τ)

With this defined, we can state appropriate forms of type preservation
and progress theorems. We write Λ′ ≥ Λ if Λ′ is an extension of the store
typing Λ with some additional locations. In this particular case, for a single
step, we need at most one new location so that if Λ′ ≥ Λ then either Λ′ = Λ
or Λ′ = Λ, l:τ for a new l and some τ .

Theorem 1 (Type Preservation)
If Λ; · ` e : τ and Λ; · ` M : Λ and 〈M, e〉 7→ 〈M ′, e′〉 then for some Λ′ ≥ Λ
and memory M ′ we have Λ′; · ` e′ : τ and Λ′; · ` M ′ : Λ′.

Proof: By induction on the derivation of the computation judgment, ap-
plying inversion on the typing assumptions. �

LECTURE NOTES OCTOBER 26, 2004

L16.4 Mutable Storage

Theorem 2 (Progress)
If Λ; · ` e : τ and Λ; · ` M : Λ then either

(i) e value, or

(ii) 〈M, e〉 7→ 〈M ′, e′〉 for some M ′ and e′.

Proof: By induction on the derivation of the typing judgment, analyzing
all possible cases. �

We assume the reader is already familiar with the usual programming
idioms using references and assignment. As an example that illustrates one
of the difficulties of reasoning about programs with possibly hidden effect,
consider the following ML code.

signature COUNTER =
sig

type c
val new : int -> c (* create a counter *)
val inc : c -> int (* inc and return new value *)

end;
structure C :> COUNTER =
struct

type c = int ref
fun new(n):c = ref(n)
fun inc(r) = (r := !r+1; !r)

end;
val c = C.new(0);
val 1 = C.inc(c);
val 2 = C.inc(c);

Here the two calls to C.inc(c) are identical but yield different re-
sults. This is the intended behavior, but clearly not exposed in the type
of the expressions involved. There are many pitfalls in programming with
ephemeral data structures that most programmers are all too familiar with.

The way we have extended MinML with mutable storage has several
drawbacks. The principal difficulty with programming with effects is that
the type system does not track them properly. So when we examine the
type of a function τ1 → τ2 we cannot tell if the function simply returns a
value of type τ2 or if it could also have an effect. This complicates reasoning
about programs and their correctness tremendously.

LECTURE NOTES OCTOBER 26, 2004

Mutable Storage L16.5

An alternative is to try to express in the type system that certain func-
tions may have effects, while others do not have effects. This is the purpose
of monads that are quite popular in the Haskell community. Haskell is a
lazy1 functional language in which all effects are isolated in a monad. We
will see that monadic programming has its own drawbacks. The last word
in the debate on how to integrate imperative and pure functional program-
ming has not yet been spoken.

We introduce monads in two steps. The first step is the generic frame-
work, which can be instantiated to different kinds of effects. In this lecture
we introduce mutable storage as an effect, just as we did in the previous
lecture on mutable storage in ML.

In the generic framework, we extend MinML by adding a new syntactic
category of monadic expressions, denoted by m.2 Correspondingly, there is a
new typing judgment

Γ ` m ÷ τ

expressing that the monadic expression m has type τ in context Γ. We think
of a monadic expression as one whose evaluation returns not only a value
of type τ , but also may have an effect. We introduce this separate category
so that the ordinary expressions we have used so far can remain pure, that
is, free of effects.

Any particular use of the monadic framework will add particular new
monadic expressions, and also possibly new pure expressions. But first
the constructs that are independent of the kind of effect we want to con-
sider. The first principle is that a pure expression e can be considered as a
monadic expression e which happens to have no effect.

Γ ` e : τ
Γ ` e ÷ τ

The second idea is that we can quote a monadic expression and thereby
turn it into a pure expression. It has no effects because the monadic expres-
sion will not be executed. We write the quotation operator as comp(m), and
the type of quoted computations of type τ as ©τ .

Γ ` m ÷ τ
Γ ` comp(m) : ©τ comp(m) value

1Lazy here means call-by-name with memoization of the suspension.
2In lecture, we did not use a separate syntactic category, but just as writing v for val-

ues aids understanding, writing m for potentially effectful expressions makes it easier to
interpret some rules.

LECTURE NOTES OCTOBER 26, 2004

L16.6 Mutable Storage

Finally, we must be able to unwrap and thereby actually execute a quoted
monadic expression. However, we cannot do this anywhere in a pure ex-
pression, because evaluating such a supposedly pure expression would
then have an effect. Instead, we can only do this if we are within an ex-
plicit sequence of monadic expressions! This yields the following construct

Γ ` e : ©τ Γ, x:τ ` m ÷ σ

Γ ` letcomp(e, x.m) ÷ σ

We will use the concrete syntax let compx = e inm end for letcomp(e, x.m).
Note that m and letcomp(e, x.m) are monadic expressions and therefore
may have an effect, while e is a pure expression of monadic type. We think
of the effects are being staged as follows:

(1) We evaluate e which should yield a value comp(m′).

(2) We execute the monadic expression m′, which will have some effects
but also return a value v.

(3) Substitute v for x in m and then execute the resulting monadic expres-
sion.

In order to specify this properly we need to be able to describe the effect
that may be engendered by executing a monadic expression. The judgment
for executing monadic expressions then has the form

〈M,m〉 7→ 〈M ′,m′〉

where the store changes from M to M ′ and the expression steps from m
to m′. According to the considerations above, we obtain first the follow-
ing rules, where we use a pure expression as a (trivial) form of monadic
expression.

e pure e 7→ e′

〈M, e〉 7→ 〈M, e′〉

Here we have used e pure for the judgment that e can be classified by the
typing rules as e : τ . Just like the property of being a value, this is a purely
syntactic property of e. Furthermore, it is shallow: letcomp, allocation, as-
signment, and dereference are monadic expressions while all others are
pure.

We can see that the transition judgment on ordinary expressions looks
the same as before and that it can have no effect. Contrast this with the

LECTURE NOTES OCTOBER 26, 2004

Mutable Storage L16.7

situation in ML from the previous lecture where we needed to change every
transition rule to account for possible effects.

The next sequence of three rules implement items (1), (2), and (3) above.

e 7→ e′

〈M, letcomp(e, x.m)〉 7→ 〈M, letcomp(e′, x.m)〉

〈M,m1〉 7→ 〈M ′,m′
1〉

〈M, letcomp(comp(m1), x.m)〉 7→ 〈M ′, letcomp(comp(m′
1), x.m)〉

v value
〈M, letcomp(comp(v), x.m)〉 7→ 〈M, {v/x}m〉

Note that the substitution in the last rule is appropriate. The substitution
principle for pure values into monadic expressions is straightforward pre-
cisely because v is cannot have effects.

We will not state here the generic forms of the preservation and progress
theorems. They are somewhat trivialized because our language, while de-
signed with effects in mind, does not yet have any actual effects.

In order to define the monad for mutable storage we introduce a new
form of type, τ ref and three new forms of monadic expressions, namely
ref(e), e1 := e2 and !e. In addition we need one new form of pure expres-
sion, namely locations l which are declared in a store typing Λ with their
type. Recall the form of store typings.

Store Typings Λ : := · | Λ, l:τ

Locations can be pure because creating, assigning, or dereferencing them
is an effect, and the types prevent any other operations on them. The store
typing must now be taking into account when checking expressions that
are created a runtime. They are, however, not needed for compile-time
checking because the program itself, before it is started, cannot directly
refer to locations. We just uniformly add “Λ;” to all the typing judgments—
they are simply additional hypotheses of a slightly different form than what
is recorded in Γ.

Λ; Γ ` e : τ

Λ; Γ ` ref(e) ÷ τ ref

Λ; Γ ` e1 : τ ref Λ; Γ ` e2 : τ

Λ; Γ ` e1 := e2 ÷ τ

Λ; Γ ` e : τ ref

Λ; Γ ` !e ÷ τ
l:τ in Λ

Λ; Γ ` loc(l) : τ ref

LECTURE NOTES OCTOBER 26, 2004

L16.8 Mutable Storage

Note that the constituents of the new monadic expressions are pure ex-
pressions. This guarantees that they cannot have effects: all effects must be
explicitly sequenced using the letcomp form.

Now the additional rules for new expressions are analogous to those
we had when effects where not encapsulated in the monad.

e 7→ e′

〈M, ref(e)〉 7→ 〈M, ref(e′)〉
v value

〈M, ref(v)〉 7→ 〈(M, l=v), loc(l)〉 l value

e1 7→ e′1
〈M, e1 := e2〉 7→ 〈M, e′1 := e2〉

v1 value e2 7→ e′2
〈M,v1 := e2〉 7→ 〈M,v1 := e′2〉

M = (M1, l=v1,M2) and M ′ = (M1, l=v2,M2) v2 value

〈M, loc(l) := v2〉 7→ 〈M ′, v2〉

e 7→ e′

〈M, !e〉 7→ 〈M, !e′〉
M = (M1, l=v,M2)
〈M, !loc(l)〉 7→ 〈M,v〉

We complete this lecture with a simple example. In the next lecture
we discuss the progress and preservation properties and other forms of
effects. In MinML with pervasive effects, we might write the following,
which allocates a cell initialized with 3 and then increments it.

let x = ref 3
in x := !x + 1 end;

In MinML with effects encapsulated in a monad, we would rewrite this
as follows.

let comp x = comp (ref 3) in
let comp y = comp (!x) in
let comp z = comp (x := y+1) in
z end end end

Note that the arguments to assignment must be pure expressions, so we
must explicitly sequence the computation into two assignments.

It is this rewriting of expressions which is often required that can make
programming with effects in monadic style tedious (although some syn-
tactic sugar can clearly help). Another problem is that operations such
as input/output are also effects and therefore must be inside the monad.

LECTURE NOTES OCTOBER 26, 2004

Mutable Storage L16.9

This means that inserting a print statement into a function changes its type,
which can complicate debugging.

LECTURE NOTES OCTOBER 26, 2004

Lecture Notes on
Monadic Input and Output

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 17
October 28, 2004

After reviewing the basic idea behind the encapsulation of effects, we
introduce input and output as a specific kind of effect. After store effects in
the last lecture, this will be our second example. For simplicity, we don’t
consider store and input/output simultaneously.

In review, in a pure functional language programs are evaluated only
to obtain a value. A loose characterization of an effect is simply everything
else that a function might perform. Allocating, mutating, and reading stor-
age cells is one example of effects, input and output are two more. We say
that effects are encapsulated if they do not interfere with the meaning of the
pure expressions in a language. Standard ML does not encapsulate effects,
Haskell does.

Encapsulation of effects is achieved by separating pure expressions (e)
from potentially effectful expressions (written as m). All the usual constructs
in MinML remain pure expressions.

Types τ : : = τ1 → τ2 | · · · | τ ref | ©τ
Pure Expressions e : : = fn(x.e) | apply(e1, e2) | · · · | comp(m)

Monadic Expressions m : : = e | letcomp(e, x.m)
| ref(e) | assign(e1, e2) | deref(e)

In the concrete syntax, we write τ comp for ©τ and let compx = e inm end
for letcomp(e, x.m). As an example, consider the following signature and
implementation.

signature C =
sig

LECTURE NOTES OCTOBER 28, 2004

L17.2 Monadic Input and Output

type c
val new : c comp
val inc : c -> unit comp
val get : c -> int comp

end;

structure C :> C =
struct

type c = int ref
val new = comp (ref 0)
val inc = fn r => comp (let comp x = !r in r := x+1 end)
val get = fn r => comp (!r)

end;

Now we can create a cell, increment and read it with the following
(monadic) expression, using a slight shorthand by allowing multiple dec-
larations as in Standard ML.

let
comp x = C.new
comp _ = C.inc x
comp y = C.get x

in
y

end;

When started in the empty memory, the above monadic expression ex-
ecutes and evaluates to 〈(l=1), 1〉 for some l. It is worth writing out this
computation step by step to see exactly how computation proceeds and
effects and effect-free computations may be interleaved.

In order to model input and output, the state that monadic expres-
sions may refer to contains two streams: an input stream and an output
stream. Streams are potentially infinite sequence of integers, k1 · · · kn · · ·.
The empty stream is denoted by ε. We denote streams by s and write
(sI , sO) for the pair of input and output streams. We have the constructs
read, eof and write(e) for reading from the input stream, testing if the input
stream is empty, and writing the value of e to the output stream, respec-
tively. These constructs must be monadic expressions, since they have an
effect.

LECTURE NOTES OCTOBER 28, 2004

Monadic Input and Output L17.3

Γ ` read ÷ int

Γ ` eof ÷ bool

Γ ` e : int
Γ ` write(e) ÷ 1

As in the case of mutable storage, the operational semantics distin-
guishes states for monadic expressions (which must include the input and
output streams) and pure expressions (which does not include the input
and output streams).

〈(k · sI , sO), read〉 7→ 〈(sI , s0), int(k)〉 Read

〈(k · sI , sO), eof〉 7→ 〈(k · sI , sO), false〉
EofFalse

〈(ε, sO), eof〉 7→ 〈(ε, sO), true〉
EofTrue

e 7→ e′

〈(sI , sO),write(e)〉 7→ 〈(sI , sO),write(e′)〉
WriteArg

v value
〈(sI , sO),write(int(k))〉 7→ 〈(sI , k · sO), 〈 〉〉 Write

This language extension seems simple, although it is not completely
trivial to write programs using the monadic syntax. Moreover, we have
to formulate the progress theorem carefully. In fact, with the stated rules it
fails! The reason is that if we try to read from an empty input stream no rule
is applicable. It is quite instructive to see where the proof of progress fails
unless we incorporate the possibility that m may be blocked. In a concur-
rent language (or even in a realistic sequential language) such blocking on
input can certainly occur, so it seems reasonable to allow for it and model
it. Of course, our language has no explicit mechanism of unblocking, but
this will change later on. So we are aiming at the following version of the
progress theorem.

LECTURE NOTES OCTOBER 28, 2004

L17.4 Monadic Input and Output

Theorem 1 (Progress)
(1) If · ` e : τ then either

(i) e 7→ e′ for some e′, or

(ii) e value

(2) If · ` m ÷ τ then either

(i) 〈(sI , sO),m〉 7→ 〈(s′I , s′O),m′〉 for some s′I , s′O and m′, or

(ii) m = v and v value, or

(iii) sI = ε and m blocked.

The first thought on how to define the judgment m blocked would be to
simply write

read blocked
BlockedRead

However, this is not enough as, again, a failed proof of the progress theo-
rem should tell you. We may also be in the situation where the read is not
at the top level, but is the first monadic expression to be executed. In other
words, the search rules may lead us to a read expression. The general way
to capture this is with the rule

m1 blocked

letcomp(comp(m1), x.m2) blocked
BlockedLet

Note that we never need to look at m2, nor do we need to account for the
case of letcomp(e, x.m2) where e is not a value, because a pure expression e
cannot have an effect unless it is situated as in the BlockedLet rule.

With the right definition of blocked states, it is then easy to prove the
progress theorem, employing value inversion as in other progress proofs
we have carried out up to this point. We just have to be sure to cover all the
possible cases.

We close the lecture with two simple examples. The first is a (non-
recursive) computation which reads one integer and then writes to the out-
put.

val copyOne : unit comp =
comp (let comp x = read in write x end)

The next one is a recursive function to copy the whole input stream to
the output stream. This function should loop forever, if the input stream is
infinite.

LECTURE NOTES OCTOBER 28, 2004

Monadic Input and Output L17.5

val copy : unit comp =
rec copy =>

comp (let
comp b = eof
comp x = if b then comp (let

comp _ = copyOne
comp _ = copy

in () end)
else comp ()

in () end)

This last example has some subtleties. For example, the conditional is
a pure expression (and not a monadic expression). In order to properly
interleave pure and effectful computation, it must be essentially where it
is: on the right-hand side of a comp declaration, where both branches are
again computations.

LECTURE NOTES OCTOBER 28, 2004

Lecture:
Records and Variants

15-312: Foundations of Programming Languages
Jason Reed (jcreed+@cs.cmu.edu)

November 2, 2004

1 Records

One disadvantage of using tuples to aggregate together many pieces of
data is that it requires the programmer to use a possibly long — and cer-
tainly opaque — sequence of fst s and snd s to extract the desired com-
ponent. Even in a realistic language with features like pattern-matching,
the programmer using a tuple would need to at least remember in which
order all of the elements come. It may be especially hard to remember the
meaning of the individual elements if many are of the same type.

A solution to this problem is to introduce labelled records. We assume
that there is an infinite supply of labels ` (which we may imagine as, for
instance, strings) and extend our language as follows:

Types τ ::= · · · | {¯̀ : τ̄}
Values v ::= · · · | {¯̀= v̄}

Expressions e ::= · · · | {¯̀= ē}
| #`(e)

Where ¯̀ : τ̄ is shorthand for `1 : τ1, . . . `n : τn and similarly for ¯̀ = ē and
¯̀= v̄.

The expression {¯̀ = ē} constructs a record where, for each i the `i field
of the record is assigned the expression ei. The deconstructor is the record
projection #`(e), which is like the tuple projections fst and snd , except
that it requests the named field ` from the record expression e. A record
expression is a value just in case all of its fields are assigned expressions
which happen to be values.

1

A record is well-typed if all of its components are, and a labelled pro-
jection is well-typed if its argument is a record that contains that label. For-
mally, the typing rules for the new constructs are as follows.

Γ ` ei : τi (for all i)
Γ ` {¯̀= ē} : {¯̀ : τ̄}

Γ ` e : {¯̀ : τ̄}
Γ ` #`i(e) : τi

To evaluate a record, we evaluate all of its components in the order they
are given. To evaluate a projection, we evaluate the expression it projects.
When a projection applies to a record value, we return the value with the
label of the projection. We give the formal evaluation rules in small-step
style.

ei 7→ e′i
{¯̀= v̄, `i = ei, ¯̀′′ = ē′′} 7→ {¯̀= v̄, `i = e′i,

¯̀′′ = ē′′}
e 7→ e′

#`(e) 7→ #`(e′)

#`i({¯̀= v̄}) 7→ vi

It is a natural question to ask how records can be subtyped. In fact,
though they are in a sense ‘merely’ a generalization of tuples, they admit
richer subtyping properties. The subtyping that we expect to be able to
do from our experience with tuples is still present, and we refer to it as
depth subtyping of records. The idea is that if we have two record types
with the same labels, but of different types, if the types of one record are
individually all subtypes of the other’s, then the one record type as a whole
is a subtype of the other.

