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Abstract

Imagine a world where computational simulations can be inverted as easily as running them
forwards, where data can be used to refine models automatically, and where the only expertise
one needs to carry out powerful statistical analysis is a basic proficiency in scientific coding.
Creating such a world is the ambitious long-term aim of probabilistic programming.

The bottleneck for improving the probabilistic models, or simulators, used throughout
the quantitative sciences, is often not an ability to devise better models conceptually, but a
lack of expertise, time, or resources to realize such innovations. Probabilistic programming
systems (PPSs) help alleviate this bottleneck by providing an expressive and accessible modeling
framework, then automating the required computation to draw inferences from the model, for
example finding the model parameters likely to give rise to a certain output. By decoupling model
specification and inference, PPSs streamline the process of developing and drawing inferences
from new models, while opening up powerful statistical methods to non-experts. Many systems
further provide the flexibility to write new and exciting models which would be hard, or even
impossible, to convey using conventional statistical frameworks.

The central goal of this thesis is to improve and extend PPSs. In particular, we will make
advancements to the underlying inference engines and increase the range of problems which can
be tackled. For example, we will extend PPSs to a mixed inference-optimization framework,
thereby providing automation of tasks such as model learning and engineering design. Meanwhile,
we make inroads into constructing systems for automating adaptive sequential design problems,
providing potential applications across the sciences. Furthermore, the contributions of the work
reach far beyond probabilistic programming, as achieving our goal will require us to make
advancements in a number of related fields such as particle Markov chain Monte Carlo methods,

Bayesian optimization, and Monte Carlo fundamentals.
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Introduction

How come a dog is able to catch a frisbee in mid-air? How come a batsman can instinctively
predict the flight of a cricket ball, moving at over 100km/h, sufficiently accurately and quickly
to hit it when there is not even time to consciously make a prediction? Clearly, neither can
be based on a deep explicit knowledge of the laws of physics or some hard-coded model for
the movement of objects; we are not even born with the knowledge that unsupported objects
will fall down [Baillargeon, 2002]]. The only reasonable explanation for these abilities is that
the batsmen and the dog have learned from experience. We do not have all the knowledge
we require to survive from birth, but we are born with the ability to learn and adapt, making
observations about the world around us and using these to refine our cognitive models for
everything from the laws of physics to social interaction. Classically the scientific method
has relied on human interpretation of the world to formulate explicit models to explain our
internal intuitions, which we then test through experimentation. However, even as a whole
scientific society, our models are often terribly inferior to the subconscious models of animals
and children, such as for most tasks revolving around social interaction. This leads one to ask,
is there something fundamentally wrong with this hand-crafted modeling approach? Is there
another approach that better mimics the way humans themselves learn?

Machine learning is an appealing alternative, and often complementary, approach that focuses
on constructing algorithms and systems that can adapt, or learn, from data in order to make
predictions that have not been explicitly programmed. This is exciting not only because of the
potential it brings to automate and improve a wide array of computational tasks, but because it
allows us to design systems capable of going beyond the boundaries of human understanding,
reasoning about and making predictions for tasks we cannot solve directly ourselves. As a
field, machine learning is very wide ranging, straddling computer science, statistics, engineering,
and beyond. It is perhaps most closely related to the field of computational statistics, differing
predominantly in its emphasis on prediction rather than understanding. Despite the current hype
around the field, most of the core ideas have existed for some time, often under the guise of

pattern recognition, artificial intelligence, or computational statistics. Nonetheless, the explosion



1. Introduction 2

in the availability of data and in computational processing power in recent years has led to a surge
of interest in machine learning by academia and industry alike, particularly in its application to
real world problems. This interest alone is enough to forgive the hype, as the spotlight is not only
driving the machine learning community itself forward, but helping identify huge numbers of
applications where existing techniques can be transferred to fantastic effect. From autonomous
vehicles [Lefevre et al., 2014], to speech recognition [Jurafsky and Martin, 2014], and designing
new drugs [Burbidge et al.,|2001]], machine learning is rapidly becoming a crucial component
in many technological and scientific advancements.

In many machine learning applications, it is essential to use a principled probabilistic
approach [Ghahramani, 2015]], incorporating uncertainty and utilizing all the information at hand,
particularly when data is scarce. The Bayesian paradigm provides an excellent basis upon which
to do this: an area specialist constructs a probabilistic model for data generation, conditions this on
the actual observations received, and, using Bayes’ rule, receives an updated model incorporating
this information. This allows information from both existing expertise and data to be combined
in a statistically rigorous fashion. As such, it allows us to use machine learning to complement
the conventional scientific approach, rather than directly replacing it: we can construct models in
a similar way to that which is already done, but then improve and refine these using data.

Unfortunately, there are two key stumbling blocks that often make it difficult for this idealized
view of the Bayesian machine learning approach to be realized in practice. Firstly, a process
known as Bayesian inference is required to solve the specified problems. This is typically a
challenging task, closely related to integration, which is often computationally intensive to solve.
Furthermore, it often requires significant statistical expertise to implement effectively, creating
a substantial barrier to entry. Secondly, it can be challenging to specify models that are true
to the assumptions the user wishes to make and the prior information available. It can again
require statistical expertise to abstract application specific knowledge to a valid statistical model.
Furthermore, assumptions are often made in the interest of the tractability of inference, rather
than the fidelity of the model. Perhaps because of these drawbacks, there is often a reliance on
off-the-shelf solutions, even when these models are somewhat inappropriate for the task at hand.

Probabilistic programming systems (PPS) [Goodman et al., 2008b] are an attempt to overcome
this dichotomy between the Bayesian ideal and common practice. Their core philosophy is to
decouple model specification and inference, the former corresponding to the user-specified
program code, composing of a generative model and statements for conditioning on data, and the

latter to an inference engine capable of operating on arbitrary programs. This abstraction barrier
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allows users with domain specific knowledge to write models naturally, as if they were writing
a simulator, without worrying about the inference, which becomes the job of the developer.
Informally one can think of PPS as operating as inverse probability engines, outputting the
conditional probability distribution implied by the generative model coupled with the observed
data. Removing the need for users to worry about the required inference significantly reduces
the burden of developing new models and makes effective statistical methods accessible to
non-experts. From a developer’s perspective, the abstraction can also aid in the design and testing
of new inference algorithms. Furthermore, the availability of the target source code, with known
semantics, opens up many opportunities for new methods that would not otherwise be possible.

The underlying theme of this thesis is improving and extending probabilistic programs.
However, doing this will involve making a number of noticeable advancements in distinct research
areas such as particle Markov chain Monte Carlo methods [Andrieu et al., 2010], Bayesian
optimization [Shahriari et al., 2016b]], and Monte Carlo fundamentals [Owen, 2013]]. Along
with the direct merit of these advancements, our general aims from a probabilistic programming
perspective can be broken down into two themes: improving the underlying inference engines
of PPSs and increasing the range of problems they can tackle.

Improving PPS inference engines is necessary both to increase their efficiency and, perhaps
more importantly, because the limits on the complexity of models that can be tackled by a system
are predominantly dictated by the effectiveness of its inference engine(s). Though existing
PPSs provide an effective means of performing inference in simple models or those with easily
exploitable structures, they still tend to be some way off what is achievable using bespoke
inference methods. They are even further away from what would be required to achieve our lofty
ambitions of providing automated inference for the vast array of stochastic simulators used by
the scientific community. Improving inference engines is, therefore, essential for making PPSs
practical and applicable to a wider array of models. Our main contribution to this long term goal
is in introducing the interacting particle Markov chain Monte Carlo algorithm [Rainforth et al.,
2016c¢]], which represents a state-of-the-art inference method suitable for PPS and, arguably, the
current go-to algorithm for the PPS Anglican [Wood et al., 2014]].

Our second aim, of increasing the range of problems that can be tackled by PPSs, is all about
going beyond the standard Bayesian inference setting. As powerful as the Bayesian paradigm
is, it is far from the only tool in the machine learning arsenal and there are many problems
that fall outside of its framework. For example, by extending PPSs to a more general mixed

inference-optimization framework using BOPP [Rainforth et al., |2016b], we open the door
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to a number of fascinating opportunities such as learning models themselves or constructing
principled, probabilistic, engineering design pipelines that explicitly incorporate the uncertainty
in the task at hand. We will also investigate the opportunities and pitfalls of nesting inference
problems and nesting estimation more generally [Rainforth et al.,[2017a]]. Such nesting is essential
for expressing a wide array of problems from experimental design [Chaloner and Verdinelli,
1995] to theory-of-mind [Stuhlmiiller and Goodman, 2014]]. PPSs provide a highly convenient
means of encoding such problems, but previous results confirming the statistical validity of
doing so remain substantially lacking. We provide many of the required foundational theoretical
results and demonstrate their importance by giving guidelines and precautions for carrying out
such nesting, both in the specific probabilistic programming context [Rainforth, 2018] and more
generally [Rainforth et al., 2017al], highlighting potential shortcomings in how this is dealt with
by existing systems. We also use our findings to start taking steps towards potentially building a
general purpose system for automated adaptive design, realizing this potential in the restricted
setting of psychological trials investigating the impact of delays and uncertainty on the subjective

values people place on rewards [Vincent and Rainforth, 2017].

1.1 Thesis Aims and Layout

This thesis contains a mixture of pedagogical material, literature review, and cutting-edge research.
Although there will inevitably be gaps, the aim is to take the reader from the fundamentals of
probability and machine learning, all the way through to highly advanced topics such as designing
automatic mixed inference-optimization engines for probabilistic programming languages. In
addition to trying to make the work as self-contained as is realistically possible, there are three
key rationales why we have decided to start from the fundamentals. Firstly, it is our aim to
make the work as accessible as possible and hopefully provide a useful guide to those new to
the field. Probabilistic programming, and machine learning more generally, draws researchers
from an exceptionally diverse pool of backgrounds and what is rudimentary to, for example,
the statistics community is often bewildering to the programming languages community and
vice-versa. Secondly, because probabilistic programing, and in particular the more advanced
content of this thesis, goes beyond conventional notions of Bayesian modeling, a thorough
understanding of the core concepts is essential. Thirdly, because machine learning moves so
quickly, or perhaps simply because of the nature of research itself, it can be easy to become
fixated on a small area of research and lose sight of the big picture. For good research it is

important to not only question one’s contribution to a particular subfield, but also the justification
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for that subfield itself. With the current hype surrounding machine learning and, in particular,
deep learning, returning to these fundamental principles and core concepts is more important
than ever so that we can assert the right approach for a particular problem and appreciate what
we can realistically hope to achieve with machine learning.

More precisely, the thesis can be broken down as follows. Chapters and [S]are all explicitly
pedagogical and cover fundamentals that should be understood in depth by anybody researching
or applying Bayesian modeling and arguably machine learning more generally. Further breaking
these down, Chapter 2] provides a short, but hopefully gentle, primer on probability theory
and thereby lays out the foundations upon which all probabilistic machine learning is based.
Chapter [3] introduces the Bayesian approach to machine learning upon which most of this
work is based, giving motivation for the framework, but also a critique exposing some of its
weaknesses. Chapter [5] introduces the problem of Bayesian inference, required to solve all
Bayesian modeling problems, focusing on a Monte Carlo approach, providing, in particular, a
detailed introduction to some of the foundational methods.

Chapter [ provides an introduction to probabilistic programming from the perspective of
writing models. Though its earlier sections are still predominantly pedagogical, much of the core
notation for the rest of the thesis is laid out in its latter sections, some of which is somewhat
distinct to that conventionally used in the literature. Chapter [6] considers a more advanced class
of Bayesian inference methods, namely sequential Monte Carlo [Doucet and Johansen, 2009]
and particle Markov chain Monte Carlo methods [Andrieu et al., 2010], building up to our recent
contribution to the literature [Rainforth et al., 2016c]]. Chapter [/| though not explicitly new
research, being in particular an ode to the work of [Tolpin et al. [2016], still constitutes relatively
advanced and cutting-edge material in the form of the intricate workings of a probabilistic
programming system back-end. Chapter[§]is a return to slightly more pedagogical material in
the form of an introduction to Bayesian optimization.

Chapters[9] [I0} and[IT]all outline new contributions to the literature both as presented in recent
publications of ours [Rainforth et al., 2016b, 2017a; Rainforth, 2018} |Vincent and Rainforth, 2017
and newly introduced material for this thesis. Chapter[9]introduces a mixed inference-optimization
framework for PPSs using a mixture of Bayesian optimization, code transformations, and existing
inference engines. Chapter [I0| considers the statistical implications of nesting Monte Carlo
estimators and the application of these results to the nesting of probabilistic programs. Chapter|[IT]
outlines a method for automating adaptive experiments for a certain class of psychological trials

and takes steps towards designing a general purpose PPS for experimental design.



A Brief Introduction to Probability Theory

Before going into the main content of the paper, we first provide a quick primer on probability
theory, giving some essential background and outlining conventions that we will use throughout
the thesis. Readers familiar with the differences between a probability and a probability density
and between a random variable and an outcome may want to skip to this chapter, referring back
as needed for clarification on any conventions undertaken. Others will hopefully find it to be a
gentle introduction to the key concepts that will be needed to be understood to follow the rest of
the thesis. Notation has been chosen with accessibility as the primary aim and we will avoid the
use measure theory where possible. Nonetheless, a measure theoretic approach to probability is

essential for a more rigorous understanding and we refer the interested reader to Durrett [2010]].

2.1 Random Variables, Outcomes, and Events

A random variable is a variable whose realization is currently unknown, such that it can take
on multiple different values or outcomesﬂ A set of one or more outcomes is known as an event.
For example, if we roll a fair six-sided dice then the result of the roll is a random variable while
rolling a 4 is both a possible outcome and a possible event. Rolling a number greater or equal to
5, on the other hand, is a possible event but not a possible outcome: it is a set of two individual
outcomes, namely rolling a 5 and rolling a 6. Outcomes are mutually exclusive, that is, it is not
possible for two separate outcomes to occur for a particular trial, e.g. we cannot roll both a 2
and 4 with a single throw. Events, on the other hand, are not. For example, it is possible for both

the events that we roll and even number and we roll a number greater than 3 to occur.

2.2 Probabilities

A probability is the chance of an event occurring. For example, if we denote the output of
our dice roll as X, then we can say that P(X = 4) = 1/6 or that P(X < 3) = 0.5. Here
X =4 and X < 3 are events for the random variable X with probabilities of 1/6 and 0.5

respectively. A probability of 0 indicates that an event has no chance of happening, for example

'In a more formal, measure-theoretic framework, outcomes are points in sample space and random variables are
measurable functions from outcomes to a measurable space.
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the probability that we role an 8, while a probability of 1 indicates it is certain to happen, for
example, the probability that we roll a positive number. All probabilities must thus lie between
0 and 1 (inclusively). A distribution of a random variable provides the probabilities of each
possible outcome for that random variable occurring.

Though, we will regularly use the shorthand P(z) to denote the probability of the event
P(X = x), we reiterate the important distinction between the random variable X and the
outcome z: the former has an unknown value (e.g. the result of the dice roll) and the latter
is a fixed possible realization of the random variable (e.g. rolling a 4). All the same, we will
at times be intentionally carefree about delineating between random variables and outcomes,
except for when the distinction is explicitly necessary.

Somewhat surprisingly, there are two competing (and sometimes incompatible) interpretations
of probability. The frequentist interpretation of probability is that it is the average proportion
of the time an event will occur if a trial is repeated infinitely many times. The Bayesian
interpretation of probability is that it is the subjective belief that an event will occur in the
process of incomplete information. Both viewpoints have strengths and weaknesses and we will
avoid being drawn into one of the biggest debates in science, noting only that the philosophical
differences between the two are typically completely detached from the practical differences
between the resulting machine learning or statistics methods (see Section [3.4), despite these
philosophical differences all too often being used to argue the superiority of the resultant

algorithms [Gelman et al., 2011; |Steinhardt, 2012].

2.3 Conditioning and Independence

A conditional probability is the probability of an event given that another event has occurred.
For example, the conditional probability that we roll a 4 with a dice given that we have rolled
a 3 or higher is P(X = 4|X > 3) = 0.25. More typically, we will condition upon events that
are separate but correlated to the event we care about. For example, the probability of dying of
lung cancer is higher if you smoke. The process of updating a probability using the information
from another event is known as conditioning on that event. For example, one can condition the
probability that a football team will win the league on the results from their first few games.
Events are independent if the occurrence of one event does not affect the probability of the
occurrence of the other event. Similarly, random variables are independent if the outcome of one
random variable does not affect the distribution of the other. Independence of random variables

indicates the probability of each variable is the same as the conditional probability given the other
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variable, i.e. if X and Y are independent, P(X = z) = P(X = z|Y = y) for all possible 3. Note
that independence does not necessarily carry over when adding or removing a conditioning: if X
and Y are independent, this does not necessarily mean that P(X = z|A) = P(X = z|A,Y =y)
for some event A. For example, the probability that the next driver to pass a speed camera
is speeding and that the speed camera is malfunctioning can be reasonably presumed to be
independent. However, conditioned on the event that the speed camera is triggered, the two are
clearly not independent as if the camera is working, this would indicate that the driver is speeding.
If P(X = z|]A) = P(X = z|A,Y = y) holds, then X and Y are known as conditionally
dependent given A. In the same way that independence does not imply conditional independence,

conditional independence does not imply non-conditional independence.

2.4 The Laws of Probability

Though not technically axiomatic, the mathematical laws of probability can be summarized
by the product rule and the sum rule. Remarkably, almost all of probability stems from these
two simple rules. The product rule states that the probability of two events occurring is the
probability of one of the events occurring times the conditional probability of the other event

happening given the first event happened, namely
P(A,B):= P(ANB) = P(A|B)P(B) = P(BJA)P(A) (2.1)

where we have introduced P (A, B) as a shorthand for the probability that both the events A and

B occur. An immediate consequence of the product rule is Bayes’ rule,

P(B|A)P(A)
P(B)

which we will to return at length in Section[3.2] Another is that for independent random variables,

the joint distribution is the product of the individual probabilities: P(A, B) = P(A)P(B).

P(A]B) = , 2.2)

The sum rule has a number of different representations, the most general of which is that

the probability that either A or B occurs, P(A U B), is given by
P(AUB)=P(A)+ P(B) — P(A,B). (2.3)
The intuition of the sum rule is perhaps easiest to see by considering that
P(B)—- P(A,B)=P(B)(1 - P(A|B)) = P(B,—A)

is the probability of B and not A. Now A U B can only occur if A occurs or if B occurs and

not A. As it is not possible for both these events to occur, the probability of either event must
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be the sum of the probability of each separate event, leading to (2.3). There are a number of
immediate consequences of the sum rule. For example, if A and B are mutually exclusive then
P(AU B) = P(A) + P(B). As outcomes are mutually exclusive, it follows from the sum rule
and the axioms of probability that the sum of the probabilities for each possible outcome is equal

to 1. We can also use this to define the concept of marginalizing out a random variable Y as
P(X=z)=) P(X==zY =y) (2.4)

where the sum is over all the possible outcomes of Y. Here P(X = z) is known as the marginal
probability of X and P(X = x,Y = y) as the joint probability of X and Y.

Conditional probabilities follow the same key results as unconditional probabilities, but it
should be noted that they do not define probability distributions over the conditioning term. For
example, P(A|B) is a probability distribution over A with all the corresponding requirements, but
is not a distribution over B. Therefore, for example, it is possible to have >, P(A|B = b;) > 1.

We instead refer to P(A|B) as the likelihood of B, given the occurrence of event A.

2.5 Probability Densities

Thus far we have presumed that our random variables are discrete, i.e. that there is some fixed
number of possible outcomesE] Things get somewhat more complicated if our variables are con-
tinuous. Consider for example the probability that a runner takes exactly 7 (i.e. 3.14159265. . .)
hours to run a marathon P(X = 7). Clearly, the probability of this particular event is zero,
P(X = m) = 0, as is the probability of the runner taking any other exact time to complete the
race: we have an infinite number of possible outcomes, each with zero probability (presuming
the runner finishes the race). Thankfully, the notion of an event that we previously introduced
comes to our rescue. For example, the event that the runner takes between 3 and 4 hours has
non-zero probability: P(3 < X < 4) # 0. Here our event includes an infinite number of possible
outcomes and even though each individual outcome had zero probability, the combination
of uncountably infinitely many such outcomes need not also have zero probability. To more
usefully characterize probability in such cases, we can define a probability density function which
reflects the relative probability of areas of the space of outcomes. We can informally define
this by considering the probability of being some small area of the space of size dz. Presuming

that the probability density px(x) is roughly constant within our small area, we can say that

2Technically speaking, discrete random variables can also take on a countably infinite number of values, e.g.
the Poisson distribution is defined over 0, 1,2, ..., co. However, this countable infinity is much smaller than the
uncountably infinite number of possible outcomes for continuous random variables.
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px(z)dx =~ P(x < X < z+ dz), thus giving the informal definition px (z) = (lsin% W.
—

More precisely we can define the probability density as satisfying

P(X € A) = / px(@)de 2.5)
Te
where X € A means the event that X is in .A. We can similarly define the cumulative distribution

function P(X < z), which is the probability that X is less than equal to the outcome x

~ L

P(X <) = / P (w)du, (2.6)

where u is a dummy variable. The fundamental laws of probability discussed in the last section
apply equally well to probability densities, replacing summations with integrals as and when re-
quired.

In the rest of the thesis will drop the notation px (), using simply p(x) instead. The main
rationale for this is that we will regularly use probability density functions that we do not actually
sample from. For example, in importance sampling, we will sample from one distribution but
evaluate its density under another. In these scenarios, it may not be possible to link a random
variable to each density. We will instead make it explicit what distribution a random variable
is drawn from using the notation X ~ p(x). However, we will regularly be carefree about
distinguishing between random variables and outcomes by using loose notations such as x ~ p(z)

when the delineation is not necessary in the context.

2.6 Measures

Consider now if there is also a probability that the runner does not finish the race which we denote
as the outcome X = oo. As we have thus-far introduced them, neither the concept of a probability
or a probability density seem to be suitable for this case: every outcome other than X = oo has
zero probability, but X = oo seems to have infinite probability density. To solve this conundrum
we have to briefly break our promise to avoid measure theory. A measure can be thought of as
something that assigns a size to a set of objects. Probability measures assign probabilities to
events, remembering that events represent sets of outcomes, and thus are used to define a more
formal notion of probability that we have previously discussed. The measure assigned to an event
including all possible outcomes is thus 1, while the measure assigned to the empty set is 0.
We can generalize the concept of a probability density to arbitrary random variables by
formalizing its definition as being with respect to an appropriate reference measure. Somewhat
confusingly, this reference measure is typically not a probability measure. Consider the case of

the continuous densities examined in Section [2.5] Here we have implicitly used the Lebesgue
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measure as the reference measure, which corresponds to the standard Euclidean notion of size,
coinciding with the concepts of length, area, and volume in 1, 2, and 3 dimensions respectively.
In then dx indicated integration with respect to a Lebesgue measure, with [, , dz being
equal to the hypervolume of A (e.g. area of A in two dimensions). Our reference measure is,
therefore, clearly not a probability measure as [, dz = co. Our probability measure here can
be informally thought of as p(z)dx, so that [, , p(x)dz = P(z € A)ﬂ In the discrete cases, we
can define a probability density p(z) = P(X = z) by using the notion of a counting measure
for reference, which simply counts the number of outcomes which lead to a particular event.
Note that we were not free to choose any arbitrary measure for any given random variable. We
cannot use a counting measure as reference for continuous random variables or the Lebesgue
measure for discrete random variables because, for example, the Lebesgue measure would assign
zero measure to all possible events for the latter. Nonetheless, the reference measure we use is
not necessarily unique either. For example, we could apply a constant c scaling the reference
measure and then scale the density by 1/c. For notional convenience, we will refer to dz (or
equivalent) as our reference measure elsewhere in the thesis.

For the example where the runner might not finish, we can use a mixed measure. Perhaps
the easiest way to think about this is to think about the runner’s time X as being a deterministic
function of two random variables: the first a discrete random variable Y € {0, 1} that dictates
where the runner finishes (Y = 1) or not (Y = 0) and the second a continuous random variable
Z € R™ that specifies a distribution over run times assuming the runner finishes (such that Z
always exists but only equals X if the runner finishes). Now X is a function of Y and Z and
we can define the probability of the event X € A as follows

PXed)= Y [ P =yp@)I(X(y2) e Ads
yefo} ) #€R

= P(Y =)o € )+ PV =1) [ plz)az

where [(-) is the identity function evaluating to 1 if its input holds true and 0 otherwise, and
we have used the independence between Y and Z. By definition of a probability density, we
also have that P(X € A) = [ ., p(x)dp(x) for density p(z) with respect to measure dj(x),
where we switched notation from dz to dy(x) to express the fact that the measure now depends
explicitly on the value of z, i.e. our measure is non-stationary in x. For  # oo then it is natural

for du(x) to correspond to the Lebesgue measure, noting [ gy, P(2)dp(z) =1 — P(X = o).

3More formally, the density is derived from the probability measure and reference measure rather than the other
way around: it is the Radon-Nikodym derivative of the probability measure with respect to the reference measure.
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For = oo it is natural for du(z) to correspond to some scaling of the counting measure. For
discrete distributions, it is natural to use the counting measure exactly (i.e. set the scaling to one),
but here this could lead to a slightly misleading density given that X = oo is infinitely times
more probable than any other X. For example, this could mean that arg max, p(z) # oo which
could quickly lead to confusion. A more illustrative choice might use the counting measure
scaled by an arbitrarily small value (such that the density is scaled by large value), though
strictly speaking this scaling should not be 0.

For most applicationsﬂ the choice between valid reference measures will turn out to be
inconsequential (provided we are consistent in our choice when considering multiple densities),
as it does not affect the distribution of random variables themselves or affect things such as
expectations (see Section [2.7). The key point we wish to instead make is that, regardless of
variable type, we can (implicitly) always define a probability density functionE] The generalization
also allows us to put probability distributions of variables that are neither discrete nor continuous
type. For example, we might want to put a distribution over the space of strings. Because of this
generalization, we will talk mostly in terms of probability densities throughout this thesis, even
though variables may often be discrete (for which the density will represent a probability).

We finish the section by considering the relationship between random variables which
are deterministic functions of one another. This important case is known as a change of
variables. ITmagine that a random variable Y = ¢(X) is a deterministic function of another
random variable X. Given a probability density function for X, we can define a probability

density function on Y using

p(y)dy = p(z)dz = p(g~" (y))dg " (y) (2.7)

where p(y) and p(z) are the respective probability densities for Y and X with measures dz
and dy, the latter of which is known as a push-forward measure. Rearranging we see that,

for one-dimensional problems,

dg'(y))
dy

For the multidimensional case, the derivative is replaced by the determinant of the Jacobian

ply) = ‘ ‘p(g%y))- (2.8)

for the inverse mapping. Note that by (2.3), changing variables does not change the value
of actual probabilities or exceptions (see Section [2.7). However, (2.7) still has the important

consequence that the optimum of a probability distribution depends on the parameterization.

* An important exception to this is optimization.
SWell, almost always. But we are not going to open that can of worms, see e.g. [Durrett [2010].
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For example, parameterizing the same model with either X or log X will lead to a different

most likely value of the parameter z*, i.e., in general,

r* = argmaxp(z) # g ! (arg maxp(g(x))) : (2.9)
”3 9(z)

2.7 Expectations and Variances

The expected value E[ X |, or mean, of a random variable X is the average value that the variable
will take if an infinite number of independent draws are made. Its definition is easiest to convey

using probability density notation as follows
E[X] = / p(z)dz. (2.10)

In the discrete case this leads to E[X| = >, x; P(X = z;). Because expectations are defined by
a random variable (rather than a density), they average over all the contained randomness, e.g.
E[f(X,Y)] = [f f(z,y)p(z,y)dxdy. However, if we wish to average only with respect to part

of the randomness in a system, we can instead use a conditional expectation for example

E[f(XC VY =y] = [ fa.yp(ly)dr, @.11)

for which we will sometimes use the shorthand E[f(X,Y)|Y]. It will also sometimes be
convenient to implicitly define the random variable and conditioning for an expectation for

which we use the slightly loose notation

Epaly) [f (2,9, 2)] = /f(x, y, 2)p(z|y)dx, (2.12)

where we have implicitly defined the random variables Y ~ p(y) and X ~ p(z|]Y = y), we
are calculating E [f(X,Y, z)|Y = y], and this resulting expectation is a function of z (which is
treated as deterministic variable). One can informally think about this as being the expectation of
f(x,y, z) with respect to p(z|y)dx: our expectation is only over the randomness associated
with drawing from p(z|y).

Denoting the mean of a random variable X as p = E[X], the variance of X is defined

using any one of the following equivalent forms

Var(X) =E [(X - ,u)z} = /(x — p)?p(z)dr = B[ X?) — p? = /ZBQ])([E)CZ{E — i (2.13)
In other words, it is the average squared distance of a variable from its mean. Its square root,
the standard deviation, informally forms an estimate of the average amount of variation of the
variable from its mean and has units which are the same as the data. We will use the same

notational conventions as for expectations when defining variances.
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The variance is a particular case of the more general concept of a covariance between two
random variables X and Y. Defining px = E[X] and py = E[Y'] then the covariance is defined

by any one of the following equivalent forms
Cov(X,Y) = E[(X — ux)(Y — py)] // x — px)(y — py)p(z, y)drdy

_E[XY]-E[X]E[Y] = // vyple, y)dedy — (/ wp() d:):) (/ yp(y)dy) 14

The covariance between two variables measures the joint variability of two random variables.
It is perhaps easiest to interpret through the definition of correlation (or more specifically,
Pearson’s correlation coefficient) which is the correlation scaled by the standard deviation

of each of the variables
Cov(X,Y)
\/ Var(X)Var(Y

Corr(X,Y) = (2.15)

The correlation between two variables is always in the range [—1, 1]. Positive correlations indicate
that when one variable is relatively larger, the other variable also tends to be larger. The higher
the correlation, the more strongly this relationship holds: if the correlation is 1 then one variable
is linearly dependent on the other. The same holds for negative correlations except that when
one variable increases, the other tends to decrease. Independent variables have a correlation
(and thus a covariance) of zero, though the reciprocal is not necessarily true: variables with zero

correlation need not be independent. Note that correlation is not causation.



Probabilistic Machine Learning

In this chapter, we will provide a high-level introduction to some of the core approaches to
machine learning. We will distinguish between discriminative and generative approaches,
outlining some of the key features that indicate when problems are more suited to one approach or
the other. Our attention then settles on probabilistic generative approaches, which will be the main
focus of this thesis. We will explain how the Bayesian paradigm provides a powerful framework
for generative machine learning that allows us to combine data with existing expertise. We will
then go on to show how graphical models can be used as a convenient framework to express
Bayesian models and extract important features. We continue by introducing the main counterpart
to the Bayesian approach — frequentist approaches — and present arguments for why neither alone
provides the full story. In particular, we will outline the fundamental underlying assumptions
made by each approach and explain why the differing suitability of these assumptions to different
tasks means that both are essential tools in the machine learning arsenal, with many problems
requiring both Bayesian and frequentist elements in their analysis. Though much of the focus
of this thesis will be on Bayesian approaches, understanding their limitations is essential for
understanding when the methods we discuss should be used and, critically, when they should not.