τi ≤ τ ′i (for all i)
{¯̀ : τ̄} ≤ {¯̀ : τ̄ ′}

If we fix a particular record type {¯̀ : τ̄} and a list of coercions f1 : τ1 ≤
τ ′1, . . . , fn : τn ≤ τ ′n, then the coercion that witnesses {¯̀ : τ̄} ≤ {¯̀ : τ̄ ′} can
be written as

fn record : {lab1 : tau1, ..., labn : taun } =>
{lab1 : f1(#lab1(record)),

lab2 : f2(#lab2(record)),
...
labn : fn(#labn(record)) }

2

However, remember that τ ≤ τ ′ in general can be interpreted as an
expression of type τ can safely be substituted in a place that expects an expression
of type τ ′. Since all the information we get out of records is by projecting
their fields, it cannot hurt us if the record we are handed has ‘too many’
fields. As long as it has the fields that we want, more fields besides those
are acceptable. Thus a record type that includes more fields than another,
without changing any types of the original, is a subtype of it. This is called
width subtyping, since a record with more fields is seen as ‘wider.’

{¯̀ : τ̄ , ¯̀′ : τ̄ ′} ≤ {¯̀ : τ̄}

The coercion function for this subtyping can be written as

fn record :
{lab1 : tau1, ..., labn : taun,

lab1’ : tau1’, ..., labm’ : taum’ } =>
{lab1 : #lab1(record),

lab2 : #lab2(record),
...
labn : #labn(record) }

Finally, we would like to be able to say that two record types are iso-
morphic if they only differ in the order of their fields.

π a permutation of 1 . . . n `πi = `′i τπi = τ ′i (for all i)
{¯̀ : τ̄} ≤ {¯̀′ : τ̄ ′}

Since if π is a permutation, so too is its inverse π−1, and we have that if
one record type is a permuation of the other, then both are subtypes of each
other, i.e. isomorphic.

The coercion function (assuming lab1’ . . . labn’ are a permutation of
the original labels lab1 . . . labn) is

fn record : {lab1 : tau1, ..., labn : taun } =>
{lab1’ : #lab1’(record),

lab2’ : #lab2’(record),
...
labn’ : #labn’(record) }

3

However, if we look back to the development of the idea of subtyping,
we recall that it is important that we don’t need to add a separate rule for
transitivity. This is because having a transitivity rule would make it unclear
how to write an algorithm for checking whether subtyping holds, since we
don’t know how to guess the ‘middle’ type that appears in both premises
but not in the conclusion.

The rules we have given so far for record subtyping do not admit tran-
sitivity as an admissible rule. That is, they themselves don’t allow us to
derive as many facts as we would be able to if we also had a transitivity
rule. For instance, if we had transitivity, we could conclude that {x : int, y :
int, z : int} ≤ {y : float, x : int} by using depth subtyping to change y’s
type from int to float, width subtyping to drop the field z, and permutation
subtyping to interchange the positions of x and y. We cannot actually show
this with just the three rules above.

To fix this, we introduce a single record subtyping rule that encom-
passes all three forms of record subtyping at once:

π a permutation of 1 . . . n `πi = `′′i τπi ≤ τ ′′i (for all i)
{¯̀ : τ̄ , ¯̀′ : τ̄ ′} ≤ {¯̀′′ : τ̄ ′′}

If we fix a particular record type {¯̀ : τ̄} and a list of coercions f1 : τπ1 ≤
τ ′′1 , . . . , fn : τπn ≤ τ ′′n , and assume that lab1’ . . . labn’ are a permuta-
tion of the original labels lab1 . . . labn via π, then then the coercion that
witnesses the resulting fact can be written as

fn record : {lab1 : tau1, ..., labn : taun,
lab1’ : tau1’, ..., labn’ : taum’ } =>

{lab1’ : f1(#lab1’(record)),
lab2’ : f2(#lab2’(record)),
...
labn’ : fn(#labn’(record)) }

2 Variants

Just as binary sum types express the alternation between two possibilities
in a way dual to the combination of two pieces of data of binary prod-
uct types, we can take records — which combine an arbitrary number of

4

smaller pieces of data — and describe their dual, the concept of named vari-
ants which allows for the alternation among arbitrary number of possibil-
ities. Named variants are familiar, if not under that name, to any ML pro-
grammer. In ML, a datatype declaration that doesn’t use polymorphism
or recursive types is just a declaration of a named variant. We extend our
language as follows:

Types τ ::= · · · | 〈¯̀ : τ̄〉
Values v ::= · · · | 〈` = v〉〈¯̀:τ̄〉

Expressions e ::= · · · | 〈` = e〉〈¯̀:τ̄〉
| case (e, x̄.ē)

where again we use shorthand like ¯̀ : τ̄ for `1 : τ1, . . . `n : τn and x̄.ē for
x1.e1, x2.e2, . . . , xn.en. Like records, variant types are specified by giving a
list of labels and types. Here the list means a set of possibilities rather than
a set of fields. Consequently, the expressions and values of a variant type
only contain one label and one expression. In order for these expressions
to have unique types, we add type annotations, just as we did for sum
types. Also familiar from sum types is the destructor, a case construct. The
difference is that the case has arbitrarily many branches, instead of just two.

A variant expression is well-typed if it contains an expression which
is well-typed at the branch of the variant type corresponding to the given
label. A case statement is well-typed if the expression being cased over is
of variant type, and all the branches, when given a variable of the type of
one of the branches of the variant, share the same result type. Formally, the
typing rules are:

Γ ` e : τi
Γ ` 〈`i = e〉〈¯̀:τ̄〉 : 〈¯̀ : τ̄〉

Γ ` e : 〈¯̀ : τ̄〉 Γ, xi : τi ` ei : σ (for all i)
Γ ` case (e, x̄ : ē) : σ

The evaluation rules work very much like those for sum types. In both
the constructor and the first argument of the deconstructor, as usual, we
evaluate expressions until they become values. A case statement applied
to a variant value v then takes the appropriate branch, according to the
label of v, and the expression of v is substituted for the branch’s variable.

e 7→ e′

〈`i = e〉〈¯̀:τ̄〉 7→ 〈`i = e′〉〈¯̀:τ̄〉
e 7→ e′

case (e, x̄.ē) 7→ case (e′, x̄.ē)

case (〈`i = v〉, x̄.ē) 7→ {v/x}ei

5

A noticeable difference between variants and records is that variants,
as presented above, require a type annotation on every variant expression.
However, if we introduce subtyping (especially if we are working in a sys-
tem of bidirectional typechecking) we can relax the notion that every ex-
pression must have a unique type, and drop the type annotation. In this
case the syntax for expressions and values is simply

Values v ::= · · · | 〈` = v〉
Expressions e ::= · · · | 〈` = e〉

| case (e, x̄.ē)

and the typing rules and evaluation rules are modified by dropping type
annotations wherever they appear.

Now the subtyping principles that hold for variants are dual to those
that hold for records. We have again depth subtyping for variants:

τi ≤ τ ′i (for all i)
〈¯̀ : τ̄〉 ≤ 〈¯̀ : τ̄ ′〉

and also subtyping by permutation:

π a permutation of 1 . . . n `πi = `′i τπi = τ ′i (for all i)
〈¯̀ : τ̄〉 ≤ 〈¯̀′ : τ̄ ′〉

The rule for width subtyping, however, is reversed. While a record with
more fields contains more information, (and hence is a subtype of a record
with a subset of its fields) a variant with more branches conveys less infor-
mation: with more possibilities, we are less certain what branch is present.
So a variant with more branches is a supertype of a variant type with fewer.

〈¯̀ : τ̄〉 ≤ 〈¯̀ : τ̄ , ¯̀′ : τ̄ ′〉

By similar reasoning as before, we actually want to combine all three
rules into one so that transitivity is admissible instead of necessary as a
separate rule. The single rule for variant subtyping is as follows.

π a permutation of 1 . . . n `πi = `′′i τπi ≤ τ ′′i (for all i)
〈¯̀ : τ̄〉 ≤ 〈¯̀′′ : τ̄ ′′, ¯̀′ : τ̄ ′〉

6

Lecture:
EML and Multimethods

15-312: Foundations of Programming Languages
Jason Reed (jcreed+@cs.cmu.edu)

November 4, 2004

1 Object-Oriented Programming

There are several aspects of the object-oriented programming style that a pro-
ponent of it might point to as centrally important. It advocates achieving
modularity of programs through bundling all of the data and behavior of
something that can be thought of as an object; it encourages reuse of code
through inheritance; it makes claims on abstraction by use of dynamic dis-
patch. The way a message sent to an object is handled need not be known
by the outside world: the object itself ‘knows’ how to handle it.

Programmers used to programming in a functional style in type sys-
tems that support ML-style modules may well have different ideas about
what constitutes a natural organization of code and data, and how best to
reuse code. But even without getting into arguments about what ‘natural’
means, we can at least point to one (somewhat) less controversial idiom
that many OO languages easily support, which is not as easily (or at least
not in the same way) codable in a language like ML.

2 Extensibility

2.1

The idea in question is data extensibility. In, for example, Java, suppose you
declare an abstract class and some number of concrete classes.

1

abstract class Exp {
// return result of substituting v
// for x in this expression
Exp subst(Exp v, Int x);
}
...
class Apply extends Exp {

Apply(Exp e1, Exp e2);
... // implement subst

}
...
class Fn extends Exp {

Fn(Exp e);
... // implement subst

}
... // more kinds of Exp

Here Exp is the abstract class that sits at the top of a part of the class hi-
erarchy that describes the syntax of some language of, perhaps a compiler.
It declares methods for operations that the client of this code wants to per-
form — substitution, for example. To describe the various possible ways
of making an Exp , we create concrete subclasses of Exp , and implement its
methods.

That the language supports data extensibility is just the fact that if, at a
later time, we decide that we want to expand the old datatype with a new
construct, say IsHalting , then the changes we need to make to the old
code consist of simply adding a new class, with new method implementa-
tions:

class IsHalting extends Exp {
IsHalting(Exp e);
... // implement subst

}
... // more kinds of Exp

The important things to notice here are that (a) the modifications are ‘all
together’ in one place, in one file, and (b) they are not changes to existing
library code. As a client of library code that defines the datatype Exp , we
may extend it by adding new kinds of Exps in our own code.

2

In contrast, ML (with the exception of the exn type) requires that vari-
ant datatypes give all of their branches at once, and does not permit exten-
sion. Were we to implement the example above in ML, we would start with
something like

structure Syntax :> SYNTAX =
struct

datatype exp = Apply of exp * exp
| Fn of exp
| ...

val subst (e : exp, v : exp, x : int) = ...
end

To add IsHalting , we would have to go in and actually change the
original datatype declaration:

structure Syntax :> SYNTAX =
struct

datatype exp = Apply of exp * exp
| Fn of exp
| IsHalting
| ...

val subst (e : exp, v : exp, x : int) = ...
end

Moreover we would have to add another case to the function subst ,
and to any other functions that Syntax might define. Even worse, there
might be functions that take arguments of type exp outside the Syntax
structure as well! The changes required to our code could be wildly discon-
tiguous, spanning many files. Depending on how much attention the pro-
grammer (or her coworkers) pay to eliminating all nonexhaustive match
warnings from a programming project, it may be quite difficult to make
sure all functions have been extended appropriately.

2.2

Java programmers can take data extensibility for granted, while ML pro-
grammers find workarounds, or else just tolerate changing datatype decla-
rations when they must, and hunting down function cases to extend. But

3

there is a sort of extensibility that ML hackers take for granted that Java
hackers symmetrically must go to some pains to acheive: functional exten-
sibility. If instead of adding new sorts of data to an existing program what
we want to do is add new behavior to existing datatypes, then the difficulty
of the task depends on what tools the languages gives us.

Suppose for definiteness that we want to take our compiler above and
add an interpreter to it. In the ML case, we’re perfectly capable of writing
a separate module with a function eval like so:

structure Eval :> EVAL = struct
val eval (e : exp) = case e of

(Apply(e1,e2)) => ...
| (...) => ...

end

Note again the advantages we have here: (a) the modifications are ‘all
together’ in one place, in one file, and (b) they are not changes to existing
library code. If we write a case for every branch of the type exp , then the
function works on any exp that comes its way. The compiler can provide
accurate warnings as to whether our case analysis is nonexhaustive, redun-
dant, or correct.

If we want to do the same thing in Java, then we have at least two obvi-
ous options, neither necessarily pleasant. One works only if we have access
to the original library, or to its authors. We can add ourselves, or beg the
authors to add, a new method to the superclass Exp , and implement it in
all of the subclasses. This means making many changes in many scattered
places, and it is vulnerable to certain kinds of errors. We may implement
the method for a subclassC of Exp and forget to implement it for a subclass
D of C: if the inherited code is not appropriate for D, then we have failed
to make enough changes, but there is no way the compiler can tell us. If a
library’s API changes because at one of its users’ behest, other users may be
suddenly stuck with broken code because they don’t implement the newly
added methods to the abstract superclass.

The other apparent option is writing a static function which contains a
big if-elseif-else full of instanceOf tests. Here we are again capa-
ble of leaving out cases in ways the compiler can’t detect and sentencing
ourselves to unexpected runtime errors. Also, in the pursuit of functional
extensibility, we’ve thrown out convenient data extensibility, at least for the
purpose of this one new function. For if we create a new class later, we can-
not implement its eval case as a method (nor will the compiler know that

4

we should implement eval for it all!) but instead we must hunt down the
mass of instanceOf tests in the static eval function and add a new case.

3 EML

3.1

ML beats Java on functional extensibility, and Java beats ML on data ex-
tensibility. Can’t we all just get along, somehow? EML is an attempt to
compromise and get both kinds of extensibility at once. It is, in a sense,
both a functional language and an object-oriented language. We’re going
to discuss a simplified version here, but if you want to read the original
paper, you can find it at

http : //www.cs.ucla.edu/ todd/research/icfp02.html

Before we get to how EML supports extensibility, we have to discuss
one other feature, since it is necessary to understand many aspects of EML’s
syntax and semantics. EML, as an object-oriented language, has a feature
that is not present in Java, but which is present in quite a few other OO
languages, called multimethods. It is a natural generalization of the dynamic
dispatch found in Java. Where a method call e1.subst(e2,x) in Java dis-
patches on the run-time tag of only one of its inputs, namely e1 , a method
call in a language with multimethods can dispatch on the tags of a tuple of
arguments all at once. This would be useful if we wanted substitution to
do something different depending on what kind of expression e2 was.

Because multimethods allow dispatch over lists of objects instead of just
single objects, we can dispense with the idea that a method is called ‘on’ a
single object. Instead the syntax is closer to an ordinary function call in
a functional language. The semantics of the call are still drawn, however,
from the object-oriented paradigm: which code gets called as a result of the
method invocation depends on the run-time tags of the arguments.

3.2

The syntax of the programs in the new language (which again we construe
as an extension of MinML) consists of declarations in addition to expressions
and values. We also have a notion of classes in addition to types. As with
record field labels `, we assume there to be infinite supplies of class names
C and method named m. We have that every class is a type, but not every

5

type is a class: we still have all of our old types like int and τ1 × τ2 and
so on. Among classes, there is a notion of subclassing, which is determined
by which classes are actually declared by the programmer to extend one
another.

We have new expressions for constructing objects, which are repre-
sented as tagged records {C : ¯̀ = ē} with tag C and fields ē, a decon-
structor for projecting out object fields (as we did with records) and a way
to call methods. Formally the language of classes, types, and expressions is
extended as follows:

Classes C
Types τ ::= · · · | C

Values v ::= · · · | {C : ¯̀= v̄}
Expressions e ::= · · · | {C : ¯̀= ē}

| #`(e)
| call m(ē)

with the usual conventions about ¯̀= ē, etc.
Now the declarations of the language allow us to create classes, create

methods, and implement (i.e. ‘extend’) methods:

Declarations d ::= · · · | [abstract] class C [extends C ′]
of {¯̀ : τ̄}

| method m(C̄) : τ
| extend m(x̄ : C̄) = e

A declared class may or may not be abstract (i.e. disallow instantiation
of itself, and only allow subclassing) may or may not extend (i.e. declare
itself a subclass of) another class, and has a set of fields ¯̀ with types τ̄ . A
method has a tuple of argument classes C̄, and a return type τ . When we
implement a case of a method — that is, a piece of code that may run when
the method is invoked, depending on the run-time tags of the arguments
given — we specify names and types for all of its arguments x̄, and provide
a function body e in which all the variables x̄ are bound.

A program in EML consists of a list of modules and an expression to be
evaluated. A module for our purposes is just a container for a group of
declarations. It is something of the following form:

6

module
decl
decl
...
decl

end

3.3

Before we get to the typing and evaluation rules, let’s just take a quick
look at some EML code that goes precisely where neither ML nor Java dare
tread: pulling off data and functional extensibility at the same time.

Remember we started with a datatype that represented expressions,
and a function that performed substitution. In EML we would write this as
a module

module
abstract class Exp of {}
class Apply extends Exp of {e1 : Exp, e2 : Exp }
class Var extends Exp of {n : Int }
class Fn extends Exp of {body : Exp }
...

method subst(Exp, Exp) : int -> Exp
// call subst(e, v) x ==> {v/x } e

extend subst(e : Apply, v : Exp) = fn x =>
{Apply: e1 = call subst(#e1 e, v) x,

e2 = call subst(#e2 e, v) x }

extend subst(e : Var, v : Exp) = fn x =>
if #n e = x then v else e

extend subst(e : Fn, v : Exp) = fn x =>
{Fn: body = call subst(#body e) (x+1) }

...
end

7

Just like in Java, we have a abstract (uninstantiable) class of expressions,
and one concrete class for every variety of expression. We declare a method
that takes two Exp arguments, and returns a function that takes an int and
returns an Exp . We might also view this as a partially curried function
taking three arguments. We implement the method by giving its behavior
on particular cases of its arguments’ run-time tags. If the first argument
happens to be an Apply and the second (as it will inevitably be, as long
as the program is well-typed) is an Exp , then the first piece of code will
execute. Similarly if the first argument is a Fn then the second piece of
code will execute.

If we want data extensibility, then in another module we can write

module
class IsHalting extends Exp of {body : Exp }

extend subst(e : IsHalting, v : Exp) = fn x =>
...

end

If we want functional extensibility, then in another module we can write

module
method step(Exp) : Exp

extend step(e : Apply) = ...
extend step(e : Fn) = ...
extend step(e : Var) = raise Stuck
...

end

And if we want both extensions at once, we can write a fourth module
completely separate from the above three that fills in the evaluation case
for isHalting :

module
extend step(e : isHalting) = ...

end

8

From the point of view of ML, what EML gives you is the ability to add
new datatypes and new function cases at places in your code far away from
the original declarations of those datatypes and functions. From the point
of view of Java, what EML allows is the addition of new methods to old
class hierarchies (again, far away from the original codebase) in a way that
fits smoothly with the existing dispatch mechanism.