We finish the chapter by discussing some of the key practical challenges for Bayesian modeling.

3.1 Discriminative vs Generative Machine Learning

In some machine learning applications, huge quantities of data are available that dwarf the
information that can be provided from human expertise. In such situations, the main challenge
is in processing and extracting all the desired information from the data to form a useful
characterization, typically an artifact providing accurate predictions at previous unseen inputs.
Such problems are typically suited to discriminative machine learning approaches [Breiman
et al., 2001} |Vapnik, |1998]], such as neural networks [Rumelhart et al., |1986; Bishop, |1995],
support vector machines [Cortes and Vapnik, 1995; Scholkopf and Smola, 2002], and decision

tree ensembles [Breiman, 2001} Rainforth and Wood, 2015]]. Discriminative machine learning

N

approaches focus on directly learning a predictive model: given training data D = {x,,,y,,} _,

they learn a parametrized mapping f, from the inputs z € X to the outputs y € ) that can
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be used directly to make predictions for new inputs T ¢ {xn}i\;l. Training uses the data D to
estimate optimal values of the parameters 6*. Prediction at a new input Z involves applying the
mapping with the optimal parameters giving an estimate for the output § = fp«(Z). Perhaps
the simplest example of this is linear regression: one finds the hyperplane that best represents
the data and then uses this hyperplane to interpolate or extrapolate to previously unseen points.
As a more advanced example, in a neural network one uses training to learn the weights of the
network, after which prediction can be done by running the network forwards.

There are many intuitive reasons to take a discriminative machine learning approach. Perhaps
the most compelling is the idea that if our objective is prediction, then it is simplest to solve
that problem directly, rather than try and solve some more general problem such as learning an
underlying generative process [Vapnik, [1998; Breiman et al., 2001]]. Furthermore, if sufficient
data is provided, discriminant approaches can be spectacularly successful in terms of predictive
performance. Discriminant methods are typically highly flexible and can capture intricate
structure in the data that would be hard, or even impossible, to establish manually. Many
approaches can also be run with little or no input on behalf of the user, delivering state-of-the-art
performance when used “out-of-the-box™ with default parameters [Rainforth and Wood, 2015].

However, this black-box nature is also often their downfall. Discriminative methods typically
make such weak assumptions about the underlying process that is difficult to impart prior
knowledge or domain-specific expertise. This can be disastrous if insufficient data is available,
as the data alone is unlikely to possess the required information to make adequate predictions.
Even when substantial data is available, there may be significant prior information available
that needs to be exploited for effective performance. For example, in time series modeling the
sequential nature of the data is critically important information [Liu and Chen, |1998]], while in
vision tasks the knowledge that scenes are generated from objects can be invaluable [Kulkarni
et al., 2015]. Many problems also increase in complexity as more data is added — “big data”
problems are often actually a collection, or sometimes hierarchy, of many small problems, such
that the complexity of the required parametrization increases as more data is added. Consider, for
example, modeling interactions in a social network. Adding a new user into the model increases
the amount of data, but also requires the model to grow and accommodate the new user [Ravasz
and Barabasi, 2003]. In this situation, it is essential to use an approach that respects the known
structure, while the amount of data available for each individual user is often quite small, such

that it will be essential to use prior information by transferring insights gathered from some users
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to others. Therefore even for such large-scale problems, the inflexibility of many discriminative
approaches to incorporate known characteristics of the target problem can be problematic.

Not only does the black-box nature of many discriminative methods restrict the level of human
input that can be imparted on the system, it often restricts the amount of insight and information
that can be extracted from the system once trained. The parameters in most discriminative
algorithms do not have physical meaning that can be queried by a user, making their operation
difficult to interpret and hampering the process of improving the system through manual revision
of the algorithm. Furthermore, this typically makes them inappropriate for more statistics
orientated tasks, where it is the parameters themselves which are of interest, rather than the ability
for the system itself to make predictions. For example, the parameters may have real-world
physical interpretations which we wish to learn about.

Most discriminative methods are also poor at providing realistic uncertainty estimates.
Because they are typically trained in a manner that optimizes the parameters to minimize some
loss criterion (e.g. the predictive error), they do not, in general, encode any uncertainty in either
their parameters or the subsequent predictions. Though many methods can produce uncertainty
estimates either as a by-product or from a post-processing step, these are typically heuristic based,
rather than stemming naturally from a statistically principled estimate of the target uncertainty
distribution. This lack of reliable uncertainty estimates can lead to overconfidence and can
make discriminative methods inappropriate in many scenarios, e.g. for any application where
there are safety concerns. It can also reduce the composability of discriminative methods within
larger systems, as information is lost when only providing a point estimate. Not representing
uncertainty in the parameters can also restrict the power of the resultant models, compared with
approaches that can average over different possible parameter values.

These shortfalls mean that many tasks instead call for a generative machine learning ap-
proach [Ng and Jordan, [2002; Bishopl, 2006]. Rather than directly learning a predictor, generative
methods look to explain the observed data using a probabilistic model. Whereas discriminative
approaches aim only to make predictions, generative approaches model how the data is actually
generated: they model the joint probability p(X, Y') of the inputs X and outputs Y. By compari-
son, we can think of discriminative approaches as only modeling the outputs given the inputs Y| X.

A key upshot of this difference is that generative approaches generally make stronger modeling
assumptions about the problem. Though this can be problematic when the model assumptions
are wrong and is often unnecessary in the limit of large data, it is essential for combining prior

information with data and therefore for constructing systems that exploit application-specific
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expertise. In the eternal words of George Box, “all models are wrong, but some are useful” [Box,
1979; Box et al.,|1979]. In a way, this is a self-fulfilling statement: a model for any real phenomena
is by definition an approximation and so is never exactly correct, no matter how powerful.
However, it is still an essential point that is all too often forgotten, particularly by academics
trying to convince the world that only their approach is correct. Only in artificial situations
can we construct exact models and so we must remember, particularly in generative machine
learning, that the first, and often largest, error is in our original mathematical abstraction of the
problem. On the other hand, real situations have access to finite and often highly restricted data,
so it is equally preposterous to suggest that a method is superior simply due to better asymptotic
behavior in the limit of large data, or that if our approach does not work then the solution always
just to get more data[] As such, the ease of which domain-specific expertise can be included in
generative approaches is often essential to achieving effective performance on real-world tasks.

To highlight the difference between discriminative and generative machine learning, we
consider the example of the differences between logistic regression (a discriminative classifier)
and naive Bayes (a generative classifier). We will consider the binary classification case for
simplicity. Logistic regression is a linear classification method where the class label y €

—1,+1} is predicted from the input features x € R” usin
{-1,+1}isp p g

1

Paslylr) = 1+ exp(—y(a +bTx))’ 1)

and where a € R” and b € RP are the parameters of the model. The model is trained by finding
the values for a and b that minimize a loss function on the training data. For example, a common

approach is to find the most likely parameters a* and b* by minimizing cross-entropy loss function

N
{a*,b"} = argmin —log (H pa,b(yn]a:n)) ) (3.2)
n=1

a€RD becRDP

Once found, a* and b* can be used with to make predictions at any possible x. Logistic

regression is a discriminative approach as we have directly calculated a characterization for the

predictive distribution, rather than constructing a joint distribution on the inputs and outputs.
The naive Bayes classifier, on the other hand, constructs a generative mode for the data.

Namely it presumes that each data point is generated by sampling a class label y,, ~ p,(y) and

't should, of course, be noted that the availability of data is typically the biggest bottleneck in machine learning.
At times, it feels like the machine learning community would we well served to remember that the differences in
performance between machine learning approaches is often, if not usually, dominated by variations in the inherently
difficulty of the problem, which is itself not usually known up front, rather than differences between approaches.
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then sampling the features given the class label z,, ~ ps(x|y,). Here the so-called naive Bayes
assumption is that different data points are generated independently given the class label, namely

N
Pos(Wrn]in) o< py(yin) 1T po(nlyn)- (3.3)

n=1

We are free to choose the form for both py(z|y) and py(y) and we will use the data to learn their

parameters ¢ and ¢. For example, we could take a maximum likelihood approach by calculating

N
{w*a 925*} = arg ma’Xpw#f?(yl:N’xl:N) - argwrgaxpﬂj(yl:N) H p¢(xn|yn> (34)

) n=1

and then using these parameters to make predictions ¢ at a given input Z at test time as follows

Py~ (F1T) o< pye (§) P (Z17)- (3.5)
The freedom to choose the form for py(z|y) and ps(y) is both a blessing and a curse of
this generative approach: it allows us to impart our own knowledge about the problem on the
model, but we may be forced to make assumptions without proper justification in the interest of
tractability, for convenience, in error, or simply because it is challenging to specify a sufficiently
general purpose model that can cover all possible cases. Further, even after the forms of p,(x|y)
and py(y) have been defined, there are still decisions to be made: do we take a Bayesian or
frequentist approach for making predictions? What is the best way to calculate the information
required to make predictions? We will go into these questions in more depth in Section [3.4]
As we have shown, generative approaches are inherently probabilistic. This is highly
convenient when it comes to calculating uncertainty estimates or gaining insight from our
trained model. They are generally more intuitive than discriminative methods, as, in essence,
they constitute an explanation for how the data is generated. As such, the parameters tend to
have physical interpretation in the generative process and therefore provide not only prediction
but also insight. Generative approaches will not always be preferable, particularly when there
is an abundance of data available, but they provide a very powerful framework that is essential
in many scenarios. Perhaps their greatest strength is in allowing the use of so-called Bayesian

approaches, which we now introduce.

3.2 Learning from Data — the Bayesian Paradigm

At its core, the Bayesian paradigm is simple, intuitive, and compelling: for any task involving
learning from data, we start with some prior knowledge and then update that knowledge to
incorporate information from the data. This process is known as Bayesian inference. To give

an intuitive example, consider the problem of identifying objects in a visual scene. Here it is
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relatively straightforward to construct a model for generating images by constructing a sampler
for which objects appear in the scene and their respective positions. Such graphics generators
are used for computer games all the time. Here our parameters are the objects and the data is
the image. Bayesian inference can now be thought of as the process of inverting our generator:
given objects, we can already know how to generate images, but what we want to do is identify
objects from images. We will return to these ideas in Chapter @ where we show how, using
probabilistic programming, one can think of all stochastic simulators as defining Bayesian models
and the process of inference as inverting these simulators.

To be more precise, imagine we are trying to reason about some variables or parameters
6. We can encode our initial belief as probabilities for different possible instances of 6, this is
known as a prior p(6). Given observed data D, we can characterize how likely different values
of @ are to have given rise to that data using a likelihood function p(D|f). These can then be
combined using Bayes’ rule to give a posterior, p(f|D) that represents our updated belief about

f once the information from the data has been incorporated

D) p(DO)(0)
POIP) = FDep@rds ~ pd)

Here the denominator, p(D), is a normalization constant known as the marginal likelihood

(3.6)

and is necessary to ensure p(6|D) is a valid probability distribution (or probability density
for continuous problems). One can, therefore, think of Bayes’ rule in the even simpler form
of the posterior being proportional to the prior times the likelihood. For such a fundamental
theorem, Bayes’ rule has a remarkably simple derivation, following directly from the product
rule of probability as shown in Chapter [2]

A key feature of Bayes’ rule is that it can be used in a self-similar fashion where the posterior

from one task becomes the prior when the model is updated with more data, i.e.

(D)0, D1)p(] D) _ p(Ds|0, D1)p(D1|0)p(0)
p(D2|Dy) p(D2|D1)p(Dr) .

As a consequence, there is something quintessentially human about the Bayesian paradigm: we

p(0|Dy, D) = (3.7)

learn from our experiences by updating our beliefs after making observations. Our model of the
world is constantly evolving with time and is the cumulation of experiences over a lifetime. If we
make an observation that goes against our prior experience, we do not suddenly make drastic
changes to our underlying belief but if we see multiple corroborating observations our view

will change. Furthermore, once we have developed a strong prior belief about something, we can

2This is not always quite true — as probabilities are multiplicative then a particularly unexpected observation can
still drastically change our distribution.
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take substantial convincing to change our mind, even if that prior belief is high illogical. Perhaps
this why humans seem to have a tendency to develop deep-rooted prejudices.

There is similarly something distinctively Bayesian to the scientific process itself. In
science, we construct models to explain observed phenomena and then run experiments to
validate how well our model matches real observations. We then update and improve our
model accordingly in a never-ending process of increasing understanding for the world around
us. We can never hope to truly understand the workings of the universe — after all, it is, at
least for practical purposes, fundamentally random — and so we can hope only to construct
increasingly accurate and pertinent models.

To give a more concrete example of Bayesian modeling, consider estimating the probability of
getting a heads from a weighted coin. Let’s call this weighting 6 € [0, 1] such that the probability
of getting a heads (H) when flipping the coin is p(y = H|0) = 6 where y is the outcome of
the flip. This will be our likelihood function, corresponding to a Bernoulli distribution, noting
that the probability of getting a tails (7') is p(y = T'|¢) = 1 — 6. Before seeing the coin being
flipped we have some prior belief about its weighting. We can, therefore, define a prior p(6),

for which we will take the beta distribution

I+ P)
I'(a)I'(B)

where I'(+) is the gamma function and we will set & = 3 = 2. A plot for this prior is shown

p(f) = BETA (0; a0, B) = 011 — )1 (3.8)

in Figure |3.1a) where we see that under our prior then it is more probable that 6 is close to
0.5 than the extremes 0 and 1.

We now flip the coin and get a tails (7"). We can calculate the posterior using Bayes’ rule

_ p(@)p(y. =T10) _ (1 — 0)?
I p@)p(y, =T)0)d0  [6(1 —60)2db

Here we have used the fact that a Beta prior is conjugate to a Bernoulli likelihood to give an

p@lyr =T) = BETA (6;2,3). (3.9)

analytic solution. Conjugacy means that the prior-likelihood combination gives a posterior that is
of the same form as the prior distribution. More generally, for a prior of BETA(6; a, 3) then the
posterior will be BETA(6; o + 1, 3) if we observe a heads and BETA(6; «, 5 + 1) if we observe a
tails. Figure shows that our posterior incorporates the information from the prior and the
observed data. For example, our observation means that it becomes more probable that 6 < 0.5.
The posterior also reflects the fact that we are still uncertain about the value of 6, it is not simply

the empirical average of our observations which would give 6§ = 0.
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Figure 3.1: Prior and posteriors for coin flip example after different numbers of observations.

If we now flip the coin again, our previous posterior (3.9) becomes our prior and we can
incorporate the new observations in the same way. Through our previous conjugacy result, then if
we observe ny heads and nr tails and our prior is BETA(0; «, [3) then our posterior is BETA(6; o+

ny, 5 + nr). Thus if our sequence of new observations is HT H H H then our new posterior is

(Y2, -, y6|0)p(0]y1)
Oy, ..., = = BETA (0;6,4), (3.10)
POl ) = el O)p(Blyn) @D (6:6,4)

which is shown in Figure We see now that our belief for the probability of heads has shifted
higher and that the uncertainty has reduced because of the increased number of observations.
After seeing a total of 1000 observations as shown in Figure we find that the posterior
has predominantly collapsed down to a small range of 6.

Having calculated our posterior, we can now make predictions using the posterior predictive

distribution which marginalizes out over the parameters. For the coin flip case, we have

Pluws = Hlysw) = [ pluves = H,0yin)dd = [ plynsa = HIO)p(6lys.n)df
a+ng
= [ 0§ BETA(O; a0+ ny, 5+ do = 3.11
/ (0; 4, 4+ ) a+ng+ LB +np G-11)

where we have used the known result for the mean of the Beta distribution. The role of the

parameters « and [ in our prior now become apparent — they take on the role of pseudo-
observations. Our prediction is in line with the empirical average from seeing o + ny heads and
B + ny tails. The larger o + [ is then the strong our prior compared to the observations, while
we can skew towards heads or tails being more likely by changing the relative values of e and f3.

More generally the posterior predictive distribution will depend on a queried input point.
To demonstrate this, consider the example of a Bayesian linear regression from inputs x € RP
to outputs y € RP. Assume that we have N observations D = {z,,y,}"_; and let x =
[1,...,zy]T andy = [y1,...,yn]|T respectively be a N x D matrix and a column vector whose
rows correspond to the different data points. Our regression is of the form y,, = 2w + b + ¢,
where w € RP, b € R and each ¢, "% N (0,0?%). This implies a likelihood of

N N
p(ylx,w.b,0) = [[ p(ynl|zn, w,b,0) = T[] N (yn; zh W + b, 0°). (3.12)

n=1 n=1
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For simplicity, we will assume that o and b are known fixed parameters, but we will put a prior
on w, namely p(w) = N (w;0,C) where C'is a fixed covariance matrix, in order to perform

inference. To make predictions, we first calculate the posterior

N
p(w|D,b,0) = N(w;0,C) [[ N(yn; 2w +b,0%) = N (w;m, S) (3.13)
n=1

TN -1
where m =S 'x” (y —b) /o> and S = (C'_l + XX) :

We have omitted the necessary linear algebra (see for example Bishop [2006] Sections 2.3.3
and 3.3) but note the conjugacy between the normal distribution and itself. Prediction now
uses the posterior predictive, marginalizing over the parameters in the same manner as the
coin flip example. Here though, we are interested in predicting the output ¢ at a particular

input point  for which we have
p(§17.D,b,0) = [ p(§l7, W)p(w|D,b, o)dw = [ N (52w + b, 6%\ (wim, S) dw
1
=N <y ; 'm4b, 21972+ 2) (3.14)
o

which again follows from standard results for Gaussian distributions. We, therefore, have an
analytic predictive distribution at any possible input point. Though this linear regression example
might seem overly simple for practical purposes, we will see in Section [8.2] that substantially
more advanced models, such as Gaussian processes, can be viewed as linear regressions between
a set of features on the inputs ¢(z) and the output y.

The models we have introduced so far are specific examples of Bayesian modeling and will
clearly only be applicable or appropriate in very particular scenarios. Bayesian modeling is at
its heart a generative approach and its real power will be when we design a rich and expressive
generative model that reflects our application-specific knowledge. In other words, we can define
our model by carefully constructing a stochastic process that describes how the parameters and
data are generated. For our object recognition example at the start of the section, this would
correspond to a graphics generator for sampling scenes. More generally, the model corresponds
to the joint distribution on parameters and data p(6, D). We can then think of observing real data
as refining our model through conditioning, providing an updated distribution on the parameters
p(0|D) and subsequent predictions that incorporate the information from the data. The more
flexible we make our generative model, the more we can make it represent the our data. The less

flexible we make the generative model, the more weighting is given to our prior assumptions.
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We finish by making a technical point of note about the behavior of Bayesian methods of
the limit of large data. Assume that our likelihood model p(D|f) is correct such that the data
D = y;.ny is generated according to p(yi.n|0*) where 6* are the (finite) set of ground truth
parameters and the prior p(#) satisfies p(6*) > 0. Informally speaking, the Bernstein-Von Mises
theorem now states that in the limit of large N, the posterior distribution p(6|y;.) converges
to a normal distribution we mean #* and variance of order O(1/N) (i.e. it decreases at a rate
1/N) [Doob), [1949; Freedman, 1963]]. This is a hugely important result in Bayesian statistics as it
demonstrates that, when our model assumptions are correct, we converge to the true parameters
and the posterior becomes independent of the prior when we are provided with sufficient data. It
further transpires that when no such 6* exists (i.e. our model is misspecified), the convergence
is instead to the parameters 6 which minimize the Kullback-Leibler (KL) divergenc to the
true data generating distribution p*(y;.n), namely
P (yun)
p(y1.n10)
See for example [Kleijn et al., [2012]] and the references therein for further details.

0 = argemin KL (p*(y1.n)||p(y1:x]0)) = argemin/p*(ylw) log ( ) dyi.n.  (3.15)

3.3 Graphical Models

Generative models will typically have many variables and a complex dependency structure.
In other words, many variables will be conditionally independent of one another given values
for other variables. Graphical models are a ubiquitously used method for representing and
reasoning about generative models, with a particular focus on the dependency structure. At
a high-level, they capture how the joint probability distribution can be broken down into a
product of different factors, each defined over a subset of the variables. They are formed of
a number of connected nodes, where each node represents a random variable (or collection
of random variables) in the model. Links between nodes represent dependencies: any two
connected nodes have an explicit dependency, though unconnected nodes may still be dependent.
Various independence assumptions can be deduced from the graphical model, though the exact
nature of these deductions will depend on the type of graphical model — nodes without direct
links between them will often still be dependent.

Graphical models can be separated into two distinct classes: directed graphical models and
undirected graphical models. Undirected graphical models, also known as Markov random fields,

imply no ordering on their factorization and are used only to express conditional independences

3The KL divergence can informally be thought of as a measure of discrepancy between two distributions. Though
it is not symmetric in its inputs, it is always non-negative and zero if and only if the two distributions are the same.
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between variables. They are used in scenarios where it is difficult to specify the target distribution
in a generative way, e.g. Boltzmann machines [Ackley et al., |1985]]. To give a more concrete
example, if modeling whether it will rain at various locations, then there is a clear dependence
between nearby locations, but not a natural ordering to the joint probability distribution of where
it will rain. Independence in undirected graphical models can be deduced through the global
Markov property which states that any two non-intersecting subsets of the variables A and B are
conditionally independent given a third, separating, subset C' if there is no path between A and
B that does not pass through C'. This means, for example, that each variable is conditionally
independent of all the other variables given its neighbors.

Our main focus, though, will instead be on directed graphical models and in particular directed
acyclic graphical models (DAGs), i.e. directed graphical models containing no cycles or loops
one can follow and arrive back in the starting position. DAGs, also known as Bayesian networks,
are particularly useful in the context of Bayesian modeling because they can be used to express
causal relationships. As such, they can be used as a piecewise explanation for how samples
are generated from a distribution. This forms a natural means to describe and design models
as we can carefully order the breakdown to factorize the distribution into only terms we know.
For example, in the linear regression model, we did not know (at least when the model was first
defined) p(D) but we did know p(w) and p(D|w). Therefore even though we could factorize
our joint p(D, w) as p(w|D)p(D) and construct a DAG this way, it is much more convenient to
factorize and construct the DAG the other way round, namely as p(D|w)p(w). We will generally
not have access to all possible factorizations in an analytic form as otherwise there would be
no need to perform inference. As a rule-of-thumb, when we define a model using a DAG, we
need to be able to define the probability of each variable given its parents, i.e. all the nodes with
arrows, representing a link and its direction, pointing to the node the question.

To demonstrate this factorization more explicitly and give a concrete example of a DAG,
imagine a medical diagnostic problem where we wish to predict if a patient has lung cancer.
Let a denote lifestyle and genetic factors of the patient such as whether they smoke or have
(potentially unknown) preexisting conditions. These will generally either be known or can
reasonably be estimated by other means, e.g. using tests or by considering prevalence within
the population, allowing definition of a prior marginal on a, p(a). Given these factors, we
can develop a model for the probability that a patient will develop lung cancer, which we can
denote p(bla) where b = 1 indicates cancer is the present. Given the lifestyle and genetic

factors and the knowledge of whether lung cancer is present, we can predict what symptoms,
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¢, might be observed, e.g. a persistent cough, encoding this using p(c|a, b). We thus have the

following breakdown of the joint distribution

p(a,b,c) = p(a)p(bla)p(c|a, b). (3.16)
which can be expressed using the DAG shown in Figure[3.2]
Here we have shaded in c to express the fact that this is a

observed. The graphical model expresses our dependency

structure as we have the probability of each node given

its parents. As shown in (3.16)), the product of all these e

factors is equal to our joint distribution. The DAG has thus
Figure 3.2: Simple example DAG
corresponding to (3.16))

process. Our aim for this problem was to find the probability cancer is present given the observed

formed a convenient means of representing our generative

symptoms, i.e. p(b|c), which will require Bayesian inference. In our previous simple examples,
the posterior had an analytic form. However, in general this will not be the case and we will
need to develop strategies for carrying out the inference as explained in Chapter [5] For these,
knowing the dependency structure and, in particular, the independence relationships, of a model
will often be very helpful information, for which DAGs can be very useful.

A natural question is now how can we deduce the independence relationships from a DAG?
This can be done by introducing the notion of d-separation [Pearl, 2014]. Consider three arbitrary,
non-intersecting, subsets A, B, and C' of a DAG. A and B are conditionally independent given
C' if there are no unblocked paths from A to B (or equivalently from B to A), in which case
A is said to be d-separated from B by C. Paths do not need to be in the directions defined
by the DAG but are blocked if either

1. Consecutive arrows both point towards a node that is not in and has no descendants in C,

i.e. we cannot get to any of the nodes in C' by following the arrows from this node.
2. Consecutive arrows meet at a node in C' and one of them points away from the node.

Note that only the first of these rules is necessary for establishing marginal independence between
nodes as this rule can still be used when C' is empty. Examples of blocked paths are shown in
Figure [3.3] while examples of unblocked paths are shown in Figure [3.4] explanations for which
are given in the captions. For a more comprehensive introduction to establishing independence
in DAGs, we refer the reader to [Bishopl 2006, Section 8.2].

In the simple example of Figure [3.2|there were no independence relationships and so we gain

little from working with the DAG compared to just the joint probability distribution. A more
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Figure 3.3: Examples of DAGs blocked between a and b. (a) is blocked by the second rule of d-separation,
while (b) is blocked by the first. Consequently, for (a) and (b) then a and b are conditionally independent
given ¢ and thus p(b|a, ¢) = p(b|c) and p(alb, ¢) = p(alc). (¢) is an instead example of where a and b are
marginally independent. Here the path between a and b is blocked because the arrows meet head-to-head at
d and neither d nor any of its descendants are observed and so p(bla) = p(b). Note though that a and b are
not conditionally independent given d as the path becomes unblocked if this is observed (see Flgure 3.4

A2

(b)

Figure 3.4: Examples of DAGs unblocked between a and b. For (a) then the path from a to b is not
blocked by the d-separation rules. Perhaps more intuitively, we have that p(bla) = [ p(b,d|a)dd =
[ p(bld)p(d|a)dd # p(b) unless p(d|a) = p(d). Similarly, there is an unblocked path for (b) from a to b
as the path that does not pass through any observed nodes or nodes with both arrows points towards it.
The path in (c) is unblocked because of the phenomenon of explaining away. The first rule of d-separation
does not apply here because c is an observed descendant of d. We thus have that ¢ and b are marginally
independent as per Figure but not conditionally independent given c (and or d). The rationale for
explaining away can be thought of in terms of events needing an explanation — if two precursor events
(here a and b) can give rise to a third event (here c), then the third event occurring but not the first precursor
event implies that the second precursor event occurs. Thus the two precursor events are correlated because
one explains away the other. As described in Section [2.3] one example of this is that if a speed camera
is triggered and the camera is not malfunctioning, this implies the vehicle is speeding, even though the
vehicle speeding and the camera malfunctioning are marginally independent.

advanced example where there are substantial independence relationships which can be exploited
is shown in Figure This model is known as a hidden Markov model| (HMM) and has T
latent variables z1.; and T observations yy.7. The joint distribution is as follows

T
p($1:T7 yl;T) = p(m)p(yllm) Hp(xt|$t—1)p(yt|$t), (3.17)
=2

where each x; is independent of xy., o and y;, 1 given x;_; and of =, 2.7 and vy, 1.7 given

Z¢+1. This is known as the Markov property and means that each latent variable only depends

“The use of the term HMM in the literature (and later in this paper) often also implies that the latent states are
discrete variables, with the equivalent continuous model referred to as a (Markovian) state space model.
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Figure 3.5: DAG for a hidden Markov model.

on the other variables and observations through its immediate neighboring states. In essence,
the model has no memory as information is passed forwards (or backwards) only through the
value of the previous (or next) latent state. A number of stochastic processes and dynamical
systems obey the Markov property and HMMs and their extensions are extensively used for a
number of tasks involving sequential data, such as DNA sequencing [Durbin et al.,|1998] and
tracking animals [Dhir et al., 2016, [2017] to name but a few.

A key part of the appeal of HMMs is that the structure of the DAG can be exploited to give
analytic solutions to the resulting Bayesian inference whenever each p(y;|x;) and p(x|z,_1) are
either a categorical or Gaussian distribution. Even when this does not hold, there are still a
number of features of the dependency structure that can make the inference substantially easier.
As we will show in Chapter [5] Bayesian inference is generally a challenging problem, often
prohibitively so. Therefore the (fast) analytic inference for HMMs is highly convenient. However,
it can mean that HMMs are perhaps overused. More generally, simplifying approximations or
unjustified assumptions are often made by Bayesian practitioners for tractability, e.g. by using an
off-the-shelf model like an HMM with known analytic solution. Though often necessary, this
must be done with extreme care and the implications of the approximations should carefully
considered. Unfortunately, quantifying the implications of approximations can be very difficult,

given that they are typically made in the interest of tractability in the first place.

3.4 Bayesianism vs Frequentism

We have just introduced the Bayesian approach to generative modeling, but this is far from the
only possible approach. In this section, we will briefly introduce and compare the alternative,
[frequentist, approach. As a community, we have a come a long way from the absolutism of |Feller
[1950], with most researchers appreciating that both Bayesian and frequentist approaches are
a necessary component of the general statistical method. Nonetheless, the divide between
those within the statistics and machine learning communities who advocate, at least at the

philosophical level, the use Bayesian or frequentist methods is at times surprisingly large. Many
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researchers have strong views one way or another and it is easy, certainly as a graduate student,
to be sufficiently isolated to develop a somewhat warped view of the overall picture. The
actual statistical differences between the approaches are somewhat distinct to the well-known
philosophical differences we touched on in Section[2.2] even though the latter are often dubiously
used for justification for the practical application of a particular approach. These statistical
differences are arguably less well-known, in general, by those in the early stages of their research
careers without statistics backgrounds. Our aim in this section is not to advocate the use of
one approach over the other, but to (hopefully objectively) highlight these statistical differences
and demonstrate that both approaches have advantages and drawbacks, such that “head in the
sand” mentalities either way can be highly detrimental, with effective modeling often requiring
us to draw on both. We note that whereas Bayesian methods are always, at least in theory,
generative [Gelman et al., 2014, Section 14.1], frequentist methods can be either generative or
discriminative. As we have already discussed differences between generative and discriminative
modeling in Section [3.1] we will mostly omit this difference from our subsequent discussion.

At their root, the statistical differences between Bayesian and frequentist method{] stem from
distinct fundamental assumptions: frequentist modeling presumes fixed parameters, Bayesian
modeling assumes fixed data [Jordan, 2009]. In many ways, both of these assumptions are
somewhat dubious. Why assume fixed parameters when we do not have enough information
from the data to be certain of the correct value? Why ignore that fact that other data could have
been generated by the same underlying true parameters? However, making such assumptions
can sometimes be unavoidable for carrying out particular analyses.