3.4

For the typing rules, we assume Decls to be the set of existing declarations.
Every time a module is encountered and determined to be well-formed,
its declarations are imperatively added to the set Decls. For now, well-
formedness of modules will depend on all of the previous parts of the pro-
gram up to that point. In next lecture we will discuss how to make these
checks modular, i.e. local to the current module.

An object expression is well-typed if its tag represents a declared class,
and its fields are all well-typed.

class C of {¯̀ : τ̄} ∈ Decls Γ ` ei : τi (for all i)
Γ ` {C : ¯̀= ē} : C

If the class C subclasses another class C ′, then the left-over fields must
form a valid object of class C ′.

class C extends C ′ of {¯̀ : τ̄} ∈ Decls Γ ` ei : τi (for all i)
Γ ` {C ′ : ¯̀′ = ē′} : C ′

Γ ` {C : ¯̀= ē, ¯̀′ = ē′} : C

A projection expression is well-typed if its body is an object of a class
with the indicated field.

` : τ ∈ Fields(C) Γ ` e : C
Γ ` #`(e)

where Fields is defined by

class C of {¯̀ : τ̄} ∈ Decls
F ields(C) = (¯̀ : τ̄)

class C extends C ′ of {¯̀ : τ̄} ∈ Decls
F ields(C) = (¯̀ : τ̄ , F ields(C ′))

9

A method call is well-typed as long as all of its arguments are:

method m(C̄) : τ ∈ Decls Γ ` ei : C ′i (for all i) C̄ ′ ≤ C̄
call m(ē) : τ

where here ≤ is the declared subclass relation defined by

class C extends C ′ of {¯̀ : τ̄} ∈ Decls
C ≤ C ′

C ≤ C

C ≤ C ′ C ′ ≤ C ′′
C ≤ C ′′

Since there are only finitely many classes declared in a given program, in-
troducing a transitivity rule here is not harmful. We can efficiently compute
the reflexive, transitive closure of the is-a-direct-subclass relation. The no-
tation C̄ ≤ C̄ ′ means that Ci ≤ C ′i for all i.

3.5

The operational semantics of EML depend on the idea of a best match for a
given method call. Suppose we have an object hierarchy consisting of the
classes Square and Rect, where Square is a subclass of Rect, and the method
Intersect(Rect, Rect):bool . If we declare cases for Intersect for all
four possibilities of Square and Rect inputs,

...
extend Intersect(Rect, Rect) = ...
extend Intersect(Rect, Square) = ...
extend Intersect(Square, Rect) = ...
extend Intersect(Square, Square) = ...
...

then we can consider what happens when we invoke the method by writ-
ing call Intersect(e1, e2) for some expressions e1, e2 . If e1 and
e2 are both Squares, then although all four cases match — in the sense that

10

the arguments given by the method call are subtypes of the arguments re-
quired by each case — only the fourth case seems appropriate, since it is
the most specific.

We don’t want to require exact matches between the run-time argu-
ments and the case’s arguments, for if we only wrote

...
extend Intersect(Rect, Rect) = ...
...

we would still like the code to work on Squares as well by inheritance. So if
there is a more specific case we will use it, but any maximally specific case
that matches is the one we will execute.

Formally, the evaluation rules are comprised of search rules

e 7→ e′

{C : ¯̀[= v̄[, ` = e, ¯̀] = ē]} 7→ {C : ¯̀[= v̄[, ` = e′, ¯̀] = ē]}

e 7→ e′

#`(e) 7→ #`(e′)
e 7→ e′

call m(v̄, e, ē) 7→ call m(v̄, e′, ē)

the reduction rule

#`i({C : ¯̀= v̄} 7→ vi

and the dispatch rule

extend m(C̄ ′) = e ∈ Decls
C̄ ≤ C̄ ′

For any other extend m(C̄ ′′) = e′ ∈ Decls such that
C̄ ≤ C̄ ′′ we have C̄ ′ ≤ C̄ ′′

call m(v1 as {C1 : · · · }, . . . , vn as {Cn : · · · }) 7→ {v̄/x̄}e

This last rule expresses that we dispatch to a method case if (a) the argu-
ments C̄ are individually subclasses of the required arguments C̄ ′ of that
case and (b) any other case m(C̄ ′′) that also matches the arguments C̄ is
more general (i.e. less specific) than this case.

11

3.6

The problem with the operational semantics given is that it may get stuck,
in one of two ways.

One is that we try invoking a method for which no case is applicable.
This happens if we have declared the Intersect method and implemented
it only for a pair of Squares, and try to invoke it on a pair of Rectangles (or
on a Rectangle and a Square).

The other is that more than one case is applicable, and no single case is
the most specific. If what we have implemented is only

...
extend Intersect(Rect, Square) = ...
extend Intersect(Square, Rect) = ...
...

and we try to invoke Intersect on two Squares, then both cases are applica-
ble, but neither is more specific than the other. It would take an implemen-
tation of

extend Intersect(Square, Square) = ...

to remedy this.
In the next lecture we will discuss EML’s method for preventing these

kind of run-time errors, in an efficient and local way. Until then, imagine
that the type-checker does a global pass over the program, trying by brute
force to determine whether these exhaustivity and ambiguity errors can
arise.

For exhaustivity, we can simply enumerate all of the possible argument
lists that could legitimately be given to a declared method, and check for
the existence of a case that handles each one.

For ambiguity, we can, for each method, enumerate every pair of de-
clared cases it has. Suppose the case we have in mind are extend m(C̄) = e
and extend m(C̄ ′) = e′. Now for a set of arguments to cause an ambiguity
error to occur with these two cases, it would have to match both of them.
That is, there would be a list of classes C̄ ′′ such that C̄ ′′ ≤ C̄ and C̄ ′′ ≤ C̄ ′.
For each position in this list, if there are any common subclasses of Ci and
C ′i, there is a ‘most super’ subclass, a subclass highest in the hierarchy. In
fact it must be either Ci or C ′i. This follows from the fact that we have no

12

multiple inheritance. Finding this ‘most super’ subclass is also called find-
ing the greatest lower bound of Ci and C ′i, which we can write as Ci ∩ C ′i. It
may be, however, if neither Ci nor C ′i is a descendant of the other, that there
is no lower bound at all. If this is ever the case, we are safe with respect to
this pair of cases, for no list of arguments could ever satisfy both.

Otherwise we can do this for all elements in the list, thus finding C̄∩C̄ ′.
This list of classes, if it exists, is the most general set of arguments that is
specific enough to possibly trigger the two cases we began considering.
Now we simply check whether C̄ ≤ C̄ ′ or C̄ ′ ≤ C̄. If either of these holds,
we are safe, for there is no ambiguity. One case is more specific than the
other. Otherwise, we throw up a compile-time error, because invoking
method m with arguments tagged with C̄ ∩ C̄ ′ would cause a run-time
ambiguity error.

13

Lecture:
EML and Multimethods

15-312: Foundations of Programming Languages
Jason Reed (jcreed+@cs.cmu.edu)

November 9, 2004

1 Safety in EML

Last time we discussed two kinds of errors that an ill-formed EML program
might produce at runtime. We’ll refer to them as:

1. Message not found: a method call (‘message’) made by the program
‘can’t find a match,’ i.e. can’t find a method implementation corre-
sponding to the arguments given.

2. Message ambiguous: a method call made by the program can’t find
a unique match, i.e. some method implementation cases match, but
there is no most specific case.

We want to pick restrictions we can put on programs at compile-time
so that these errors cannot occur at run-time. In the previous lecture, we
simply ran a global analysis to see by brute force that every possible set of
arguments that we might call a method with in fact determined a unique
case. In a large program with a lot of classes and methods and method
cases, this could be very expensive.

So what we’d like to do — and this is what makes EML interesting as
compared to a naïve multimethod language — is do some compile-time
checks to prevent these errors in a modular way. That is, we check the va-
lidity of a program one unit at a time. The unit of checking is going to be
exactly the module · · · end blocks that we introduced already.

What it means to perform a ‘modular’ check on a module is that we
only depend on which classes, methods, and method extentions have been
declared in modules that the current module statically depends on, in the

1

following sense: we say the interface of a module is the set of classes, meth-
ods, and method exentions it declares, ignoring the actual implementation
of the method extentions. A module M is then said to statically depend on
another module M ′ if M ’s interface mentions a name (i.e. class name or
method name) defined in the interface of M ′. Also, if M1 depends on M2

which depends on · · · which depends onMn, then we say thatM1 depends
on Mn.

At the end of the day, when we check a module, we need only consider
the current module and the interface of all the modules it depends on. This
is similar in spirit to the encapsulation that Java and ML provide: you de-
pend on a class’s interface, or a structure’s signature, but not the class’s or
the structure’s implementation.

1.1 Completeness of Methods

We’ll deal with Message not found first. Think about how languages like
Java and ML deal with this issue.

In ML, it does appear at run-time as the error message uncaught ex-
ception nonexhaustive match failure , but the compiler also pro-
duces a warning message, Warning: match nonexhaustive when a
function with missing cases is written. How the compiler knows that cases
are actually missing involves the fact that, in an ML program, all of the
cases of a function must appear as part of the function’s definition. This
fact means that the inherently local analysis the compiler does — that is,
look at all of the cases given in the function definition and see if they’re
sufficient to cover any possible input — is correct.

In Java, the compiler can prevent a method from being invoked on ob-
jects that don’t know how to implement it, because among other reasons,
it knows what type the object has at run-time. If I try to downcast an Ob-
ject to a FloorWaxer and call the method waxFloor() on it, the ex-
ception is raised at the downcast, not at the method call. Moreover, the
compiler guarantees that any subclass of FloorWaxer must either inherit
an implementation of or give its own implementation of all methods, e.g.
waxFloor() . Because of this, if we ever have an expression with type
FloorWaxer , we know it is safe to invoke waxFloor() on it, because it is
statically guaranteed to be of some class that implements that method.

In this simplified version EML we will take a cue from Java and treat
the first argument to each EML method as somewhat special.1 This special

1The real EML allows the programmer to designate any of a tuple of arguments as this

2

treatment in no way changes our existing dispatch method: dispatch is still
simultaneous and symmetric across all method arguments. We treat the
first argument specially only for purposes of the compile-time restrictions
we’re about to introduce.

To prevent method calls from producing ‘message not found’ errors,
informally we say the following: every method must have at least as many
implementations as an ML function or a Java method. It may also have more.

The way we decide whether a method is ‘more ML-like’ or ’more Java-
like’ is based on the the first argument. If our code looks like

module
class C of ...
method m(C,D) : bool
...

end

then the method m occurs in the same module as the declaration of the
class of its first argument. We call such methods internal methods. Since
declaration of new methods in Java always occurs in the same file as the
declaration of the class of their (implicit) first argument (i.e. this) we will
treat internal methods similarly to OO-style methods.

Restriction 1: Internal Methods Require Local Defaults. Sup-
pose there is an internal method m with arguments
C,D1, . . . , Dn. If C is abstract, then for any concrete sub-
class C ′ of C, there must be a local default case for m and C ′,
that is, a case extend m(C ′, D1, . . . , Dn) = e in the same
module as the declaration of C ′.

This restriction is checked whenever a concrete subclass of another class
is declared. When this happens, we look to which methods are declared
whose first argument is one of our superclasses. If we cannot inherit an
implementation from a superclass, then we must write a local default case.

The other restriction applies to methods that are not declared in the
same module as their first argument’s class. These methods are called ex-
ternal. For these we need to impose a stronger condition.

singled-out ‘owner’ position.

3

Restriction 2: External Methods Require Global Defaults.
Suppose there is an external method m with arguments
C,D1, . . . , Dn. Then in the same module as m there
must be a global default case for m, that is, a case extend
m(C,D1, . . . , Dn) = e

Here we simply guarantee that the most general case of the method is
covered, and therefore trivially no ‘message not found’ error can occur.

By fairly simple reasoning we can see that these two restrictions are
sufficient for any well-typed program. For every method call that occurs
at run-time, either the method is internal or external. If it is external, then
somewhere there has been defined a global default, so we are covered. If it
is internal, then since we assumed the program was well-typed, we know
the argument given has a run-time tag that is a subclass C ′ of the first argu-
ment C of the method being called. This means that in some module, we
declared the class C ′, as a (possibly indirect) subclass of C. At that time, by
restriction 1, we must have checked that a local default case for C ′ existed
in the same module. This local default case is sufficient to show that at least
one applicable case matches our method call, QED.

Notice that although we require a sort of imitation of either OOP lan-
guages in requiring local defaults or FP in requiring that we are certain of
exhaustiveness at the point of declaration of a method (in this case by re-
quiring a global default) this imitation is only a minimum requirement: we
can also define more specific cases in addition to the local or global defaults
for either internal or external methods, and this is a strict improvement
over what ML or Java offers us.

1.2 Nonambiguity of Methods

To prevent ambiguous message warnings, we similarly turn to familiar lan-
guage paradigms for ideas.

The reason Java doesn’t have ambiguity problems is that although it
does OO-style dynamic dispatch, it’s only single dispatch. The run-time
dispatch that takes place during the call x.method(y,z) only depends
on the run-time tag of x , not those of y,z . This is related to the fact that all
method implementations are textually bundled up with the class of their first
argument.2 The only place you can override a method — and what over-
riding a method means is creating a new specialized behavior for when the

2Be careful not to confuse this with the idea in the definition of internal vs. external: that
was about method declarations being bundled with the class of their first argument

4

reciever of a method call is some classC — is in the scope of the declaration
of class C.

One reason that means already that ML can’t have ambiguity problems
is that its semantics for case analysis is different from EML’s. In ML, if mul-
tiple cases match, then the earlier cases have precedence. However, even
if ML had EML’s semantics of preferring the most specific case regardless
of order (and the potential for ambiguity that comes with it) it could still
do a good job of warning about ambiguity and compile-time. This is be-
cause all cases of a case analysis have to occur all in the same place: in EML
terms, all of the method implementations have to be in the same place as
the method declaration.

We don’t wish to impose either of these restrictions wholesale on the
programmer, so we give them the choice extention-by-extention whether
to make a particular case (a) OOP-style (keeping it with the class of its first
argument) or (b) FP-style (keeping it with the method declaration).

Restriction 3: Nonambiguity Constraint. Every method im-
plementation extend m(C,D1, . . . , Dn) = e must occur
either (a) in the same module as the declaration of C or (b)
in the same module as the declaration of m

Why does this prevent ambiguous match errors at run-type? Here is a
sketch of a proof. Suppose we have a method call call m(e1, . . . , en) , and
e1 evaluates to an object value {D : · · · } of class D. Suppose that two cases
match this call, say, extend m(C ′, . . .) = e′ and extend m(C ′′, . . .
) = e′′. In particular we know D is a subclass of both C ′ and C ′′.

Recall that, when checking the validity of a module, we do have avail-
able all the information in the interfaces of all the modules that module de-
pends on. This means that if either of these two extentions satisfied part (b)
of the nonambiguity contraint above, then any potential ambiguity would
have been detected by the compiler. For suppose without loss of generality
the first case extend m(C ′, . . .) = e′ is declared in the same module
as the method m itself. Then the second case, extend m(C ′′, . . .) =
e′′, since it mentions the method m, statically depends on that module. So
when we check the module containing the second case, the first case will
be visible when we do the ordinary ambiguity checks mentioned in last
lecture.

If both extentions satisfy only part (a) of the constraint, however, we
have to reason differently. In that case it may be that the two cases occur
in different modules, say M ′ and M ′′, each of which statically depends on
the module that declares m, but neither of M ′,M ′′ depends on the other. (If

5

it happens that one does depend on the other, we are already done, for the
same reason as the last case: suppose it’s M ′ that depends on M ′′. While
checking M ′ we will ‘see’ M ′′ and therefore see both extentions and detect
that they are ambiguous) But we must actually satisfy part (a) for each ex-
tention. This means that C ′ is declared in M ′ and C ′′ is declared in M ′′.
Because M ′ and M ′′ are assumed not to depend on one another, this means
neither of C ′ and C ′′ are subclasses of one another. Since we don’t have
multiple inheritance, this means the fact that D is a subclass of C ′ and C ′′

is a contradiction, QED.

6

Lecture Notes on
Storage Management

15-312: Foundations of Programming Languages
Daniel Spoonhower

Modified by Frank Pfenning

Lecture 21
November 11, 2004

In our discussion of mutable storage, a question was raised: if we allo-
cate a new storage cell for each ref expression we encounter, when do we
release these storage cells? As we will discover today, a similar question
will be raised when we reconsider our implementation of pairs, lists, and
closures, or generally any aggregate data structure.

In designing the E machine, our goal was to describe a machine that
more accurately modeled the way that programs are executed on real hard-
ware (for example, by using environments rather than substitution). How-
ever, most real machines will treat small values (such as integers) differently
from large values (such as pairs and closures). Small values may be stored
in registers or on the stack, while larger values, such as pairs and closures,
must be allocated from the heap. While the storage associated with regis-
ters and the stack can be reclaimed at the end of a function invocation or
lexical scope, there is no “obvious” program point at which we can reuse
the storage allocated from the heap.

Clearly, for programs that run for hours, days, or weeks, we must pe-
riodically reclaim any unused storage. One possible solution is to require
the programmer to explicitly manage storage, as one might in languages
such as C or C++. However, doing so not only exposes the programmer to
a host of new programming errors, but also makes it exceedingly difficult
to prove properties of languages such as preservation.

An alternative approach is to require that the implementation of the
language manage storage for the programmer. Automatic memory man-
agement or garbage collection can be found in most modern languages, in-

LECTURE NOTES NOVEMBER 11, 2004

L21.2 Storage Management

cluding Java, C#, Haskell, and SML.
In this lecture, we will modify and extend the semantics of the E ma-

chine to account for the differences between small and large values and
include new transition rules for automatically reclaiming unused storage.

The A Machine

In order to extend the semantics of the E machine with transition rules for
automatic storage management, we must enrich our model of expressions,
values, and program states. For the purposes of our discussion today, we
will use a version of MinML that includes integers, functions, and lists. As
we alluded to above, in order to provide a framework for automatic storage
management, the A machine will distinguish small values from large values,
as follows.

Small Values v ::= num(n) | nil
Large Values w ::= 〈〈η; e〉〉 | cons (v1, v2)

Closures and cons cells (i.e. large values) will not be stored directly in the
stack or environment; instead we will use locations to refer to them indi-
rectly. As in our formulation of references, locations (denoted syntactically
as l) will not appear in the concrete syntax.

Locations l
Expressions e ::= . . . | loc (l)
Small Values v ::= . . . | loc (l)

We will also maintain a finite mapping from locations to large values,
called a heap. We allow locations to appear in the stack and environment,
but whenever we are forced to compute with a pair or closure, we must
look-up the actual value in the heap.1

Heaps H ::= · | H, l=w
Environments η ::= · | η, x=v
States s ::= H ; k > e

| H ; k < v

Frames f and stacks k are given as before but with the replacement of small
values for values.

1The heap is similar in notion to the store as it appeared in our discussion of mutable
references; however, while the store may be updated by assignment, the heap is immutable
from the programmer’s perspective.

LECTURE NOTES NOVEMBER 11, 2004

Storage Management L21.3

Since the A machine does not allow small values to be maintained in or
returned to the stack, in states where we previously returned large values,
we must instead create and look-up locations. For example, cons cells are
now introduced and eliminated according to the following rules.

H ; k > cons (e1, e2) 7→a H ; k . cons (�, e2) > e1

H ; k . cons (�, e2) < v1 7→a H ; k . cons (v1,�) > e2

H ; k . cons (v1,�) < v2 7→a H, l=cons (v1, v2) ; k < loc (l)

H ; k > case (e1, e2, x.y.e3) 7→a H ; k . case (�, e2, x.y.e3) > e1

H ; k . case (�, e2, x.y.e3) < nil 7→a H ; k > e2

H ; k . case (�, e2, x.y.e3) < loc (l) 7→a H ; k I (x=v1, y=v2) > e3

where l=cons (v1, v2) in H

Recall that environment frames k I η on the stack are popped when values
are returned past them, and that variables are looked up in the environ-
ments on the stack from right to left (see also Assignment 4 and the code in
the sample solution). We will now return to the question, when can values
safely be removed from the heap?2

Garbage and Collection

We would like to state that “the collector does not change the behavior of
the program.” That is, garbage should be exactly those parts of the program
state that do not affect the result of evaluation. Consider the following
program,

(let p = cons(3,cons(4,nil)) in
case p of nil => 2

| cons(n,k) = p in
[a] fn x => n

end
end [b]) 7 [c];

If we allocate p as described above, when it is safe to free it? At point [a]?
[b]? [c]? We would like to release the storage associated with a location

2Though if we recall our original question with respect to references, we should note
that the ideas described here can also be extended to encompass mutable storage.

LECTURE NOTES NOVEMBER 11, 2004

L21.4 Storage Management

as soon as it becomes unnecessary to the correct execution of the program.
As it turns out, we will not be able to determine exactly when a particular
location is no longer necessary: doing so is undecidable!

Instead we will make a conservative3 assumption about whether or not
a location is necessary: we will assume that any location that is reachable
may be necessary. To do so, we will need to enumerate the free locations of a
heap, stack, environment or value. (For the moment will we use the syntax
FL() to informally refer to these free locations; we will be more precise
later.)

Given this notion of garbage, collection is exactly the process of remov-
ing garbage from the heap. During our discussion of mutable storage,
something akin to the following transition rule was suggested.

FL(H, k, η) = ∅
H ∪ H ′ ; k > e 7→a H ; k > e

?

Recall that this rule was deficient in its inability to reclaim (unreachable)
cycles in H . For the time being, however, we will tackle a larger problem:
how can we separate H from H ′?

Tracing Collection

At the most abstract level, the garbage collector has to traverse the stack
k and follow chains of location pointers in the heap in order to see which
locations may still be relevant to the evaluation of e in k. Note that an ex-
pression e may contain free variables (which will be bound to small values
in environment in k), but never free locations. This means we don’t have
to traverse e to see which heap cells may be “live” for the current compu-
tation. This general technique is called tracing. We now describe a tracing
collector using our notation of judgments. In what follows we describe
more concrete realizations of this general idea that are closer to what actual
implementations do.

The state of the garbage collector has the form Hf ; k ; Ht where Hf

is the so-called from-space that we are traversing and Ht is the so-called
to-space where we move reachable locations found in Hf . Since locations
remain abstract, we simply move them from Hf to Ht. The judgment above
is invoked in the following way:

3“Conservative” is also, somewhat erroneously, used to describe garbage collection in
the presence of incomplete knowledge of the structure of the stack or heap (e.g. as in an
implementation of C).

LECTURE NOTES NOVEMBER 11, 2004

Storage Management L21.5

H ; k ; · 7→∗
g Hf ; • ; H ′

H ; k > e 7→a H ′ ; k > e

That is, we start the garbage collector with the current heap H as the
from-space and an empty to-space. Then we trace k and H , moving lo-
cations to the to-space until the stack is empty and we can return to the
normal evaluation.

Note that this rule can apply whenever we are in the process of evalu-
ating an expression. In a more realistic scenario the garbage collector either
starts when we run out of space or acts concurrently on the heap.

Next we describe the rules for garbage collection, using single-step tran-
sitions. We use the stack k as a “stack”, pushing onto it those portions of the
small values that we may still have to trace. Since a stack cannot have val-
ues on it directly, only environments, we will use environment with anony-
mous variables. Recall the invariants on expressions (only free variables, no
locations), environments (binds variable to small values) and heaps (binds
locations to large values).

Hf ; k . cons (�, e2) ; Ht 7→g Hf ; k ; Ht

Hf ; k . cons (v1,�) ; Ht 7→g Hf ; k I (=v1) ; Ht

Hf ; k . case (�, e2, x.y.e3) ; Ht 7→g Hf ; k ; Ht

Hf ; k I · ; Ht 7→g Hf ; k ; Ht

Hf ; k I (η, x=nil) ; Ht 7→g Hf ; k I η ; Ht

(Hf , l=cons (v1, v2)) ; k I (η, x=l) ; Ht 7→g

Hf ; k I (η, =v1, =v2) ; Ht, l=cons (v1, v2)

Hf ; k I (η, x=l) ; (Ht, l=w) 7→g Hf ; k I η ; (Ht, l=w)

Similar rules apply to closures; some of them are given in Assignment
8 on Garbage Collection where more details can be found. Note that the last
two rules distinguish the two cases where a heap cell has still to be moved,
or has already been moved. In the first case, we push v1 and v2 onto the
stack, since we have to trace any pointers in them as well. Note that circular
data structures, although they cannot be constructed in the given language
fragment, present no problem to the garbage collector.

LECTURE NOTES NOVEMBER 11, 2004

L21.6 Storage Management

Given our definition of a garbage collector, we could now prove not
only that the algorithm terminates, but that it is safe, and it preserves the
meaning of programs according to our previous definitions of MinML. The
first proof is relatively straightforward; the latter two follow in a manner
similar to our proofs for the E machine (with the addition of typing rules
for the heap H).

Copying Collection

We now give a slightly lower level view of garbage collection where both
from-space and to-space are actually regions in memory whose cells are
addressed by integers. In this case, we actually divide the whole available
memory into two disjoint regions: one that the evaluator uses, and one that
is reserved for the time that we need to call the collector.

Heap cells are allocated from lower to higher addresses, using a spe-
cial next pointer to keep track of the next available address. The garbage
collector is invoked when we are attempting to use more than half of the
available space.

We then trace the stack and the cells in from-space, moving the cell con-
tents to to-space as we encounter them. Of course, references to memory in
the stack need to be updated to point to the new locations of the cells.

Moreoever, we need to account for multiple pointers to the same loca-
tions. In order to preserve sharing, we replace the cell content by a forward-
ing pointer that goes from from-space to to-space. When we encounter a
forwarding pointer when tracing the heap, we just update the pointer in
the stack to the destination of the forwarding pointers.

Once the whole stack has been traced, all reachable cells have been
moved to the beginning of the to-space. As this point we flip the roles
of the two semi-spaces and resume evaluation.

A pictorial example of copying collection can be found in Figure 1. The
contents of blank cells is irrelevant for the purposes of the garbage collec-
tion algorithm. They will never be visited because tracing never reaches
them.

There are many refinements of copying collection. For example, in
order to avoid using additional stack space for tracing, we use a second
pointer in to-space so that we always know we still have to trace the region
between this second pointer and the next pointer. In essence, we use the
heap as a kind of special purpose stack.

Other refinements include incremental collection, where we do not com-
pletely stop the running program but interleave actions of the garbage col-

LECTURE NOTES NOVEMBER 11, 2004

Storage Management L21.7

lector with actions of the running program, and generational collection where
we collect smaller parts instead the whole semi-space all at once.

Mark-and-Sweep Collection

Another important algorithm for garbage collection is mark-and-sweep,
even though it seems to have fallen into disfavor more recently.

A mark-and-sweep collector does not divide the heap into two semi-
space, but reserves an additional bit for each heap cell called a mark. Ini-
tially all heap cells are unmarked, and the heap is arranged into a linked
list of cells called the free list. When we allocate an element from the heap
we take the first element from the free list and update the free list pointer
to its next element.

When the free list become empty, we have to invoke the garbage collec-
tor. It traces the heap, starting from the stack, much in the same way as the
copying collector. However, rather than copying heap elements it marks
them as being reachable.

In a second phase the garbage collector sweeps through the whole mem-
ory (not just the reachable cells). During this sweep it adds any unmarked
cells to the free list and removes the mark from any marked cells.

A graphic example of mark-and-sweep collection can be found in Fig-
ure 2.

In Assignment 8 you have the opportunity to compare copying and
mark-and-sweep collection and assess their relative merits, so we will not
give a detailed analysis here. One advantage of copying collection that
your analysis will probably not be able to reveal is locality. When copy-
ing, we actually move the elements of the data structures closer together, at
the beginning of the to-space. This means better cache behavior which can
have dramatic impact on running times on modern machine architectures.
As a result, even more mark-and-sweep garbage collectors some algorithm
for compacting memory have been developed to avoid the natural fragmen-
tation of the heap.

Reference Counting

In a reference counting garbage collector every cell has a counter associated
with it that tracks the number of references to it. When we allocate a cell,
this counter is initialized to 1. Operations of the (abstract) machine need
to maintain these counters. As soon as one of them becomes 0, the cell is

LECTURE NOTES NOVEMBER 11, 2004

L21.8 Storage Management

deallocated and the reference counts of the cells that it might point to are
decremented, leading perhaps to further garbage collection.

Reference counting is suspect for the heaps of functional languages be-
cause of the overhead of maintaining the reference counts, and because it
does not work properly with circular structures which prevent reference
counts from going to 0! However, the are many less general situations
where reference counts are appropriate, such as file descriptors in an oper-
ating system, or channels for communication in a distributed environment.
In those situations, the overhead of maintaining reference counts is small,
while a tracing collector would be hard or impossible to implement because
we may not know or even have access to the internals of all processes that
my access a resource.

LECTURE NOTES NOVEMBER 11, 2004

Storage Management L21.9

1

2

3

4

9

1

2

3

4

9

1

2

3

4

9

NIL

NIL

NIL

L1

L2

L1

L2

L2

L1

Initial heap with roots L1 and
L2. Next pointer N exceeds
bounds of current semi-space.

Heap after copying L1.
Dashed lines represent
forwarding pointers.

Heap after copying L2. Next
pointer N is initialized. Semi-
spaces have switched roles.

N

N

N

Figure 1: Example of Copying Garbage Collection

LECTURE NOTES NOVEMBER 11, 2004

L21.10 Storage Management

1

2

3

4

9

NIL

L1

L2

Initial heap with roots L1 and
L2. All cells are unmarked.
Free list pointer F too large.

Heap after marking L1.

1

2

3

4

9

NIL

L1

L2

Heap after marking L2.

1

2

3

4

9

NIL

L1

L2

Heap after sweep. Dashed
lines represent free list
pointers. All cells unmarked.

1

2

3

4

9

NIL

L1

L2

F

F

Figure 2: Examples of Mark and Sweep Garbage Collection

LECTURE NOTES NOVEMBER 11, 2004

Lecture Notes on
Call-by-Need and Futures

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 22
November 16, 2004

In this lecture we first examine a technique to specify the operational se-
mantics for call-by-need, sometimes called lazy evaluation. This is an imple-
mentation technique for a call-by-name semantics that avoids re-evaluating
expressions multiple times by memoizing the result of the first evaluation.
Then we use a similar technique to specify the meaning of futures, a con-
struct that introduces parallelism into evaluation. Futures were first devel-
oped for Multilisp, a dynamically typed, yet statically scoped version of
Lisp specifically designed for parallel computation. A standard reference
on futures is:

Robert H. Halstead, Jr. Multilisp: A language for concurrent
symbolic computation. ACM Transactions on Programming Lan-
guages and Systems, 7(4):501-538, October 1985.

One advantage of call-by-name function application over call-by-value
is that it avoids the work of evaluating the argument if it is never needed.
More broadly, lazy constructors avoid work until the data are actually used.
In turn, this has several drawbacks. One of them is that the efficiency model
of such a language is more difficult to understand than for a call-by-value
language. The second is that lazy constructors introduce infinite values of
data types which complicate inductive reasoning about programs. How-
ever, the most obvious problem is that if an expression is used several times
it will be computed several times unless we can find an implementation
technique to avoid this.

There are two basic approaches to avoid re-evaluation of the argument
of a function application. The first is to analyze the function body to de-
termine if the argument is really needed. If so, we evaluate it eagerly and

LECTURE NOTES NOVEMBER 16, 2004

L22.2 Call-by-Need and Futures

then work with the resulting value. This is semantically transparent, but
there are many cases where we cannot tell statically if an argument will be
needed. The other is to create a so-called thunk1 and pass a reference to
the thunk as the actual argument. When the argument is needed we eval-
uate the thunk and memoize the resulting value. Further reference to the
thunk now just returns the value instead of evaluating it again. Note that
this strategy is only a correct implementation of call-by-name if there are
no effects in the language (or, if there are effects, they are encapsulated in a
monad).

We can think of a thunk as a reference that we can write only once (the
first time it is accessed) and henceforth will continue to be the same value.
So our semantic specification for call-by-need borrows from the ideas in
the operational semantics of mutable references. We generalize the basic
judgment e 7→ e′ to 〈H, e〉 7→ 〈H ′, e′〉 where H and H ′ contains all thunks,
and e and e′ can refer to them by their labels.

Thunks H : : = · | H, l=e

Note thunks may be expressions; after they have been evaluated the
first time, however, they will be replaced by values. First, the rules for
call-by-name application.

〈H, e1〉 7→ 〈H ′, e′
1〉

〈H, apply (e1, e2)〉 7→ 〈H ′, apply (e′
1, e2)〉

〈H, apply (fn (x.e1), e2)〉 7→ 〈(H, l=e2), {l/x}e1〉

In the second rule, the label l must be new with respect to H . When the
value of l is actually accessed, we need to force the evaluation of the thunk
and then record that value.

〈(H1, l=e,H2), e〉 7→ 〈(H ′
1, l=e∗,H ′

2), e
′〉

〈(H1, l=e,H2), l〉 7→ 〈(H ′
1, l=e′,H ′

2), l〉

v value
〈(H1, l=v,H2), l〉 7→ 〈(H1, l=v,H2), v〉

Note that in the first rule, the result e∗ must actually be equal to e. If it
were not, that means the evaluation of e would actually require the thunk

1The name is a whimsical past tense of think derived from “something that has been
thought of before”.

LECTURE NOTES NOVEMBER 16, 2004

Call-by-Need and Futures L22.3

l, which would lead to an infinite loop. This particular form of infinite loop
is called a black hole can be detected, while other forms of non-termination
remain.

It is left as an exercise to extend the statements of progress and preserva-
tion, or to show in which sense the call-by-name semantics coincides with
the call-by-need semantics. Note also that there are other rules that can cre-
ate thunks: essentially every time we need to substitute for a variable. We
show one of these cases, namely recursion.

〈H, rec (x.e)〉 7→ 〈(H, l={l/x}e), l〉

As an example of a black hole, consider fix f.f . As an example of an expres-
sion that is not a black hole, yet fails to terminate consider (fix f.λy.f (y +
1)) 1. It is instructive to simulate the execution of this expression.

〈·, (fix f.λy.f (y + 1))1〉
7→ 〈(l = λy.l (y + 1)), l 1〉
7→ 〈(l = λy.l (y + 1)), (λy.l(y + 1)) 1〉
7→ 〈(l = λy.l (y + 1), l1 = 1), l (l1 + 1)〉
7→ 〈(l = λy.l (y + 1), l1 = 1), (λy.l(y + 1)) (l1 + 1)〉
7→ 〈(l = λy.l (y + 1), l1 = 1, l2 = l1 + 1), l (l2 + 1)〉
7→ . . .

In order to detect black holes and take appropriate action we would
allow thunks of the form l=• and replace the first rule by

〈(H1, l=•,H2), e〉 7→ 〈(H ′
1, l=•,H ′

2), e
′〉

〈(H1, l=e,H2), l〉 7→ 〈(H ′
1, l=e′,H ′

2), l〉

〈(H1, l=•,H2), l〉 7→ 〈(H1, l=•,H2),BlackHole〉

where BlackHole is a new error expression that must be propagated to the
top level as shown in a previous lecture on run-time exceptions and errors.

Futures. Next we consider futures. The idea is that an expression future(e)
spawns a parallel computation of e while returning immediately a pointer
to the resulting value. If the resulting value is ever actually needed we say
we are touching the future. When we touch the future we block until the
parallel computation of its value has succeeded. However, in most situa-
tions we can pass around the future, construct bigger values, etc.

LECTURE NOTES NOVEMBER 16, 2004

L22.4 Call-by-Need and Futures

There are two principal differences to call-by-need as shown above. The
first is that a future is treated as a value. This is important because unlike in
call-by-need, we are here in a call-by-value setting. Secondly, the computa-
tion of the future may proceed asynchronously, instead of being completed
in full exactly the first time it is accessed. However, it is similar in the sense
that once a future has been computed, its value is available everywhere it
is referenced.

The typing rule for futures in source programs is exceedingly simple,
since we consider futures related only to how a program executes (sequen-
tially or in parallel), but not what it computes.

Γ ` e : τ
Γ ` future(e) : τ

Process labels l that arise during computation are given types just as stores
or heaps are given types. Moreover, labels l are treated as values, which
forces us to refine the value inversion lemma if we want to prove the progress
theorem.

To describe such a computation we have to describe the overall state of
all the computing threads. For this, we just use H , as defined above.