To elucidate the different assumptions further and start looking into why they are made, we
will now step into a decision-theoretic framework. Let’s presume that the universe gives us
some data X and some true parameter 6, the former of which we can access, but the latter of
which is unknown. We can alternatively think in terms of X being some information that we
actually receive and 6 being some underlying truth or oracle from which we could make optimal
predictions, noting that there is no need for 6 to be some explicit finite parameterization. Any
machine learning approach will take the data as input and return some artifact or decision, for
example, predictions for previously unseen inputs. Let’s call this process the decision rule d,

which we presume, for the sake of argument, to be deterministic for a giving dataset, producing

3 At least in their decision-theoretic frameworks. It is somewhat inevitable that delineation here and later will be
a simplification on what is, in truth, not a clear-cut divide [|Gelman et al.| 201 1]
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decisions d(X )ﬂ Presuming that our analysis is not frivolous, there will be some loss function
L(d(X), 0) associated with the action we take and the true parameter 6, even if this loss function
is subjective or unknown. At a high level, our aim is always to minimize this loss, but what we
mean by minimizing the loss changes between the Bayesian and frequentist settings.

In the frequentist setting, X is a random variable but € is not. Therefore, one takes an expecta-

tion over possible data that could have been generated, giving the frequentist risk [Vapnik, |1998]]
R(0,d) = E [L(d(X),0)|0] (3.18)

which is thus a function of theta and our decision rule. The frequentist focus is therefore
on repeatability, i.e. the generalization of the approach to different datasets that could have
been generated. Choosing the parameters 6 is thus based on optimizing for the best average
performance over all possible datasets.

In the Bayesian setting, ¢ is a random variable but X is fixed: the focus of the Bayesian
approach is on generalizing over possible values of the parameters and using all the information
at hand. Therefore one takes an expectation over 6 to make predictions conditioned on the value

of X, giving the posterior expected loss [Robert, 2007]]

where 7(6|.X) is our posterior distribution on ¢. Although o(, d(X)|X) is a function of the
data, the Bayesian approach takes the data as given (after all we have a particular dataset) and
so for a given prior and decision rule, the posterior expected loss is a fixed value and, unlike
in the frequentist case, further assumptions are not required to calculate the optimal decision
rule d*. To see this, we can consider calculating the Bayes risk [Robert, [2007], also known as

the integrated risk, which averages over both data and parameters
r(m,d) = E[o(m, d(X)|X)] = Exgx) [R(0,d)] . (3.20)

Here we have noted that we could have equivalently taken the expectation of the frequentist
risk over the posterior, such that, despite the name, the Bayes risk is neither wholly Bayesian
nor frequentist. It is now straightforward to show (see e.g. [Robert, 2007]) that the decision
function which minimizes r(m, d) is obtained by, for each possible dataset X € X, choosing
the decision that minimizes the posterior expected loss, i.e. d*(X) = argmin, v, o(m, d(X)|X).

By comparison, because the frequentist risk is still a function of the parameters, further work is

%If we allow our predictions to be probability distributions this assumption is effectively equivalent to assuming
we can solve any analysis required by our approach exactly.
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required to define the optimal decision rule, e.g. by taking a minimax approach [[Vapnik, |1998]].
We now see that the Bayesian approach can be relatively optimistic, as it is constrained to choose
decisions that optimize the expected loss, whereas the frequentist approach allows, for example,
d to be chosen in a manner that optimizes for the worst case 6.

We now introduce some shortfalls that originate from taking each approach. We emphasize
that we are only scratching the surface of one of the most hotly debated issues in statistics and
do not even come close to doing the topic justice. Our aim is less to provide a comprehensive
explanation of the relative merits of the two approaches, but more to make the reader aware that
there are a vast array of complicated, and sometimes controversial, issues associated with whether

to use a Bayesian or frequentist approach, most of which have no simple objective conclusion.

3.4.1 Shortcomings of the Frequentist Approach

One of the key criticisms of the frequentist approach is that predictions depend on the experimental
procedure and can violate the likelihood principle. The likelihood principle states that, for a
given model, the only information relevant to the parameters # conveyed by the data is encoded
through the likelihood function [Robert, 2007]. In other words, the same data and the same
model should always lead to the same inferences about 6. Though this sounds intuitively obvious,
it is actually violated by taking an expectation of X in frequentist methods, as this introduces
a dependency from the experimental procedure.

As a classic example, imagine that our data from flipping a coin is 3 heads and 9 tails. In a
frequentist setting, we make different inferences about whether the coin is biased depending on
whether our data originated from flipping the coin 12 times and counting the number of heads,
or if we flipped the coin until we got 3 heads. For example, at the 5% level of a significance
test, we can reject the null hypothesis that the coin is unbiased in the latter case, but not the
former. This is obviously somewhat problematic, but it can be used to argue both for and against
frequentist methods. Using it to argue against frequentist methods, and in particular significance
tests, is quite straightforward: the subjective differences in our experiment should not affect our
conclusions about whether the coin is fair or not. We can also take things further and make the
results change for absurd reasons. For example, imagine our experimenter had intended to flip
until she got 3 heads, but was then attacked and killed by a bear while the twelfth flip was in
the air, such that further flips would not have been possible regardless of the outcome. In the

frequentist setting, this again changes our conclusions about whether the coin is biased. Clearly,
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it is ridiculous that the occurrence or lack of a bear attack during the experiment should change
our inferences, but that is need-to-know information for frequentist approaches.

As we previously suggested though, one can also use this example to argue for frequentist
methods as one can argue that it actually suggests the likelihood principle is incorrect. Although
significance tests are a terribly abused tool whose misuse has had severe detrimental impact
on many applied communities [[Goodman, 1999; loannidis, 2005], they are not incorrect, and
extremely useful, if interpreted correctly. If one very carefully considers the definition of a
p-value as being the probability that a given, or more extreme, event is observed if the experiment
is repeated, we see that our bear attack does actually affect the outcome. Namely, the chance
of getting the same or more extreme data from repeating the experiment of “flip the coin until
you get 3 heads” is different to the chance of getting the same or a more extreme result from
repeating the experiment “flip the coin until you get 3 heads or make 12 flips (at which point
you will be killed by a bear)”. As such, one can argue that the apparently absurd changes in
conclusions originate from misinterpreting the results and that, in fact, these changes actually
demonstrate that the likelihood principle is flawed because, without a notion of an experimental
procedure, we have no concept of repeatability. Imagine instead the more practical scenario
where a suspect researcher stops their experiment early as it looks like the results are likely to
support their hypothesis and they do not want to take the risk that if they keep it running as long
as they intended, then the results might no longer be so good. Here the researcher has clearly
biased their results in a way that ostensibly violates the likelihood principle.

Whichever view you take, two things are relatively indisputable. Firstly a number of a
frequentist concepts, such as p-values, are not compatible with the likelihood principle. Secondly,
frequentist methods are not always coherent, such that they can return answers that are not
consistent with each other, e.g. probabilities that do not sum to one.

Another major criticism of the frequentist approach is that it takes a point estimate for 6,
rather than averaging over different possible parameters. This can be somewhat inefficient in the
finite data case, as it limits the information gathered from the learning process to that encoded by
the calculated point estimate for #, which is then wasteful when making predictions. Part of the
reason that this is done is to actively avoid placing a prior distribution on the parameters, either
because this prior distribution might be “Wrong’ﬂ or because, at a more philosophical level, they

are not random variables under the frequentist definition of probability. Some people thus object

"Whether a prior can be wrong, or what that even means, is a somewhat open question except in the case where it
fails to put any probability mass (or density for continuous problems) on the ground truth value of the parameters.
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to placing a distribution over them at a fundamental level (we will see this objection mirrored
by Bayesians for the data in the next section). For the Bayesian perspective (and a viewpoint
we actively argue for elsewhere in the paper), this is itself also a weakness of the frequentist

approach as incorporating prior information is often essential for effective modeling.

3.4.2 Shortcomings of the Bayesian Approach

Unfortunately, the Bayesian approach is also not without its shortcomings. We have already
discussed one key criticism in the last section in that the Bayesian approach relies on the likelihood
principle which itself may not be sound, or at the very least ill-suited for some statistical modeling
problems. More generally, it can be seen as foolhardy to not consider other possible datasets that
might have been generated. Taking a very strict stance, then even checking the performance of
a Bayesian method on test data is fundamentally frequentist, as we are assessing how well our
model generalizes to other data. Pure Bayesianism, which is admittedly not usually carried out
in practice, shuns empiricism as empiricism, by definition, is rooted in the concept of repeated
trials which is not possible if the data is kept fixed. The rationale typically given for this is
that we should use all the information available in the data and by calculating a frequentist
risk we are throwing some of this away. For example, cross-validation approaches only ever
use a subset of the data when training the model. However, a common key aim of statistics
is generalization and repeatability. Pure Bayesian approaches include no consideration for
calibration, which means that, even if our likelihood model is correct, there is still no reason that
any probabilities or confidence intervals must be also. This at odds with frequentist approaches,
for which we can often derive absolute guarantees.

A related issue is that Bayesian approaches will often reach spectacularly different conclusions
for ostensibly inconsequential changes between datasets At least when making the standard
assumption of i.i.d. data in Bayesian analysis, then likelihood terms are multiplicative and
so typically when one adds more data, the relative probabilities of two parameters quickly
diverge. This divergence is necessary for Bayesian methods to converge to the correct ground
truth parameters for data distributed exactly as per the model, but it also means any slight
misspecifications in the likelihood model become heavily emphasized very quickly. As a
consequence, Bayesian methods can chronically underestimate uncertainty in the parameters,
particularly for large datasets, because they do not account for the unknown unknowns. This

means that ostensibly inconsequential features of the likelihood model can lead to massively

8Though this is arguably more of an issue with generative approaches than Bayesian methods in particular.
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different conclusions about the relative probabilities of different parameters. In terms of the
posterior expected loss, this is often not much of a problem as the assumptions might be similarly
inconsequential for predictions. However, if our aim is actually to learn about the parameters
themselves then this is quite worrying. At the very least it shows why we should view posteriors
with a serious degree of skepticism (particularly in their uncertainty estimates), rather than
taking them as ground truth.

Though techniques such as cross-validation can reduce sensitivity to model misspecification,
generative frequentist methods still often do not fare much better than Bayesian methods for
misspecified models (after all they produce no uncertainty estimates on #). Discriminative
methods, on the other hand, do not have an explicit model to specify in the same way and so are
far less prone to the same issues. Therefore, though much of the criticisms of Bayesian modeling
stem from the use of a prior, issues with model (i.e. likelihood) misspecification are often
much more severe and predominantly shared with generative frequentist approaches [[Gelman
and Robert, 2013]]. It is, therefore, often the question of discriminative vs generative machine
learning that is most critical [Breiman et al., 2001].

Naturally one of the biggest concerns with Bayesian approaches is their use of a prior, with this
being one of the biggest differences to generative frequentist approaches. The prior is typically
a double-edged sword. On the one hand, it is necessary for combining existing knowledge and
information from data in a principled manner, on the other hand, priors are inherently subjective
and so all produced posteriors are similarly subjective. Given the same problem, different
practitioners will use different priors and reach potentially different conclusions. In the Bayesian
framework, there is no such thing as a correct posterior for a given likelihood (presuming finite
data). Consequently, “all bets are off” for repeated experimentation with Bayesian methods as
there is no quantification for how wrong our posterior predictive might be compared with the
true generating distribution. This can mean they are somewhat inappropriate for tasks where the
focus is on repeated use, e.g. providing reliable confidence intervals for medical trials, though
many Bayesian methods retain good frequentist properties. Such cases both predicate a need
for considering that there are many possible datasets that might occur and, ideally, an objective
approach that means the conclusions are independent of the whims of the analyst.

In particular, there is no (objective) Bayesian alternative to frequentist falsification methods

such as the aforementioned significance testsﬂ Both Bayesian and frequentist methods require

°This is not to say one cannot perform falsification as part of Bayesian modeling, in fact avoiding doing so would
be ridiculous, but that providing objective statistical guarantees to this falsification requires the use of frequentist
methods. For example, even the essential research process of informally rejecting and improving models undermines
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assumptions and neither can ever truly prove that a particular model or prediction is correct, but
frequentist methods do allow one to indisputably disprove hypotheses to within some confidence
interval. The real power of this is realized when we consider disproving null hypotheses,
e.g. the hypothesis that an output is independent of a potential driving factor. This is why
significance tests are so widely used through the sciences as, although they cannot be used to
prove a model is correct (as much as people might try), they can certainly be used to show
particular assumptions or models are wrong.

The use of a prior in Bayesian modeling can also be problematic because it is often easy to
end up “using the data twice” [Gelman et al., 2008]. The Bayesian paradigm requires that the
prior is independent from the data and this means that there should not be any human-induced
dependency. In other words, it is necessary that the user sets their prior before observing the
data they condition on, otherwise, the data will both influence their choice of prior and be
incorporated through the likelihood. This is not a problem with Bayesian methods per se, but
it can be a common shortfall in their application.

Another practical issue with Bayesian methods is their computational complexity at both
train time and test time. Firstly, using Bayesian methods requires one to carry out inference,
which, as we explain in Chapter [5] is typically a challenging and computationally expensive
process, often prohibitively so. Some frequentist approaches can also be similarly expensive
at train time, but others can be substantially cheaper, particularly discriminative approaches.
Further, Bayesian methods tend to also be somewhat expensive for making predictions with the
posterior predictive itself being an integral. Frequentist methods tend to instead predict using

point estimates for #, such that prediction is typically much cheaper.

3.4.3 Practical Usage

Although Bayesianism and frequentism are both exact frameworks, their application to real
problems is not. Both frameworks have their strengths and weaknesses and so perhaps the
key question is not which framework is correct, but when should we use each. In particular,
the Bayesian approach is often essential when working with small datasets but where we have
substantial prior expertise. On the other hand, a frequentist approach is essential to providing
guarantees and ensuring repeatability. Bayesian and frequentist methods are also by no means
mutually exclusive and effective modeling often requires elements of both to be used concurrently.

For example, one could be Bayesian about the results from a cross-validation test or look to

Bayesian coherence [[Gelman et al., 2011]]. On the other hand, the process of peer review effectively invalidates
frequentist calibration by ensuring some studies never make it to the public domain.



3. Probabilistic Machine Learning 36

calculate frequentist guarantees for a Bayesian model. In essence, Bayesian and frequentist
analysis have different aims — Bayesianism is about updating subjective beliefs and frequentism
is about creating long run, or repeated application, guarantees. We often we care about both.
It is also worth noting that a number of Bayesian methods exhibit good frequentist properties,
see e.g. McAllester [2013]] and the references therein.

We finish by noting a critical assumption made by both Bayesian and generative frequentist
methods — that there is some true underlying value for the parameters. Because all models
are approximations of the real world, this is often a misguided and harmful assumption. That
this assumption is made is clear in the frequentist setting, but is somewhat subtle for Bayesian
approaches. Bayesian methods allow for multiple hypotheses or parameter values, but this
originates from our own uncertainty about which parameter or hypothesis is correct, thereby still
implicitly assuming that one of them is correct. Namely, as we showed with the Bernstein-Von
Mises theorem, in the limit of large data, Bayesian methods with finite numbers of parameters
will collapse to a point estimate, corresponding to the “true parameter values” (assuming the
model is correct). Consequently, a Bayesian approach does not fundamentally enrich the model
space by averaging over parameters — it is still necessary that exactly one set of parameters lead
to the data, but we are not exactly sure which one [Minka, [2000].

Consider as an example, Bayesian modeling for decision trees [Chipman et al., [1998; Laksh+
minarayanan et al., 2013]] compared to (discriminative) ensemble-based approaches [Breiman,
2001} Rainforth and Wood, 2015]]. The Bayesian approaches explicitly assume that our data is
generated by one single decision tree and so in the limit of large data the relative probabilities
of different trees in the posterior diverge and will collapse to a single treem The ensemble
approaches, on the other hand, maintain a full ensemble of trees in the limit of large data.
They are, in fact, a fundamentally more general model class as they do not require the data
to have been generated by a single tree. Here the averaging over trees enriches the model
class itself, rather than just representing uncertainty about which of the trees in the ensemble is
the correct one [Domingos), |1997]], typically leading to better performing algorithms for large

datasets than Bayesian approaches.

10Technically we only get a single tree if we limit the tree depth to ensure a finite parameterization. Nonetheless,
the argument still holds from a practical perspective even when trees are unbounded.
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3.5 Challenges of Bayesian Modeling

The challenges for Bayesian modeling are remarkably straightforward to identify. As all
information is encoded through the prior and the likelihood, the “only” challenges are in
specifying these and then carrying out the required Bayesian inference to estimate the posterior.
In other words, we need to be able to specify good models and we need to be able to solve
them. Though simple to quantify, actually overcoming both these challenges can be extremely
difficult in practice. The problem of Bayesian inference, which we discuss in Chapters [5] [6]
and|[/} is at least clearly defined and one often has a reasonable idea how effectively we have
addressed it when conducting Bayesian modeling, i.e. even if our efforts are futile, we often
know when we have failed.

The problem of specifying good models is somewhat more subjective. It is inevitably
impossible to design a model that covers all potential eventualities, both from the perspective
of actually writing down such a model and in having a realistic chance of performing inference.
Such a model would also most likely have limited predictive power. However, for practical
problems, one can almost always add further refinements to the model at the expense of
additional computational cost. For example, we can elaborate our likelihood model, or even
use a combination of different possible models, to provide more potential means for generating
the data and therefore a more flexible model that is less likely to succumb to misspecification
issues. We can also augment our prior with a hyperprior that expresses uncertainty in the prior
parameters themselves, e.g. for our coin flip example instead of taking a Beta distribution prior
with fixed parameters, we could place a distribution on these parameters as well. However, at
some point increasing the complexity of our likelihood and our prior inevitably has to stop,
at which point we either have to fix the values for some parameters, conduct model learning
by optimizing those parameter values as discussed in Chapters [§ and 9] or try to define a
non-informative prior [Robert, |2007].

Probabilistic programming, as introduced in the next chapter, is an attempt to address the
challenges of both specifying and solving models. Firstly, by providing a highly flexible and
expressive framework for specifying models, they provide a platform for writing models that
are true to the assumptions the user wishes to make. Secondly, they democratize the Bayesian
inference process, by providing automated inference engines that can be run on any model the
user might write, thereby streamlining the Bayesian modeling process and reducing barriers

to entry for those with non-statistical backgrounds.



Probabilistic Programming — the User’s
Perspective

Probabilistic programming systems (PPSs) allow probabilistic models to be represented in
the form of a generative model and statements for conditioning on data [Gordon et al., 2014;
Goodman et al., 2008b]. Informally, one can think of the generative model as the definition
of a prior, the conditioning statements as the definition of a likelihood, and the output of the
program as samples from a posterior distribution. Their core philosophy is to decouple model
specification and inference, the former corresponding to the user-specified program code, which
implicitly defines a distribution on random variables, and the latter to an inference engine
capable of operating on arbitrary programs. Removing the need for users to write inference
algorithms significantly reduces the burden of developing new models and makes effective
statistical methods accessible to non-experts. The inference/model abstraction barrier further
means that some systems allow the definition of models that would be hard, or even impossible,
to convey using conventional frameworks like graphical models.

Two key challenges for PPS are providing the syntax and semantics to allow easy definition of
models, and in designing the solvers, i.e. inference engines, to provide effective inference for those
models. In this chapter, we focus on the former of these, providing an introduction to probabilistic
programming from a user’s perspective. We will outline how it can be used for, and to extend,
conventional Bayesian modeling and how it can also be used to reinterpret many computational
simulation techniques not usually associated with Bayesian modeling in a more Bayesian mindset.
We will mostly ignore the rather major issue of how to construct inference engines for PPS,
returning to address this in Chapter[7] Instead, we will focus on how general purpose PPSs aim
to provide the flexibility to define wide-ranging and potentially obscure models, the expressivity
of a framework for model definition that is more in line with conventional scientific simulation
than mainstream statistical approaches, and the automation to run any problem the user might
write by decoupling model specification and inference. Together these characteristics produce a
framework that allows researchers whose expertise lies elsewhere, to carry out powerful statistical

analyses for their application specific tasks. This framework also aids in the development of both
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inference algorithms and models for those within the machine learning and statistics communities,
by removing many of the complications of one while developing the other.

We note that it will be necessary at times during this chapter to refer briefly to some Bayesian
inference algorithms that will not be properly introduced until Chapters [5|and[6] We have situated
this chapter before those partly in order to emphasize the point that one should not need an
intricate knowledge of inference methods to use PPSs. Though it is difficult to introduce PPSs
while completely omitting reference to inference methods, readers who are not familiar with
them should be able to safely ignore which methods are referred to at a first pass, noting only that
different inference algorithms have different requirements and sets of problems they perform well

on, and thus that the design of a PPS is often intricately linked to the inference method(s) used.

4.1 Inverting Simulators

Though the use of Bayesian modeling through the sciences and engineering is widespread,
it is still dwarfed by the use of simulators more generally. Some simulations are inherently
probabilistic, such as many of those used in statistical physics [Landau and Binder, 2014],
financial modeling [Jackel, 2002], and weather prediction [Evensenl |1994]]. Others are deter-
ministic approximations of a truly stochastic world, such as lap time simulation for formula one
cars [Perantoni and Limebeer, [2014] and finite element simulations for fluid dynamics [Versteeg
and Malalasekeral, 2007]]. In many of these scenarios, real data is also available, but not in
sufficient quantities that the carefully constructed simulations can be done away with entirely
and replaced by a purely data-driven approach. Imagine the potential utility of general-purpose
methods for incorporating real data into these simulators to improve them, without having
to throw away the existing carefully constructed models. What about if we could even find
methods for automatically inverting these simulators? Given a target lap time, we could return
the best car setup; given observations of, and a simulator for, human behavior, we could learn
about the underlying cognitive processes; given a climate change model and measurements,
we might infer what the driving factors are.

An ambitious long-term aim of probabilistic programming is to solve such problems and to
do so in an automated fashion so that it requires little or no statistical expertise on the behalf
of the user, allowing for simple, widespread usage across many fields. The key realization is
that stochastic simulators implicitly define probability distributions. They, therefore, represent
generative models and using probabilistic programming we can reason about, and work with,

these generative models explicitly. One typically thinks of Bayesian modeling in terms of the
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prior and the posterior, but one can also think about it in terms of defining a joint distribution
over both parameters and data, then fixing the latter to the actual observations to get a conditional
distribution from this joint. Simulators implicitly define such joint distributions, with the outputs
of the simulator corresponding to the data, and the inputs and internal variables the parameters.
Probabilistic programming allows us to turn this on its head, using the same code as the original
simulator, but instead providing the observed data as the input and then inverting the simulator
through inference to learn about possible input parameters and other variables sampled during
the program’s forward execution. As well as the clear direct utility of allowing such inversion,
this process also allows us to improve our simulator using real data, by calculating the posterior
predictive distribution that incorporates both the original model and the information from the data.

To explain what we mean by inverting simulators more precisely, we will now consider
the example of inferring Captchas [Mansinghka et al., 2013]]. Even if the name is not familiar,
everyone should hopefully have come across Captchas before when a website shows us an image,
such as those in Figure 4.1a] and asks us to type the characters in that image to demonstrate
we are not a robot. We now ask the question: how might we write an algorithm that breaks
this Captcha by automatically predicting these characters directly from the image? In other
words, can we build a robot that mimics a human on a task specifically designed to distinguish
between the two? If we had access to large supply of training examples, i.e. character-image
pairs, we could, of course, use an off-the-shelf discriminative algorithm: neural networks have
been used to try and solve the problem in exactly this way with reasonable success [[Von Ahn
et al., 2008]]. However, without access to an abundance of data, this is a rather challenging task
and we will need to exploit our prior knowledge about the problem.

Doing this process in reverse, i.e. simulating a Captcha, on the other hand, is a substantially
less daunting process. The true Captchas are actually generated by a simulator and so we can
attempt to mimic this original simulation process. For example, as shown in Figure [4.1b] we
might first sample a number of characters, then a symbol for each character, apply manipulations
such as rotations and warpings, simulate some obscuring lines or other noise, and finally render
our simulated components into an image. Though admittedly it might take some time and
effort to construct a high fidelity simulator that well matches the produced images, the technical
requirements for doing this (other than possibly the final rendering) are minimal and so it could
be carried out by most people with a reasonable degree of experience in scientific programming.
The number of people able to write such a simulator should certainly be substantially larger

than the number of people with sufficient experience in Bayesian modeling to construct an
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Figure 4.1: Solving Captchas by simulator inversion. (a) gives examples of real Facebook Captchas taken
from|Le et al.| [2017b|]. Here the corresponding generating strings going to clockwise from the top left
are YPL9ceu, mJGD7zP, 9xPBS5k, 8VNARw, z7T7Jda, and GePHEz4. A user is asked to type in these
strings when shown the corresponding image to show they are not a robot. (b) gives an example of the
process of simulating Captchas taken by |Le et al.|[2017al]. Here we see that we can generate a Captcha
by first simulating a series of characters, then simulating appropriate manipulations to those characters
such as warping, rotating, and adding noise. Inverting this simulation process corresponds to an inference
problem, where we want to find out the characters that lead to a particular image.

equivalent graphical model or direct mathematical formulation. The number of people with
the expertise to then write an appropriate inference scheme for the problem is even smaller. In
a PPS, writing this simulator and providing the data is all that is required. Given these, the
PPS will carry out the inference required to invert the simulator automatically, inferring the
characters from the image. More generally, we are estimating the inputs and internal variables
of our simulator, given target values for the outputs.

There are two key factors to realizing our aim of inverting simulators. Firstly we need to
provide a language which easily allows users to write down simulators and which has semantics
that allows the compiler to extract an appropriate representation of the joint distribution. In other
words, we need our language to be sufficiently general purpose and easy to use to not burden
the user, while at the same time having syntax and semantics that ensure the corresponding joint
distribution is well defined and can be converted into a form where we can run inference. Doing
this will require the introduction of means for conditioning on data and of specially defined
random primitives whose behavior can be controlled at run time, rather than just always sampling
from the same predefined distribution as they would in an ordinary programming language. The
latter can be thought of as defining terms in the prior and the former as defining terms in the
likelihood as we will discuss in Section @ For certain cases, one can alternatively think of

conditioning as applying constraints to the program. For example, we can think of a probabilistic
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program as defining a simulator and a set of constraints that must be satisfied; this is exactly how
the PPS Church [Goodman et al., 2008b] is designed. An important distinction here though is
between hard and soft conditioning. Hard conditioning is as per the conventional interpretation
of a constraint — we condition on the fact that an event occurs exactly. Soft conditioning
instead assigns a weight to the program based on the probability (or probability density) of
a given event occurring. Though hard conditioning is a particular case of soft conditioning
(for which the weight is either 1 or 0), one can, at least semantically, use it to specify a soft
conditioning, say p(Y = y|X = z), by sampling Y ~ p(y|X = x) and then imposing the
constraint Y = y. However, only supporting hard conditioning in a PPS is somewhat restrictive
for practical use, as one cannot effectively condition on continuous data because there is zero
probability of satisfying the resulting constraint.

The second key factor is that our language needs a general purpose inference(s) engine
capable of working on any program the user writes. Bayesian models are fully defined by their
joint distribution and the data. Therefore, once a user has written their simulator and provided the
data, this uniquely defines a posterior and the only problem is in solving the resulting Bayesian
inference. If we can now construct inference engines capable of working on arbitrary code,
we can automate inference on any simulator or model the user defines, creating an abstraction
barrier between model definition and drawing inferences from that model. We will discuss
how this can be done at length in Chapter

If we can construct a system that can successfully carry out these tasks, the huge potential
applications this could provide should be clear. We would have a system where the user requires
no expertise in inference or conventional Bayesian modeling in order to write application-specific
models and have them solved automatically. Instead, they need only have the ability to write
stochastic simulators for the process they wish to model, a skill possessed by most of the scientific
community and many of those outside it as well. In a hypothetical future where scientists code
all their simulators in extremely powerful PPSs, tasks such as inverting those simulators and
improving the simulator by incorporating real data would be automated in the same way current
compilers convert high-level coding languages to machine code. However, this ability is not
completely hypothetical — many such problems can already be handled by existing systems.
The challenge is improving and scaling such systems to deal effectively with more difficult and
more wide-ranging models in a tractable manner. The need for such systems to work in an
automated manner for a wide array of possible problems makes this a very difficult problem; after

all, we are somewhat flaunting the no-free-lunch theorem. However, there is a key component
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that provides hope that this may be possible: we have access to the target source code of the
simulator itself, rather than needing to treat it as a black-box as is the case for, say, approximate
Bayesian computation (ABC) methods [Csilléry et al., 2010]. Therefore maybe we can have our
cake and eat it by using the source code itself to guide our algorithms, such that they behave in

problem-specific ways. We will discuss how this can be done at length in Chapters [7]and [9]

4.2 Differing Approaches

Rather than being a clearly defined method, probabilistic programming is more of an umbrella
term that covers a spectrum of different approaches, varying from inference toolboxes through
to universal probabilistic programming languages (PPLs) that allow arbitrary probabilistic code
to be written. Often there is a trade-off between efficiency and expressivity: the more restricted
one makes the language, the more those restrictions can be exploited to improve the efficiency
of the inference. This leads itself two distinct philosophies when developing a system. Firstly
one can start with a particular inference algorithm and then design a system around making it as
easy as possible to write models for which that inference algorithm is suitable. Secondly one can
start with a general purpose language that allows as many models as possible to be written and
then try to construct inference engines that are capable of working in such a general framework.
Both approaches have their merits and drawbacks, with the distinction typically coming down

to the intended use. We will now elucidate each approach more precisely.

4.2.1 Inference Driven Systems

Though there is a plethora of bespoke inference algorithms designed for particular models, the
vast majority of these are based around a relatively small number of foundational methods
such as importance sampling, sequential Monte Carlo, Metropolis-Hastings, Gibbs sampling,
message passing, and variational inference (see Chapter [5)). The extensive use of these core
inference approaches throughout Bayesian statistics and machine learning means that it makes
clear sense to write packages for automating them and which make it easy for the user to define
appropriate graphical models for which the inference can be automated. This both improves
the efficiency of constructing models and reduces barriers to entry by reducing the required
expertise for users. This inference-first philosophy is taken by a number of successful PPSs
and inference toolboxes (the distinguishing line between which can be a little blurry), a small
number of which we now briefly outline.

BUGS (Bayesian inference Using Gibbs Sampling) [Spiegelhalter et al., [1996] and its
extensions [Lunn et al., [2000; Plummer et al., 2003} Todeschini et al., 2014] allow finite DAGs



4. Probabilistic Programming — the User’s Perspective 44

to be specified using declarative code or pictorially using a graphical user interface. These are
converted to a form that is suitable for inference, the exact nature of which depends on the
implementation, with the original work being based on Gibbs sampling.

Infer.Net [Minka et al.,[2010]] is modeling language for defining, and automating approximate
inference in both DAGs and Markov random fields, using predominantly message-passing
algorithms. Distributions are generally, though not exclusively, restricted to be exponential
families. Branching (i.e. if) is allowed but requires enumeration of all possible paths at run time.

LibBi [Murray, 2013]] is a package for doing Bayesian inference for state-space models, using
particle-based inference methods (see Chapter [0)). It has a strong focus on scalable computation,
providing support for multi-core architectures and graphics processing units.

PyMC3 [Salvatier et al., [2016] is a python framework for carrying out MCMC and varia-
tional inference, using Theano [Bergstra et al., 2010] to calculate the gradients required by
some inference methods.

Stan [Carpenter et al., 2015] is a PPS with interfaces to many difference languages and a focus
on performing Hamiltonian Monte Carlo inference [Duane et al., 1987; Hoffman and Gelman,
2014], though other inference methods such as variational inference are also provided [Kucukelbir
et al.,[2015]]. As with PyMC3, automatic differentiation [Baydin et al., 2015] is used to calculate
the required gradients. The need to take derivatives means that there is limited support for
discrete variables or branching.

Edward [Tran et al., [2016]] is a PPS based around Tensorflow [[Abadi et al., 2016] that
supports directed graphical models, neural networks, and combinations of both. It supports
both Monte Carlo and variational inference methods (again using automatic differentiation)
and has a strong emphasis on model criticism.

These systems do not allow users to write models that would be difficult (at least for an
expert) to code without a PPS — in general, they can all be thought of as defining a graphical
model or sometimes a factor graph — but they offer substantial utility through ease of model

exposition and automating inference.

4.2.2 Universal Probabilistic Programming

As useful as these inference-driven systems are, they do not fit very well with the notion of
inverting simulators we introduced in Sectiond.1] They are still closely tied to graphical models
and are more toolboxes for streamlining the Bayesian modeling process than a means of writing

models that would be problematic to define by conventional means. Achieving our long-term
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ambitious aim of making general purpose systems for conducting inference on arbitrary simulators
will require us to take a somewhat different approach that instead starts with a general-purpose
language and then attempts to design inference algorithms capable of working on arbitrary models
and code. It will be necessary for such systems to support models where the set of random
variables is dynamically typed, such that it is possible to write programs in which this set, and
thus potentially the number of random variables, differs from execution to execution. To avoid
hindering the user or restricting the models which can be defined, it will important to allow
things such as branching, recursion, higher-order functions, conditional existence of variables,
and arbitrary deterministic functions. Ideally, we would like to provide no restrictions on the
code that the user can write, except for eliminating programs that do not define valid probability
distributions, such as those that have a non-zero probability of never terminating. In practice
catching such invalid cases can be hard or even impossible and so many systems actually adopt a
philosophy of applying no restrictions, such that it is perfectly possible to define invalid models.
General purpose PPSs actually bring up new theoretical questions about what constitutes a valid
probability model [Heunen et al., 2017] and the set of valid definable models is a strict superset
of those definable by graphical models for many systems [Goodman, [2013]].

In the rest of this thesis, we will predominantly focus on these universal PPLs [Goodman
et al., 2008a; Staton et al., [2016]], so-called because they are based on Turing complete languages
that can specify any computable distribution [Goodman, |2013[]. For our purposes, we further
refine this definition to systems that also allow specification for any computable conditioning.
We will regularly use the universal PPL. Anglican [Wood et al., 2014] as a reference, an
introduction to which is provided in Section d.4] Here we will briefly discuss some other
prominent higher order PPLs.

Church is a PPL based on Scheme [[Goodman et al., [2008a]]. The original seminal paper and
accompanying system form a foundation on which many of the prominent existing systems are
built, through its demonstration that higher-order probabilistic programs define valid probability
models, even in the presence of infinite recursion. However, Church predominantly only allows
hard conditioning namely a model in Church comprises of a generative sampler and a separate
predicate procedure which returns true if the desired conditions are satisfied. In addition to the
aforementioned issues of hard conditioning, this complete separation of the generative process

and the conditioning can also be wasteful in not allowing the structure of a model to be exploited

Some very limited support for soft-conditioning is provided in current implementations through a “noisy equals”
that equates to a Gaussian likelihood.
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(see Chapters [6] and [7). Later systems therefore mostly allow soft conditioning statements to
be interleaved through the generative progress (in an analogous manner to likelihood terms),
increasing the range of (solvable) models that can be encoded and the potential efficiency of
inference algorithms. Inference in Church (and its direct derivatives) is typically carried out using
either rejection sampling or MCMC. Church places a particularly strong emphasis on the ability
to carry out nested inference, something we will look into in depth in Chapter

Venture [Mansinghka et al., [2014]] is a probabilistic programming platform providing a
flexible system for both specification of models and inference methods. It has a strong emphasis
on being extensible and for allowing the hosting of external applications. For example, it allows
the user to provide proposals for the inference engine or reprogram the inference strategy entirely.
Venture is predominantly used via the VentureScript PPL. [Mansinghka et al., 2014].

WebPPL [[Goodman and Stuhlmiiller, [2014] is a PPL built using a purely functional subset
of Javascript, conveniently allowing for embedding in web pages. It combines the ability to
write a generative process using sampling statements and to add in likelihood terms through
a factor primitive that is analogous to the observe primitive that we will introduce in
Section 4.3.1] At its back end, WebPPL provides a number of different inference algorithms,
such as SMC and MCMC methods.

Pyro [Bingham et al., 2017] and ProbTorch [Siddharth et al., 2017] are two early-stage
PPLs based on PyTorch |Paszke et al.|[2017]] that share many design characteristics. Similarly
to Edward, they allow modeling of neural networks, but differ in that they construct gradients
dynamically, allowing things such as stochastic control and recursion.

The price for the expressivity of these general purpose systems is a substantial extra burden
on the inference engine, as we will discuss in Chapter [7] In general, inference methods for such
systems must be formulated in such a manner that they are applicable to models where the density
function is intractable and can only be evaluated during forwards simulation of the program.
For example, it may not be possible to know if a variable is continuous or discrete except by
running the program, while some variables will only exist conditioned on the values of others.
This required generality of the inference engine will naturally lead to a drop in performance
compared to custom written inference code, but this is often a price worth paying for generality
and automation, particularly when considering models that would be challenging to express,

let alone do inference in, using more conventional frameworks.
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4.3 Bayesian Models as Program Code

In Section we showed how one can think of PPS as inverting simulators, predicting internal
variables given the outputs. In this section, we will take a different perspective and show how
we can translate Bayesian modeling into the framework of program code. In Chapter [3| we
showed how a Bayesian model is defined by a prior over parameters and a likelihood function
for those parameters given the data. This viewpoint will mostly translate into the probabilistic
programming setting by equating between the prior and sampling statements and between the
likelihood and conditioning statements. However, in Section 4.3.2] we will why explain why this
is not always true and suggest a formulation, distinct to that commonly used in the literature,
for how the density implied by a query can be correctly represented.

A key point to note throughout this section is that probabilistic programs define models
rather than procedures. We refer to these models as queries [Goodman et al., 2008b|] which are
analogous to functions in a ordinary language. In a standard programming language, functions
take in inputs and then run through a series of commands in order until termination is reachedE]
Likewise, random sampling statements like rand, randn etc, make a single independent draw
from the same distribution each time they appear in the execution trace. Neither is the case
for a probabilistic program query. Instead a query defines a model which is compiled to a
form that can be interpreted by an inference engine which then outputs some characterization
of the posterior such as a series of samples. Perhaps the easiest way to think about how a
probabilistic program language works (though not necessarily what happens for all systems) is
that the query is, or sometimes parts of the query are, run many times and the exact behavior

of this running is control by the inference engine.

4.3.1 A Simplified Probabilistic Programming Setup

We first consider the case of constructing a restricted example PPL. We emphasize that this is
by no means the only setup one can use, with design choices made in the interest of exposition.
We will presume that our PPL has no branching (i.e. there are no i f statements or equivalent),
recursion, or memoization (i.e. functions are always re-evaluated from scratch when called); is
first order (i.e. variables cannot be functions); and that it does not allow any conditioning on
internally sampled variables. We will give our language two special constructs, sample and

observe, between which the distribution of the query is defined. Informally, sample will be

?In functional programming languages operations are not necessary carried out in the order they are defined, but
it still holds that the function takes inputs carries out a series of actions until the desired output is calculated.
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used to specify terms in the prior and observe terms in the likelihood. More precisely, sample
will be used to make random draws x; ~ f;(x;|=;), where Z; is a subset of the variables in
scope at the point of sampling, and observe will use to condition on data g,(ys|As) with Ag
defined in the same way as =;. For our inference, it will be necessary to control the sampling
and so we define the syntax of sample to take a distribution object as its only input and
for observe to take a distribution object and an observation as input. We further define each
distribution object as containing a sampling procedure and a density function that can be evaluated
exactlyE] Our language will be provided with a number of elementary random procedures in
the form of distribution classes for common sampling distributions such as the normal and
Poisson distributions, but will also provide the ability for users to define their own distribution
classes. These classes allow a distribution object to be constructed when provided with the
required parameters, such that the distribution is fully defined before being passed to a sample
or observe. We complete our syntactic definition of sample and observe by defining them to
return a sample and nil respectively. We will presume here and throughout that, other than the
effects of sample and observe, functions in our PPL are pure, such that they always provide
the same outputs when called with the same inputs. This restriction naturally means that queries
should not have any random components other than dictated by sample and observe, but also
suggests that they should be free from side effects such as modifications of global variables.
For our simplified setup, we distinguish between two types of inputs to our queries: external
parameters ¢ and data y;.¢. The external parameters are defined as the inputs that are not
“observed” at any point but can affect the conditioning through =; and A,. We presume that
the data terms, defined as the inputs we observe, appear in neither =; or A;. We now define
both sample and observe from the probability model perspective as adding a factor to the

joint distribution which is therefore given by

T S
P(IL‘LT, ylzs|¢) = H ft($t|5t) H gs(yslAs)- 4.1)
t=1 s=1

The two vary in whether they define a new random variable (sample) or affect the probability
of the execution given particular instances of the other random variables (observe). Our
presumptions for this simplified setup that no y, terms are present in the =, or A, and that

we do not condition on internally sampled variables, means that the product of the sample

31t will actually often be possible to use incomplete distribution objects for both sample and observe that
only contain the sampler and the density function respectively. The former can be permitted by using inference
algorithms that use the prior as the proposal, such that only the sampler will be required. The latter is sufficient for
the vast majority of scenarios as, unless one is carrying out amortization [Paige and Wood, 2016; |Le et al.,[2017a],
the data is fixed and does not need to be sampled.
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Inputs: Student-t degrees of freedom v, error
scale o, data y;.5 = {us, vs}5_,
m <—sample (normal (0,1))
¢ +sample (normal (0,1))
obs—-dist ¢— student-t (V)
fors=1,...,5do

d + (vs—mug —c)/o

observe (obs-dist, d)

S
end for Vs — Mg — C
I STUDENT-T ( =———»
return m, c i o

p(ma ¢, yl:S‘Vv U) = N(m, O, ].) N(C, 0, 1)

S A A ol e

(a) Bayesian linear regression model with student-t likelihood, namely vs = mus + ¢ + oe; where
€s ~ STUDENT-T(v). We presume that the scaling of the error o and the number of degrees of freedom
v are fixed input parameters (i.e. ¢ = {v, 0'}), that our fixed data is y1.5 = {us,vs};_,, and that we are
trying to infer the slope m and intercept c (we thus have 1 = m, 9 = c in our general notation), both of
which are assigned a unit Gaussian as a prior. Our query first samples m and c (note that normal (0,1)
generates a unit Gaussian distribution object) and constructs a student-t distribution object obs—-dist. It
then cycles over each datapoint and observes (vs — mus — ¢) /o using obs—dist, before finally returning
m and c as outputs. Note that if we instead wished to directly predict the outputs at some untested inputs
points ug+1.5+n then we could predict these anywhere in the query (after m and c have been defined) and
return them as outputs along with, or instead of, m and c.

Inputs: Transition std-dev o, output shape
«, output rate 3, data yy.p a @ Tt @ a
zo 0
tr-dist < normal (0,0)
obs-dist < gamma («, f3) @ @ @ @
fort=1,...,7T do
Ty ¢ Ty_1+sample (tr—dist)
observe (obs-dist, Yy — Tt)
2 < I(zy > 4)
end for
return 2.7

p(ﬂUl:Tayl;T\(T, 04,5) =

N (z1;0, 02) GAMMA(y; — x1;, 8)

e A A i ey

T
HN’(:L't — Tt—1; 07 02) GAMMA(yt — Tt @, B)
t=2

(b) State-space model with Gaussian transition and Gamma emission distributions. It is a form of
the HMM model given in with p(z1) = N(21;0,02), p(x¢|zi—1) = N(2y — 24-1;0,02), and
p(yt|ze) = GAMMA (y; — x¢; o, §) with shape parameter « and scale parameter 5. We assume that the
input parameters ¢ = {0, a, B} are fixed and we want to sample from p(z1.7|y1.7, ¢) given data y;.7,
where each z; is an indicator for if x; exceeds a threshold of 4. Our query, exploiting the equivalence
between p(x1) and p(x¢|zi—1 = 0), first initializes zp = 0 and creates distribution objects for the
transitions t r—dist and emissions obs-dist. It then loops over time steps, sampling each x; given
xi—1, observing y; given x;, and deterministically calculating z;. Finally the z;.7 are returned as the
desired output.

Figure 4.2: Example pseudo-queries for our simplified probabilistic programming setup with correspond-
ing graphical models and joint distributions.
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terms correspond exactly to our prior [, fi(z:|=;) =: p(z1.r|¢) and that the product of
the observe terms corresponds exactly to our likelihood [T5_; g.(ys|As) =: p(yr.s|T1r, D).
Consequently, for our simplified setup, each query defines a finite DAG (see Section [3.3) where
the conditional relationships are defined through the definitions of f; and g,. This breakdown into
a prior and likelihood and the equivalence to graphical models will not hold in the more general
cases we consider later. Our aim will be to perform inference to provide a characterization of
p(z1.7|Y1.5, @) (or the posterior for some deterministic mapping of x;.7), typically in the form
of (approximate) samples. Figure 4.2 shows two example queries along with the corresponding
graphical models and joint distributions they define.

Other than sample and observe statements, the rest of our query is, by construction, totally
deterministic. Therefore, though it may contain random variables other than z;.7, these random
variables are deterministic functions of the “raw” random draws x;. and inputs ¢ and y;.5. We
can therefore define the outputs of our query as Q := h(xy.7, 1.5, @) for some deterministic
function h. As we explained in Section this change of variables means that the density
function on €2, p(2|y1.s, ») can have a different form to the posterior implied by our query,
namely p(z1.7|Y1.5, @). Though this is a serious complication in the context of optimization (we
may not in general be able to find arg maxg, p(Q2|y1.5, ¢) or even evaluate p(Q|y;.s, ¢) exactly),

it is perfectly acceptable in the context of calculating expectations as

/f(Q)p(myl:SaQS)dQ = /f(h(I1:T7ylea¢))p(x1:T|y1:S’¢)d"E1:T (4.2)

for implicitly defined reference measures df2 and dz1.7. One consequence of this is that we can
express any expectation calculated by our query as an expectation over p(z1.7|y1.5, ¢) which
is fully defined by the joint (.1)). Another is that, provided we are not worried about carrying
out optimization, we do not need to explicitly worry about the implicit measures defined by
the definition of our query, other than any potential effects on the inference scheme and the
assumption that suitable measures exist [Staton et al., 2016]. In particular, if our aim is to
generate samples from p(Q2|y1.s, @) then we can simply generate samples from p(x1.7|y1.5, @)
and deterministically convert each sample to the space of ). In other words, our inference
engine does not need to worry about the consequences of changes of variables if our intended
output is just a sequence of samples.

An important point to note is that (4.1)) shows that all of our sample and observe statements
are exchangeable, in the sense that their order can be moved around and still define the same

joint distribution, up to restrictions about all the required variables existing and being in scope.
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For example, if all variables remain in scope and are not redefined, we can generally move
all our observe statements to the end of the query without changing the joint distribution.
Therefore the query given in Figure 4.2b| would define the same model if all the x; were sampled
upfront before making any observations. Nonetheless, the position of the observe statements
can often be important from the perspective of the performance of the inference engine. This

exchangeability result will carry over to the non-simplified case.

4.3.2 A General Probabilistic Programming Setup

Perhaps surprisingly, we do not need to do anything to our language to extend it to a universal
PPL other than to relax a number of the restrictions made for our simplified case. Namely,
we will allow branching, higher order functions, (potentially infinite) recursion, stochastic
memoization [Goodman et al., 2008bf], conditioning on internally sampled variables, and the use
of the “data” inputs y;.7 in the definition of our generate model (instead of just allowing them
to be observed). One assumption we will make, here and throughout the rest of this thesis, is
that our program terminates with probability 1, asserting that any program that does not satisfy
this assumption does not define a valid model. We will maintain the syntax of our simplified
setup, along with the assumption that functions are pure other than the effect of sample and
observe. An important point to note though for why such a language is universal, is that
arbitrary distributions with countable parameters can be defined through a series of uniform
[0, 1] draws followed by an arbitrary deterministic mapping — after all, this is effectively how
all probability distributions are defined from a measure theoretic point of Viewﬂ

Despite their ostensibly modest nature, these generalizations will have a substantial effect
on the intuitions relating our universal PPL to the Bayesian framework, the range of models
we can define, and the difficulty of performing general purpose inference. For example, as y;
terms can appear in the Z; terms, it can be the case that p(z1.7|¢) # [T, f(2¢|=;), such that the
latter no longer explicitly corresponds to a conventional definition of a prior. Some variables
may change type (e.g. between continuous and discrete) or even not exist depending on the
value of other variables. The number of variables may change from one execution to the next
and it could even be the case that the number of latent variables is unbounded provided that
any possible execution has a finite number of variables is with probability 1, such as is the

case for certain Bayesian non-parametric models such as the Dirichlet process [Ferguson, |1973;

“Interestingly, this viewpoint breaks down for distributions over functions for which measure theory itself
somewhat breaks down Heunen et al.|[2017]]. As such, universal PPSs actually go beyond the standard measure-
theoretic view of probability.
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Teh, 2011; Bloem-Reddy et al., 2017]]. Note that the number sample and observe statements
lexically defined within our query must, for obvious reasons, be finite, but recursion or looping
may mean that they are evaluated an infinite number of times. It is also possible for a variable
within a query to itself encode an infinite number of parameters, for example, one might include
a Gaussian process within the query (see Section [8.2). These complications make it difficult
to mathematically reason about the joint distribution defined by a query in a universal PPS, let
alone reason about its breakdown into a prior and a likelihood, or represent the query using a
graphical model (which might actually not even be possible).

One way to conceptually overcome these difficulties is to reason in terms of execution paths.
Even though we might not know upfront which sample and observe statements are invoked by
a particular query output, if we execute the query in order, the draws of the sample statements
made thus far in an execution trace uniquely identify which sample statement will be invoked
next and the value of all the variables up to that sample statement. In other words, given the
outcome of the first ¢ evaluated sample statements, which sample statement corresponds to
the (¢ + 1)-th to be evaluated is uniquely defined and the query up to that sample statement is
completely deterministic, including which path to take at each i f statement, which variables are
defined and their values, and the probability arising from the observe conditioning statementsE]
Thus although the distribution of the query is not necessarily statically determinable, it can
still be evaluated through execution as each sample statement provides the information we
require, in addition to the information from the previous sample statements, to deterministically
evaluate up to the next sample statement. Consequently, we can evaluate the probability of
any particular trace as we run it, even though it might be challenging to evaluate the probability
of a predefined configuration of the variables.

Using this idea of execution paths, we can define an expression for the conditional probability
a query defines, albeit in a complex and somewhat abstract manner that only really retains
meaning in our calculation through evaluation mindset, by defining the probability of a particular
trace. First let A denote the value of all the inputs to the query (including both parameters
and data as we will now have no explicit distinction between the two). Further let n, and n,
be the number of sample and observe statements respectively invoked by the trace, noting
that n, and n, may themselves be random variables and could potentially be unbounded (e.g.

n, could follow a Poisson distribution). We can now define, for any given execution, 1.,, =

Note that our inference algorithm might induce probabilistic behavior at cbserve statements, but we can
safely ignore this in terms of defining the distribution represented by the query.
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Ty Tp, a0 Y1, = Y1, - - -, Yn, TEspectively as the outputs of our n, sample statements and
observation inputs for our n, observe statements. To avoid complications regarding variable
reassignment, we will not consider the x; as being variables in our program, such that calling
a <—sample (dist) effectively creates an internal protected variable x; (whose value can never
be reassigned) and then immediately assigns the value of z; to a. All variables generated before
x; are a deterministic function of x1.;_; and A. Therefore, even though all variables in our
program might be random, including the observations yy, all are deterministically calculable
given z1.,, and A\. Even n, itself is a deterministic function of the output of the sample
statements, as {1, A} deterministically dictates whether there will be any further sample
statements encountered. Consequently, in the same way we only needed to worry about x.,,,
to reason about the distribution over the program outputs for our simplified case, we can reason
about the distribution on all variables in program (for a given \) through considering z;.,, in
our general case. We can thus think of our trace as being defined by ., .

We continue by defining f1, ..., f,. and g1, . .., g,, respectively as the densities (with respect
to an implicitly defined reference measure) associated with the ny sample and n, observe
statements defined lexically within the program (i.e. the distinct sample and observe statements
appearing anywhere in the raw program code), noting that n, and n, are not random variables.
To express these densities, we use the notation f;(x;|n;) to indicate the density of lexical sample
statement ¢ returning outputs x; when provided with distribution object 7;, which will typically
be a random variable itself. Note here that parameters of the density are encoded through the
distribution object, so, for example, we can think of sample (normal (u, 1)) for a random
variable  as first creating the random distribution object 7; =normal (1, 1) before passing
this to the sample call. We similarly use the notation g;(yx|tx) to express the density of using
lexical observe g; to observe output y; with the (random) distribution object v),. We define
aj € {1,...,ns}, Vj e {1,...,ny}and b, € {1,...,n,}, Vk € {1,...,n,} as the random
variables respectively used to index which of the lexical sample and observe statements
correspond to the j™ and k™ execution trace sample and observe statements.

To encapsulates the notion of a valid trace, i.e. a x1.,, that can be generated by the program
and for which all the density terms are well-defined, we introduce the deterministic boolean
function B(x1.,,, A) which returns 1 if the trace is valid and 0 otherwise. This is something we
do not need to worry about if we take an evaluation based inference approach, whereby we rely
on methods that only propose from the generative model, but it is necessary to ensure that the

density is well defined if we try to evaluate it at a predetermined point, chosen externally to
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the program. For example, B(x1.,,, A) is necessary to ensure that z;.,, is a “complete” trace:
it may be that a certain x,.,, implies that further sample statements are still to be invoked
after the ng‘ in which case the trace is not valid as these additional outputs are undefined. For
example, if the program defines the distribution N (z1;0, 1) (z2;0, 1)N (4; 29, 1), then the
trace x; = 3.2 is incomplete. Similarly, we can use B(x1.,,, A) to encode that in our example
P(n, > 2) = 0. Meanwhile, B(x;.,,, A) also ensures that all terms within the trace probability
are well defined. For example, an invalid trace might provide parameters of the wrong type to
one of the distribution objects, meaning that density of that distribution object is undefined.

We are now finally ready to define the conditional distribution on the trace 7 implied by
our query as p(7 = x1.,,|A\) < y(21.0,, A) Where

H;Lil faj (IJ|773) Hzil Gy, (ykW}k) if B<x1:nzy )‘> =1

) : (4.3)
0 otherwise

,Y(:Ul:nm7 )‘) = {

remembering that although the a;, 7;, etc are random variables, they are all deterministically
calculable from z1.,, for a given query and A\. As a consequence, our program implies a well
defined, normalized, conditional distribution, or “posterior”, on the produced traces (presuming
the normalization constant is finite and non-zero). Note that this definition is explicitly on
outcomes of the trace and so, in general, p(7 = z1,;|\) # [p(T = 11, |\)dTj11:0,. In
fact, because x,.; deterministically dictates whether x;,; exists, it is not possible to have
B(z1:n,,A) = B(z1.4, A) = 1, i.e. we cannot have that both xy.; and {x.;, ¥ 41.,, } are complete
traces. Consequently, it is always necessary that at least one of p(7 = x1.;|A) and p(T = z1.5,, | \)
are equal to zero. Note though that we can still define a program that places non-zero weight
on, for example, both the outputs [2.3,3.5] and [2.3,3.5, 1.2], remembering that ., relates
to the raw draws from the sample statements.

An illustrative example for calculating the probability of a program through execution traces
is shown in Figure 4.3] This corresponds to a problem that cannot not be expressed using our
simplified PPL or a graphical model, but which is simple to write in our universal framework.
Imagine we want to calculate the unnormalized trace probability y(z1.,, = [0.2,0.07], A = 4)
which we can do by stepping through the program and accumulating terms (for reference
we will be following the cyan path in Figure 4.3a). On our path we first hit fi(z]m) =
UNIFORM(0.2;0,1) = 1, we fix u <= x; and p < 1-u, and testif p = 0.2 < exp(—4) ~ 0.0183.
This gives false and so we do not break the while loop, instead encountering go(y1[11) =
BERNOULLI(1;0.2) = 0.2 and so our running value for y(z;.,, = [0.2,0.07],A = 4)is 1 x

0.2 = 0.2. Updating k¥ < 1 and going back to the start of the while loop we encounter
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(a) Possible traces for our query. sample statements are shown in red, observe statements are shown in
shades of green, and deterministic computations (given the outputs of the sample statements) are shown
in shades of blue. Subscripts for the sample and observe statements show the lexical index (i.e. a; € {1}
and by, € {1,2}), as do the different shades. The cyan arrows correspond to a particular execution path
which gives output £ = 1 and has n, = 2, n, = 2, by = 2, and b = 1. Valid traces for this particular
path must have z1 > exp(—\) and z2 < exp(—A\)/z1.

Inputs: Event rate A 0.4l
I: L+ exp(=A), k<0, p«1 '
2: while p > L do Py
<+ 0.3+
3: u <—sample (uniform (0,1)) I
4: D < pu =02l
5: if p < L then; break while; end if =
6: observe (bernoulli (0.2), 1) 01l
7: k+—k+1
8: end while 0
9: observe (bernoulli (0.99), [(k>3)) 01 2 3 4 5 6 7 8
10: return k k
(b) Query code for warped Poisson sampler (¢) Conditional distribution on k for A = 4.

Figure 4.3: Demonstration of stochastic execution traces using a warper Poisson sampler, adapted
from Figure 3.3]. The query defined in (b) would output % as per a Poisson distribution
with event rate ) if it were not for the observe statements. As shown in (c) though, these observe
statements warp the distribution to give a lighter tail while discouraging & < 3. Here both n, € N™ and
ny € NT depend on the trace and are unbounded. Which observe we see first is also probabilistic,
while it some traces will be invalid, e.g. z1.,, = [1,0.5] as 1 = 1 indicates there will be only a single
sample encountered. Nonetheless, we can calculate the probability of a trace by following its path to
completion while accumulating sample and observe factors.
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fi(za]n2) = UNIFORM(0.07;0,1) = 1, so our running score is 1 x 0.2 x 1 = 0.2. Reassigning
u and p we see that p = 0.014 < exp(—4) is now true and so we take the opposite branch
to before with our if statement, thus breaking the while loop. To finish the program we pass
through ¢, (y2]12) = BERNOULLI(k > 3;0.99) = 0.01 giving the final unnormalized density
of y(z1.,, = [0.2,0.07], A = 4) = 0.01 x 0.2 = 0.002 and an output of £ = 1. We finish by
checking that our trace was valid, which we can easily see is the case because no terms were
undefined and we generated the correct number of sample outputs (i.e. n, = 2 as required).

An important point of note is that, in general, y(z1.,,, A) is not a normalized joint distribution.
This is firstly, and most obviously, because A might contain terms, referred to as ¢ before, that
are not observed and so have no implied density. Secondly, and more critically, even if ¢ = (),
v(x1.n,, A) is not necessarily correctly normalized, because of the ability to observe sampled
variables and condition the sample statements on the observations. As a simple example, our
model might consist of a x; <—sample (normal (0,1)) term followed by an observe (normal
(—1,2, 1)) term. This does not directly define any properly normalized joint distribution on
any particular variables (noting that N (x1; 0, 1)A (z1; 0, 2) is an unnormalized distribution with
only the variable x;). Consequently, there is no means of writing down a normalized joint
distribution for a general query in our universal PPL setup in closed form — we might actually
need to empirically estimate the normalization constant to evaluate the joint. This actually
steps outside the conventional Bayesian modeling framework and raises a number of interesting
theoretical questions. However, from a practical perspective, we can note that provided the
implicitly defined normalization constant is finite, the query also implicitly defines a correctly
normalized conditional distribution (noting that v(z1.,,, A) > 0). This is analogous to knowing
the joint but not the posterior in Bayesian inference, though it is not exactly equivalent because
the normalization constant is no longer the marginal likelihood.

For a simple example of why it is important to be able to define models up to an unnormalized
joint distribution, consider a model where a and b are each sampled from discrete distributions and
we want to condition on the value of a and b being equal (see for example Figure |4.7|in the next
section). Here the combination of the sample statements and the observation that the two are equal
clearly does not lead to a correctly normalized joint (we do not even really have a conventional

notion of a likelihood), but it clearly defines an unnormalized conditional distribution as
_ P(a)P(bla)l(a = b)
> X Pla)P(bla)I(a = b)’

P(a,blI(a = b))
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In such cases where our observation is a hard constraint, we can view the normalizing constant
for the conditional defined by the query as the probability of our constraint being satisfied. For

more general queries of discrete variables, we might have, for example,
P(x|A) oc f(z[N)g(y = r(x, M|z, A)

for some deterministic function ~. Here we can view the marginalization as being the probability
of the event y = x(x, \) under the joint P(z,y) = f(x|\)g(y|z, A). For our previous example
we have = := a, y = b, k(a,\) := a, f(a) := p(a), and g(b = a) := p(b = ala). The
same intuition applies to continuous cases where we now have the density of the event y =
k(z, A). We can also think of f(z|\)g(k(x,\)|x,\) as defining an unnormalized distribution
on x whose normalization constant is [ f(z|\)g(k(x, A)|x, A)dx. In general, our normalization
constant will be a combination of conventional marginal likelihood terms and contributions
from these “doubly defined” terms. We refer to this normalization constant as the partition

functiorﬂ and note that it is given by

Z(\) =E Lﬁl Gor (Y |Vr) /\] = /7($1:nz,>\)d$1;nz

Ny Ty
= L s ]Hl fay(5n;) ,El on (Y| ok d 1, (4.4)
where the expectation is under running the query forwards (i.e. the distribution implied by
simulating from an equivalent query with all the observe statements removed) and all terms
in the integral are deterministically calculable for the query given A and z;., . For our query
to represent a well-defined conditional distribution, it is necessary to have 0 < Z(\) < oc.
Although Z () does not correspond exactly to a marginal likelihood, we can still think of it in
terms of representing a model evidence in the same way, it just might not be correctly normalized
density in the same way a marginal likelihood is.

We now see that we can draw a direct analogy to the Bayesian framework whereby the
product of the sample terms is analogous to the prior, the product of the observe terms is
analogous to the likelihood, and the partition function is analogous to the marginal likelihood.
If observed variables are not sampled within or used elsewhere in the query (e.g. being used as

parameters in distribution objects later used for sampling), then this analogy becomes exact as

®Note this is not a term that is usually used in the probabilistic programming literature, where it is usually
just referred to as a marginal likelihood. Similarly, it is common in the literature to refer to a query as defining a
“normalized joint” density of py(z1:n,, Y1:n,) = [ 152, fa; (x5]1) ITe%, 96, (Yr|bx). We have deviated from both
of these because, as our examples demonstrate, this viewpoint is actually an approximation. For an even more
rigorous treatment of the distributions defined by PPSs, we refer the reader to|Staton et al.|[2016].
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per our simplified setup[] However, as we have explained, it will often be desirable to go beyond
this framework to specify some models. When we do, we still have an implicit Bayesian model,
in the same way that Bayes’ rule means that a prior and a likelihood implicitly define a posterior,
but we may not actually have access to our implicitly defined prior and likelihood.