Processes H : : = · | H, l=e

In this interpretation, labels l are thread identifiers, and l=v represents
a finished thread. So overall computation proceeds as in

H 7→ H ′

which non-deterministically selects a process that can proceed (that is, not
finished or blocked) and makes a step. The judgment of making a step in
the network of parallel processes is

〈H, e〉 7→ 〈H ′, e′〉

where H ′ may contain a new thread spawned by the step of e. Unlike call-
by-need evaluation, this judgment cannot change any binding in H ; this is
reserved for the primary judgment. We start the overall computation of an
expression e as a single process l0=e and we are finished when we have
reached a state where all processes have the form l=v.

In order to be able to prove a progress theorem, we would like to main-
tain an order between the processes which reflects possible dependencies.

LECTURE NOTES NOVEMBER 16, 2004

Call-by-Need and Futures L22.5

That is, a process can refer to labels on its left, but not to itself or processes
to its right.

The first rule non-deterministically selects a thread to perform a step. In
this setting, a process can never refer to itself, because we have no recursive
futures. Of course, we may have futures whose computation is recursive.

〈H1, e〉 7→ 〈H ′
1, e

′〉
(H1, l=e,H2) 7→ (H ′

1, l=e′,H2) l value

The rules for the judgment 〈H, e〉 7→ 〈H ′, e′〉 are the usual call-by-value
rules, threading through H . It is only changed or referenced in the follow-
ing two rules.

v val
〈(H1, l=v,H2), l〉 7→ 〈(H1, l=v,H2), v〉 〈H, future(e)〉 7→ 〈(H, l=e), l〉

Because l is a value, it can be passed around, or looked up (in case the
thread l has finished). This introduces some local non-determinism into
expressions such as apply (l, e) because l could be looked up, or e could
be reduced. In the end, the difference is not observable in a call-by-value
language without effects. It could also be removed with some additional
machinery, but we do not pursue this here, since non-determinism remains
anyway due to the selection of the process to step.

Notice that an expression such as apply (l, v) is blocked until the thread
computing l can completed. This is because it not a value, yet cannot be
reduced.

The process selection rule must be prescient in this formulation, because
we must traverse a thread expression to see if it is finished, can make a
step, or is blocked, waiting for another thread to finish. This is a feature
generally true for a small-step semantics with search rules. In a semantics
with an evaluation stack, this can be avoided because the sub-expression to
be evaluated is isolated at the top level of the state.

Note that the left-to-right ordering between processes is necessary to
guarantee progress because it prevents a situation where two processes
wait for each other to finish. This situation is referred to as a deadlock. It
is instructive to compute an example of such a process configuration.

The typing judgment on process configurations must take this into ac-
count. It has the form H : Λ, where Λ assigns types to processes. We also
generalize the typing judgment for expressions to allow labels to occur—

LECTURE NOTES NOVEMBER 16, 2004

L22.6 Call-by-Need and Futures

they are simply propagated except in the one rule shown below.

· : ·
H : Λ Λ; · ` e : τ

(H, l=e) : (Λ, l:τ)

l:τ in Λ
Λ; Γ ` l : τ

The preservation theorem is not difficult to formulate.

Theorem 1 (Preservation)
(i) If H : Λ and Λ; · ` e : τ and 〈H, e〉 7→ 〈H ′, e′〉 then there is a Λ′ ⊇ Λ

such that H ′ : Λ′ and Λ′; · ` e′ : τ .

(ii) If H : Λ and H 7→ H ′ then there is a Λ′ ⊇ Λ such that H ′ : Λ′.

Proof: By induction on the derivation of the step relation, applying inver-
sion on the typing assumptions. �

The progress theorem requires more care. We first formalize the notion
of a terminal state.

· terminal
H terminal v value
(H, l=v) terminal

Theorem 2 (Progress)
(i) If H1 : Λ1, H1 terminal, and Λ1; · ` e : τ then either

(a) e value, or

(b) there exists H ′
1 and e′ such that 〈H1, e〉 7→ 〈H ′

1, e
′〉

(ii) If H : Λ then either

(a) H terminal, or

(b) there exists H ′ such that H 7→ H ′

Proof: For (i) by induction on the derivation of Λ1; · ` e : τ , using a gener-
alization of value inversion that permits labels. Labels must be defined in
H1 and bound to values (since H1 is terminal), thereby assuring progress.

For (ii) by appeal to (i) given H = H1, l=e,H2, where e is not a value.
Such a decomposition must be possible if H is not terminal. �

LECTURE NOTES NOVEMBER 16, 2004

Call-by-Need and Futures L22.7

We close this lecture with a two examples of programs written using
the future construct. These have been adapted from Halstead’s paper, but
are present in ML assuming a construct future(e) . A simple sequential
simulation is simply to define future as the identity function.

The first example is the insertion of a node into an ordered binary tree.
An ordered binary tree is either Empty , a data-carrying Leaf(x) , or a node
Node(left,y,right) where y is a discriminator so that every element
in the left subtree left is smaller or equal to y , and every element in the
right subtree right is larger than y .

The parallelism in this example is the possibility to spawn a thread at
each recursive call to insert , which returns immediately and continues
insertion of the subtree. Thereby, if we insert several elements in a row, the
computations can ripple down the tree simultaneously almost in a pipeline
structure (although there is no assumption that the operations are indeed
performed in lock-step).

datatype Tree =
Empty

| Leaf of int
| Node of Tree * int * Tree

fun insert (x, Empty) = Leaf(x)
| insert (x, tree as Leaf(y)) =

if y < x
then Node (tree, y, Leaf(x))

else Node (Leaf(x), x, tree)
| insert (x, Node(left, y, right)) =

if y < x
then Node (left, y, future (insert (x, right)))

else Node (future (insert (x, left), y, right))

As a second example, we consider quicksort , implemented on lists.
It first partitions a list into elements smaller and greater than a pivot el-
ement (the first element in the list) and then sorts the sublists in parallel
before appending them. There is also a smaller amount of parallelism in
the partition function shown below.

LECTURE NOTES NOVEMBER 16, 2004

L22.8 Call-by-Need and Futures

fun quicksort (nil, acc) = acc
| quicksort (x::l, acc) =

let
val (smaller, greater) = partition (x, l)

in
quicksort (smaller,

x::future (quicksort (greater, acc)))
end

and partition (x, nil) = (nil, nil)
| partition (x, y::l) =

let
val parts = future (partition (x, l))

in
if y < x

then (y::future(#1(parts)), future (#2(parts)))
else (future (#1(parts)), y::future (#2(parts)))

end

It is instructuve to consider the above function without the future con-
struct and systematically search for opportunities of parallelism.

LECTURE NOTES NOVEMBER 16, 2004

Lecture Notes on
The Curry-Howard Isomorphism

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 23
November 18, 2004

In this lecture we explore an interesting connection between logic and
programming languages. In brief, logical proofs embody certain construc-
tions which may be interpreted as programs. Under this interpretation,
propositions become types. It was first observed by the logicians Haskell
Curry [˜1960] and William Howard [˜1969] in different contexts that this is
in fact an isomorphism: in a certain fragment of logic, every proof describes
a program and every program describes a proof.

We will make the same observation here, using the methodology of
judgments that we have used to far in the course, applied to the devel-
opment of principles of logical reasoning. This formulation is due to Per
Martin-Löf [˜1983].

What is the meaning of a proposition? Martin-Löf argues that to under-
stand the meaning of a proposition means to understand when it is true.
Consequently, in order to explain the meaning of a logical connective, we
have to explain how to derive that a proposition with this connective is
true.

Thus the most basic of all judgments of logic is that of truth, written as
A true.

As the simplest example of a connective, consider conjunction. We say
that A ∧B true if A true and B true. Written as an inference rule:

A true B true

A ∧B true
∧I

We refer to this as an introduction rule because it introduces a connective
in the conclusion (here ‘∧’). The introduction rule tells us how to conclude
that A ∧B is true, thereby defining its meaning.

LECTURE NOTES NOVEMBER 18, 2004

L23.2 The Curry-Howard Isomorphism

The next question is how can we use the information that A ∧ B true.
According to the above explanation, if we know A ∧ B true, we should
know the two premises, that is A true and B true.

A ∧B true

A true
∧E1

A ∧B true

B true
∧E2

We refer to these as elimination rules, because they eliminate a connective in
the premise (here ‘∧’).

If we think of the introduction rule as defining the meaning of the con-
nective, how do we know that the elimination rules that we developed
from it are actually correct? We will consider this question later in this
lecture by introducing the notions of local soundness and completeness of
the rules. For now, we continue by filling out the store of available logical
connectives.

The next one we want to consider is implication. When is A ⊃ B
true? From our experience with proofs we know that in order to conclude
A ⊃ B true we assume that A is true and try to prove that B is true. If
we want to take this as a definition, we need a hypothetical judgment. We
write A1 true, . . . , An true ` A true for such a hypothetical judgment with
assumptions A1 true through An true. We abbreviate a collection of hy-
potheses with H . From the nature of reasoning from hypotheses we obtain
for free a hypothesis rule and a substitution principle.

H1, A true,H2 ` A true
Hyp

Unfortunately, there is a small ambiguity here: there may be several
hypotheses A true and from the form of the rule above we cannot tell which
one was meant. In order to make this unambiguous we record the number
of the assumption that was used.

Hypothesis rule.

A1 true, . . . , Ai true, . . . , An true ` Ai true
Hypi

Substitution principle.

If H1 ` A true and H1, A true,H2 ` C true then H1,H2 ` C true.

The latter is called a substitution principle because in order to obtain
evidence for C true we substitute derivations of A true for uses of the as-
sumption A true.

LECTURE NOTES NOVEMBER 18, 2004

The Curry-Howard Isomorphism L23.3

Now we have the concepts in place to be able to define implication by
its introduction rule.

H,A true ` B true

H ` A ⊃ B true
⊃I

The elimination rule is based on the substitution principle. Assume we
know that A ⊃ B true. By the above rule this means B true under the as-
sumption that A true. Now, if we had a proof of A true we could substitute
it for uses of the assumption in the proof of B true. As a rule:

H ` A ⊃ B true H ` A true

H ` B true
⊃E

Now we can prove, for example, that (A ∧B) ⊃ (B ∧A) true.

A ∧B true ` A ∧B true
Hyp1

A ∧B true ` B true
∧E2

A ∧B true ` A ∧B true
Hyp1

A ∧B true ` A true
∧E1

A ∧B true ` B ∧A true
∧I

· ` (A ∧B) ⊃ (B ∧A) true
⊃I

Note that this is holds for any propositions A and B, that is, it is a schematic
derivation just like inference rules are schematic.

We continue our analysis of logical connectives with disjunction A∨B.
The disjunction is true if either of the disjuncts is true. This means we have
two introduction rules.

H ` A true

H ` A ∨B true
∨I1

H ` B true

H ` A ∨B true
∨I2

In order to determine the elimination rule, we must consider how to use
the knowledge that A ∨ B true. Clearly, we do not know which of A true
or B true holds. This means if we are trying to prove C true and we know
A ∨ B true, we must be able to show C true no matter whether A true or
B true. In other words, we must proceed with a proof by cases. In the form
of an elimination rule:

H ` A ∨B true H,A true ` C true H,B true ` C true

H ` C true
∨E

As a sample proof, consider the statement

If A or B implies C, then A implies C.

LECTURE NOTES NOVEMBER 18, 2004

L23.4 The Curry-Howard Isomorphism

Formally:
((A ∨B) ⊃ C) ⊃ (A ⊃ C) true

The proof:

(A ∨B) ⊃ C true, A true ` A true
Hyp2

(A ∨B) ⊃ C true, A true ` A ∨B true
∨I1

(A ∨B) ⊃ C true, A true ` (A ∨B) ⊃ C true
Hyp1

(A ∨B) ⊃ C true, A true ` C true
⊃E

(A ∨B) ⊃ C true ` A ⊃ C true
⊃I

· ` ((A ∨B) ⊃ C) ⊃ (A ⊃ C) true
⊃I

Next we look at some degenerate cases. Consider truth (>) as a logical
constant. It should be provable no matter what assumptions we have.

H ` > true
>I

Because we put no information into the proof of >, we can obtain no infor-
mation out. Therefore, there is no elimination rule for >. We can observe
that > is like a 0-ary version of conjunction: ∧I has two premises and con-
sequently we have two elimination rules (∧E1 and ∧E2), while >I has no
premises and consequently no elimination rules.

Now consider falsehood (⊥). It represents a contradiction and should
therefore not be provable. In other words, there is no introduction rule.
Conversely, if we know ⊥ true we should be able to conclude anything.

H ` ⊥ true

H ` C true
⊥E

We can recognize falsehood as a disjunction of zero alternatives. Whereas
there are two introduction rules for ∨ and therefore two cases to consider
in the elimination rule, there are no introduction rules for ⊥ and therefore
no branches in the elimination rule.

Figure 1 summarizes the rules, adding hypotheses to the first rules
about conjunction in the straightforward way. We list the introduction
rules in the left column and elimination rules in the right column. We have
stacked the premises of the ∨E rules purely for typographical reasons.

A natural question is if these are all the logical connectives we may be
interested in, and if the given rules define logical reasoning completely if
restricted to the considered connectives. If we ignore universal and exis-
tential quantification, then the main missing connectives are logical equiv-

LECTURE NOTES NOVEMBER 18, 2004

The Curry-Howard Isomorphism L23.5

A1 true, . . . , Ai true, . . . , An true ` Ai true
Hypi

H ` A true H ` B true

H ` A ∧B true
∧I

H ` A ∧B true

H ` A true
∧E1

H ` A ∧B true

H ` B true
∧E2

H ` > true
>I

no >E rule

H,A true ` B true

H ` A ⊃ B true
⊃I

H ` A ⊃ B true H ` A true

H ` B true
⊃E

H ` A true

H ` A ∨B true
∨I1

H ` B true

H ` A ∨B true
∨I2

H ` A ∨B true
H,A true ` C true
H,B true ` C true

H ` C true
∨E

no ⊥I rule
H ` ⊥ true

H ` C true
⊥E

Figure 1: Rules of Intuitionistic Propositional Logic

alence A ≡ B and negation ¬A. These can be easily considered abbrevia-
tions, using

A ≡ B = (A ⊃ B) ∧ (B ⊃ A)
¬A = A ⊃ ⊥

On the question of the completeness of these rules, a debate is possible.
With the right proof-theoretic analysis we can show that A ∨ ¬A true is not
provable for an arbitrary A in this logic, essentially because we can prove
neither A true nor ¬A true, which are the two possibilities if we consider
the introduction rules for disjunction (∨).

The logic we have developed so far is, for historical reasons, called in-
tuitionistic logic. If we also allow arbitrary instances of the axiom schema of
excluded middle (XM),

H ` A ∨ ¬A true
XM

LECTURE NOTES NOVEMBER 18, 2004

L23.6 The Curry-Howard Isomorphism

we obtain what is called classical logic. Note how classical logic, in a rule
rather difficult to motivate, destroys the design principles and attempts at
explaining the meaning of the connectives. For example, to understand the
meaning of disjunction it is no longer sufficient to understand its introduc-
tion rules, but we must also understand the law of excluded middle, which
contains and appeal to negation and falsehood. All is not lost, but we can
say that the Curry-Howard isomorphism (the subject of this lecture whose
explanation is yet to come) will fail in the presence of the law of excluded
middle.

For the rest of this lecture we will only be interested in the intuitionistic
logic as defined with the rules in Figure 1. The first observation is that a
derivable judgment H ` A true does not contain any information about its
derivation. When we assert H ` A true is derivable we mean that it has a
derivation, but we do not exhibit such a derivation. This makes it difficult
to convince someone else of the truth of A under assumptions H . So what
we would like to do is to enrich the judgment with a proof term M which
contains enough information to reconstruct the derivation.

So we would like to uniformly replace the judgment A true with M : A
(read: M is a proof of A). For assumptions A true we do not actually have
a proof of A, we assume that there is a proof. We model this by using a
variable, where each assumption is labeled by a distinct variable.

So we want to translate a judgment

A1 true, . . . , An true ` A true

to the form
x1:A1, . . . , xn:An ` M : A

in such a why that the derivation of the first judgment can be reconstructed
directly from M . First, the hypothesis rule is straightforward:

A1 true, . . . , Ai true, . . . , An true ` Ai true
Hypi

becomes

x1:A1, . . . , xi:Ai, . . . , xn:An ` xi : Ai

Hyp

Since the assumptions are labeled by distinct variables, we no longer need
to annotate the justification with an integer and we just write Hyp.

The remaining rules mention a collection of hypotheses H = (A1 true, . . . , An true)
which we annotate uniformly with distinct variables, leading to a context
Γ = (x1:A1, . . . , xn:An).

LECTURE NOTES NOVEMBER 18, 2004

The Curry-Howard Isomorphism L23.7

We begin the logical connectives with conjunction. A proof of a con-
junction A ∧ B by the introduction rule ∧I consists of a pair of proofs, one
of A and one for B.

Γ ` M : A Γ ` N : B

Γ ` pair(M,N) : A ∧B
∧I

We can recover the old rule by ignoring the proof terms, which immediately
shows that the rule is sound with respect to the truth judgment. The two
elimination rules can be considered as extracting components of this pair
of proofs, which is why we use the suggesting names fst and snd.

Γ ` M : A ∧B

Γ ` fst(M) : A
∧E1

Γ ` M : A ∧B

Γ ` snd(M) : B
∧E2

The main observations of the Curry-Howard isomorphism should now
already be visible:

1. (Propositions-as-types) Propositions of logic correspond to types of
a programming language

2. (Proofs-as-programs) Proofs in logic correspond to expressions in a
programming language

3. (Proof-checking-as-type-checking) Verifying the correctness of a proof
corresponds to type-checking its corresponding expression.

We will consider later how computations are interpreted.
Now we go back to the logical connectives, considering implication.

We need to account for the fact that the introduction rule (⊃I) introduces a
new hypotheses. In the proof term this is handled as a binding construct.
To make the reconstruction problem unambiguous we record A in the ex-
pression. A more standard notation for fn(A, x.M) would be λx:A.M .

Γ, x:A ` M : B

Γ ` fn(A, x.M) : A ⊃ B
⊃I

In words: a proof of A ⊃ B is a function which maps a proof of A to a proof
of B. This is the functional interpretation of implication in intuitionistic
logic. The elimination rule just applies such a function to an argument
proof term.

Γ ` M : A ⊃ B Γ ` N : A

Γ ` apply(M,N) : B
⊃E

LECTURE NOTES NOVEMBER 18, 2004

L23.8 The Curry-Howard Isomorphism

In summary, logical implications corresponds to function types, analogous
to the way that logical conjunctions correspond to product types.