Given our query is now defined to specify an unnormalized conditional distribution rather
than a normalized joint distribution, it is natural to ask whether it is necessary for each observe
term to correspond to a correctly normalized density for its output, instead of just restricting it to
be a positive semi-definite function representing an arbitrary soft constraint. The answer is that it
is not. In fact, from a theoretical perspective, it perhaps easier to not think of the density defined
by the query as being a combination of sampling and conditioning terms, but instead the product
of a correctly normalized generative model density and a positive semi-definite score function
that applies an unnormalized weighting to any possible sample the generative model can produce.
This is exactly the approach taken by [Staton et al., 2016] and [Goodman and Stuhlmiiller, 2014
who explicitly use such score functions, calling them score and factor respectively. We can
also allow such functionality in our setup by defining a special distribution class, factor, which
can only be used with observe, takes no parameters, and adds a factor to the trace probability
equal to the exponentiation of the observed value. Thus, for example, we could use observe
(factor ,log(g(¢))) to factor the trace probability by the output of the function g(¢)). The
rationale for factoring by the exponentiation of the observed value rather than the observed value
itself is firstly to ensure that the factor is positive and secondly because it will be beneficial for
our system to work with log probabilities at its back-end to avoid numerical underflow issues.

Similarly, we will in practice specify distribution objects using their log densities.

4.3.3 Representing Undirected Models

One important distinction of our general setup is an ability to represent undirected and cyclic
models. This stems from the ability to include multiple probability factors for the same variable.
For example, any arbitrary cycle in a graph can be represented by adding an observation of an
already sampled variable. To instead encode an undirected model, it is perhaps easiest to think in
terms of writing an importance sampler (see Section [5.3.2)), an example of which is shown in
Figure .4l Because the set of sample statements in a program must form a directed and acyclic
model, we here use a proposal that generates all the required variables before using observe

statements to correct the trace density to that which is desired.

"Note that the observed variables should not be used in deterministic elements of the code for this to hold so that
they cannot implicitly affect the sampling.
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Inputs: Proposal parameters /i, >
I: ¢+ mvn (u,X)

[a, b, c] < sample (q)

observe (factor, —log(q(a,b,¢)))
observe (factor, log(fi(a,b)))
observe (factor, log(fa(b, c)))
observe (factor, log(f3(a,c)))
return [a, b, |

AN A ol

F—

(a) Factor graph (b) Query code
Figure 4.4: Example of encoding an undirected model. Here we have an undirected factor graph model
(see e.g. Bishop|[2006]) which we can encode by writing down an importance sampler which first samples
the variables from some proposal ¢, before correcting the unwanted effect this has on the probability
trace by adding in a factor equal to the reciprocal of the density. Provided that ¢ is a valid proposal (see
Section @) the query defines the same distribution as the factor graph.

Although it does not theoretically restrict the models which can be encoded, this can
sometimes be an somewhat cumbersome approach for encoding undirected models. For example,
it forces the user to choose an appropriate proposal which somewhat goes against the philosophy
of automating inference. Furthermore, though one is not restricted to using importance sampling
for the inference, performance may still suffer compared to methods specifically designed for
working on factor graphs. Therefore, using PPLs such as Infer.Net [Minka et al., 2010] and Fac-
torie [McCallum et al., 2009] will often tend to be preferable for models that are well represented

by conventional factor graphs as they explicitly built around providing effective support for them.

4.4 The Anglican Probabilistic Programming Language

To allow for a more precise consideration of issues associated with designing and using a
universal PPS, we now introduce the particular language Anglican [Wood et al., 2014; Tolpin
et al., 2016], which we will use for reference throughout the rest of the thesis. Anglican is a
universal PPL integrated into Clojure [Hickey, 2008], a dynamically-typed, general-purpose,
functional programming language (specifically a dialect of Lisp) that runs on the Java virtual
machine and uses just-in-time compilation. Anglican inherits most of the syntax of Clojure,
but extends it with the key special forms sample and observe [Tolpin et al., 2015b, |2016],
defined in the same way as our example language setup in the previous section, along with a
couple of others which aid in defining queries such as mem, store, and retrieve. Despite
using predominantly the same syntax, Anglican has different probabilistic semantics to Clojure,

i.e. code is written in the same way, but is interpreted differently.
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Anglican was the first PPL to introduce particle based inference schemes such as SMC
and particle MCMC (see Chapters [6] and [7), which was a key advancement for universal PPSs
because it allows the structure of the query to be exploited, often providing substantially more
efficient inference then previous approaches. Though these methods still form the core of the
inference in Anglican, there have been a number of advancements and alternative inference
approaches introduced since the original work [Paige et al., 2014; Tolpin and Wood, 2015} [Tolpin
et al.|, 2015af; |[van de Meent et al., 2015; Rainforth et al., 2016bllc; [Le et al., [2017a]. Another
notable feature of Anglican is its support for Bayesian non-parametric modeling, providing
constructs for general processes along with primitives for particular models such as Dirichlet
processes. Inevitably we can only provide a limited introduction here and so we also refer the
interested reader to [Tolpin et al. [2016]] and to the Anglican website http://www.robots.

ox.ac.uk/~fwood/anglican/| for more information.

4.4.1 Clojure

Before getting into the details of Anglican, we first give a very brief introduction to Clo-
jure [Hickey, 2008]], because its syntax may be quite unfamiliar to readers without experience
in Lisp-based notation or functional programming more generally. There are two key things
to get your head around for reading and using Clojure (and Lisp languages more generally):
almost everything is a function and parentheses evaluate functions. For example, to code a + b in
Clojure one would write (+ a b) where + is a function taking two arguments (here a and b)
and the parentheses cause the function to evaluate. More generally, Clojure uses prefix notation
such that the first term in a parenthesis is always a function, with the other terms the arguments.
Thus ( (+ a b)) would be invalid syntax as the result of (+ a b) is not a function so cannot
be evaluated. Expressions are nested in a tree structure so to code 2(a + b)/c one would write
(/ (* 2 (+ a b)) c).One can thus think about going outwards in terms of execution order
— a function first evaluates its arguments before itself. Functions in Clojure are first class (i.e.
they can be variables) and can be declared either anonymously using (£n [args] body), for
example (fn [a b] (/ a b)), orusing the macro defn to declare a named function in the
namespace, for example (defn divide [a b] (/ a b)). Local bindings in Clojure are
defined using let blocks which denote a number of name-value pairs for binding variables,
followed by a series of evaluations to carry out. Their return value is the output of the last

of these evaluations. Thus for example (let [a 2 b 3] (print a) (+ a b)) says let
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a be equal to 2, b be equal to 3, print a, and then evaluate a + b, thus returning 5. Note that
a and b remain undefined outside of this let block.

Clojure allows various types of compound literals such as vectors, lists, hash maps, and
sets. In general, elements in these compound literals are not restricted in their type so it valid
to write for example [1 (fn [x] (inc x)) "2"] to construct a vector whose component
terms are different types.

Clojure does not generally use for loops, instead relying upon the constructs map and reduce,
or the loop-recur pairing. Here map applies a function to every value in a list or vector so
for example (map (fn [a] (* a 2)) [2.1 3]) doubles each value in the vector of inputs
returning a list (4.2 6), where the parentheses in the output now just represent a list rather than
a function evaluation, just to be confusing. Meanwhile, reduce recursively applies a function
and so for example (reduce + 0 [1.2 3.4 2]) sums the vector of elements, returning 6. 6.
The loop-recur pairing forms a syntactic sugar for doing looping through tail recursion. In
essence, loop defines a function and provides initial bindings for the input arguments. Inside the
loop function block, recur recursively calls the function defined by 1oop with new bindings
to the inputs. In general, the recur function should only be called depending on a condition

holding true to prevent infinite recursion. To give a concrete example,

(loop [x 1]
(if (> x 10)
nil
(do (print x) (recur (+ x 1)))))

will print out 1 to 10 before returning nil. Here the syntax of if is (if test then else)
so when x> 10 it returns nil. Otherwise, it calls the do statement which evaluates each
of its arguments in turn, in this case printing out x before recalling the body of the loop
block with x reset to (+ x 1).

An important feature of Clojure, particularly with regards to Anglican, is its support for
(infinite) lazy sequences. Lazy sequences are sequences of terms that are only evaluated as and
when they are required. As such, it is valid for them to be infinitely long (typically through
recursive definition), but with only a finite number of values from which are ever evaluated
in practice. For example one can define the function

(defn ints [n] (lazy-seq (cons n (ints (inc n)))))
and then call (ints 1) to produce a lazy sequence comprising of all the positive integers.
We can evaluate the sequence by explicitly requesting terms with the sequence. For example,

we can use (take 5 (ints 1)) to return the first 5 elements of our lazy sequence, thus
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returning (1 2 3 4 5). We could also ask for a particular term in the sequence using, for
example, (nth 4 (ints 1)) toreturn 5. Lazy sequences are conceptually useful, amongst
other things, for specifying things that are required to be infinitely long to ensure theoretical
guarantees (e.g. an MCMC sampler needs to be run infinitely long to converge), but which

are restricted by computational budgets.

4.4.2 Writing Models in Anglican

Anglican queries are written using the macro defquery. This allows users to define a model
using a mixture of sample and observe statements and deterministic code in the manner
synonymous to that explained in Section and bind that model to a variable. As before,
Anglican makes use of distribution objects for providing inputs to sample and observe, for
which it provides a number of common constructors corresponding to common elementary
random procedures such as gamma, normal, and beta. A distribution object is generated by
calling the class constructor with the required parameters, e.g. (normal 0 1) for the unit
Gaussian. Anglican also allows custom distribution classes to be defined using the defdist
macro, which requires the user to provide parameterized code for sampling from that distribution

class and evaluating the log density at given output.

A simple example of an Anglican query (defquery my—query [data]

is shown in Figure 4.5 corresponding to a (let [mu (sample (normal 0 1))

. . sig (sample (gamma 2 2))
model where we are trying to infer the mean lik (normal mu sig) ]
and standard deviation of a Gaussian given (map (fn [obs]

(observe 1lik obs))

some data. The syntax of defquery is data)
(defquery name [args] body) so in Fig- [mu sigl))
ure [4.5]our query is named my-query and takes Figure 4.5: A simple Anglican query.

in arguments data. The query starts by sampling mu~ A(0, 1) and sig~ GAMMA(2,2) and
constructing a distribution object 11k to use for the observations. It then maps over each datapoint
and observes it under the distribution 1ik, remembering that £n defines a function and map
applies a function to every element of a list or vector. Note that observe simply returns nil
and so we are not interested in these outputs — they affect the probability of a program execution
trace, but not the calculation of a trace itself. After the observations are made, mu and sig
are returned from the let block and then by proxy the query itself. Because the data terms
only get used as observations and we do not observe any internal random variables, this simple

query corresponds exactly to a Bayesian model where the sample terms form the prior and the
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(defquery lin-reg [xs ys] (defquery discrete—hmm
(let [m (sample (normal 0 10)) [vs x0 trans obs]
c (sample (normal 0 3)) (loop [xs x0 t 0]
s (sample (gamma 1 1)) (let
f (£n [x] (+ (* m x) c))] [x (sample (nth trans (last xs)))]
(map (fn [x y] (observe (nth obs x)
(observe (nth ys t))
(normal (f x) s) vy)) (if (= (inc t) (count ys))
XS yS) (conj xs x)
[m c s])) (recur (conj xs x) (inc t))))))

(a) Linear regression model with unknown (b) Hidden Markov model with discrete states. Here y s
slope, intercept, and observation variance. Here is the data, x0 is a starting state (which has no associ-
xs and ys are the data comprising of the inputs ated observation), t rans is the collection of transition
and corresponding outputs of the regression. distribution objects for each of the K possible states
The query returns estimates for the slope m, (indexed by the value of z;), and obs are the matching
the intercept c, and the observation standard emission distributions. Query returns estimates for the
deviation (i.e. noise) s. latent states xs.

Figure 4.6: Example Anglican queries for simple models. Here defquery binds a query to a variable,
for which inference can be run using (doquery inf-alg model inputs & options).
observe terms form the likelihood as we explained in Section4.3.2] The query thus defines
a correctly normalized joint distribution given by

S
P, 0,y1.8) = N(1;0,1) GAMMA(0;2,2) [ N (ys; 1, 0) (4.5)

s=1

where we have defined 1 :=mu, 0 :=sig, and y;.¢ :=data. Other more complicated example
Anglican models are given in Figures [4.6] and 4.7]

Compilation of an Anglican program is performed by the macro query. Calling query
invokes a source-to-source compilation from an Anglican query to a continuation-passing style
(CPS) Clojure function that can be executed using a particular inference algorithm. We leave
discussing in depth what this means to Chapter [/, noting only that the inference algorithms
associated with Anglican are written in pure Clojure (except for the odd bit of Java code) and the
aim of the compilation is to produce a model artifact which can be interpreted by that inference
code. When defquery is called, Anglican internally calls query and assigns the output to the
symbol provided by the first argument of defquery. Therefore my—-query in our example is
Clojure function that can be read by the Anglican inference engines to produce approximate
samples from the conditional distribution. Note that the call structure of this Clojure function
is not as per the original Anglican query, but is instead a compilation artifact with call syntax
as per what is required by the Anglican inference engine.

Inference on the model is performed using the macro doquery, which produces a lazy

infinite sequence of approximate samples from the conditional distribution and, for appropri-
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(defdist strike [volatility] [] (observe A-strike B-strike)
(samplex [this] B-strike))

(if (samplex (flip volatility))

:war :peace)) (defm B [depth]

(observex [this value] (let [B-strike (strike 0.2)]

(observe* (flip volatility) (if (> depth 0)

(= value :war)))) (let [A-strike (A depth)]
(observe B-strike A-strike)

(declare A B) A-strike)

(sample B-strike))))
(with-primitive—procedures [strike]

(defm A [depth] (defquery war [depth]
(let [B-strike (B (dec depth)) (or (= (A depth) :war)
A-strike (strike 0.1)] (= (B depth) :war))))

Figure 4.7: Anglican code for an example Schelling co-ordination game [[Schelling, [1980; |Stuhlmiiller
and Goodman, [2014] modeling if a peace will hold between two volatile countries which we refer to
as A and B. This example is adapted from an online Anglican example developed by Brooks Paige
and Frank Wood which can be found at http://www.robots.ox.ac.uk/~fwood/anglican/
examples/| providing a more detailed consideration along with other examples. Our code first defines a
custom distribution called st rike for modeling whether one country would attack the other if it did not
reason about the other’s actions. It then constructs an Anglican function for each country using defm.
Each country has their own volatility and the ability to reason about whether they think the other country
will initiate a strike against them. We presume they have access to the exact model of the other country.
A’s aim is to match the action it thinks B will do — it would prefer there to be no war, but if there is, it
wants to strike first. Its model first samples a draw for B’s action by simulating from B’s model and then
observes this action under its own distribution on whether to strike; this is equivalent to sampling both
in isolation and constraining them to be the same. However, B can also reason about A and A knows it.
It, therefore, provides the simulation of B’s model with a meta-reasoning depth. If this depth is zero, B
makes its decision in isolation, simply sampling from B-strike. If the depth is greater than zero though,
it uses the same approach as A, simulating from A’s model (with a depreciated meta-reasoning depth)
and then observing this outcome under B~strike. This creates a mutually recursive cycle of reasoning.
As an observer, we are interested in establishing the probability that one of the two will strike and so we
define a query which outputs whether the two are the same. The expectation of the output from this query
corresponds to the probability of war. Invoking inference using (doquery :1lmh war [depth])
we see that for a depth of 0, there is roughly a 0.222 chance of war, while depths of 1, 2, and 10 give rough
respective chances of 0.052, 0.0021, and 3 x 10~°. Thus the chance of war goes down the more each
country thinks about the reasoning of the other. It is interesting to note that if the volatilities are set to the
same value then the critical tipping point, above which things escalate towards war with increased depth,
is around 0.38. The mutual recursion involved in the model and the fact that variables are both sampled
and observed means that it would be difficult to encode it using a graphical model. It is not even clear
how one would go about writing down a well-defined joint distribution for the model, without having to
empirically calculate a normalization constant.

ate inference algorithms, an estimate of the partition function. The syntax of doquery is
(doquery inf-alg model inputs & options) where inf-alg specifies an inference
algorithm, model is our query, inputs is a vector of inputs to the query, the & represents that
there might be multiple additional inputs, and options is a series of option-value pairs for the

inference engine. For example, to produce 100 samples from our my-query model with data
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[2.1 5.2 1.1] using the LMH inference algorithm with no additional options, we can write
(take 100 (doquery :1mh my-query [2.1 5.2 1.1])).

Although Anglican mostly inherits Clojure syntax, some complications arise from the
compilation to CPS-style Clojure functions. It is thus not possible to naively use all Clojure
functions inside Anglican without providing appropriate information to the compiler to perform
the required transformation. The transformation for many core Clojure functions has been coded
manually, such that they form part of the Anglican syntax and can be used directly. Anglican
further allows users to write functions externally to defquery using the macro defm, which
is analogous to defn in Clojure and has the same call syntax which can then be called from
inside the query without restrictions. Other deterministic Clojure functions can also be called
from inside queries but must be provided with appropriate wrapping to assist the compiler.
Thankfully this is done automatically (except when the function itself is higher order) using the
macro with-primitive-procedures that takes as inputs Clojure functions and creates an
environment where these functions have been converted to their appropriate CPS forms.

An important feature of Anglican for our purposes is its ability to nest queries within
one another. This is somewhat experimental and comes with a number of health warnings
because, as we will explain in Chapter [0} it allows users to write so-called nested estimation
problems that fall beyond the scope of the standard proofs of convergence for stand Monte
Carlo estimation schemes. Nonetheless, there are problems that cannot be encoded without this
ability, as we will discuss in Section Though doquery is not allowed directly within a
defquery block, one can still nest queries by either using a doquery in a Clojure function
that is then passed to another query using with-primitive—-procedures, using a doquery
within a custom distribution defined by defdist, or using the special form conditional
which takes a query and returns a distribution object constructor corresponding to that query, for
which the inputs to the query become the parameters. We will return to consider the statistical

implications of this at length in Section [10.7

4.4.3 Formal Interpretation of observe

We finish our introduction to Anglican by discussing a more formal interpretation of the observe
special form than that taken in the existing documentation. In short, observe statements are
formally factors applied to the unnormalized trace density (akin to the use of “score” functions in

[Staton et al., 2016])), rather than likelihood terms. This is because distribution objects do not

8 A small exception to this is that it is restricted to have a single input. As this itself can be a vector of inputs, one
can still write arbitrary functions.
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have explicit associated measures, with the trace density reference measure implicitly defined
only through the sample statements. Consequently, observe internally evaluates the density of
the observation and directly factors the trace density with the resulting numeric value, without
any consideration of whether this numeric value corresponds to a probability or a probability
density (i.e. whether the reference measure for the distribution object was counting or Lebesgue).

The impact of this perhaps best understood through the following example

(defquery gl [y] (defquery g2 [y]
(let [x (sample (normal 0 1)) ] (let [x (sample (normal 0 1))
(1f (< x 0) z (if (< x 0)
(observe (normal 0 1) vy) (sample (normal 0 1))
(observe (poisson 1) vy)) (sample (poisson 1)))]
X)) (observe (flip 1) (= vy 2z))

x))
One would intuitively expect these queries to induce the same distribution on outputs: instead of

directly observing y, g2 is sampling a new variable z (with ostensibly the same distribution as
the conditioning on y in g1) and then conditioning on the event y=z occurring with probability
1. We can see that if, for example, y = 2, then g2 will only output positive values for x, as
is it infinitely more probable to generate y as exactly 2 if we take the second branch than the
first. However, Anglican actually interprets g1 very differently to this: it effectively treats the
observe in each branch as being defined with respect to the same measure, weighting the density
for traces which take the first branch by \/% exp (—y?/2) and traces which take the second branch
by e~!/y!. Consequently, g1 will still generate negative values of x.

Though there is nothing mathematically wrong with this approach and it does not restrict the
class of models which can be encoded, we argue that it is misleading and should be changed.
The natural way to do this would be to associate reference measures with distribution objects,
such that it would become possible to assert that some traces are dominated by others because of
differences in the reference measures of the invoked observe statements, e.g. traces taking the
former branch are dominated by those taking the latter in g1. If a trace is dominated, its density
is simply set to zero. Though establishing dominated traces could potentially be achieved using
static code analysis (at least for a restricted class of programs), a much simpler approach would
be to establish domination at runtime by associating output samples with reference measures and
pruning samples (e.g. by setting the sample weight to zero) as and when it becomes apparent that

they are dominated. We leave the specific implementation of such an approach to future work.



An Introduction to Bayesian Inference

In Chapter [3| we introduced the concept of Bayesian modeling and showed how we can combine
prior information p(#) and a likelihood model p(D|#) using Bayes’ rule (i.e. (3.6))), to produce a
posterior p(f|D) on variables 6 that characterizes both our prior information and information from
the data D. We now consider the problem of how to calculate (or more typically approximate) this
posterior, a process known as Bayesian inference. At first, this may seem like a straightforward
problem: by Bayes’ rule we have that p(f|D) o p(D|0)p(f) and so we already know the relative
probability of any one value of # compared to another. In practice, this could hardly be further
from the truth. Bayesian inference for the general class of graphical models is, in fact, an
NP-hard problem [Cooper, |1990; Dagum and Luby, 1993]. In this chapter, we will outline these
challenges and introduce methods for overcoming them in the form of inference algorithms.
We will focus, in particular, on Monte Carlo inference methods, for which we will introduce
some key underlying results, before introducing a number of foundational methods that form the
building blocks for more advanced strategies such as those discussed in Chapter [6] We will also

later use these methods to develop automated inference engines for PPS in Chapter

5.1 The Challenge of Bayesian Inference

We can break down Bayesian inference into two key challenges: calculating the normalization
constant p(D) = [p(D|0)p(0)df and providing a useful characterization of the posterior,
for example, an object we can draw samples from. Many inference schemes, for example,
Markov chain Monte Carlo (MCMC) methods [Hastings, [1970]], will not try to tackle these
challenges directly and instead look to generate samples directly from the posterior. However,
this breakdown will still prove useful in illustrating the intuitions about the difficulties presented

by Bayesian inference.

5.1.1 The Normalization Constant

Calculating the normalization constant in Bayesian inference is essentially a problem of inte-
gration. Our target, p(D), is the expectation of the likelihood under the prior, hence the name

marginal likelihood. When p(D) is known, the posterior can be evaluated exactly at any possible
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input point using (3.6) directly. When it is unknown, we lack a scaling in the evaluation of
any point and so we have no concept of how relatively significant that point is relative to the
distribution as a whole. For example, for a discrete problem then if we know the normalization
constant, we can evaluate the exact probability of any particular § by evaluating that point alone.
If we do not know the normalization constant, we do not know if there are other substantially
more probable events that we have thus-far missed, which would, in turn, imply that the queried
point has a negligible chance of occurring.

To give a more explicit example, consider a model where 6 € {1, 2, 3} with a corresponding
uniform prior P(6) = 1/3 for each §. Now presume that for some reason we are only able
to evaluate the likelihood at @ = 1 and 6 = 2, giving p(D|¢ = 1) = 1 and p(D|0 = 2) = 10
respectively. Depending on the marginal likelihood p(D), the posterior probability of P(6 = 2|D)
will vary wildly. For example, p(D) = 4 gives P(6 = 2|D) = 5/6, while p(D) = 1000 gives
P(0 = 2|D) = 1/100. Though this example may seem far-fetched, this lack of knowledge
of the marginal likelihood is almost always seen in practice for realistic models, at least those
with non-trivial solutions. Typically it is not possible to enumerate all the possible values of
6 in a reasonable time and we are left wondering — how much probability mass is left that we
have not seen? The problem is even worse in the setting where 6 is continuous, for which it is
naturally impossible to evaluate all possible values for §. Knowing the posterior only up to a
normalization constant is deceptively unhelpful — we never know how much of the probability
mass we have missed and therefore whether the probability (or probability density) where we
have looked so far is tiny compared to some other dominant region we are yet to explore. At
its heart, the problem of Bayesian inference is a problem of where to concentrate our finite
computational resources so that we can effectively characterize the posterior. If p(D) is known,
then we immediately know whether we are looking in the right place or whether there are places
left to look that we are yet to find. This brings us onto our second challenge — knowing the

posterior in closed form is often not enough.

5.1.2 Characterizing the Posterior

Once we have the normalization constant, it might seem that we are done; after all, we now
have the exact form of the posterior using Bayes’ rule. Unfortunately, it tends to be the case,
at least when 6 is continuous, that this is insufficient to carry out most tasks that we might
want to use our posterior for. There are a number of different, often overlapping, reasons for

wanting to calculate a posterior including
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* To calculate the posterior probability or probability density for one or more particular

instances of the variables.

* To calculate the expected value of some function, 11y = E,@p) [f(¢)]. For example, we

might want to calculate the expected values of the variables themselves iy = Epg/p) [0].
* To make predictions as per the posterior predictive distribution introduced in Section 3.2}

 To find the most probable variable values #* = argmax,p(f|D). This is known as

maximum a posteriori estimation and will be discussed in Chapters 8 and [9]

* To produce a useful representation of the posterior, e.g. a set of samples, for passing on to

another part of a computational pipeline or to be directly observed by a user.

* To estimate, or sample from, a marginal distribution over some variables of particular

interest. For example, if ¢ = {u, v} then we might be interested in the marginal p(u|D).

If 6 is continuous, or some elements of # are continuous, then only the first of these can be carried
out directly using the form of the posterior provided by Bayes’ rule with known normalization
constant. We see, therefore, that knowing the normalization alone will not be enough to fully
solve the Bayesian inference problem in a useful manner. In particular, it will generally not
be sufficient in order to be able to sample from the posterior. As we will see later, the ability
to sample will be at the core of most practical uses for the posterior as it allows use of Monte
Carlo methods [Metropolis and Ulam, [1949; Robert, 2004} Rubinstein and Kroese, |2016], which
can, in turn, be used to carry out many of the outlined tasks.

To further demonstrate why knowing the normalization constant is insufficient for most

Bayesian inference tasks, we consider the following simple example

2 gy (—
p(0) = GAMMA (0;3,1) = 96XIQ)<9), 0 € (0,00), (5.1a)
o . T(15) (y—6)>\ *
p(y = 5|f) = STUDENT-T (5 — 6;2) = NGT: (1 + G ) , (5.1b)
p(6ly = 5) ~ 5.348556 0° exp(~0) (2 + (5 - 0)°) " (5.1¢)

Here we have that the prior on 0 is distributed according to a gamma distribution with shape pa-
rameter 3 and rate parameter 1. The likelihood function is a student-t distribution on the difference
between 6 and the output y = 5. Using a numerical integration over ¢, the normalization constant
can be calculated to a high accuracy, giving the provided closed-form equation for the posterior

shown in (5.1c). This posterior, along with the prior and likelihood are shown Figure [5.1]
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Here knowing the marginal likelihood means that we
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-p(6)
—p(y = 516)

p(0ly = 5)
~0.4P(O < fly = 5)

have a closed-form equation for the posterior. Imagine

.
o

though that we wish to sample from it. As it does not

correspond to a standard distribution, there is, in fact,

Probability Density
o
[\

0.1
no way to directly sample from it without doing further
0
calculations. For example, if we also know the inverse 0 5 10 15
0
of the cumulative density function of the posterior Figure 5.1: Example inference for prob-
e=0 lem given in (5.1). Also shown is the

PO <dly=5)= /_ p(0 =Oly=5)dO, (5.2)  cumulative distribution for the posterior
as per (3.2)). This is scaled by a factor of
then we can sample from the posterior by first sampling .4 for visualization.

& ~ UNIFORM(0, 1) and then taking as our exact sample § = P~1() such that & = P(© <
0 ly = 5). However, the cumulative distribution function and its inverse cannot, in general,
be calculated analytically. Though in this simple one-dimensional problem they can be easily
estimated numerically, this will prove prohibitively difficult for most problems where # has more
than a few dimensions. Similarly, if we wish to estimate an expectation with respect to this
posterior we could do this relatively easily numerically for this simple problem, for example
using Simpson’s rule, but in higher dimensions, this will be impractical.

There are a number of indirect methods we could use instead to sample from the posterior
such as rejection sampling, importance sampling, and MCMC. However, as we will show
in Section [5.3] these all only require that we can evaluate an unnormalized version of target
distribution, such that they side-step the need to calculate the marginal likelihood. Nonetheless,
knowledge of the marginal likelihood can still be helpful in a number of scenarios (e.g. in

adapting our inference algorithm) for the reasons outlined in Section [5.1.1]

5.2 Monte Carlo

Monte Carlo [Metropolis and Ulam, 1949] is the characterization of a probability distribution
through random sampling. It is the foundation for a huge array of methods for numerical
integration, optimization, and scientific simulation; forming the underlying principle for all
stochastic computation. Monte Carlo provides us with a means of dealing with complex models
and problems in a statistically principled manner. Without it, one would have to resort to
deterministic approximation methods whenever the target problem is too complex to permit an
analytic solution. As we will show, it is a highly composable framework that will allow the

output of one system to be input directly to another. For example, the Monte Carlo samples
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from a joint distribution will also have the correct marginal distribution over any of its individual
components, while sampling from the marginal distribution then sampling from the conditional
distribution given these samples, will give samples distributed according to the joint. As Monte
Carlo will be key to most methods for Bayesian inference that we will consider, we take the
time in this section to introduce Monte Carlo at a foundational level.

The most common usage of Monte Carlo in this work will be the Monte Carlo estimation of
expectations, sometimes known as Monte Carlo integration. The critical importance of Monte
Carlo estimation stems from the fact that most of the example target tasks laid out in[5.1.2]can be
formulated as expectations. Even when our intention is simply to generate samples from a target
distribution, we can usually think of this as being an implicit expectation of an, as yet unknown,
target function. Here our implicit aim is to minimize the bias and variance of whatever process
the samples are eventually used for, even if that process is simply visual inspection.

Consider the problem of calculating the expectation of some function f(6) under the

distribution 6 ~ 7(#) (= p(0|D) for the Bayesian inference case), which we will denote as

[ =B [f(0)] = / F(0)m(6)do. (5.3)

This can be approximated using the Monte Carlo estimator [/ where

N
I~ Iy := ]17 S f(6,) and 0, ~7(0). (5.4)
n=1

The first result we note is that (5.4) is an unbiased estimator for I, i.e. we have
1 X 1 X . 1 X -
EllIy| =E|— 0,)] = — E|f(8,) = — E|f(6,) =1 5.5
I =B | X2 10| = 5 SE[10)] = S E[160) 55)

where we have first moved the sum outside of expectation using linearityﬂ then the fact that
each 0, is identically distributed to note that each [ f (én)} =E { f (él)}, and finally that
E [ f (9})} — I by the definition of I and the distribution on ;. This is an important result as it
means that Monte Carlo does not introduce any systematic error, i.e. bias, into the approximation:
in expectation, it does not pathologically overestimate or underestimate the target. This is not
to say though that it is equally likely to overestimate or underestimate as it may, for example,
typically underestimate by a small amount and then rarely overestimate by a large amount.
Instead, it means that if we were to repeat the estimation an infinite number of times and average

the results, we would get the true value of /. This now hints at another important question — do we

'Note that this presumes that IV is independent of the samples. This is usually the case, but care is necessary in
some situations, namely when the number of samples taken is adaptively chosen based on the sample values, for
example in adaptive stratified sampling [Etoré and Jourdain, [2010].
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also recover the true value of / when we conduct one infinitely large estimation, namely if we take
N — oo? This is known as consistency of a statistical estimator, which we will now consider next.

Before moving on, we make the important note that many common Monte Carlo inference
methods, for example MCMC, are in fact biased. This is because it is often not possible to
independently sample 0, ~ 7(0) exactly as we have assumed in (5.4), with the bias resulting
from the approximation. The convergence of such methods relies on the bias diminishing to

0 as N — oo, such that they remain unbiased in the limit.

5.2.1 The Law of Large Numbers

A key mathematical idea underpinning the convergence of many Monte Carlo methods is the law
of large numbers (LLN). Informally, the LLN states that the empirical average of independent
and identically distributed (i.i.d.) random variables converges to the true expected value of the
underlying process as the number of samples in the average increases. We can, therefore, use it
to prove the consistency of Monte Carlo estimators where the samples are drawn independently
from the same distribution, as is the case in for example rejection sampling and importance
sampling. The high-level idea for the LLN can be shown by considering the mean squared

error of a Monte Carlo estimator as follows

E|[(Iy-1?] =E

=y ZE[(O -] X B[ - D7) - 1)

N 9 N N . 5 0
:]\;;E{(f(él)—l)}Jrg;m:%#n E =7)])
- ‘]’é where o2 :=E [(f(él) —1)°| = Var [£(0)]. (5.6)

Here the second line follows from the first simply by expanding the square and using linearity
to move the sum outside of the expectation as in the unbiasedness derivation. The first term
in the third line follows from the equivalent term in the second line by again noting that each
0, has the same distribution. The second term in the third line follows from the assumption

that the samples are drawn independently such that

E[(f(62) = D)(f(0n) = D] =E [(£(6n) = D] E [(f(B) — T)]

=0.
N 2
by unbiasedness of the estimator. The last line simply notes that {( f(6y)—1 ) } is a constant,

namely the variance of f(6). Our final result has a simple and intuitive form — the mean squared
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error for our estimator using N samples is 1/ times the mean squared error of an estimator
that only uses a single sample, which is itself equal to the variance of f(#). As N — oo, we
thus have that our expected error goes to 0.

A key upshot of this result is that the difference between our empirical estimate and the true
value (i.e. Iy — I) should be of order O(1/+v/N). In some way this is rather slow: deterministic
numerical integration schemes often have much faster theoretical convergence rates. For example,
Simpson’s rule has a convergence rate of O(1/N*) for one-dimensional functions [Owen, 2013,
Chapter 7]. As such, Monte Carlo is often an inferior way of estimating integrals for smooth
functions in low dimensions. However, these deterministic numerical integration schemes require
smoothness assumptions on f and, more critically, their convergence rates diminish rapidly
(typically exponentially quickly) with the dimensionality. By comparison, the dimensionality only
effects the Monte Carlo convergence rate through changes in the constant factor oy and though
this will typically increase with the dimensionality, this scaling will usually be substantially

more graceful than deterministic numerical methods.

5.2.2 Convergence of Random Variables

To introduce the concept the LLN more precisely, we now consider some more formal notations
of convergence of random variables. There will be times (e.g. Chapter [I0) when mathematical

rigor will require us to distinguish between alternative notations of convergence. However, those

less interested in theoretical details may wish to skip Sections[5.2.2.2}[5.2.2.3] and[5.2.2.4]on

first reading, as the notion of L? convergence will be sufficient, for most practical purposes, to

guarantee that an estimator will return the correct answer if provided with sufficient samples.
5.2.2.1 LP-Convergence

We start by introducing the notion of LP-convergence, also known as convergence in expectation,
as this is the type of convergence we have just alluded to in our informal proof of the LLN. At a

high level, LP-convergence means that the expected value of the related error metric tends to zero

as N — oo. More precisely, we first define the L”-norm for a random variable X as
1
111, = (B X)) (5.7)

where |-| denotes the absolute value. For example, we can write the mean squared error used
in (5.6) as the squared L*-norm: E[(Iy — I)?] = |[Iy — I||3. We further define the notion
of LP-space as being the space of random variables for which ||.X|| p < 00. We can now

formally define LP-convergence as follow.
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Definition 5.1 (LP-convergence). A sequence of random variables X  converges in its LP-norm

to X (wherep > 1)if X € LP, each Xy € LP, and

Jim [ Xy — X]|, = 0. (5.8)

A key point to note is that | Xy — X ||, > 0 VX, X by definition of the L”-norm and so rather
than this simply being a statement of asymptotic unbiasedness, LP-convergence says that the
expected magnitude of the error tends to zero as N — oo. Different values of p correspond to
different metrics for the error, with larger values of p constituting stronger converge guarantees,
such that LP2-convergence implies LP!-convergence whenever p, > p;. Similarly, if a random

variable satisfies X € LP2, then it follows that X € LP!.
5.2.2.2 Convergence in Probability

At a high level, convergence in probability between two random variables (or between a random
variable and a constant) means that they become arbitrarily close to one another. More formally

we have the following definition.

Definition 5.2 (Convergence in probability). A sequence of random variables X converges in

probability to X if, for every £ > 0,

lim P(Xy - X| 2 ¢)=0. (5.9)

As € can be made arbitrarily small, this ensures that Xy becomes arbitrarily close to X in the
limit of large N. Estimators are consistent if they converge in probability.

In (3.6) we demonstrated the L? convergence of the Monte Carlo estimator as we have that

p— o 0-0 j—
1IN — 1], —A}gr(l)o—m = 0.

Convergence in probability is, in general, a weaker form of convergence than L” convergence

lim
N—o0

as LP convergence implies convergence in probability [Williams, [1991]]. We therefore also have
the Monte Carlo estimator convergences in probability to its expectation. This is known as the

weak law of large numbers, which we can also prove more explicitly as follows

Theorem 5.1 (Weak law of large numbers). If I and Iy are defined as per (5.3) and (5.4)
respectively, I € L', each Iy € L', and each én in (5.4) is drawn independently, then Iy

converges to I in probability: A}im P(lIy—1|>¢)=0 Ve>0.
—00
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Proof. In the interest of exposition, we prove the result in the case where the stronger assumptions
that I € L? and each Iy € L? hold. In practice this is not needed as the theorem can be proved
by other means, see for example [Durrett, 2010, Theorem 2.2.7].

By (5.3) we have that E[Iy] = I and by (5.6) we have that ||Iy — I|5 = %g where o7 is an
unknown, but finite, constant by the assumption that I € L?. Chebyshev’s inequality states that if
E[Iy] = I, then for any k& > 0
< Var(Iy) ’

Pllix =12 8) < =5

By further noting that as Iy is unbiased, we have that Var(Iy) = || Ix — I||; and therefore

2
. . o]

— I > < — =
J\}LH;OP(HN ]|_5)_]\}1m N 0 Ve>0.

—o0 g2

5.2.2.3 Almost Sure Convergence

Almost sure convergence, also known as strong convergence, is a similar, but stronger, form of
convergence than convergence in probability. At a high level, the difference between convergence
in probability and almost sure converge is a difference in the tail behavior: convergence in
probability suggests the rate at which an event happens tends to zero; almost sure convergence
means that there is some point in time after which the event never happens again. More formally

we have the following definition

Definition 5.3 (Almost sure convergence). A sequence of random variables X converges almost

surely to X if

P ( lim Xy — X) — 1. (5.10)

N—oo

Almost sure convergence implies convergence in probability, but not vice-versa — the rate at
which events occur might tend to zero without there ever being a point at which the event never
occurs again. It does not imply, nor is it implied by, L? convergence. The strong law of large

numbers is the dual for the weak law of large numbers as follows.

Theorem 5.2 (Strong law of large numbers). Assuming the setup of Theorem then Iy

converges to I almost surely
P(lim IN:[):L (5.11)
N—o0

The proof is somewhat more complicated than the weak law and so is not provided here,

but can be found in, for example, [Durrett, 2010, Theorem 2.4.1].
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5.2.2.4 Convergence in Distribution

At a high level, convergence in distribution, also known as weak convergence, states that a
sequence of variables become increasingly closely distributed to a target distribution. Whereas
our previous notions of convergence ensure that our sequence of random variables converge
to a particular value, convergence in distribution only implies that our sequence of random
variables tends towards having a particular distribution. For example, a variable might converge
in distribution to having a unit normal distribution, whereas a different variable might converge

in probability to zero. More formally, we can define convergence in distribution as follows.

Definition 5.4 (Convergence in distribution). A sequence of random variables X y converges in

distribution X if

lim P(Xy <) =P(X < z) (5.12)

N—o0
for every x at which P(X < x) is continuous, where P(Xy < xz) and P(X < z) are the

cumulative distribution functions for X ny and X respectively.

Because it only requires that a variable has a particular distribution, rather than an exact value,
convergence in distribution is a weaker form of convergence than those previously discussed

and is implied by any of the other forms of convergence.

5.2.3 The Central Limit Theorem

The central limit theorem (CLT) is a core result in the study of Monte Carlo methods. In its
simplest form, it states that the empirical mean of /V i.i.d. random variables tends towards a
Gaussian in the limit N — oo. While the LLN demonstrated the convergence of the average of
1.1.d. random variables towards the true mean, the CLT provides a means of constructing consistent
confidence intervals of our estimate [ by exploiting its asymptotic normality. Furthermore, it
has variants that do not require that the variables are i.i.d., meaning we can use it do demonstrate
convergence in scenarios where samples are correlated, such as occurs when doing MCMC

inference as shown in Section In the i.i.d. case, the CLT is as follows.

Theorem 5.3 (Central Limit Theorem). Assume X,..., Xy is a sequence of i.i.d. random
variables with E[X;] = I and E[X?] = 0 < oo foralli € {1,...,N}. Let Iy :== ~ >0 X,,
be the sample average of this sequence. Then /N (In — I) /o converges in distribution to the

unit normal:

lim P(W < z) — () :/Z ;exp( CQ) d¢ VzeR (5.13)

N—o0 o 2
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where ®(2) is the cumulative distribution function for the unit normal. Furthermore, if 0%, =
o SN (Xy—1 N)2 is the empirical estimate of the variance of Xy (including Bessel’s

correction), then /N (Iy — I) /o also converges in distribution to the unit normal.
Proof. See, for example, [Durrett, 2010, Chapter 3]. U]

The second result here is especially key as it will allow us to calculate consistent confidence

intervals on our estimates without needing to know ¢ as we can instead use our empirical estimate

(R 1 &
g?vzﬁn;l(XN_IN)2 where ]N:N;XN~ (5.14)

The form of might at first look at bit strange - why is the normalizing term 1/(N —
1) instead of 1/N? Although replacing the 1/(N — 1) term with 1/N would still lead to a
consistent estimator, this estimator turns out to be biased whereas (5.14)) is in fact unbiased.
The bias correction N/(/N — 1) is known as Bessel’s correction, while the proof that (5.14) is
unbiased follows from straightforward algebraic manipulations. Note though that the estimator
of the standard deviation, oy, 1s still biased by Jensen’s inequality. As a consequence of the
unbiasedness, 03 “% o2 by the strong LLN, from which the second result in Theorem
follows from the first by Slutsky’s theorem.

Imagine we want to construct a confidence interval on our estimate [y such that there
is a probability 0 < a < 1 that [ is in the range [Iy — ¢, Iy + €]. Using the CLT we

can do this as follows

OéZ:P(IN—&TS]SIN—Fé):P(—éng—Igg)

:P<_\/We - VN (Iy — 1) . \/N5>
~ & <\f§€> % <_\/U§5> op <g5> - 515

Rearranging for € we have that € = (0 N/ VN ) o1 (QTH) and therefore the confidence interval

-1 (a+1 -1 (a+1
P(]N—W§I§IN+M)\/N(2)):04. (5.16)

Thus for example, if we set v = 0.99 then ! (%“) ~~ 2.576 and our confidence interval 99%
confidence interval for I is Iy £+ 2'57%. We reiterate that these confidence intervals are exact
in the limit N — oo, but approximate for finite /N. As one is often far from the asymptotic
regime, care is often required in interpreting them. Nonetheless, the ability to estimate realistic

uncertainties for sufficiently large N is an extremely powerful result.
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Through most of this section, we have assumed that our random variables are i.i.d.. In
fact, neither the assumption of being identically distributed nor that of independence is actually
necessary for the CLT to hold. One can instead use the concept of strong mixing, namely that
variables sufficiently far apart in the sequence are independent, to generalize beyond the i.i.d.
setting [Jones et al.,[2004]]. This is critical for the numerous Monte Carlo inference schemes, such
as MCMC methods, that do not produce independent samples but instead rely on the samples
converging in distribution to a target distribution. In most MCMC settings, one can also prove a
CLT using reversibility of the Markov chain [Kipnis and Varadhan, 1986]. It is beyond the scope
of this thesis to go into these more general forms of the CLT in depth, so we simply note their

critical importance and refer the reader to Durrett [2010] for a comprehensive introduction.

5.3 Foundational Monte Carlo Inference Methods

In this section, we introduce the key methods that form the basis upon which most Monte Carlo
inference schemes are based. The key idea at the heart of all Monte Carlo inference methods
is to use some form of proposal distribution that we can easily sample from and then make
appropriate adjustments to achieve (typically approximate) samples from the posterior. Most

methods will require only an unnormalized distribution
v(0) =m(0)Z (5.17)

as a target where Z = [ ~(6)df. As such they will apply to any situation where we desire to
sample from an unnormalized (or in some cases normalized) distribution, for which the Bayesian
inference setting is a particular case where () = p(D|f)p(f) and Z = p(D). Nonetheless,
knowing Z can be useful in a number of scenarios, e.g. allowing for unbiased importance
sampling estimators. The methods will, in general, vary only on how samples are proposed and
the subsequent adjustments that are made. However, this will lead to a plethora of different
approaches, varying substantially in their motivation, theoretical justification, algorithmic details,

and the scenarios for which they are effective.

5.3.1 Rejection Sampling

Rejection sampling is one of the simplest Monte Carlo inference methods and one of the only ones
to produce exact samples from the target. Before going into the method itself, we first consider an
example to demonstrate the underlying intuition. Imagine we want to generate samples distributed
uniformly over some arbitrary two-dimensional shape. One simple way of doing this would be to

sample uniformly from a box enclosing the shape and then only taking the samples which fall
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within the shape. An example of such sampling by rejec-
tion is shown in Figure[5.2] As all the samples within the
box are distributed uniformly, they are also uniformly
distributed on any subset of the space. Therefore if we

sample from the box and then only take the samples that

fall within the desired shape, we will generate samples - 0.5 05 1
01
uniformly over that shape. We can also use this method . _ .
Figure 5.2: Sampling uniformly from

to estimate the area of the shape by using the fact that the  an arbitrary shape by rejection. Samples
are proposed uniformly from the [—1, 1]
square. Any sample falling within the

is equal to the ratio of the areas of the shape and the  black outline is accepted (blue), other-
wise it is rejected (red).

probability of any one sample falling within the shape

bounding box, namely

Aghape = Apox P(6 € shape)
N
> 1(6, € shape) where 6, ~ UNIFORM(box)

n=1

and we have used a Monte Carlo estimator for P(f € shape). Note that the value of P(6 € shape)

—~ Abox

will dictate the efficiency of our estimation as it represents the acceptance rate of our samples.
In other words, we need to generate on average 1/ P(6 € shape) samples from our proposal for
each sample created in the target area. As we will show later in Section P(6 € shape)
typically becomes very small as § becomes high-dimensional, so this approach will typically
only be effective in low dimensions.

The underlying idea to extend this approach to rejection sampling more generally, is that
we can sample from any distribution by sampling uniformly from the hyper-volume under its
unnormalized probability density function. Though this is effectively axiomatic by the definition
of a probability density function with respect to the Lebesgue measure, we can get a non measure-
theoretic intuition for this by considering augmenting a target distribution with a new variable
u such that p(u|@) = UNIFORM(0, (6)). Sampling § ~ 7(#) and then @ ~ p(u|f) corresponds
to sampling uniformly from hyper-volume under the probability density function, while we
clearly have that the marginal distribution on 6 is 7(6).

Using this idea, we can sample from any unnormalized distribution by sampling from an
appropriate bounding as per Figure [5.2]and then accepting only samples that fall within the hyper-
volume of the probability density function. More specifically, we define a proposal distribution

q(#) which completely envelopes a scaled version of the unnormalized target distribution Cy(#),
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Figure 5.3: Demonstration of rejection sampling for problem shown in (3.1]). We first sample 6 ~ q(6),
correspond to sampling from the distribution shown in blue, and then sample & ~ UNIFORM(0, ¢(0)),
corresponding to sampling a point uniformly along the black lines for the two shown example values of
0. The point is accepted if & < Cp(0]y = 5) (i.e. if it below the yellow curve), where we have taken
C = 0.39 to ensure Cp(Aly = 5) < q(0) for all theta. Here the example sample pair {1, @1 } is accepted,
while {ég, G2} is rejected. The resulting accepted sample pairs will be uniformly sampled from the region
under the unnormalized target distribution given by the yellow curve and therefore the accepted 6 will
correspond to exact samples from the target.

for some fixed C, such that ¢(#) > C~(0) for all values of 6. We then sample a pair {4, 4} by
first sampling § ~ ¢(0) and then & ~ UNIFORM(0, ¢(6)). The sample is accepted if

o< Cy(0) (5.18)

which occurs with an acceptance rate C'Z (note that ¢(6) > C~(0) V0 ensures that C' < 1/7).
This can be used to estimate the normalization constant Z, corresponding to the marginal likeli-
hood for Bayesian models, by calculating the empirical estimate of the acceptance rate and divid-
ing this by C'. A graphical demonstration of the rejection sampling process is shown in Figure[5.3]

Rejection sampling can be a highly effective sampling or inference method in low dimensions.
In particular, the fact that it generates exact samples from the target distribution can be very
useful. This very rare characteristic is used to construct efficient samplers for many common
distributions such as in the ziggurat algorithm [Marsaglia et al., 2000]] often used for generating
Gaussian random variables. More generally, whenever one wishes to construct a sampler for a
non-standard low dimensional distribution, e.g. when declaring an Anglican defdist, rejection
sampling is the clear go-to approach because it produces exact samples and because one can
usually engineer a very efficient sampler. However, the efficiency of rejection sampling is
critically dependent on the value of C, because C' is directly proportional to the acceptance
rate. By proxy, it is also critically dependent on the proposal ¢(6) as this dictates the minimum

possible value of C, namely Cy;, = mingq(0)Z/m(60). Consequently, it is very prone to
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the curse of dimensionality as we discuss in Section [5.3.3] meaning performance cannot be

maintained for higher dimensional problems.

5.3.2 Importance Sampling

Importance sampling is another common sampling method that forms the key building block
for many more advanced inference schemes. It is closely related to rejection sampling in that
it uses a proposal, i.e. 0 ~ q(0), but instead of going through an accept/reject step, it assigns
an importance weight to each sample. These importance weights act like correction factors to
account for the fact that we sampled from ¢(6) rather than our target 7 (6).

To demonstrate the key idea, consider the problem of calculating an expectation as per (5.3)).
If we cannot sample exactly from 7(6) then we cannot apply (5.4) directly. However, we can
rearrange the form of our expectation to generate a different Monte Carlo estimator which

we can evaluate directly as follows

[=E /f de_/f(e)”(@)q(e)de

) q(0)
~ — (?") f(0,) where 6, ~ q(0) (5.19)
N n=1 q(0n)
where Z((gjj)) =: w,, 1s known as an importance weight. The key trick we have applied is to multiply
the integrand by 9), which equals 1 for all points where ¢(6) # 0. Thus if ¢(6) # 0 for all ¢

for which 7(#) # 0 (to avoid infinite importance weights), this has no effect on the expectation.
However, we can informally view the new formulation as being the expectation of f(6 ) 20 ) under
the distribution ¢(#). We can now construct a Monte Carlo estimator for this new formulation,
by choosing ¢(#) to be a distribution we sample from. A graphical demonstration of importance
sampling is given in Figure [5.4]in the more general setting where we do not have access to the
7(0) exactly, but only an unnormalized version v(0) = 7(0)Z. As we will show in detail in
Section[5.3.2.1] we can still use importance sampling in this case by self-normalizing the weights.

Importance sampling has a number of desirable properties as an inference method. In

particular, it is both unbiased and consistent. The former can be shown trivially as follows

1 X rd) ] 1Y 7(0,) . -
E {N; Q(én) f(9n>] = N;EQ(Gn) [q(én)f(@n)]

— By, m; f<én>] — B [f(6) (520)
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0.25

0

Figure 5.4: Demonstration of importance sampling for problem shown in (5.1). We are trying to estimate
E)[f(0)]: the expectation of the function f(6) := 6?/50 under the posterior 7(#) := p(fly = 5)
defined as per (5.1c). We assume the setting where 7 () is only known up to a normalization constant
(see Section[5.3.2.1)), namely we only have access to v(#) := p(#)p(y = 5|#) as shown in yellow. Our
procedure is to draw samples independently 0,, ~ ¢() and then evaluate their weight w, = w(f,) =
v(0,)/q(0,,). This produces a set of weighted samples which can then be used to estimate to estimate the
expectation using (5.26) (one can also use (5.19) if the normalized 7(6) is used instead of y(0)).

where we have effectively stepped backward through (5.19) ] Given this unbiasedness result, L?

convergence, and thus convergence in probability, can be shown in the same manner as (5.6) by

replacing each f(0,) with ”((9”)) £(0,,), leading to the same result except that o is now

03 = ]Eq(g) (Z((gll))f(él) — ]) = Varq(g) [ZEZ; (9)] . (5.21)

Almost sure convergence of importance sampling can be similarly shown using the strong LLN.

The form of (5.21)) provides substantial insight into how best to set the proposal: we
have shown that the mean squared error of an importance sampler is directly proportional
to Varyg) [f(8)m(6)/q(0)], thus the lower this term is, the better the expected performance of
our estimator. One obvious question is what is the optimal proposal ¢*(0)? It turns out that
q*(0) = OO _ K ahn and Marshall, [1953; Owen, 2013], which can be shown as follows

S m(9)1£(6)|do
where we will make use of Jensen’s inequality and comparing to an arbitrary proposal ¢(0)

o [ “))1 [z [500])

Var-g) [ 7 (0) (9)] = E4(0)

[T ‘))*2( 1O 15 12— (/ w(@)]f(9)|d9)2—12 (5.22)

</ ( «92 ) ¢(6)d — 12 = Var,p) r((g)) f(&)]. (5.23)

Note that this unbiasedness result does not pass over to the self-normalized variant given in Section|5.3.2.1




5. An Introduction to Bayesian Inference 83

Here we have shown that the variance for ¢*() is less than or equal to the variance using
an arbitrary ¢(6). It must, therefore, be the optimal proposal. A further point of note, is
that if f(6) > 0 V60 (or f(#) < 0 V6), then (5.22)) will equal zero giving a zero variance
estimator: each importance weight will be equal to the //f(6) and thus / can be calculated
by evaluating a single point.

Though it will typically be impossible to find ¢* () in practice, it still provides a guide as
to what constitutes a good proposal — we want 7(6) | f(0)| /q(6) to be as close to constant as
possible. In particular, we need to be careful to avoid scenarios where % > q(0) as this
will cause the ratio to explode, leading to high variances. A consequence of this is that we want
q(0) to have light tails compared to 7 () | f(6)| to ensure that the ratio does not systematically
increase as § moves away from the modes of ¢(f). Aside from the clear practical issues, if this
requirement does not hold, then it can easily be the case that oy = co and thus that the estimator
has infinite variance. Consider, for example, the case where 7(6) = N (6;0,1), f(6) = 0, and
q(0) = N(0;0, s*) (Example 9.1 from [Owen, 2013, example 9.1]). Noting that the mean, I,

is zero by symmetry and defining v = — 1, we have that

1
252

03:/0:092 (e (-6°/2) /2r) o —12= >

Y ITR N ek m/w 6 exp (0%v) db.
Now this integral is clearly only finite for » < 0 (as otherwise the integrand is +o0o0 and § = 00
and finite elsewhere). Therefore, oy is only finite when s > 1/2. In other words, we only get a
finite estimator in this case if the proposal variance is at least half that of the target distribution
7(0)! This highlights the pitfalls of having insufficiently heavy tails on our proposal. Overcoming
these will typically require careful setup of the proposal on a case-by-case basis, for example,

choosing a distribution type for the proposal that is known to have heavier tails than 7 (0).
5.3.2.1 Self-Normalized Importance Sampling

In the previous section, we presumed that we have access to a normalized version of the target
7(0). Typically this will not be the case and we will only have access to an unnormalized target
() = w(0)Z as per (5.17), for example only having access to the joint rather than the posterior
in the Bayesian inference setting. In a less common, but still plausible situation, it may also only
be possible to evaluate the proposal up to a normalization constant. We now show how one can

still use importance sampling in these scenarios, by self-normalizing the importance weights.
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The key idea for self-normalized importance sampling (SNIS) is that the weights provide

an unbiased and consistent estimator of the marginal likelihood

1 N
In = 2. wn (5.24)
n=1
Z ool (01)/a(0)] = 2. (5.25)

Now as E, ) [%f(@)] = FEyp { m(0) 7 Z (0 )} Z Exp [f(6)], we can use our samples to
construct Monte Carlo estimators for both Z and Z E ) [f ()] and use the ratio of our estimates
to get an estimate for E ) [f(0)]
N .
n A 0.,
%ﬂ) where 6, ~q(0), w, = W(A ) (5.26)
>n=1Wn q(6)

This can alternatively be expressed as E,() [f(0)] &~ XN, w,f (d,) where w, = S, are

Exo) [f(0)] =

the normalized importance weights such that 25:1 w, = 1.

The consistency of (5.26) follows by Slutsky’s from the individual consistency of both the nu-
merator and the denominator to Z E ) [ f(6)] and Z respectively. However, unlike (5.19), (5.26)
is a biased estimator for finite V. This is because the numerator and denominator are correlated
and because even though 7y is an unbiased estimator of Z, 1/Z is not an unbiased estimator of
1/Z. The latter follows directly from Jensen’s inequality noting that inversion is a convex
function for strictly positive inputs,

1 1 1
. L{f > wn] - E {% SN w, A ©-27)

where equality holds if and only if Z is a zero variance estimator for Z (which typically happens

only in the limit N — oo). However, it can be shown that the bias decreases at a rate O(1/N)
(see e.g. Doucet and Johansen| [2009]), whereas the standard deviation of the estimate decreases
at a rate O(1/+/N). Thus the bias becomes dominated as N — oo.

Strangely, even when the normalization constant is known, the self-normalized importance
sampler can still be lower variance [Owen, 2013|]. Therefore, with the bias becoming dominated,
it can actually be preferable to use SNIS even when the normalized target is known. Note
also that the optimal proposal in the SNIS case varies slightly from the ¢*(6) derived earlier

in the Section and is instead [Hesterberg, |1988]]

. _ 7@ fO) 1]
gsnis(0) = [ 7(0)]f(6) —I]db° (5.28)

As a consequence, there is a minimum variance for the SNIS estimator, unlike in the pre-

normalized case where ¢*(f) was a zero variance estimator if f(6) > 0 V6.
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5.3.2.2 Unknown f

So far we have assumed that we are using importance sampling to calculate an expectation of a
known function. In practice, there will be many scenarios, particularly in the Bayesian inference
setting, where f(6) is not known ahead of time and we instead desire to generate samples for
some future unknown use. For example, in Section 6. 1| we will introduce the concept of sequential
Monte Carlo, where we will typically have multiple importance sampling steps before any target
function is itself evaluated. When no f(0) is specified, we can carry out importance sampling
in the same fashion, sampling from ¢(#) and returning a set of weighted samples {én, W bn=1.N
where the weights are equal to ~v(6,,)/q(6,) as before. Here we can think of importance sampling

as approximating the posterior with a series of deltas functions, namely
N
w(0) = w(0) := Z wnd (0) (5.29)
n=1

where §; (0) are delta functions centered at 0.
Importance weights are multiplicative when doing conditional sampling: if we sample

0, ~ ¢(6) then |0, ~ q2(4|,,) when targeting 1 (6)72(4|6) then the importance weight is
’Yl(én>72(<lgn|én) _ 71(én> % 72(<£n|én)

A~

q1 (én>Q2<$n‘én) q1(0n) Q2(¢gn‘én)

This is known as sequential importance sampling and means that we can propagate impor-

= Wp,1 X Wp2. (530)

tance weighted samples through a computational system and retain a valid importance sam-
pler with the standard properties such as unbiasedness (presuming the weights are not self-
normalized) and consistency.

Again a natural question in this “unknown f” setting is what is the optimal proposal ¢*(#)?
This is a somewhat more challenging and subjective question than when f is known as the
optimality will depend on what the samples are eventually used for. In particular, even if we
do not know f precisely, it may be the case that we believe some f are more likely than others,
or we may know that f lives within some space of possible functions, for example, functions
that have a countable number of discontinuities.

One simple, but insightful approach, is to consider the minimax optimal proposal, i.e. the
proposal that has the minimum error if f is the most adversarial possible function for that proposal.
Imagine that we have N weighted samples {én, Wy }n=1.N», With N corresponding evaluations
fni=1f (én) We use these to calculate an estimate [y for the target /. Now assume that each

w, >0, YN w, =1,and S, |f, — I| = N to preclude the ability to provide an improved
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solution simply by scaling the problem. The error for the estimator is given by

N
anfn—f‘:
n=1

For any given set of weights, the most adversarial set of function evaluations is to have all our

|[In — 1| =

N
S wa(fo f)\ | (531)
n=1

error at the largest weight, i.e. |f,» — I| = N and |f,, — I| = 0, n # n* where n* is the index
of the largest weight. For this set of adversarial f,,, the lowest error is achieved when each of
the weights are equal. Consequently, we see that the minimax proposal under our assumptions
is ¢(0) = 7(0). This result is perhaps not surprising as it effectively states that the best sample
representation of 7(#) for an unknown future use is to sample from that distribution directly.
As shown in the next section, this proposal will also minimize the variance of the estimator
under the assumption that the f,, are independent.

Nonetheless, this point of view is not without criticism in the literature [O’Hagan, |1987;
Ghahramani and Rasmussen, [2003}; Briol et al., [2015b]. Most of this criticism revolves around
the valid point that in practice the value of f(6) does convey information about f(6 + ¢) and
so the correlation between samples should be taken into account when making an estimation.
Though the thrust of this argument is mostly directed towards changing the Monte Carlo method,
and in particular importance sampling, the same arguments would also suggest that it can be
beneficial to use a proposal that is more diffuse than the target, thereby reducing the correlation

between the produced samples.
5.3.2.3 Effective Sample Size

In this section, we consider an important diagnostic for the performance of importance sampling
based schemes, the effective sample size (ESS). In Section[5.2.3] we showed how an uncertainty
estimate for a Monte Carlo estimator can be derived. However, this cannot be used when f
is unknown and even if f is known, it does necessarily convey much information about how
effective our proposal is compared to how effective it could be. The ESS instead informally
provides an estimated measure of the amount of information stored in our weighted sample
set. The more information stored in the samples, the better our approximation of the posterior,
and, at a high level, the more evenly balanced our weights, the more information they encode.
Therefore, the ESS is a measure of how many unweighted samples would be required to convey
the same information about the posterior as the weighted sample set.