It is not hard to guess that logical disjunction will correspond to disjoint
sum types.

Γ ` M : A

Γ ` inl(B,M) : A ∨B
∨I1

Γ ` M : B

Γ ` inr(A,M) : A ∨B
∨I2

Proof by cases corresponds to the case construct over disjoint sums.

Γ ` M : A ∨B Γ, x:A ` N : C Γ, y:B ` P : C

Γ ` case(M,x.N, y.P) : C
∨E

The logical constant > just becomes the unit type, and the logical con-
stant ⊥ the void (empty) type.

Γ ` unit : >
>I

Γ ` M : ⊥
Γ ` abort(C,M) : C

⊥E

The following table summarizes the correspondence between proposi-
tions and types under the Curry-Howard isomorphism:

Conjunction A ∧B τ × σ Product Type
Truth > 1 Unit Type
Implication A ⊃ B τ → σ Function Type
Disjunction A ∨B τ + σ Sum Type
Falsehood ⊥ 0 Void Type

As example, consider the following sample proofs, now written out
in proof terms rather than full derivations. We have elided some (in this
case, redundant) types1 in the terms. As remarked in the lecture about bi-
directional type-checking, if the term is normal and the type is known on
the outside, then no internal type annotations are necessary.

fn(x.pair(snd(x), fst(x))) : (A ∧B) ⊃ (B ∧A)
fn(x.fn(y.apply(x, inl(y)))) : ((A ∨B) ⊃ C) ⊃ (A ⊃ C)

At this point it should be easy to see that we could actually let ML do
some of the proof-checking for us. For example, with definitions

1that is, propositions

LECTURE NOTES NOVEMBER 18, 2004

The Curry-Howard Isomorphism L23.9

fun pair(x,y) = (x,y);
fun fst(x,y) = x;
fun snd(x,y) = y;

the first proof term above can be written as

- (fn x => pair (snd x, fst x));
val it = fn : ’a * ’b -> ’b * ’a

which constitutes a proof of (A ∧ B) ⊃ (B ∧ A). The principal difficulty
is that the presence of effects and recursion destroys the isomorphism. For
example,

fun loop(x) = loop(x);
val loop = fn : ’a -> ’b

but the corresponding proposition, A ⊃ B cannot be true in general. This
means type-checking along in ML does not implement proof-checking; we
also have to verify (by hand) the absence of effects and recursion.

We will not formalize this here, but it follows by straightforward in-
ductions that for a derivation D of A1 true, . . . , An true ` A true we can
systematically construct a derivation of x1:A1, . . . , xn:An ` M : A. More-
over, if x1:A1, . . . , xn:An ` M : A then by erasure of terms (and appro-
priate labeling of the hypothesis rule) we can construct a derivation of
A1 true, . . . , An true ` A true. These two translations are inverses of each
other. In other words, the correspondence is really an ismorphism between
proofs and programs.

It remains to consider what the role of computation is on the logical side.
The whole construction seems too beautiful and elegant for the operational
semantics of programs to be a simple accident without logical counterpart.
In order to investigate this we return to the question of how to ascertain the
“correctness” of the introduction and elimination rules for each connective.
For example, it would clearly be unsound to have an elimination rule that
allows us to infer A true from A ∨ B true. But how can we formally reject
such an incorrect elimination rule?

In our context here we break down the correctness of the elimination
rules with respect to the introduction rules into two questions: local sound-
ness and local completeness.

LECTURE NOTES NOVEMBER 18, 2004

L23.10 The Curry-Howard Isomorphism

Local soundness means that the elimination rules are not too strong. We
have to verify that we cannot obtain more knowledge from a judgment by
an elimination rule than we put into it by an introduction rule. More for-
mally, we must show that if we introduce a connective and then eliminate
it, we could derive the conclusion without this detour.

In the example of conjunction, this property is quite easy to see. We con-
sider the possible combinations of introductions followed by eliminations,
of which there are two.

D
A true

E
B true

A ∧B true
∧I

A true
∧E1

D
A true

E
B true

A ∧B true
∧I

B true
∧E2

In the first case, we can eliminate the detour because D is already a deriva-
tion of the conclusion, in the second case it is E . We write this as local
reductions on proofs that witness the local soundness of the rules.

D
A true

E
B true

A ∧B true
∧I

A true
∧E1 7→

D
A true

D
A true

E
B true

A ∧B true
∧I

B true
∧E2 7→

E
B true

If we annotate the derivations with proof terms we see that each local re-
duction is a rule of computation on proof terms.

D
M : A

E
N : B

pair(M,N) : A ∧B
∧I

fst(pair(M,N)) : A
∧E1

7→
D

M : A

D
M : A

E
N : B

pair(M,N) : A ∧B
∧I

snd(pair(M,N)) : B
∧E2

7→
E

N : B

LECTURE NOTES NOVEMBER 18, 2004

The Curry-Howard Isomorphism L23.11

Written out using only proof terms:

fst(pair(M,N)) 7→ M
snd(pair(M,N)) 7→ N

So proof reduction arises from showing that a “detour”, that is, the in-
troduction of a connective immediately followed by its elimination, can be
avoided, leading to a “more direct” proof of the conclusion. The logically
important property of this proof reduction is that it witnesses local sound-
ness: we cannot get more information out of the truth of a proposition than
we put into it.

Under the Curry-Howard isomorphism, computation then arises from
a notion of proof reduction by imposing a particular strategy of reduction.
For ML, this strategy is characterized by the search rules that specify where
a reduction may take place. It seems that nothing about the logical meaning
of a program forces the particular strategy adopted by ML, which means
that the logical reading underdetermines how to evaluate programs but
instead provides only the basic building blocks, namely the reductions.

To extend our analysis of proof reductions to implications, we need to
consider substitution. Recall the substitution principle:

If H1 ` A true and H1, A true,H2 ` C true then H1,H2 ` C true.

If we annotate this with proof terms we obtain:

If Γ1 ` M : A and Γ1, x:A, Γ2 ` N : C
then Γ1,Γ2 ` {M/x}N : C.

Now the pure proof reduction for an implication introduction followed
by its elimination has the form

D
H,A true ` B true

H ` A ⊃ B true
⊃I E

H ` A true

H ` B true
⊃E

7→
D′

H ` B true

where the existence of D′ is justified by the substitution property applied
to E and D. With proof terms:

D
Γ, x:A ` M : B

Γ ` fn(A, x.M) : A ⊃ B
⊃I E

Γ ` N : A

Γ ` apply(fn(A, x.M), N) : B
⊃E

7→
D′

Γ ` {N/x}M : B

LECTURE NOTES NOVEMBER 18, 2004

L23.12 The Curry-Howard Isomorphism

Written out using only proof terms:

apply(fn(A, x.M), N) 7→ {N/x}M

For sums, we have to check two combinations of introduction followed
by an elimination, because there are to rules for disjunction introduction.
We leave it to the reader to write out the proof reduction that witnesses
local soundness. The corresponding proof term reductions are

case(inl(B,M), x.N, y.P) 7→ {M/x}N
case(inr(A,M), x.N, y.P) 7→ {M/y}P

For truth (>) and falsehood (⊥) no local reductions arise, because truth
has only and introduction and falsehood only an elimination. Consequently,
there are no reduction rules for the unit and void types, which is consistent
with our definition of MinML.

One further remark regarding the connection between proof reductions
and rules of computation. The fact that proof reductions transform one
valid proof of Γ ` M : A to another valid proof Γ ` M ′ : A ensures type
preservation for the corresponding computation rules in the programming
languages.

There is a second check that is usually applied to the introduction and
elimination rules for a connective to verify that the elimination rules are
strong enough to recover all the information that has been put into a propo-
sition. We have to verify that if we assume we have a proof of a proposi-
tion, we can apply elimination rules in such a way that we can reconstruct a
proof of the original proposition by an introduction rule. We call this prop-
erty local completeness, which is witnessed by a local expansion. However,
local expansions do not have an immediate computational meaning, but
are connected to the canonical forms property (also called value inversion).
We do not explore this connection further and just show an example.

D
H ` A ∧B true =⇒

D
H ` A ∧B true

H ` A true
∧E1

D
H ` A ∧B true

H ` B true
∧E2

H ` A ∧B true
∧I

With proof terms:

D
Γ ` M : A ∧B =⇒

D
Γ ` M : A ∧B

Γ ` fst(M) : A
∧E1

D
Γ ` M : A ∧B

Γ ` snd(M) : B
∧E2

Γ ` pair(fst(M), snd(N)) : A ∧B
∧I

LECTURE NOTES NOVEMBER 18, 2004

The Curry-Howard Isomorphism L23.13

Or purely on terms (indicating the type of the left-hand side)

M : A ∧B =⇒ pair(fst(M), snd(M))

LECTURE NOTES NOVEMBER 18, 2004

Lecture Notes on

Program Equivalence

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 24
November 30, 2004

When are two programs equal? Without much reflection one might say
that two programs are equal if they evaluate to the same value, or if both
of them run forever. This explicitly ignores the issue of effects, and we will
continue to think about a pure language until later in this lecture. So, in a
pure language the statement above reduces the equality of programs to the
equality of values. But when should two values be equal? For example,
how about the following two functions.

id1 = λx.x

id2 = λx.x + 0

The first observation is that they are both values, so they definitely will not
diverge.

Now, id1 and id2 return the same integer when applied to an integer,
but id1 has more types than id2. We conclude from that the we should
compare two values at a type. In general, the judgment has the form

v ' v′ : τ

where we assume that · ` v : τ and · ` v′ : τ . Here we want to ask if

(λx.x) ' (λx.x + 0) : int → int?

The answer to this question depends on our point of view. If we care
about efficiency, for example, they are not equal since the left-hand side
always takes one fewer step than the right-hand side. If we care about the
syntactic form of the function, they are not equal either. On the other hand,

SUPPLEMENTARY NOTES NOVEMBER 30, 2004

L24.2 Program Equivalence

if we only care about the result of the function when applied to all possible
arguments, then the two should be considered equal at the given type, since
both of them are (mathematically) the identity function on integers.

In this lecture we are concerned with observational equivalence between
programs: we consider to programs (and values) equal if whatever we can
observe about their behavior is identical. In pure functional languages, the
only thing you can observe about a program is the final value it returns. But
there are further restrictions. For example, we cannot observe the internal
structure of functions. In implementations, they have been compiled to
machine code—all we see is a token such as fn indicating the given value
cannot be printed.

If we cannot observe the structure of a function, what can be observe
about a function? We can apply it to arguments and observe its result. But
this result may again be a function whose structure we cannot see directly.
It appears we are moving in a vicious circle, trying to define observational
equivalence of functions in terms of itself.

Fortunately, there is a way out. We once again use types in order to
create order out of chaos. In our example above, the functions λx.x and
λx.x + 0 should be equal at type int → int because apply both of them to
equal arguments of type int will always yield equal results of type int. And
values of type int are directly observable—they form a basic data type of
our language.

Using this intuition we can now define two relations of observational
equivalence for a pure, call-by-value language by simultaneous induction
on the structure of a type of the expressions we are comparing. We write
e ⇑ if the evaluation of e does not terminate. We also use the convention
that when we write e ∼= e′ : τ that · ` e : τ and · ` e′ : τ and similarly for
values without restating this every time.

e ∼= e′ : τ iff either e ⇑ and e′ ⇑
or e 7→∗ v and e′ 7→∗ v′ with v ' v′ : τ

v ' v′ : int iff v = v′ = n for an integer n.
v ' v′ : bool iff v = v′ = true or v = v′ = false

v ' v′ : τ1 → τ2 iff for all v1 ' v′1 : τ1 we have v v1
∼= v′ v′1 : τ2

The last clause requires careful analysis. Functions are not observable
directly, although we can apply them to arguments to observe their result.
The case of values of function type can therefore be summarized as: “Two
functions are equal at type τ1 → τ2 if they deliver equal results of type τ2 when ap-
plied to equal arguments of type τ1.” Note that on the right-hand side the types
are smaller than on the left-hand side, so the definition is well-founded. It

SUPPLEMENTARY NOTES NOVEMBER 30, 2004

Program Equivalence L24.3

is also allowed that neither of the two functions terminates when given
equal arguments. This follows from comparing the expressions v v1 and
v′ v′1 which have to be evaluated first.

We can use this definition to prove our original assertion that λx.x '
λx.x + 0 : int → int.

v1 ' v′1 : int Assumption
v1 = v′1 = n for some integer n By definition of '
n ' n : int By definition of '
(λx.x)n 7→∗ n By definition of 7→
(λx.x + 0)n 7→∗ n By definition of 7→
(λx.x)n ∼= (λx.x + 0)n : int By definition of ∼=
(λx.x) v1

∼= (λx.x + 0) v′1 : int Since v1 = v′1 = n

(λx.x) ' (λx.x + 0) : int → int By definition of '

In many cases equivalence proofs are not that straightforward, but re-
quire considerable effort. As a slightly more complicated example consider

id1 = λx.x

id3 = rec f. λx.if x = 0 then 0 else f(x − 1) + 1

We notice that id1 and id3 are in fact not equal at type int → int because
id3 (−1) diverges, while id1 (−1) 7→∗ −1. However, when applied to nat-
ural numbers, that is, integers greater or equal to 0, then they are obser-
vationally equal (both return the argument). In order to capture this we
introduce nat ≤ int under the subset interpretation of subtyping and ex-
tend observational equivalence with the clause

v ' v′ : nat iff v = v′ = k for some k ≥ 0.
With these definitions we need a lemma, which can be proven by in-

duction on k. For this, we introduce the definition

id
′

3 = λx. if x = 0 then 0 else id3 (x − 1) + 1

which has the property that id3 7→ id
′

3 and id
′

3 is a value. Now we can
prove:

For any k ≥ 0, we have id1 k ∼= id
′

3 k : nat.

Proof: By induction on k.

Case: k = 0. Then id1 0 7→ 0 and id
′

3 0 7→ if 0 = 0 then 0 else id3(k − 1) +
1 7→∗ 0.

SUPPLEMENTARY NOTES NOVEMBER 30, 2004

L24.4 Program Equivalence

Case: k = k′+1. Then id1 k 7→ k and id
′

3 k 7→∗
id3(k−1)+1 7→∗

id
′

3(k
′)+1.

By induction hypothesis, id
′

3(k
′) ∼= id1(k

′) so id
′

3(k
′) ∼= k′ and id

′

3 k 7→∗

k′ + 1 = k, which is what we needed to show. �

From this it follows directly by definition of ' that id1 = id3, since
v1 ' v′1 : nat iff v1 = v′1 = k for some k and id3 7→ id

′

3.
Some care must be taken in general to define observational equivalence

correctly with respect to what is observable. For example, in a call-by-name
language we would have to apply functions to arbitrary expressions, in-
stead of testing them just on values.

It should also be clear that in the presence of effects, be it store effects or
control effects, the definition of observational equivalence must be changed
substantially to account for the effects.

In the remainder of this lecture we briefly explore the question of equiv-
alence in a setting where we have only effects. In particular, we are no
longer interested in termination or the value produced by a computation,
but just the externally observable effects it has. This is a fundamental shift
in perspective on the notion of computation, but one that is appropriate in
the realm of concurrency. For example, we may have server process that
never finishes, but forever answers request. It does not return a value (be-
cause it never does return), but it interacts with the outside world by receiv-
ing requests and sending replies. In this setting, observational equivalence
implies that the server answers with equal reply given equal requests. This
is a bit imprecise in the setting where we also have non-determinism, that
is, a process might evolve in different ways.

For this, we introduce the notion of a sequential process expression. Se-
quential processes can evolve non-deterministically and have externally
observable actions, but they do not yet integrate concurrency which is re-
served for the next lecture. We start with (observable) actions α which, at
present consist either of names a (eventually denoting an input action) and
co-names ā (eventually denoting an output action). A sequential process
expression P is defined by the following grammar.

P : : = A | α1.P1 + · · · + αn.Pn

We write 0 for a sum of zero elements; it corresponds to a process that
has terminated (it can take no further actions). Note that “.” is not related
to variable binding here, it simply separates the prefix α from the process
expression P . The process identifiers A are defined by, possibly recursive
equations

A
def
= PA.

SUPPLEMENTARY NOTES NOVEMBER 30, 2004

Program Equivalence L24.5

Sequential process expression evolve in a rather straightforward way. We
can unfold a definition of a process identifier, or we can select one non-
deterministically from a sum. When such an action is taken, the result is

observable. We define a single-step judgment P
α

−→ P ′ meaning that P

transitions in one step to P ′ exhibiting action α.

M + α.P + N
α

−→ P
Sum

(A
def
= PA) PA

α
−→ P ′

A
α

−→ P ′
Def

The Sum rule non-deterministically selects an element of a sum and
exhibits action α. Because of the syntax of the language, we cannot replace
a part of the sum. We write M and N for sums.

An examples, consider a tea and coffee vending machine with the fol-
lowing informal behavior: if we put in twopence1 we can obtain tea by
pusing an appropriately labeled button, or we can deposit 2 more pennies
and the obtain coffee. This machine can be depicted as

A

B

C

2p

2p

tea coffee

and described as a sequential process as follows:

A
def
= 2p.(tea.A + 2p.coffee.A)

The vending machine has three states: an initial state A (in which it only
waits for the input of 2p), a state B where we can either get the tea, or put
in another 2p, and a state C where can only ge the coffee. We can make this
explicit with this alternative definition

A
def
= 2p.B

B
def
= tea.A + 2p.C

C
def
= coffee.A

1This example is taken from Robin Milner’s book on Communicating and Mobile Processes:
the π-Calculus, Cambridge University Press, 1999.

SUPPLEMENTARY NOTES NOVEMBER 30, 2004

L24.6 Program Equivalence

Now we return to the question of observational equivalence. If we think
just about the actions that the vending machine can exhibit, they can be
described by the regular expression:

(2p · (tea + 2p · coffee))∗.

However, this regular expression does not characterize the vending ma-
chine as it interacts with its environment. In order to see that, consider the
following (broken) vending machine.

A'

B'

C'

2p

2p

tea coffee

2p

tea

B0'

A′
def
= 2p.B′ + 2p.B′

0

B′ def
= tea.A′ + 2p.C ′

B′

0

def
= tea.A′

C ′ def
= coffee.A′

In words, this machine differs from the first one as follows: when we sup-
ply it with 2p when in state A′, it will non-deterministically go to state B′

as before, or go into a new state B′

0 in which we can only obtain tea, but not
deposit any additional money. Clearly, this machine is broken. However,
the sequence of actions it can produce, namely

(2p · (tea + 2p · coffee) + 2p · tea)∗

is exactly the same as for the first machine.
What has gone wrong is the the reactive behavior of the system has

changed. But this is what we will be interested in when analyzing com-
municating processes. Here, every input or output will be seen as an in-
teraction with the environment, and then the two vending machines are
clearly not equivalent.

In order to capture in what sense they are equivalent we define the no-
tion of strong simulation. Let S be a relation on the states of a process or

SUPPLEMENTARY NOTES NOVEMBER 30, 2004

Program Equivalence L24.7

between several processes. We say that S is a strong simulation if when-

ever P
α

−→ P ′ and P S Q then there exists a state Q′ such that Q
α

−→ Q′

and P ′ S Q′. We say that Q strongly simulates P is there exists a strong
simulation S such that P S Q.

For example, the first machine above strongly simulates the second in
the sense that there is a strong simulation S such that A′SA. We write this
simulation as ≤1. It is defined by

A′ ≤1 A

B′ ≤1 B B′

0 ≤1 B

C ′ ≤1 C

In order to prove that this is a strong simulation we have to verify the con-
ditions in the definition for every transition of the second machine.

Case: A′
2p
−→ B′ and A′ ≤1 A. We have to show there is state Q such that

A
2p
−→ Q and B′ ≤ Q. Q = B satisfies this condition. We abbreviate this

argument in the following case by just showing the relevant transition.

Case: A′
2p
−→ B′

0 and A′ ≤1 A. Then A
2p
−→ B and B′

0 ≤1 B.

Case: B′ tea
−→ A′ and B′ ≤1 B. Then B

tea
−→ A and A′ ≤1 A.

Case: B′
2p
−→ C ′ and B′ ≤1 B. Then B

2p
−→ C and C ′ ≤1 C .

Case: B′

0

tea
−→ A′ and B′

0 ≤1 B. Then B
tea
−→ A and A′ ≤1 A.

Case: C ′ coffee
−→ A′ and C ′ ≤1 C . Then C

tea
−→ A and A′ ≤1 A.

This covers all cases, so A strongly simulates A′. The perhaps surpris-
ing fact is that A′ also strongly simulates A, although we need a different
relation. We define

A ≤2 A′

B ≤2 B′

C ≤2 C ′

so that B′

0 is not related to any other state. Then ≤2 shows that A′ strongly
simulates A. Intuitively, this is the case, because the second machine can

SUPPLEMENTARY NOTES NOVEMBER 30, 2004

L24.8 Program Equivalence

simulate every step the first machine can take. It can also exhibit some
additional undesired behavior, but this does not matter when we construct
a strong simulation.

Now it seems like we have defeated our original purpose, since the
two vending machines should not be observationally equivalent, but each
one can strongly simulate the other. It turns out that the notion we are in-
terested in is not mutual strong simulation, but strong bisimulation which
means that there is a single relation between the states that acts as a strong
simulation in both directions. Under this definition, the two vending ma-
chines are not equivalent, because any bi-simulation would have to relate
B′ and B′

0 to B, but B′

0 could never simulate B because it cannot simulate
the transition to C .

In summary, we have isolated the notion of strong bisimulation that we
can use to compare the behavior of sequential processes with observable
actions and non-deterministic choice. In the next lecture we will make our
language of processes richer, allowing for concurrency and interaction.

SUPPLEMENTARY NOTES NOVEMBER 30, 2004

Lecture Notes on

Concurrent Processes

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 25
December 2, 2004

We have seen in the last lecture that by investigating the reactive be-
havior of systems, we obtain a very different view of computation. Instead
of termination and the values of expressions, it is the interactions with the
outside world that are of interest. As an example, we showed an important
notion of program equivalence, namely strong bisimulation and contrasted
it with observational equivalence of computation with respect to values.

The processes we have considered so far were non-deterministic, but
sequential. In this lecture we generalize this to allow for concurrency and
also name restriction to obtain a form of abstraction.

In order to model concurrency we allow process composition, P1 | P2. In-
tuitively, this means that processes P1 and P2 execute concurrently. Such
concurrent processes can interact in a synchronous fashion when one pro-
cess wants to perform an input action and another process wants to per-
form a matching output action. As a very simple example, consider two
processes A and B plugged together in the following way. A performs in-
put action a and then wants to perform output action b, returning to state
A. Process B performs an input action b followed by an output action c,
returning to state B upon completion.

A
def
= a.b.A

B
def
= b.c.B

We can think of A of a transducer that transforms the input a to the output
b, and similarly for B.

a b b c

SUPPLEMENTARY NOTES DECEMBER 2, 2004

L25.2 Concurrent Processes

We assume we start with A and B operating concurrently, that is, plugged
together, communicating along channel b

b ca b

In process notation we just separate the processes by a bar “|”

A | B

Now we can have the following sequence of transitions:

A | B
a

−→ b.A | b.c.B −→ A | c.B
c

−→ A | B

We have explicitly unfolded B after the first step to make the interaction
between b and b clear. Note that this synchronization is not an external
event, so the transition arrow is unadorned. We call this an internal action
or silent action are write τ .

The second generalization from the sequential processes is to permit
name hiding (abstraction). In the example above, we plugged processes A
and B together, intuitively connecting the output b from A with the input
b from B. However, it is still possible to put another process in parallel
with A and B that could interact with both of them using b. In order to
prohibit such behavior, we can locally bind the name b. We write new x.P
for a process with a locally bound name x. Names bound with new x.P
are subject to α-conversion (renaming of bound variables) as usual. In a
picture:

x ca x

new x.

We might try to express this as

new b.A | B.

However, we have created a new problem: the name b is bound in this
expression, but the scope of b does not include the definitions of A and B. In
order to avoid this scope violation we parameterize the process definitions
by all names that they use, and apply uses of the process identifier with the
appropriate local names. We can think of this as a special form of parameter
passing or renaming.

A(x, y)
def
= x.y.A〈x, y〉

B(y, z)
def
= y.z.B〈y, z〉

SUPPLEMENTARY NOTES DECEMBER 2, 2004

Concurrent Processes L25.3

The process expression can now hygienically refer to locally bound names.

new x.A〈a, x〉 | B〈x, c〉

But the definitions of A and B are really the same up to α-conversion, so
we can rewrite this also as

new x.A〈a, x〉 | A〈x, c〉

This leads to the following language of concurrent process expressions.

Process Exps P : : = A〈a1, . . . , an〉 | N | (P1 | P2) | new x.P
Sums N : : = α.P | N1 + N2 | 0

Action Prefix α : : = a | a | τ

We define the operational semantics of concurrent processes with the
set of rules below. In this semantics an action is made explicit in a transi-
tion, but matching input/output actions become silent. We use λ to stand
for either a or a and λ for a or a, respectively.

M + α.P + N
α

−→ P
Sumt

P
λ

−→ P ′ Q
λ

−→ Q′

P | Q
τ

−→ P ′ | Q′

Reactt

P
α

−→ P ′

P | Q
α

−→ P ′ | Q
L-Part

Q
α

−→ Q′

P | Q
α

−→ P | Q′

R-Part

P
α

−→ P ′ (α /∈ {a, a})

new a.P
α

−→ new a.P ′

Rest

{a1/x1, . . . , an/xn}PA

α
−→ P ′ (A(x1, . . . , xn)

def
= PA)

A〈a1, . . . , an〉
α

−→ P ′
Identt

If we want to examine the interaction of a system with its environment
we consider the environment as another testing process that is run concur-
rently with the system whose behavior we wish to examine. In this situa-
tion we are mostly interested in silent transitions, since the interactions of a
process with its environment are explicit and therefore silent. As example
for the above rules, consider the following process expression.

P = (new a.((a.Q1 + b.Q2) | a.0)) | (b.R1 + a.R2)

SUPPLEMENTARY NOTES DECEMBER 2, 2004

L25.4 Concurrent Processes

Note that the output action before R2 is a different name than a used as
the input action to Q1, the latter being locally quantified. This means there
are only two possible τ -transitions.

P −→ (new a.(Q1 | 0)) | (b.R1 + a.R2)
P −→ (new a.(Q2 | a.0)) | R1

As another example1 of this form of concurrent processes, consider two
two-way transducers of identical structure.

A(a, a′, b, b′)
def
= a.b.A〈a, a′, b, b′〉 + b′.a′.A〈a, a′, b, b′〉

We now compose to instances of this process concurrently, hiding the
internal connection between.

new b.new b′.(A〈a, a′, b, b′〉 | A〈b, b′, c, c′〉)

At first one might suspect this is bisimilar with A〈a, a′, c, c′〉, which
shortcircuits the internal synchronization along b and b′. While we have
not formally defined bisimilarity in this new setting, this new composition
is in fact buggy: it can deadlock when put in parallel with a.P , c.P ′, c′.Q,
a′.Q′

a.P | c.P ′ | c′.Q | a′.Q′ | new b.new b′.(A〈a, a′, b, b′〉 | A〈b, b′, c, c′〉)

−→ P | c.P ′ | c′.Q | a′.Q′ | new b.new b′.(b.A〈a, a′, b, b′〉 | A〈b, b′, c, c′〉)

−→ P | c.P ′ | Q | a′.Q′ | new b.new b′.(b.A〈a, a′, b, b′〉 | b′.A〈b, b′, c, c′〉)

At this point all interactions are blocked and we have a deadlock. This
can not happen with the process A〈a, a′, c, c′〉. It can evolve in different
ways but not deadlock in the manner above; here is an example.

a.P | c.P ′ | c′.Q | a′.Q′ | A〈a, a′, c, c′〉

−→ P | c.P ′ | c′.Q | a′.Q′ | c.A〈a, a′, c, c′〉

−→ P | P ′ | c′.Q | a′.Q′ | A〈a, a′, c, c′〉

−→ P | P ′ | Q | a′.Q′ | a′.A〈a, a′, c, c′〉
−→ P | P ′ | Q | Q′ | A〈a, a′, c, c′〉

The reader should make sure to understand these transition and re-
design the composed two-way buffer so that this deadlock situation cannot
occur.

1not discussed in lecture

SUPPLEMENTARY NOTES DECEMBER 2, 2004

Concurrent Processes L25.5

Observational Equivalence for Concurrent Processes .
Next we consider the question of observational equivalence for the cal-

culus of concurrent, communicating processes.
Recall from the last lecture our definition of a strong simulation S : If

P S Q and P
α

−→ P ′ then there exists a Q′ such that Q
α

−→ Q′ and P ′ S Q′.
In pictures:

P S

α

��

Q

α

��

P ′ S Q′

where the solid lines indicate given relationships and the dotted lines in-
dicate the relationships whose existence we have to verify (including the
existence of Q′). If such a strong simulation exists, we say that Q strongly
simulates P .

Futhermore, we say that two states are strongly bisimilar if there is a
single relation S such that both the relation and its converse are strong
simulations.

Strong simulation does not distinguish between silent (also called inter-
nal or unobservable) transitions τ and observable transitions λ (consisting
either of names a or co-names a). When considering the observable behav-
ior of a process we would like to “ignore” silent transitions to some extent.
Of course, this is not entirely possibly, since a silent transition can change
from a state with many enabled actions to one with much fewer or differ-
ent ones. However, we can allow any number of internal actions in order
to simulate a transition. We define

P
τ∗

−→ P ′ iff P
τ

−→ · · ·
τ

−→ P ′

P
τ∗ λ τ∗

−→ P ′ iff P
τ∗

−→ P1

λ
−→ P2

τ∗

−→ P ′

In particular, we always have P
τ∗

−→ P . Then we say that S is a weak simu-
lation if the following two conditions are satisfied:2

(i) If P S Q and P
τ

−→ P ′

then there exists a Q′ such that Q
τ∗

−→ Q′ and P ′ S Q′.

(ii) If P S Q and P
λ

−→ P ′

then there exists a Q′ such that Q
τ∗ λ τ∗

−→ Q′ and P ′ S Q′.

2This differs slightly, but I believe insignificantly from Milner’s definition.

SUPPLEMENTARY NOTES DECEMBER 2, 2004

L25.6 Concurrent Processes

In pictures:

P S

τ

��

Q

τ∗

��

P ′ S Q′

P S

λ

��

Q

τ∗

λ
τ∗

��

P ′ S Q′

As before we say that Q weakly simulates P if there is a weak simulation S
with P S Q. We say P and Q are weakly bisimilar if there is a relation S such
that both S and its inverse are weak simulations. We write P ≈ Q if P and
Q are weakly bisimular.

We can see that the relation of weak bisimulation concentrates on the
externally observable behavior. We show some examples that demonstrate
processes that are not weakly bisimilar.

P

a
		��
��
�� b

��
,,

,,
,,

0 0

Q

a
		��
��
�� τ

��
..

..
..

0 Q1

b
��
..

..
..

0

R

τ
����
��
�� τ

��
//

//
//

R1

a
����
��
��

R2

b
��
..

..
..

0 0

P = a.0 + b.0 Q = a.0 + τ.b.0 R = τ.a.0 + τ.b.0

Even though P , Q, and R can all weakly simulate each other, no two are
weakly bisimilar. As an example, consider P and Q. Then any weak bisim-

ulation must relate P and Q1, because if Q
τ

−→ Q1 then P can match this
only by idling (no transition). But P

a
−→ 0 and Q1 cannot match this step.

Therefore P and and Q cannot be weakly bisimilar. Analogous arguments
suffice for the other pairs of processes.

As positive examples of weak bisimulation, we have

a.P ≈ τ.a.P
a.P + τ.a.P ≈ τ.a.P

a.(b.P + τ.c.Q) ≈ a.(b.P + τ.c.Q) + a.c.Q

The reader is encouraged to draw the corresponding transition diagrams.
As an example, consider the second equation.

Q1 = a.P + τ.a.P and Q2 = τ.a.P

We relate Q1 S Q2 and a.P S a.P and P S P . In one direction we have

SUPPLEMENTARY NOTES DECEMBER 2, 2004

Concurrent Processes L25.7

1. Q1

a
−→ P which can be simulated by Q2

τ a
−→ P .

2. Q1

τ
−→ a.P which can be simulated by Q2

τ
−→ a.P .

In the other direction we have

1. Q2

τ
−→ a.P which can be simulated by Q1

τ
−→ a.P .

Together these cases yield the desired result: Q1 ≈ Q2.

As a final example, we return to the earlier simple transducer.

A(x, y)
def
= x.y.A〈x, y〉

Let us compare the two transducers A〈a, c〉 and new x.A〈a, x〉 | A〈x, c〉. We
can easily see that they are not strongly bisimilar, because the latter process
can make a silent transition that the first one can not.

But are they weakly bisimilar? It seems both processes can only input
a’s and produce the same number of c’s. Since the intermediate channel x
is locally quantified, no other communication with the composed process
can take place.

And yet, the two are not weakly bisimilar. To see this, consider the
testing process a.a.0. If we put this in parallel with the first process, we
obtain

a.a.0 | A(a, c)
τ

−→ a.0 | c.A〈a, c〉

However, if we put it in parallel with the second, we can make further
process:

a.a.0 | new x.A〈a, x〉 | A〈x, c〉
τ

−→ a.0 | x.A〈a, x〉 | A〈x, c〉
τ

−→ a.0 | A〈a, x〉 | c.A〈x, c〉
τ

−→ 0 | x.A〈a, x〉 | c.A〈x, c〉
≈ x.A〈a, x〉 | c.A〈x, c〉

More formally, we can prove that they are not bisimilar by assuming
that they are and then deriving a contradiction. The contradication can be
seen by constructing the following diagram. We construct this by choosing
transitions on the left and simulating them on the write. We use τ0 to stand
for idling (= no transition) which is allowed under weak bisimulation.

SUPPLEMENTARY NOTES DECEMBER 2, 2004

L25.8 Concurrent Processes

new x.A〈a, x〉 | A〈x, c〉

a

��

≈ A〈a, c〉

a

��

new x. x.A〈a, x〉 | A〈x, c〉

τ

��

≈ c.A〈a, c〉

τ0

��

new x.A〈a, x〉 | c.A〈x, c〉

a

��

≈ c.A〈a, c〉

a

��

new x. x.A〈a, x〉 | c.A〈x, c〉 ≈ ?

The last row gives the desired contradiction, since the process c.A〈a, c〉
cannot exhibit an a transition. Essentially, the transducer on the left has
an internal buffer of since one, while the one on the right does not. This
shows that in many practical examples, we may need yet other notions of
equivalence.

In the next lecture we extend extend the calculus to allow us communi-
cation to transmit values, which leads to the π-calculus. Then we will see
how a variant of the π-calculus can be embedded in a full-scale language
such as Standard ML to offer rich concurrency primitives in addition to
functional programming.

SUPPLEMENTARY NOTES DECEMBER 2, 2004

Lecture Notes on
The π-Calculus and Concurrent ML

15-312: Foundations of Programming Languages
Frank Pfenning

Lecture 26
December 7, 2004

In this lecture we first generalize the calculus of concurrent processes so
that values can be transmitted during communication. But our language
has no primitive values, so this just reduces to transmitting names along
channels that are themselves represented as names. This means that a sys-
tem of processes can dynamically change its communication structure be-
cause connections to processes can be passed as first class values. This is
why the resulting language, the π-calculus, is called a calculus of mobile and
concurrent communicating processes. In the second part of the lecture we
show how concurrency primitives along the lines of the π-calculus can be
embedded in ML, leading to Concurrent ML (CML).

We generalize actions and differentiate them more explicitly into input
actions and output actions, since one side of a synchronized communica-
tion act has to send and the other to receive a name. We also replace prim-
itive process identifiers and defining equations by process replication !P
explained below.

Action prefixes π : : = a(y) receive y along a
| a〈b〉 send b along a
| τ unobservable action

Process exps P : : = N | (P1 | P2) | new x.P | !P
Sums N : : = 0 | N1 + N2 | π.P

In examples π.0 is often abbreviated by π. Note that in a summand
a(y).P , y is a bound variable with scope P that stands for the value received
along a. On the other hand, a〈b〉.P does not bind any variables. Even

LECTURE NOTES DECEMBER 7, 2004

L26.2 The π-Calculus and Concurrent ML

though the syntax does not formally distinguish, we use x for binding oc-
currences of names (subject to renaming), and a and b for non-binding oc-
currences.

The structural congruence remains the same as before, except that in
addition we have !P ≡ P | !P , that is, a process !P can spawn arbitrarily
many copies of itself. For references, we repeat the laws here.