The weighted average of N, independent evaluations { f,, }_,, each with individual variance
o2, has variance o2 /N, as we showed in (5.6). Therefore, we can calculate the ESS of a set

of weighted samples by comparing the variance of our weighted estimate to the variance of an



5. An Introduction to Bayesian Inference 87

estimate using a set of unweighted evaluations. More specifically, the ESS will be the number of
unweighted evaluations [V, that gives an equivalent variance to our weighted estimate as follows
where we will make use of the assumption that the f,, are independent

, N N 2 2N 2
o [Zzlwf {wn}gﬁ] s (zNw> Varlf,] = T2l (532)

— = Var Sy ~ 5

Ne
Now rearranging for N, we get
2
(Zr]:[:l wn) B 1
Yo w? S w2

which completes our definition for the effective sample sizeE] It transpires that /N, is independent

N, = (5.33)

of f, so we can still use the ESS as a diagnostic when f is unknown. It is straightforward to
show using Jensen’s inequality we have that N, < N with equality holding if and only if all the
weights are equal. On the other hand, if all but one of the weights is zero, then N, = 1. These
two extremes respectively occur when the proposal is equal to the target, ¢(6) = 7 (@), and when
the proposal provides a very poor representation of the target. The ESS is often therefore used
for proposal adaptation, as a larger value of the ESS generally indicates a better proposal.
However, the ESS is far from a perfect measure of sample quality. For example, if the proposal
perfectly matches one of the modes of the target but completely misses another larger mode,
the ESS will usually be very high, even though the samples provide a very poor representation
of the target. It is not uncommon in practice to see the ESS drop drastically as more samples
are added, due to the addition of a new dominating sample, typically indicating a region of
significant target probability mass that had previously been missed. Nonetheless, the ESS is still
a very useful performance metric and is usually a reliable indicator for whether our importance
sampling is struggling. In particular, though the possibility of missing modes means that it is
possible for the ESS to be high even when the approximation of the posterior is poor, if the
ESS is low then the approximation of the posterior will always be poor and any subsequent

estimates will usually be high variance.
5.3.2.4 Resampling

A useful feature of SNIS is that it can be used to produce unweighted samples by sampling
with replacement from the set of produced samples in proportion to the sample weights. This
procedure is typically known as resampling, because we are resampling samples from the

empirical distribution of our original samples. Resampling allows us to generate unweighted

3Note that it is sometimes necessary to collapse identical weighted samples to a single sample when
calculating (5.33), such as when doing resampling (see Section[5.3.2.4)
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samples with importance sampling which are approximately distributed according to 7(6), with
this approximation becoming exact in the limit N — co. Resampling on its own always leads to
a higher variance estimator than using directly. However, in addition to being necessary
when unweighted samples are required, it will be a key component in the so-called particle-based
inference methods discussed in Chapter [6]

Mathematically, we can express resampling as producing a set unweighted resampled

samples {9"}5:1 using

0, =0, where a, ~ DISCRETE ({u‘)n}ﬁ’zl) . (5.34)

Here {an}ivz1 are known as ancestor indices as they indicate which ancestor in the original sample

set each unweighted sample originated from. Note that the a,, need not be drawn independently

and typically are not; instead conveys the required marginal distribution for each a,,.
Considering the approximation of the posterior provided by importance sampling given

in (3.29), we can view resampling as producing the approximation

7(0) := Z an

n=1

5, (9) (5.35)

where £, is the number times the sample 0, appears in the resampled sample set {én}:;l
Provided that E[k, |{w,}Y_,] = Nk,, then it directly follows that 7(6) is an unbiased estimator
for 7(0). Consequently, the L? convergence, and thus consistency, of SNIS with resampling
follows directly from the L? convergence of SNIS.

There are a number of different methods one can use for resampling [Douc and Cappé,
2005]. They all share in common the requirements above but vary in correlations between
the a,. The simplest method, multinomial resampling, simply involves sampling each a,
independently, such that the £,, have a multinomial distribution. Though simple, this method is
generally inadvisable as it adds unnecessary variation to the resampling compared to methods
using randomized quasi-Monte Carlo [L’Ecuyer and Lemieux, |2005], such as systematic resam-
pling [Carpenter et al., [1999; [Whitley, 1994]ﬂ or other variance reduction techniques, such as
stratified resampling [Kitagawa, |1996] and residual resampling [Whitley, |1994]. Though residual
resampling is a little more complicated (see Douc and Cappé|[2005]), stratified and systematic
resampling can be viewed as small changes on the underlying random number draws made in

multinomial resampling. The typical way to draw from a multinomial distribution with [V trials

“Note that systematic resampling, as it is now known, is somewhat confusingly referred to as stratified resampling
in the former of these papers and universal sampling in the latter.
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Algorithm 5.1 Resampling

Inputs: weighted samples {w,, 6, }2\_,, method M
Outputs: unweighted samples {4, }Y_,
switch M do

—_—

2 case Multinomial

3: u, ~ UNIFORM (0,1), Vnel,...,N

4: case Stratified

5 unNUNIFORM(”T*l,%>, Vnel,...,N

6 case Systematic

7: u; ~ UNIFORM (0, %)

8 un<—u1+%1, Vne2....,N

9: end switch

10: Normalize weights w,, «— w,/ (Zév wg) , VYnel,...,N

11: Py« > we, VYnel,....N >FPy=0
122 a,={e{l,...,N}: Py <wu, <P}, Vne{l,...,N}

13: 0, =0,, VYne{l,...,N}

14: return {én}N

n=1

and probabilities py, . . ., px is to make N independent draws from a unit uniform distribution,
u, R UNIFORM(0,1) Vn € 1,..., N and then to bin these into the intervals between the

cumulative probabilities Py, = 0, P; = ZZ:1 pe, V7 € 1,..., K. Thus the result of each trial

a, corresponds to which bin the respective w,, falls into:
a,={je{l,...,K}: Pj1 <u, <P}, Vne{l,...,N} (5.36)

and counts for each event, k;, is the number of w,, satisfying P;_; < u,, < F;. In the context

of multinomial resampling, X' = N and a,, and k; are as per (5.34) and (5.35) respectively,

noting that the corresponding requirements for their distributions are trivially satisfied. Stratified
resampling and systematic resampling differ only in how the wu,, are drawn. For stratified
resampling, each u,, is independently sampled from a different strata of the full [0, 1] space
such that u,, ~ UNIFORM(”T_l, %) which enforces that u; < us < --- < uy. For systematic
resampling, the only draw made is u; ~ UNIFORM(0, %), with all other w,, set deterministically
from this point using u,, = u; + 5+, Vn € 2,..., N. By also randomly permuting {u,})_,
before applying (5.36), each w,, after permutation is still uniformly distributed on [0, 1] for both
methods and so is still satisfied, as is the requirement that E[k,|{w, })_,] = Nk, [Douc

and Cappél, 2005]. In practice, the ordering of the samples is usually arbitrary such that this
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Figure 5.5: Demonstration of performance of different resampling schemes for two different sample set
sizes and different levels of variance in the weights. Plots are generated by first sampling a set of N
weights from a symmetric Dirichlet distribution with parameter a, i.e. {1, }Y_; ~ DIRICHLET(c), such
that the higher « is, the more even the weights are on average. The effective sample size (ESS) as defined
in (5.33) is then calculated before and after the resampling is carried out (with identical samples collapsed
to a single sample), and the ratio reported. Plots show the mean across 1000 independent trials, with the
error bars corresponding to the interquartile range.

permutation is not necessary. A summary of these three approaches is given in Algorithm[5.1]

Systematic, stratified, and residual resampling are lower variance than multinomial sampling,
with systematic resampling the most widely used due to its simplicity of implementation and
generally being the best performing [Doucet and Johansen, 2009]. It should be noted, however,
that there can be theoretical complications with systematic resampling, while stratified and
residual resampling can be shown to dominate multinomial resampling [Douc and Cappé, |2005].
To give insight into how these methods reduce the variance of eventual estimation, consider a
case where all the weights are equal. Because the ancestor variables are drawn independently for
multinomial resampling, many of the of the original samples will not be present in the resampled
set. More precisely, the probability of any particular sample being present is given by

P, e {0})_)) =1- (NN_1>N

Thus substantial information is lost in the resampling. On the other hand, if we use any of

o1
N2 2~ 0.6321.
[

our variance reduction techniques, each of the original samples will appear exactly once in the
resampled set and so no information is lost in this scenario. In the other extreme, when all the
weight is on a single sample, all the resampling schemes will behave the same (returning only
the sample with non-zero weight). In most practical scenarios we will be somewhere between
these two extremes, but the high-level intuition, that multinomial resampling throws away more

information than the other approaches, will remain the same.
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An empirical assessment of the methods is shown in Figure [5.5] This shows the relative
effective sample size (ESS) before and after resampling as a function of the uniformity of the
weights. To calculate the ESS after the resampling, we collapse the identical duplicated particles
down to a single sample with the combined weight of the other samples. This is equivalent to
replacing w,, with k,, /N in the ESS calculation given in (5.33)). Figure|5.5shows that systematic
resampling is clearly preferable to the alternatives, at least in the terms of the ESS after resampling
for this particular problem, with this improvement consistent across the different sample size
sets. Similar relative performance improvements are found if one instead uses the proportion
of samples that survive the resampling as a performance metric. As expected, multinomial
resampling is significantly worse than the other methods, particularly when the weights are more
even. The results also suggest that residual resampling outperforms stratified resampling, though

this can come at the cost of being more complicated to implement and potentially slower to run.

5.3.3 The Curse of Dimensionality

In this section, we digress from introducing specific inference methods themselves to talk about a
common problem faced by most inference methods, the curse of dimensionality [Bellman, |1961]].
At a high-level, the curse of dimensionality is a tendency of modeling and numerical procedures
to get substantially harder as the dimensionality increases, often at an exponential rate. If not
managed properly, it can cripple the performance of inference methods and it is the main reason
the two procedures discussed so far, rejection sampling and importance sampling, are in practice
only used for very low dimensional problems. At its core, it stems from an increase of the size
(in an informal sense) of a problem as the dimensionality increases. This is easiest to see for
discrete problems. Imagine we are calculating an expectation over a discrete distribution of
dimension D, where each dimension has K possible values. The cost of enumerating all the
possible combinations scales as K and thus increases exponentially with D; even for modest
values for K and D this will be prohibitively large.

However, the curse of dimensionality extends far beyond problems of enumeration. It will
be felt, to some degree or another, by almost all approaches for inference and modeling more
generally, but its effect will be most pronounced for methods that try to explicitly model the
target space. As a geometrical demonstration of this, consider the effect of dimensionality on
the sampling by rejection approach introduced at the start of Section [5.3.1] For simplicity, we
will presume that the target shape is a hypersphere and that the bounding shape is the smallest

hypercube that encloses that hypersphere. Our acceptance rate, and thus the efficiency of the
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algorithm, will be equal to the ratio of the two hyper-volumes. For an even number of dimensions,

the hyper-volume of the D-dimensional hypersphere with radius 7 is Vs = ”(DD/% and the hyper-
D
volume of the enclosing hypercube is V,, = (2r)?, giving a ratio of % = % = (@) i D}2)!'

The first of these terms decreases exponentially and second super-exponentially with D (noting
that (D/2)! > (D/6)P/2). For example, D = 10,20, and 100 respectively gives ratios of
approximately 2.5 x 1073, 2.5 x 1078, and 1.9 x 10~"°. Consequently, our acceptance rate
will diminish super-exponentially with the number of dimensions and our approach will quickly
become infeasible in higher dimensions.

An immediate possible criticism of this analysis would be to suggest that the approximation of
the target shape provided by our bounding shape is simply increasingly poor as the dimensionality
increases and that we should choose a better approximation. Although this is true, the key
realization is that achieving a good approximation is increasingly difficult in high dimensions,
typically exponentially so. To demonstrate this, imagine we instead use an arbitrary bounding
shape defined in polar co-ordinates, such that the proportional difference in the radius at the
any given point is at most ¢ (i.e. the radius of our bounding shape is between r and (1 + ¢) at
all points). The hyper-volume in which our approximation might live for an even number

of dimensions is given by
aPl2pP(1 + )P gP/2pP B
(D/2)! (D/2)!

Consequently, we have that the ratio % increases exponentially with D and that for sufficiently

V. = V(1497 -1). (5.37)

large D and a fixed ¢ the amount of space in our tolerance region will become substantially larger
than the target hyper-volume, again leading to very low acceptance rates.

Flipping this on its head, we can ask the question how does ¢ need to vary to ensure that
V. /V, remains constant? A quick manipulation shows that ¢ = ((gf + 1> v 1> and therefore
that % > log(1 4 ) = ¢ for small values of . Thus we only need to decrease € roughly
in proportion to % to achieve a fixed ratio. Initially, this would not seem so bad. For example,
if D = 1000 we roughly need ¢ < 6.9 x 10~* to get V. /V, < 1. However, this misses the key
difficulty caused by (5.37): the higher D is, the more difficult it is to accurately model the target
shape and keep ¢ small. It follows from (5.37) that as D increases, the more the hyper-volume of
the sphere is concentrated at the surface. This generalizes to non-spherical targets and means

that accurate modeling the surface of our target is essential in high dimensions. Unfortunately,

this task becomes rapidly more difficult with increasing dimensionality.
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Consider, for example, regressing the surface of the target by using a number of inducing
points spread over the surface. As the dimensionality increases, these become increasingly far
apart from one another and so the more points we need to accurately model the surface. For
example, the probability of two points uniformly distributed on the surface of a sphere being
within some target distance of one another decreases exponentially with the dimensionality of the
sphere. This can be seen by noting that a necessary condition for two points to be within d of each
other, is that the discrepancy of each individual dimension must be less than d. In other words, if

we denote the overall distance as J and the distance in each dimension as J; then we have
P(6<d) < P(6 <d)P(0y <d)...P(dp <d)

and so P(6 < d) must decrease exponentially with D. If the correlation between points is
proportional to their euclidean distance, then we will subsequently need an exponentially large
number of points in the dimension to model the surface to a given accuracy. Consequently, we
see that not only are we increasingly punished for any discrepancies between our approxima-
tion and the target as the dimensionality increases, it rapidly becomes harder to avoid these
discrepancies in the first place.

One can informally think of the proposals we have introduced thus-far as being approx-
imations to the target distribution: complications with tail behavior aside, it will generally
be the case that the better the proposal approximates the target, the better the inference will
perform. This typically leads to catastrophically bad performance for importance sampling and
rejection sampling in high dimensions, for which this approximation breaks down for the reasons
we have just outlined. To give a simple example, imagine that our target is an isotropic unit
Gaussian and we use an independent student-t distribution with = 2 in each dimension as

the proposal. We have that the weights are as follows

7> 3 2/2)/\/§ D 2exp(—0%/2) (1 +902[/2)3/2
v =7 = I 5 |

It follows that the variance of the weights under the proposal increases exponentially with D as

5.38
(1+63/2)°° 5 VT -39

D o)

Varyo [w(0)] = [ w?(0)g(0)d0 - ( v (6)q(9)d6>2 =1+ 11 [ wPBa)a(ba)as,

i=17 "

—62) (1 +62/2)?
—1+H/ V2exp( )(+ /2 i~ 114557 — 1 (539)

where we have used the fact that the integral has a closed form solution. We thus see that
our effective sample size will drop exponentially quickly with D and that our inference will

break down if the dimensionality is too high.
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It is now natural to ask whether we can overcome the curse of dimensionality. Thankfully,
the answer in many scenarios is that we can. In many high-dimensional scenarios then our
target distribution will typically only have significant mass in a small proportion of the total
area, often concentrated around a lower dimensional manifold of the larger space. This means
that if we use inference methods that in some way exploit the structure of the target distribution
and only search the small subset of the space with significant mass, then effective inference can
still be performed. When this is not the case, practical inference will typically be futile in high
dimensions anyway and so many inference algorithms are geared towards exploiting a particular
type of structure. As we will show in the next section, the effectiveness of MCMC methods
is mostly based on exploiting single modality in the target by making local moves that cause
the algorithm to have a hill-climbing style behaviour away from the mode and then sticking
close to the mode once it is found. Sequential Monte Carlo methods on the other hand rely on
using the structure of the target more explicitly, by using a series of stepping-stone distributions
and adaptively allocating resources (see Chapter[6)). Variational and message passing methods
make assumptions or approximations about the structure of the model to break the inference
problem down into a number of small problems that can then be combined into an overall estimate.
Arguably the key to all advanced inference methods is how well they can exploit structure in
higher dimensions, while the relative performance of difference methods tends to come down

to how suited the target is to their particular form of structure exploitation.

5.3.4 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods [Metropolis et al., |1953; |[Hastings), |1970; |Gilks
et al., [ 1995]] form one of the key approaches to circumventing the curse of dimensionality and
are perhaps the most widely used class of algorithms for Bayesian inference, though they are
also used extensively outside the Bayesian inference setting. The key idea is to construct a
valid Markov chain that has the target distribution as its equilibrium distribution. They are
suitable for Bayesian inference because this can still be done when the target distribution is
only known up to a normalization constant.

The reason that they are often able to overcome, or at least alleviate, the curse of dimen-
sionality, is that rather than trying to independently sample from the target distribution at each
iteration, they instead make local moves from their current position. As with rejection sampling
and importance sampling, they use a proposal distribution, but unlike these alternatives, the

proposal is defined conditionally on the current location, namely, they propose according to
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0" ~ q(0'|0) where 0 is the current state and ' is the new sampled state. The underlying intuition
behind this is that in high dimensions the proportion of the space with significant probability
mass is typically very small. Therefore, if the target is single modal (or we have a proposal that is
carefully designed to jump between modes), then once we have a sample in the mode, all the other
points with significant mass should be close to that point. Therefore we can explore the mode by
restricting ourselves to local moves, overcoming the curse of dimensionality by predominantly
ignoring the majority of the space which has insignificant probability mass. As the dimensionality
increases, the proportion of the space with significant mass decreases, counteracting many of
the other complications that arise from the increasing dimension. When away from a mode,
MCMC methods often behave like hill-climbing algorithms, emphasizing their close links with
simulated annealing methods for optimization [Aarts and Korst, |1988]. Therefore, they can be

highly effective for both finding the mode of a posterior and then sticking to that mode.
5.3.4.1 Markov Chains

We first introduced the concept of the Markov property in Section [3.3]in the concept of a hidden
Markov model, where we explained how in a Markovian system each state is independent of

all the previous states given the last state, i.e.
p(@n = Qn’@l = 91, RN 7@n71 = Qn,l) = p(@n = en‘@n,1 = Hn,l). (540)

In other words, the system transitions based only on its current state. Here the series ©1,...,0,, ...
is known as a Markov chain. We see that a probability of a Markov chain is fully defined by the
probability of its initial state p(©; = ;) and the probability of its transitions p(©,, = 6,|0,,_1 =

0,_1). If each transition has the same distribution, i.e.
PO, =610, =0)=pO, =010,_1 =0), (5.41)

then the Markov chain is known as homogeneous. Most MCMC methods are based on homo-
geneous Markov chains (the exception being adaptive MCMC methods, see Section [5.3.5) and
so we will assume that holds from now on. In such situations, p(©,+1 = 0,,11|0,, = 6,,)
is typically known as a transition kernel T'(0,,41 < 0,).

For a Markov chain to converge to a target distribution 7 (), we will need that lim p(©, =
0) = m(#) for any possible starting position 6y, i.e. that the chain converges in distribution
to the target for all possible starting positions. For this to happen we need two things: 7(0)

must be a stationary distribution of the Markov chain, such that if p(©,, = ) = =(#) then
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p(Ons1 = 0) = 7w(0), and all possible starting points #; must converge to this distribution.

The former of these will be satisfied if
7(¢) = / T(¢ « 0)n(0)do (5.42)

where we see that the target distribution is invariant under the application of the transition
kernel. Thus if p(6,,) = (@) for some n, all subsequent points will have the desired distribution.
The requirement that all starting points converge to the desired target distribution is known as
ergodicity, which guarantees both the uniqueness of the stationary distribution and that all points
converge to this distribution. Ergodicity requires that the Markov chain is irreducible, i.e. all
points with non-zero probability can be reached in a finite number of steps, and aperiodic, i.e.
that no states can only be reached at certain periods of time. We will not delve into the specifics
of ergodicity in depth, but note only that homogeneous Markov chains that satisfy (5.42) can be

shown to be ergodic under very weak conditions, see for example Neal [[1993]]; Tierney|[[1994].
5.3.4.2 Detailed Balance

A common sufficient (but not necessary) condition used for constructing valid Markov chains is
to ensure that the chain satisfies the condition of detailed balance. Chains that satisfy detailed

balance are known as reversibleE] For a target 7(6), detailed balanced is defined as
T(0)T(0 <+ 0) =n(0)T(0 + 0). (5.43)

It is straightforward to see that Markov chains satisfying detailed balance will admit 7(6) as

a stationary distribution by noting that
/ T(0 « 0)n(0)do = / T(0 « 0')n(8')d6 = 7(8). (5.44)

Thus any ergodic Markov chain we construct that satisfies (5.43)) will converge to the target
distribution. From an inference perspective, this means that we can eventually generate samples
according to our desired target by choosing an arbitrary start point ©; and then repeatedly

sampling from our transition kernel 7(0,, + ©O,,_;).

3 An interesting area of current research is the study of non-reversible MCMC algorithms [Bouchard-Cbté et al.,
2015; Bierkens et al., 2016]]. These can be beneficial because traditional reversible processes are only able to move
by drifting over time — generally at least half of the proposed samples (and generally much more) will be in a
direction at odds to this drift. Forcing multiple consecutive steps in a particular direction can thus help the chain to
mix faster.
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5.3.4.3 Metropolis Hastings

One of the simplest and most widely used MCMC methods is Metropolis Hastings (MH) [Hast:
ings, [1970]. Given an unnormalized target y(6), then at each iteration of the MH algorithm,
one samples a new point &’ according to the a proposal 6’ ~ ¢(6'|6,,) conditioned on the current

point 6,, and then accepts the new sample with probability

P(Accept) = min (1, m> ) (5.45)

At iteration n then we set 6,1 + 6 if the sample is accepted and otherwise set 6,1 + 0,,.
Critically this process does not require access to the normalized target w(#). It is trivial to show

that (5.43) satisfies detailed balance and therefore produces a valid Markov chain as follows
’7(9n+1)Q(0n|8n+1)>

A6 )albafo) ) OO0
= min (’V(Qn)Q(en+l|9n)7 7(9n+1)Q(9n|9n+1)) /Z

. V(02)q(0n+110n) >
= min 1) w6, 0,16,
(e ) a0

= 7(0p11)T (05 < Ops1)-

7T<8n)T(9n+1 A en) = min (17

Though MH is valid for any reasonable choice of the proposal distribution [Tierney, |1994], the
practical performance will depend heavily on this choice. For example, if ¢(6'|0) is independent
of # then no information is passed from one iteration to the next and one gets an algorithm
that is strictly worse than importance sampling because samples are independently generated
in the same way, but information is lost in the accept-reject step. Instead, one will generally
want to propose points close to the current point so the advantages of local moves can be
exploited, namely through the hill climbing behavior we previously discussed. However, this
has complications as explained in the next section, while choosing a proposal with the right
characteristics is still rather challenging. For example, image we use an isotropic Gaussian
proposal. If the variance of our proposal is too high then we will rarely propose good points
and so the acceptance rate will become very low, giving few distinct samples. If the variance
is too low, the Markov chain will move very slowly as it can only take small steps. This will
increase correlation between all our samples and reduce the fidelity of our estimates. Chains

that quickly cover the full probability space are said to mix quickly.
5.3.4.4 Intuitions, Complications, and Practical Considerations

Though MCMC methods can be exceptionally effective, they are not without their weaknesses.

Most of these weakness stem from the fact that all the generated samples are correlated, leading to,
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for example, biased estimates. Correlation reduces the amount of distinct information conveyed
by each sample and this will reduce the accuracy of the estimator. However, it also causes more
fundamental issues. Most of the convergence results we have presented so far have relied on
samples being generated in a i.i.d. fashion, which is clearly not the case in the MCMC setting.
MCMC methods therefore require their own unique convergence proofs, based in general on
ergodic theory (see e.g. [Durrett, 2010, Chapter 6]). Furthermore, whereas importance sampling
and rejection sampling lead to unbiased estimates of the marginal likelihood, MCMC produces
no natural estimate and methods that do produce marginal likelihood estimates for MCMC are
often extremely biased [Chib and Jeliazkov, 2001].

The aforementioned convergence results mean that the bias of estimates made using MCMC
samples tends to zero as the number of iterations tends to infinity, but it is often very difficult
to estimate the magnitude of the bias for a finite numbers of iterations. Whereas importance
sampling and rejection sampling had reasonable diagnostics for the performance of the inference,
such as the effective sample size and the acceptance rate respectively, estimating the bias from
MCMC samplers is typically fiendishly difficult and it can often look like an MCMC sampler is
performing well (e.g. in terms of its acceptance rate) when in fact it is doing disastrously. One
of the most common ways this is manifested is in the sampler becoming stuck in a particular
mode of the target. Using localized proposals can make it prohibitively difficult to move between
modes. Though valid MCMC samplers must eventually visit every mode infinitely often, it can
take arbitrarily long to even visit each mode once. Even worse, getting the correct estimate
relies on spending the correct relative proportion of time in each mode, which will typically
take many orders of magnitude more time to get a reasonable estimate for, than it will just to
have the sampler visit each significant mode at least once. The issues associated with multiple
modes provides a demonstration of why it is difficult to estimate the bias of an MCMC sampler:
we do not generally know if we have missed another mode or whether our sampler has spent
an appropriate amount of time in each mode.

Because of these drawbacks, using MCMC on multi-modal problems is dangerous unless
an appropriate mechanism for transitioning between the modes can be found. One also tends
to throw away some of the earlier samples in the Markov chain to allow the chain to burn in,
remembering that samples are only distributed according to the target of interest asymptotically
and so the earlier samples, which have marginal distributions very far away from the distribution
of interest, can add substantial bias to the resultant estimator. Thankfully, there are a surprisingly

wide array of models that actually fit these restrictions, particularly in high dimensions or if
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we can find an appropriate parameterization of the model. Remembering from Section [2.6]
that changing the parameterization of a model changes its probability density function in a
non-trivial manner, the performance of MCMC methods is often critically dependent on their
parameterization. Changing the parameterization will change the concept of what parameter
values are close to which other parameter values. In an ideal world, we would make moves in the
raw sample space where all points are equally probable. Typically this is not practical, but it is
still usually the case that some parameterizations will tend to be more single-modal and more
generally have all points of interest close together in the parameter space. Note that there is often
an equivalence here between a good proposal and a good warping of the space to one where an
isotropic proposal will be effective. One possible way of achieving a good parameterization is
through the use of auxiliary variables [Higdon, |1998; |Andrieu et al.,|2010], which can improve
mixing by allowing more degrees of freedom in the proposal, decreasing the chance of getting
“stuck™, e.g. in a particular mode. Somewhat counterintuitively, projecting to higher dimensional
spaces can actually substantially improve the mixing of an MCMC sampler.

As a concrete example of this, Hamiltonian Monte Carlo (HMC) [Duane et al., [1987; Neal,
2011]] uses derivatives of the density function and an auxiliary variable to make effective long
distance proposals. Given that much of the behavior of MCMC is based on hill-climbing effects,
it would perhaps be intuitive to presume that these gradients are used hasten the hill-climbing
behavior or try to move between modes. In practice, the intention is exactly the opposite. In high
dimensions, most of the mass of a mode is not at its peak but in a thin strip around that peak
known as a typical set [Betancourt, [2017]]. Classical random walk MH methods will both rarely
propose samples in the right direction to stay in this level set, giving a low acceptance rate, and
be very slow to move around the level set because the reversibility of the proposals mean that
this only happens slowly through drift. By moving perpendicular to the gradient, HMC makes
proposals that are more likely to stay within the typical set, while also allowing large moves to
be made in a single step. Together these mean that it can explore a particular mode much faster

than random walk MH strategies. See Betancourt|[2017] for an excellent introduction.
5.3.4.5 Gibbs Sampling

Gibbs sampling is an important special case of Metropolis-Hastings that looks to update only some
subset of variables in a joint distribution at each iteration. Imagine we have a D distributional
target distribution 7(0) where 6 = {0,605, ...,0p}. Gibbs sampling incrementally updates one

or more of the variables 6, at each iteration conditioned on the value of the others. Thus it uses
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proposals of the form 6/, ~ 7(6/|0\0,) with 6\, kept constant from one iteration to the next.
There are two reasons for wanting to do this. Firstly changing only one of the variables at a
time is a form of local proposal and can be a beneficial way to make updates, particularly if a
random walk proposal is inappropriate. Secondly, if we have access to 7(6,]0\6;) exactly, then

we will actually accept every sample as noting that 6\, = 6\6,; we have

m(O)m(0al0\0a) _ m(0al0\0a)m(0\0a)m(0410\0a) _ m(0al0\0u)7(6\0a)m(0410\0u) _

m(0)w(0a0'\0)  7(0G|0\0)m(0'\O)7(0a]60\6G) 7 (0516\Oa)7(6\Ou)7(0a]0\Oa)
such that the acceptance probability is always 1. In many models, it will be possible to sample

from 0, ~ 7(6,]0\04) exactly (e.g. when everything is Gaussian) and thus carry out Gibbs
sampling steps exactly. We can cycle through each of the 6,, either in a random order or in
sequence, and apply the appropriate updates. The effectiveness of this approach will depend
on the level of correlation between the different variables. The more correlated each variable,
the smaller the updates will be for each variable conditioned on the values of the others and the
slower the chain will mix. In extreme cases, this does impose stricter conditions for convergence
for Gibbs samplers than MH [Roberts and Smith, |1994]]. For example, consider an exclusive
OR style problem where 7(6;,602) = 1if0 < 6 < 1land0 <6, < lor—1<6; < 0and
—1 < 6, < 0, and 7 (6, 02) = 0 otherwise. Here there is no way to move from the [0, 1] square
to the [—1, 0]? square by updating only one of the variables at a time. As such, a Gibbs sampler
would end up stuck in either the positive or negative square.

If it is not possible to sample from the conditional distributions exactly or if it is only possible
for some of the variables, we can instead use a Metropolis-within-Gibbs approach, also known
as component-wise Metropolis-Hastings, where we approximate one or more 7 (6|60\6,) with
an appropriate proposal. Naturally this means that the acceptance ratio is no longer always 1
and so an accept-reject step becomes necessary. Though the convergence of this approach has
been shown by, for example, Jones et al.| [2014], additional assumptions are required compared

to the standard Gibbs or MH cases.