1. Renaming of bound variables (α-conversion)

2. Reordering of terms in a summation

3. P | 0 ≡ P , P | Q ≡ Q | P , P | (Q | R) = (P | Q) | R

4. new x.(P | Q) ≡ P | new x.Q if x 6∈ fn(P)
new x.0 ≡ 0, new x.new y.P ≡ new y.new x.P

5. !P ≡ P | !P

Before presenting the transition semantics, we consider the following
example.

P = ((x〈y〉.0 + z(w).w〈y〉.0) | x(u).u〈v〉.0 | x〈z〉.0)

The middle process can synchronize and communicate with either the first
or the last one. Reaction with the first leads to

P1 = (0 | y〈v〉.0 | x〈z〉.0) ≡ (y〈v〉.0 | x〈z〉.0)

which cannot transition further. Reaction with the seconds leads to

P ′
1 = ((x〈y〉.0 + z(w).w〈y〉.0) | z〈v〉.0 | 0)

which can step further to

P ′
2 = (v〈y〉.0 | 0 | 0)

Next we show the reaction rules in a form which does not make an
externally observable action explicit, and exploits structural congruence.

LECTURE NOTES DECEMBER 7, 2004

The π-Calculus and Concurrent ML L26.3

τ.P + N −→ P
Tau

(a(x).P + M) | (a〈b〉.Q + N) −→ ({b/x}P) | Q React

P −→ P ′

P | Q −→ P ′ | Q Par P −→ P ′

new x.P −→ new x.P ′ Res

Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′ Struct

As a simple example we will model a storage cell that can hold a value
and service get and put requests to read and write the cell contents. We first
show it using definitions for process identifiers and then rewrite it using
process replication.

C(x, get,put) def= get〈x〉.C〈x, get,put〉
+ put(y).C〈y, get,put〉

We express this in the π-calculus by turning C itself into a name, left-
hand side into an input action and occurrences on the right-hand side into
an output action.

! c(x, get,put).(get〈x〉.c〈x, get,put〉.0 + put(y).c〈y, get,put〉.0)

We abbreviate this process expression by !C. In order to be in the cal-
culus we must be able to receive and send multiple names at once. It is
straightforward to add this capability. As an example, consider how to cre-
ate cell with initial contents 3, write 4 to it, read the cell and then print the
contents some output device. Printing a is represented by an output action
print〈a〉.0. We also consider 3 and 4 just as names here.

!C | new g.new p.c〈3, g, p〉.p〈4〉.g(x).print〈x〉.0

Note that c and print are the only free names in this expression. Note
also that we are creating new names g and p to stand for the channel to
get or put a names into the storage cell C. We leave it to the reader as an
instructive exercise to simulate the behavior of this expression. It should be
clear, however, that we need to use structural equivalence initially to obtain

LECTURE NOTES DECEMBER 7, 2004

L26.4 The π-Calculus and Concurrent ML

a copy of C with which we can react after moving the quantifiers of g and
p outside.

As a more involved example, consider the following specification of the
sieve of Eratosthenes. We start with a stream to produce integers, assuming
we have a primitive successor operation on integer names.1 The idea is to
have a channel which sends successive numbers.

!count(n, out).out〈n〉.count〈n + 1, out〉

Second we show a process to filter all multiples of a given prime num-
ber from its input stream while producing the output stream. We assume
an oracle (xmod p = 0) and its negation.

!filter(p, in, out).in(x).((xmod p = 0)().filter〈p, in, out〉.0
+ (xmod p 6= 0)().out(x).filter〈p, in, out〉.0)

Finally, we come to the process that generates a sequence of prime num-
bers, starting from the first item of the input channel which should be prime
(by invariant).

!primes(in, out).in(p).out〈p〉.
new mid.(filter〈p, in,mid〉.0 | primes〈mid, out〉.0)

primes establishes a new filtering process for each prime and threads the
input stream in into the filter. The first element of the filtered result stream
is guaranteed to be prime, so we can invoke the primes process recursively.

At the top level, we start the process with the stream of numbers count-
ing up from 2, the smallest prime. This will generate communication re-
quests out〈p〉 for each successive prime.

new nats.count〈2,nats〉 | primes〈nats, out〉

In this implementation, communication is fully synchronous, that is,
both sender and receiver can only move on once the message has been ex-
changed. Here, this means that the prime numbers are guaranteed to be
read in their natural order. If we don’t care about the order, we can rewrite
the process so that it generates the primes asynchronously. For this we use
the general transformation of

a〈b〉.P =⇒ τ.(a〈b〉.0 | P)

1This can also be coded in the π-calculus, but we prefer to avoid this complication here.

LECTURE NOTES DECEMBER 7, 2004

The π-Calculus and Concurrent ML L26.5

which means the computation of P can proceed regardless whether the
message b has been received along channel a. In our case, this would be a
simple change in the primes generator.

!primes(in, out).in(p).
out〈p〉.0 | new mid.(filter〈p, in,mid〉.0 | primes〈mid, out〉.0)

The advantage of an asynchronous calculus is its proximity to a realistic
model of computation. On the other hand, synchronous communciation al-
lows for significantly shorter code, because no protocol is needed to make
sure messages have been received, and in received in order. Since asyn-
chronous communication is very easily coded here, we stick to Milner’s
original π-calculus which was synchronous.

In the remainder of this lecture we discuss how Concurrent ML (CML)
implements concurrency primitives that heavily borrow from the π-calculus.
In CML, channels can carry values (including other channels), communica-
tion is synchronous, and execution is concurrent. However, there are also
differences. Standard ML is a full-scale programming language, so some
idioms that have to be coded painfully in the π-calculus are directly avail-
able. Moreover, CML offers another mechanism called negative acknowledg-
ments. In this lecture we will not discuss negative acknowledgments and
concentrate on the fragment of CML that corresponds most directly to the
π-calculus. The examples are drawn from the standard reference:2

John H. Reppy, Concurrent Programming in ML, Cambridge Uni-
versity Press, 1999.

We begin with the representation of names. In CML they are represented
by the type τ chan that carries values of type τ . We show the relevant
portion of the signature for the structure CML.

type ’a chan
val channel : unit -> ’a chan
val send : ’a chan * ’a -> unit
val recv : ’a chan -> ’a

The send and recv operations are synchronous which means that a call
send (a, v) will block until there is a matching recv (a) in another
thread of computation and the two rendezvous. We will see later that send
and recv are actually definable in terms of some lower-level constructs.

2See also http://people.cs.uchicago.edu/˜jhr/cml/ .

LECTURE NOTES DECEMBER 7, 2004

L26.6 The π-Calculus and Concurrent ML

What we called a process in the π-calculus is represented as a thread
of computation in CML. They are called threads to emphasize their rela-
tively lightweight nature. Also, they are executing with shared memory
(the Standard ML heap), even though the model of communication is mes-
sage passing. This imposes a discipline upon the programmer not to resort
to possibly dangerous and inefficient use of mutable references in shared
memory and use message passing instead.

The relevant part of the CML signature is reproduced below. In this
lecture we will not use thread id which is only necessary for other styles
of concurrent programming.

type thread id
val spawn : (unit -> unit) -> thread id
val exit : unit -> ’a

Even without non-deterministic choice, that is, the sums from the π-
calculus, we can now write some interesting concurrent programs. The ex-
ample we use here is the sieve of Eratosthenes presented in the π-calculus
in the last lecture. The pattern of programming this examples and other re-
lated programs in CML is the following: a function will accept a parameter,
spawn a process, and return one or more channels for communication with
the process it spawned.

The first example is a counter process that produces a sequence of in-
tegers counting upwards from some number n. The implementation takes
n as an argument, creates an output channel, defines a function which will
be the looping thread, and then spawns the thread before returning the
channel.

(* val counter : int -> int CML.chan *)
fun counter (n) =

let
val outCh = CML.channel ()
fun loop (n) = (CML.send (outCh, n); loop (n+1))

in
CML.spawn (fn () => loop n);
outCh

end

The internal state of the process is not stored in a reference, but as the
argument of the loop function which runs in the counter thread.

LECTURE NOTES DECEMBER 7, 2004

The π-Calculus and Concurrent ML L26.7

Next we define a function filter which takes a prime number p as
an argument, together with an input channel inCh , spawns a new filtering
process and returns an output channel which returns the result of removing
all multiples of p from the input channel.

(* val filter : int * int CML.chan -> int CML.chan *)
fun filter (p, inCh) =

let
val outCh = CML.channel ()
fun loop () =

let val i = CML.recv inCh
in

if i mod p <> 0
then CML.send (outCh, i)

else ();
loop ()

end
in

CML.spawn (fn () => loop ());
outCh

end

Finally, the sieve function which returns a channel along which an
external thread can receive successive prime numbers. It follows the same
structure as the functions above.

(* val sieve : unit -> int CML.chan *)
fun sieve () =

let
val primes = CML.channel ()
fun loop ch =

let
val p = CML.recv ch
val = CML.send (primes, p)
val mid = filter (p, ch)

in
loop (mid)

end
in

CML.spawn (fn () => loop (counter 2));
primes

end

LECTURE NOTES DECEMBER 7, 2004

L26.8 The π-Calculus and Concurrent ML

When sieve is creates a new channel and then spawns a process that
will produces prime numbers along this channel. It also spawns a process
to enumerate positive integers, starting with 2 and counting upwards. At
this point it blocks, however, until someone tries to read the first prime
number from its output channel. Once that rendezvous has taken place,
it spawns a new thread to filter multiples of the last prime produced with
filter (p, ch) and uses that as its input thread.

To produce a list of the first n prime numbers, we successively commu-
nicate with the main thread spawned by the call to sieve .

(* val primes : int -> int list *)
fun primes (n) =

let
val ch = sieve ()
fun loop (0, l) = List.rev l

| loop (n, l) = loop (n-1, CML.recv(ch)::l)
in

loop (n, nil)
end

For non-deterministic choice during synchronization, we need a new
notion in CML which is called an event. Events are values that we can
synchronize on, which will block the current thread. Event combinators
will allow us to represent non-deterministic choice. The simplest forms of
events are receive and send events. When synchronized, they will block until
the rendezvous along a channel has happened.

type ’a event
val sendEvt : ’a chan * ’a -> unit event
val recvEvt : ’a chan -> ’a event
val never : ’a event
val alwaysEvt : ’a -> ’a event
val wrap : ’a event * (’a -> ’b) -> ’b event
val choose : ’a event list -> ’a event
val sync : ’a event -> ’a

Synchronization is achieved with the function sync . For example, the
earlier send function can be defined as

val send = fn (a,x) => sync (sendEvt (a,x))

that is, val send = sync o sendEvt .

LECTURE NOTES DECEMBER 7, 2004

The π-Calculus and Concurrent ML L26.9

We do not use alwaysEvt here, but its meaning should be clear: it
corresponds to a τ action returning a value without any communication.

choose [v1, . . . , vn] for event values v1, . . . , vn corresponds to a sum N1+
· · ·+Nn. In particular, choose [] will block and can never proceed, while
choose [v] should be equivalent to v.

wrap (v, f) provides a function v to be called on the result of synchro-
nizing v. This is needed because different actions may be taken in the dif-
ferent branches of a choose . It is typical that each primitive receive or
send event in a non-deterministic choice is wrapped with a function that
indicates the action to be taken upon the synchronization with the event.

As an example we use the implementation of a storage cell via a con-
current process. This is an implementation of the following signature.

signature CELL =
sig

type ’a cell
val cell : ’a -> ’a cell
val get : ’a cell -> ’a
val put : ’a cell * ’a -> unit

end;

In this example, creating a channel returns two channels for communi-
cation with the spawned thread: one to read the contents of the cell, and
one to write the contents of the cell. It is up to the client program to make
sure the calls to get and put are organized in a way that does not create
incorrect interference in case different threads want to use the cell.

LECTURE NOTES DECEMBER 7, 2004

L26.10 The π-Calculus and Concurrent ML

structure Cell’ :> CELL =
struct
datatype ’a cell =

CELL of ’a CML.chan * ’a CML.chan
fun cell x =

let
val getCh = CML.channel ()
val putCh = CML.channel ()
fun loop x = CML.synch (

CML.choose [CML.wrap (CML.sendEvt (getCh, x),
fn () => loop x),

CML.wrap (CML.recvEvt putCh,
fn x’ => loop x’)])

in
CML.spawn (fn () => loop x);
CELL (getCh, putCh)

end
fun get (CELL(getCh,)) = CML.recv getCh
fun put (CELL(, putCh), x) = CML.send (putCh, x)
end;

This concludes our treatment of the high-level features of CML. Next
we will sketch a formal semantics that accounts for concurrency and syn-
chronization. The most useful basis is the C-machine, which makes a con-
tinuation stack explicit. This allows us to easily talk about blocked pro-
cesses or synchronization. The semantics is a simplified version of the one
presented in Reppy’s book, because we do not have to handle negative
acknowledgments. Also, the notation is more consistent with our earlier
development.

First, we need to introduce channels. We denote them by a, follow-
ing the π-calculus. Channels are typed a : τ chan for types τ . During the
evaluation, new channels will be created and have to be carried along as a
channel environment. This reminiscent of thunks, or memory in other evalu-
ation models we have discussed. These channels are global, that is, shared
across the whole process state. Finally we have the state s of individual
thread, which are as in the C-machine.

Channel env N : : = · | N , a chan
Machine state P : : = · | P, s

Thread state s : : = K > e | K < v

In order to write rules more compactly, we allow the silent re-ordering
of threads in a machine state. This does imply any scheduling strategy.

LECTURE NOTES DECEMBER 7, 2004

The π-Calculus and Concurrent ML L26.11

We have two judgments for the operational semantics

s 7→ s′ Thread steps from s to s′

(N ` P) 7→ (N ′ ` P ′) Machine steps from P to P ′

In the latter case we know that N ′ is either N or contains one additional
channel that may have been created. The first judgment, s 7→ s′ is exactly
as it was before in the C-machine. We have one general rule

s 7→ s′

(N ` P, s) 7→ (N ` P, s′)

We now define the new constructs, one by one.

Channels. Channels are created with the channel function. They are
value.

a value

(a chan 6∈ N)
(N ` P,K > channel ()) 7→ (N , a chan ` P,K < a)

We do not define the semantics of the send and recv functions because
they are definable.

Threads. New threads are created with the spawn function. We ignore
here the thread id type and return a unit element instead.

(N ` P,K > spawn v) 7→ (N ` P, • > v (),K < ())

(N ` P,K > exit ()) 7→ (N ` P)

Recall that even though we write the relevant thread among P last, it could
in fact occur anywhere by our convention that the order of the threads is
irrelevant.

Finally, we come to events. We make one minor change to make them
syntactically easier to handle. Instead of choose to take an arbitrary list of
events, we have two constructs:

val choose : ’a event * ’a event -> ’a event
val never : ’a event

LECTURE NOTES DECEMBER 7, 2004

L26.12 The π-Calculus and Concurrent ML

Events must be values in this implementation, because they must be-
come arguments to the synchronization function sync .

v value
sendEvt (a, v) value recvEvt (a) value

v value
always (v) value

v1 value v2 value

choose (v1, v2) value never value

v1 value v2 value

wrap (v1, v2) value

From these value definitions one can straightforwardly derive the rules
that evaluate subexpressions. Interestingly, there only two new rules for
the operational semantics: for two-way synchronization (corresponding to
a value being sent) and one-way synchronization (corresponding to a τ -
action with a value). This requires two new judgments, (v, v′) (e, e′) and
v e. We leave the one-way synchronization as an exercise and show the
details of two-way synchronization.

(v, v′) (e, e′)
(N ` P,K > sync (v),K > sync (v′)) 7→ (N ` P,K > e,K > e′)

R2

v e
(N ` P,K > sync (v)) 7→ (N ` P,K > e)

R1

The judgment (v, v′) (e, e′) means that v and v′ can rendezvous, re-
turning expression e to the first thread and e′ to the second thread. We
show the rules for it in turn, considering each event combinator. We pre-
suppose that subexpressions marked v are indeed values, without checking
this explicitly with the v value judgment.

Send and receive events. This is the base case. The sending thread con-
tinues with the unit element, while the receiving thread continues with the
value carried along the channel a.

(sendEvt (a, v), recvEvt (a)) ((), v)
sr

(recvEvt (a), sendEvt (a, v)) (v, ())
rs

LECTURE NOTES DECEMBER 7, 2004

The π-Calculus and Concurrent ML L26.13

Choice events. There are no rules to synchronize on never events, and
there are four rules for the binary choose event.

(v1, v
′) (e, e′)

(choose (v1, v2), v′) (e, e′)
cl
1

(v2, v
′) (e, e′)

(choose (v1, v2), v′) (e, e′)
cl
2

(v, v′
1) (e, e′)

(v, choose (v′
1, v

′
2)) (e, e′)

cr
1

(v, v′
2) (e, e′)

(v, choose (v′
1, v

′
2)) (e, e′)

cr
2

Wrap events. Finally we have wrap events that construct bigger expres-
sions, to be evaluated if synchronization selects the corresponding event.
This is way synchronization returns an expression, to be evaluated further,
rather than a value.

(v1, v
′) (e1, e

′)
(wrap (v1, v2), v′) (v2 e1, e

′) wl

(v, v′
1) (e, e′

1)
(v, wrap (v′

1, v
′
2)) (e, v′

2 e′
1)

wr

With the typing rules derived from the CML signature and the opera-
tional semantics, it is straightforward to prove a type preservation result.
The only complication is presented by names, since they are created dy-
namically. But we have already seen the solution to a very similar problem
when dealing with mutable references (since locations l are also created
dynamically), so no new concepts are required.

Progress is more difficult. The straightforward statement of the progress
theorem would be false, since the type system does not track whether pro-
cesses can in fact deadlock. Also, we would have to re-think what non-
termination means, because some processes might run forever, while oth-
ers terminate, while yet others block. We will not explore this further, but it
would clearly be worthwhile to verify that any thread can either progress,
exit, return a final value, or block on an event. This means that there are no
“unexpected” violations of progress. Along similar lines, it would be very
interesting to consider type systems in which concurrency and communi-
cation is tracked to the extent that a potential deadlock would be a type
error! This is currently an active area of research.

LECTURE NOTES DECEMBER 7, 2004

	Inductive Definitions
	Abstract Syntax
	Static and Dynamic Semantics
	A Functional Language
	Aggregate Data Structures
	Data Abstraction
	Recursive Types
	Subtyping
	Bidirectional Type Checking
	Mutable Storage
	Monadic Input and Output
	Storage Management
	Call-by-Need and Futures
	The Curry-Howard Isomorphism
	Program Equivalence
	Concurrent Processes
	The ˇ-Calculus and Concurrent ML