5.3.5 Proposal Adaptation

Given the critical importance of the proposal to all the methods we have discussed, it is natural to
ask whether we can learn proposals adaptively using previous samples. Though this is indeed
possible, see e.g. [Gilks and Wild, [1992; Cappe et al., 2004, 2008; Andrieu and Thoms, 2008],
proposal adaptation is a road filled with theoretical and practical perils. Though it is beyond the
scope of this work to do this complex line of research justice, we note some possible pitfalls as

a warning that proposal adaptation should be carried out with extreme care. Firstly, adaptation
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breaks i.i.d. assumptions — samples are naturally generated from different distributions and
are further dependent because the previous samples are used to choose the proposal for future
samples. Though this itself does not necessarily prevent convergence, it does mean various
results no longer hold, e.g. marginal likelihood estimates for importance sampling become biased
and the weak law of large numbers can no longer be used to prove convergence. Secondly, one
can often unintentionally adapt the proposal into an invalid regime, e.g. by overly reducing its
variance in an importance sampling case to give an infinite variance estimator. It can similarly be
the case that any fixed proposal is valid, but that adaptation never ceases, such that the longer
inference is run, the worse the proposal gets and the estimate never converges. Finally, then if the
proposal is state dependent, this can easily break the ergodicity of a Markov chain or cause it to

have an incorrect invariant distribution, see for example [[Andrieu and Thoms, 2008} Section 2].

5.4 Alternatives to Monte Carlo Inference

Though our focus in this chapter has mostly been on Monte Carlo inference methods, we finish
by noting that these are far from the only viable approaches. Two key advantages of Monte
Carlo methods are their ubiquitous nature, i.e. many can almost always be applied, and that most
commonly used Monte Carlo methods are asymptotically exact, such that given enough time,
we can always achieve a required level of accuracy. However, in some scenarios, Monte Carlo
methods can be problematically slow to converge and so alternative, asymptotically approximate,
methods can be preferable such as variational inference [Ble1 et al., 2016]] and messaging passing
methods [Lauritzen and Spiegelhalter, 1988]. Of these, variational inference has become an
increasingly popular approach. Its key idea is to reformulate the inference problem to an
optimization, by learning parameters of an approximation to the posterior. Typically this involves
defining some family of distributions within which the posterior approximation can live, e.g.
an exponential distribution family, and then optimizing an evidence lower bound (ELBO) with
respect to the parameters of this approximation. Doing this implicitly minimizes the Kullback-
Leiber divergence between the approximation the target. Variational inference often forms a
highly efficient means of calculating a posterior approximation, but, in addition to the obvious
bias from using a particular family of distributions for the approximation, it typically requires
strong structural assumptions to be made about the form of the posterior. Namely most methods
make a so-called mean-field assumption that presumes that the posterior factorizes over all latent

variables. Its effectiveness is thus critically dependent on the reasonableness of these assumptions.



Particle-Based Inference Methods

Particle-based inference methods (PBIM), such as sequential Monte Carlo (SMC) [Gordon et al.,
1993; Doucet et al.,|2001a]] and particle Markov chain Monte Carlo (PMCMC) methods [[Andrieu
and Roberts, 2009; Rainforth et al., 2016c]], are a powerful class of inference algorithms based on
propagating populations of samples known as particles. By working with populations of samples,
also known as particle systems, at the same time, rather than individual samples in turn, they
allow information to be shared across the population and computational resources to be adaptively
reallocated to where they are needed. A common feature of PBIMs is that they make use of
intermediate information available during the inference process and thereby exploit the structure
of the problem. For example, SMC uses a series of intermediate target distributions which act as
stepping stones to the full posterior. By using the information gathered from these intermediate
solutions, they can better allocate computational resources for the next target and combat the curse
of dimensionality. As such, PBIMs can be highly effective for problems with rich, exploitable,
structures, for example time series models, but are generally less effective for problems that do
not lend themselves to a series of intermediate targets. For our purposes, a particularly important
feature of particle-based methods is that they can be used for, and are often very effective at,

conducting inference in PPS [Wood et al., 2014, as we will explain in the next chapter.

6.1 Sequential Monte Carlo
6.1.1 Non-Markovian State-Space Models

Although SMC can be used for an arbitrary series of targets as we will explain in Section
we will mostly introduce it in the context of non-Markovian state-space models (NMSSMs).
NMSSMs are probabilistic models over a set of latent variables x; € X;, Vt = 1 : T and
observed variables y; € );,Vt = 1 : T. They are similar to the HMM introduced in[3.3] but differ
by not making the Markov assumption. This leads to the graphical model shown in Figure[6.1]

They are fully defined by an initial density p(z), a series of transition densities f;(z|z1.4—1),
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Figure 6.1: DAG for a non-Markovian state space model. Note there are all also multiple dependencies
for the nodes summarized by the dots.

and a series of emission densities g;(y:|z1.;) as follows

x1 ~ p(z1), (6.1a)
=Tt|$1:t—1 ~ ft(xtlxlzt—l)u (6.1b)
Yelw1e ~ ge(ye|T1:0)- (6.1c)
This gives a joint density of
T T
p(rrr, yrr) = p(1) H fe(ze]z1-1) H 9e(Ye|71:0) (6.2)
t=2 t=1

and the standard relationship that this is proportional to the posterior p(x1.7|y1.7). Note the
key self-similarity relationship: the intermediate posterior of the first ¢ latent variables given

the first ¢ observations is

p(9€1:t|y1:t) X M(%) H fr($r|9ﬁ1:7—1) H gr(yv|9ﬁ1:7)-

T=2 T=1

Perhaps surprisingly, this framework can be almost completely general if the x; and ¥, are
allowed to take on arbitrary form. For example, if we set 7' = 1, then x; = 6 are our variables,
y1 = D is our data, u(xy) = p(0) is our prior, and g, (y1|z1) = p(D]0) is our likelihood. More
generally, the initial density and transition densities form terms in the prior, while the emission
densities are terms in the likelihood; all of which can take on arbitrary forms. It will often
be the case that each “latent variable” is actually a collection of different variables and each
“observed variable” is actually a collection of observations. What the NSMSSM formulation
allows us to do is express known structure present in the problem: the earlier we are able to
put our observations, and thus express their conditional independence from more of the latent
variables, the more will be able to exploit this structure.

There are two common tasks that one wishes to carry out for NMSSMs: filtering and

smoothing. Smoothing corresponds to the standard Bayesian inference task where we want to
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infer about the latent variables conditioned on all the observations. In filtering we care about
the posterior given the observations so far, i.e. p(z1.|yi.). Filtering is typically done in tasks
such as tracking and signal processing where the inference is being done online and the main
task is forward prediction. In other words, we do not know all the y,.7 upfront but have a series
of inference problems where we wish to predict 4/; 1, 412, ... given the observations so far ;.
Our focus will be on smoothing, but we note that this is equivalent to the filtering distribution
at the last step and so most of the ideas directly transfer.

If the model is in fact Markovian with Gaussian or discrete transition distributions and
Gaussian emission distributions, then the posterior can be calculated analytically using the Rauch-
Tung-Striebel smoother [Rauch et al.l [1965]] and forward-backward algorithm [Rabiner and Juang,
1986 respectively. The former corresponds to the class of Kalman filter [Kalman et al., [1960]
and Kalman smoother [Rauch et al.,|1965] algorithms. SMC will allow us to perform inference in
similar models, amongst many others, without requiring such assumptions to be made. Naturally,

this will come at the cost of not having access to a closed-form solution.

6.1.2 Sequential Importance Sampling

In Section[5.3.2.2] we showed that importance sampling weights are multiplicative and thus to
sample from a joint distribution, one can first importance sample from a marginal distribution
and then importance sample from the respective conditional distribution, with the sample weight
corresponding to the product of the two individual weights. More generally, one can carry out
sequential importance sampling (SIS) to carry out inference on a series of target distributions
(m¢(z1.4))L, of increasing spaces X, ..., Xz where each X; = X} x --- x X, 7y € &; by
first making an importance sampling approximation for m(z;) and sequentially update our
approximation from 7, (1) to m¢41(21441) by doing importance sampling updates and taking
the product of the weights. This is easiest to see in the NMSSM case using the series of targets

p(21.¢|y1.¢), which we can do by first approximating p(x1|y;) and then importance sampling each

p($t|$1:t—1, yl:t) = p($t|$1:t—17yt) X ft($t|$1:t—1)gt(yt|ilf1:t)

noting that x; is independent of y;.; 1 given 1., ;. Presuming a set of proposals ¢; (1), ¢:(z¢|x1.4-1),

we will calculate importance weights as follows

) = ME0g ) 6.33)

wl(xl Q1(1’1)

gt(yt|xlzt)ft($t‘x1:t—1) .

6.3b
Qt<xt|x1:t71> ( )

wt(xlst) = wtfl(xl:tfl)
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Algorithm 6.1 Sequential Importance Sampling

Inputs: model p(z1.7, y1.7), data y;.7, proposals ¢i, . . ., gr, number of samples N
Outputs: weighted samples {2 ., wi-} >~ |
1: fori=1,...,Ndo

2 i~ q(rn)

i _ gi(ylry)p(zy)
3w =T
4 fort =2to 7T do
5 xp ~ gt )
6: Set ‘rilzt = (xil:t—h ﬂf%)

T % gt(ytlxi:t)ft(xﬂxi:t—l)

7 We = W T e, )
8 end for
9: end for

Once completed this will produce a set of weighted samples {Z1.7, wr(Z1.7)} for p(z1.7|y1.7).
A summary of the SIS process is given in Algorithm [6.1]

Because SIS produces a pure importance sampling estimate, it will share all the desirable
properties of importance sampling introduced in Section[5.3.2] including the ability to use self-
normalization. In fact, it is just a particular case of importance sampling because we could have
produced the same samples and weights by sampling 2.7 ~ q1(21) [I_, q;(2¢|714_1) and then
calculating the corresponding importance weight wr(z1.7) in one go. As such, SIS is on its own

not very useful. Its utility is realized when it is combined with resampling as we describe next.

6.1.3 SMC for Non-Markovian State Space Models

Sequential Monte Carlo (SMC) [Gordon et al., [ 1993; Doucet et al., |2001b; Doucet and Johansen,
2009], or particle filtering as it is sometimes known[] is a powerful and general purpose
inference algorithm that has been successfully applied to a wide range of fields such as signal
processing [Candy, 2016], econometrics [[Creal, 2012], and probabilistic programming [Wood
et al., [2014]. SMC builds on SIS by interleaving the sampling with resampling steps, the
latter of which was introduced in Section [5.3.2.4] The key idea is to exploit the structure of
a model by breaking down the overall inference problem into a series of target distributions
which get incrementally closer to the distribution of interest. Transitioning from one intermediate
distribution to the next typically forms a far simpler inference problem than directly approximating
the original target. The critical difference to SIS is that the information gained from approximating

these intermediate distributions is exploited by reallocating resources to areas likely to have high

"We avoid the name particle filtering as it often implies that one is only interested in the filtering distribution,
whereas most of the tasks we are interested in will target the smoothing distribution.
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Figure 6.2: Characterization of the SMC method for a state space model. At the first time step (top left)
we perform importance sampling to approximate p(x1|y;) in the normal way, giving a particle system, or
population of weighted samples {z%, w! }f\;l Here each sample is shown by a red blob whose size reflects
the weight of the particle. The set of particles are then resampled to produce an unweighted set of particles
approximating p(z1|y1 ). For each of these samples, importance sampling is then used again to produce
samples for 22 by sampling from go(22|2%) and applying a new importance weight (top right). Note that,
unlike for SIS, the importance weights are not propagated from one time step to the next. We now again
have a weighted particle set {2 .,, wé}f\il, for which we again perform a resampling step to produce an
unweighted set of particles. The process continues in the same way, eventually returning the final set
of samples {x% 1., w5}~ |, where we have self-normalized the final weights of each trajectory (note that
each w% applies to the full trajectory z%.;). Over time, many of the generated samples are discarded by
the system (shown in gray) during the resampling step. A consequence of this, which can be seen in the
bottom right, is that after many time steps, then our particle set become degenerate. Here we have multiple
distinct samples for g, but all our samples share the same ancestors fort = 1 : 6, i.e. each z! in our final
sample set is the same for ¢ < 6. We will return to discuss this further in Section

posterior mass in the final target distribution through resampling. The simplest, but most common
form of SMC, which simply interleaves propagating samples from one target to the next and
resampling the particle system, is sometimes known as sequential importance resampling and
will be our main focus. A characterization of the method is shown in Figure [6.2]

To see the intuition of why resampling provides the desired resource reallocation, consider
what happens to the relative weights of different particles in a population if they are propagated
through the SIS algorithm at the same time. It is easy to see that these weights will quickly
diverge, typically exponentially quickly (see Section[5.3.3), and our effective sample size (see
Section [5.3.2.3)) will rapidly diminish. It is now rather pointless to continue to propagate the
samples with negligible weight through the system as the chance these will have a significant

weight by the end is very low. We, therefore, desire a principled way of “killing off”” these low
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weight particles and replacing them with higher weight ones. As we showed in Section[5.3.2.4]
resampling gives us a method for generating unweighted samples from a population of weighted
samples. Though resampling itself only duplicates existing particles, rather than producing new
ones, if the duplicate samples are extended independently at the next iteration, this produces
distinct samples (albeit heavily correlated ones). In other words, if we have two samples z],,
and z?,, such that w? /w;} ~ 0 then it is more beneficial for us to generate both samples at the
next stage using x},; ~ p(241]21,, y1.¢) for i = 1,2, than to use z73,, to sample z7, ;. This will
not improve our representation of x1.;, but it will, in general, give a better representation of the
marginal distribution of x;,; and thus the joint distribution z.;.

To introduce the SMC method more formally, we consider approximating a sequence of target
distributions in same way as for SIS: in our NMSSM case p(1.¢|y1.¢) = p(y1.¢) " 0(T1.4, Y1:4), £ =
1,...,T. At each time step ¢t we generate a particle system {z¢ ., w!} , which provides a
weighted approximation to p(x1.|y1.+). Given such a weighted particle system, we convert this
to an unweighted particle system by resampling as explained in Section Any of the
introduced resampling schemes can be used [[Andrieu et al., 2010, Section 4.1] and so in general
one should use systematic resampling. When we later introduce PMCMC methods, it will be
useful to think about resampling in terms of propagating each particle by drawing an ancestor
variable a!_, (as per (5.34)) and then using this to propose the new variable for that particle,

ie. 2t ~ q(x]2lY). The particle system is then re-weighted as

wi = gt(yt|$li;t)ft(9_”i|$(1lft_jl> ’ (6.4)

. i
C]t(xﬂx(llf{—ll)

where 7}, = (x(f?{jl, z!). Note that after resampling, all the particles have the same weight and
therefore, unlike for SIS, the weights at the previous step do not feature in the weights at the
current time step. This results in a new particle system {z¢,, wi} | that approximates p(z1.¢|y1.;)
and the algorithm continues in a self-similar manner up to time 7'. The overall process is detailed
in Algorithm [6.2} Once run, we can use our final, self-normalized, particle set {z%.7, w5} | asa

Monte Carlo estimator in the same manner as self-normalized importance sampling:

1 N .
B [fl@12)]l ~ & > wrf(xiy). (6.5)
=1

Many intuitions from importance sampling transfer over to SMC. For example, we can
construct our posterior estimate and calculate expectations in the same way, while we can also

use the effective sample size as a metric of performance (remembering to coalesce identical
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Algorithm 6.2 Sequential Monte Carlo (allfori =1,...,N)
Inputs: data y;.7, number of particles NV, proposals ¢;

cal o~ Q1(I1>_ :
i — g1nle)uar)
wi= T
: fort =2to T do
. N
al_, ~ DISCRETE ( {@571}3:1)

Ll A

ed

i ai_,
Ty ~ g2 ’ml:t_—l)

. al .
7 t—1 7
Set 2, = (214, 2})

a

7

B i q
7. wi _ gt(yt‘xll:t)ft(zﬂxl:ttfl)
. t e 7

g
ACHEN

8: end for

samples). One of the most important features that translates is that SMC produces the unbiased
estimate for the marginal likelihood p(y;.7)

RN T A

Z:HNZ@U;. (6.6)

t=14" i=1

Although the original proof of Del Moral [2004]] requires advanced techniques we will not touch
on here, we will later show that this result can also be shown as a consequence of the proof
of correctness for the particle independent Metropolis-Hastings method given in Section[6.2.1]
Note that although the marginal likelihood estimate is unbiased, the estimator for a general
expectation given by (6.5)) is biased in the same way as the self-normalized importance sampling
estimator given in is. Nonetheless, producing unbiased estimates of the marginal likelihood
has numerous significant advantages.

Firstly, it means that one can combine results from difference SMC runs and still have a
consistent estimator for the target and a both unbiased and consistent estimate for the marginal
likelihood. This is particularly important because the number of particles N, is typically restricted
by the availability of memory and we often want to run more than one SMC sweep (i.e. single run
of SMC). To combine our estimates, one simply weights each sample by the marginal likelihood

of its sweep times its local, self-normalized, weight w5, giving the estimator
1 R N R ' '
Ertern) [f (wr0)] & oz 2 3 Zlrar[rlf (@ [r]) (6.7)
where the notation [r] is used to indicate samples from sweep . The ability to do this is
known as proper weighting [Naesseth et al., 2015] and we can justify it by thinking in terms

of using a proposal that first samples a full particle set, giving importance weight Z, and then
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sampling a particle from this set, giving importance weight w’.. The product of these separate
weights thus gives the weight of each sample.

Secondly, the unbiased marginal likelihood estimate means that we can nest SMC within
other methods as an unbiased likelihood estimate. Methods that make use of such unbiased
likelihood estimates are known as pseudo-marginal methods [Andrieu and Roberts, 2009] and
will be discussed in Chapter [I0] Some PMCMC methods we introduce in Section [6.2] (namely
PIMH and PMMH) can also be interpreted as pseudo-marginal methods.

6.1.4 Sequential Monte Carlo for an Arbitrary Series of Targets

In its most general form, we can use SMC to target an arbitrary series of unnormalized target
distributions {V;(z14)},_1.7» % (214) = Zym(z1.4), each defined on a space X; with strictly
increasing dimension| dim(X;_1) < dim(X,). Here Z; := [ 7,(21.)dz1, is the normalization
constant and 7, (1) the corresponding normalized target. The only difference that needs to be

made from the NMSSM case is in how the weights are calculated, with them now given by

E_ N (x’f)
= 6.8
" qi(a) (652
k
wf — ryt<'r1:t) . ] (68b)

af—l i a;_q
Vo1 (@15 1) g (@ |21l )
It can be easily seen that the NMSSM weights are a particular case of this, by plugging in
Yi(x14) = p(x14,%1.¢) into the above expression.

For inference, then our posterior is the last target, 77 (x.7), with corresponding marginal
likelihood Zr. Using this more general SMC formulation, we thus see that any series of targets
will lead to a valid inference provided that the final target is the desired posterior and that none
of our intermediate targets place zero probability mass on events that have non-zero probability

mass under the corresponding marginals of the final target

T(x1) = /WT(l’l:T)dl’tH:T- (6.9)

In fact, the series of targets given for the NMSSM case are actually suboptimal and used because
of the fact that p(x1., y1.1) can, in general, be calculated exactly. It is a well-known result (see, for
example, the appendices of Le et al.| [2017c]) that the optimal series of proposals (complications
with computability and proposals aside) is actually the marginals 7;(x1.;) = p(x1.¢|y1.7) for the
NMSSM case. To see this, note that at the ' step, we are generating the samples for x; and so if

each of targets is the marginal of the final distribution p(x1.|y;.7), then the marginal probability

2This restriction can be relaxed by using the SMC samplers approach of Del Moral et al.| [2006].
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of the already sampled variables does not change from one step to the next. Conversely, as
7 (21.4) # [ Tee1(21401)dxe in general, if a different series of targets are used, e.g. p(z1.¢|y1.4)s
then the marginal probability of the already sampled variables changes from one iteration to the
next, reducing the efficiency of the inference. To give an example of this, consider the case where
x1 includes global parameters that affect each emission distribution, for example it could contain
a variance for likelihood terms. In our NMSSM case we can never regenerate samples for z;
after the first step and so it is clearly better at the first step to target p(z1|y1.7) than p(x4|y;), i.e.
to condition on all the data rather than the first datapoint. Unfortunately, calculating p(z1|y1.7)
itself generally requires a marginalization that is as difficult, or potentially even more difficult,
than the original inference itself. Hence the series of targets we introduced in the NMSSM
formulation are those that are usually used in practice. However, we note that there are some
innovative methods for partially alleviating this problem, such as block sampling [Doucet et al.,
2006] methods, which use a combination of lookahead and auxiliary weighting schemes [Cappé
et al., 2007]. Specifically, they resample using adjusted weights that convey how good the sample
is likely to be a few time steps further down the line. The bias this would induce is corrected
for by assigning non-even weights to the resampled particles.

Another upshot of the ability to use an arbitrary series of targets is that we can use SMC in
scenarios that do not permit a conventional breakdown of the target distribution, but where we
can provide guiding distributions to that which we care about. One possible case is when our
prior distribution is a generative model that can be evaluated on the target dataset at any point
in the generative process. For example, in Janz et al.|[2016], we considered doing inference on
the structure of a GP kernel. Here we can define a generative model that produces increasingly
complex kernels, such that all the intermediate kernels in this generation process are themselves
valid kernels that can thus be evaluated. Here we can think of expanding our kernel at each
time step of the SMC inference and our targets as being the posterior on kernel structure for
the GP, subject to increasingly lax restrictions on the kernel complexityﬂ Another example is
provided by |[Lakshminarayanan et al. [2013]], who use SMC for Bayesian learning of decision
trees. Here they use the self-similarity of trees, starting with a basic stump and then adding a
new split at each time step. For both these problems, SMC has been used to exploit the fact
that the overall problem can be broken down into a series of increasingly difficult problems

to guide towards good solutions for the final problem.

3Technically in this work actually uses population Monte Carlo [Cappé et al., 2004] which is based on using a
series of static targets. The intuition, however, predominantly transfers and SMC could have been used instead.
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6.1.5 Practical Considerations
6.1.5.1 Use as Many Particles as Possible

The most important practical consideration for SMC is to use as many particles as possible.
Although, as we showed in one can run multiple, say R, SMC sweeps with N particles
each and then combine them using their marginal likelihood estimates, this is almost exclusively
a higher variance (and more skew) estimator than carrying out a single SMC sweep with RN
particles, often many orders of magnitude so. It is easy to see why a single sweep is preferable
from the point of view of the effect of the different marginal likelihood estimates on the effective
sample size. The reason the number of particles can be so critical is that if it is too small, the
variance of the marginal likelihood estimate explodes, the effective sample size plummets, and
one sweep ends up dominating the estimate. Though the marginal likelihood estimate is unbiased,
it has a massive positive skew when insufficient particles as used, such that the probability that
a sweep gives a marginal likelihood estimate larger than the true marginal likelihood can be
arbitrarily small; after all, the limit N = 1 corresponds to importance sampling. As such, if we
use insufficient particles and just repeatedly run SMC sweeps, we may have to wait arbitrarily
long before getting any useful samples. One way to try and combat this, presuming it is not
possible to increase N, is to group the SMC sweeps into a number of islands and then combine
estimates in the normal way within the islands, but combine the islands in an unweighted fashion
(see for example [Lakshminarayanan et al.| [2013]). Though often practically useful, this is
clearly only trading variance for bias and thus is more of a means of mitigating rather than
solving the problem. A more principled means of overcoming this issue is presented by PMCMC

methods as discussed in Sections and
6.1.5.2 Adaptive Resampling

Another important practical consideration is that it is not always beneficial to resample. Re-
sampling obviously throws away information (by reducing the number of distinct particles)
and therefore should not be done spuriously. As the reason for doing resampling is to kill off
particles with negligible weight, it is generally preferable to avoid the resampling step when most
particles have significant weight. This lead to the development of so-called adaptive resampling
schemes that only perform the resampling step if some criterion is met [Liu and Chen, [1995;
Del Moral et al., 2012], e.g. only resampling when the effective sample size falls below a
certain threshold, for which N /2 is a common choice [Doucet and Johansen, 2009]. When the

resampling is omitted, the particles remain weighted, with their weights at the next iteration
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updated using (6.3), as per SIS, except that the self-normalized weights w! should be used so that
the marginal likelihood estimate can be carried out in the same manner. That this still informally
forms a valid SMC algorithm for posterior inference can be seen by thinking of these as being
sequential importance sampling steps, noting the equivalence to standard importance sampling,
and then viewing the process as simply skipping some of the intermediate targets, remembering
that it is only the final target that we care about. However, adaptive resampling does cause some

complications from a theoretical perspective [Del Moral et al., [2012].
6.1.5.3 Proposals

The practical performance of SMC can be critically dependent on the choice of proposal and
so we finish our introduction by considering what constitutes a good proposal, first considering
the question of what the theoretically optimal proposal is. Unfortunately, it is not generally
possible to establish the optimal proposal for the variance of the final estimate in the finite /V
case, but we can calculate the so-called one-step optimal proposal by minimizing the variance
of the individual weights (and by proxy the marginal likelihood estimate) at the next iteration.
The one-step optimal proposal is given by

Ye(T1:4)
Ye-1(T1:6-1)
= fi(x|z14-1)9:(ye|x1.¢) for the NMSSM formulation. To see why this is optimal we note that

(6.10)

qf($t|$1:t_1) X

by substituting (6.10)) into (noting that the proposal needs to be correctly normalized) then

the weights are simply the normalization constant for (6.10), namely

’Yt(l’l:t) da, = f’Yt(ZL’l:t)dJZt (6.11)

’Yt—l(xlzt—ﬁ %—1(131;t—1)
= p(y¢|x14—1) for the NMSSM formulation. Consequently, the weights in this case are no

wt(xlzt) =

longer functions of the sampled value and so the marginal likelihood and effective sample size are
deterministic functions of the particle system before proposing the x;, namely of {z%,, ,,ai 1Y .
This also means that we can switch the order of sampling from the proposal and doing the
resampling when using ¢; (x;|z1.,_1), which is preferable as it increases the diversity in the
final sample set. Note that the weights are not all the same when using the one-step optimal
proposal, because the marginal probability of the particles will change when we incorporate the
new observation (or equivalently move to the new target). However, given the expected value of

each weight is fixed, i.e. E[w;(z1.¢)|z1.e_1] = %

regardless of the proposal used, using
any proposal other than the optimal one-step proposal only increases the variance of the estimate

at the next step. In particular, it is generally not beneficial to use proposals that include some
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form of lookahead (e.g. approximating p(z;|x1.4_1, y1.7) instead of p(z|x1.4_1,y1.)), because the
resampling step will correct back to the current target and most likely kill off the “good” samples
we generated, simply giving us fewer distinct samples than if we had used the one-step optimal
proposal insteadﬂ In both the case where the optimal series of targets (6.9) is used and in the
large N case, then the one-step optimal proposal is optimal more generally for the whole SMC
sweep for a given series of targets. However, because it is not usually possible to analytically
calculate the required normalization for ¢; (x;|z1.,_1), it is not generally tractable. Nonetheless, it
provides a good guide for designing, or adapting for, effective proposal distributions.
Another proposal of note, at least for the state space model case, is the so-called bootstrap
proposal, which corresponds to sampling from the transition distribution f;(x|x1..—1). The

significance of this proposal is that it means that the weight calculation given in (6.4]) cancels to

wi = gi(y|aly)- (6.12)

Consequently, if we use the bootstrap proposal we do not need to be able to evaluate the
transition distribution at a particular point, only sample from it. Obviously this can be helpful for
computational reasons (though it is rare that the effect of this outweighs using a better proposal if
one is known), but it is also important because it can be the case that one only has access to a
sampler for the transition and not the ability to evaluate the transition probability at an arbitrary
point. In the absence of other information, the bootstrap can also be a reasonable choice of
proposal in its own right, as it is almost always more diffuse than the one step posterior. Its
efficiency will, in general, depend on how relatively peaked the emission distribution is and the
dimensionality of z; — after all, each step in SMC is in isolation importance sampling. One can
usually beneficially use the next observation ¥, to help guide the proposal, but doing this in a

general purpose manner can be challenging [Gu et al., 2015].

6.2 Particle Markov Chain Monte Carlo Methods

Particle Markov chain Monte Carlo (PMCMC) methods, introduced by Andrieu et al.| [2010],
make use of sequential Monte Carlo (SMC) algorithms [Gordon et al.,|1993; Doucet et al., 2001b]]
to construct efficient proposals for an MCMC sampler. This allows them to both utilize the ability
of SMC to exploit the structure of the target problem and the hill climbing behavior of MCMC
methods. The critical difference from running independent SMC sweeps, is that information

can be transferred from one sweep to the next. Naturally, this will come with the drawbacks of

“Note that lookahead in the proposal is distinct from lookahead using auxiliary weights, thus things like block
sampling are still useful.
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Algorithm 6.3 Particle Independent Metropolis Hastings

Inputs: number of MCMC iterations R, initial output particle x'[0] and marginal likelihood Z'[0]
(typically both generated from an SMC sweep)
Outputs: MCMC samples {x'[r]} 22| where each x'[r] € Xp
1: forr=1:Rdo
Run Algorithm (SMC) giving candidate X ;.7 = {«%,,, w%}Y, and Z
if u < min (1, Z|Zr — 1]) where u ~ UNIFORM(0, 1) then

N

Sample output particle index b in proportion to weights as per (6.13)
X'[r] < 2ty Z'[r)« Z > New sweep accepted

X'[r] = x'[r =1}, Z'[r] « Z'[r - 1] > New sweep rejected
end if

3
4
5
6: else
7
8
9: end for

MCMC samplers discussed in Section[5.3.4] such as the loss of an unbiased marginal likelihood
estimate. However, the advantages will generally outweigh these drawbacks. PMCMC methods
will also allow us to explicitly treat global parameters of our system differently to the latent states
in a manner that can substantially improve the performance of the model. Though PMCMC
methods can be applied to models with arbitrary series of targets in the same manner as SMC,

we will stick to the NMSSM case in this section and the next for notational simplicity.

6.2.1 Particle Independent Metropolis Hastings

Particle independent Metropolis Hastings (PIMH) is the simplest PMCMC algorithm. Although in
isolation it is not especially useful (as it strictly worse than running independent SMC sweeps and
combining them)E]it is an important theoretical stepping stone to more advanced approaches. The
idea from a practical perspective is very simple: use an SMC sweep as an independent proposal
for an MCMC algorithm targeting 7(z1.7) = p(z1.7|y1.7). From a theoretical perspective, the
approach is rather more profound as it can be viewed as a sampler on an extended space whose
marginal on the returned particles is the target.

The PIMH algorithm is described in Algorithm[6.3] We see that PIMH is an MCMC algorithm
where our proposal involves running an independent SMC sweep and then sampling one of the
particles from this set in proportion to the weight of the particle. This sample is then accepted
or rejected using a MH accept-reject step that utilizes the marginal likelihoods of the sweeps.

To be more precise, let £ := {z}}i—1.x U{al} i—1.v denote all generated particles and ancestor
t=1:T t=1:T-1

>There is, though, utility in doing this when including MCMC steps on global parameters /Andrieu et al.| [2010].
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variables of a SMC sampler, and let the associated marginal likelihood estimate be denoted as 7
which is calculated as per (6.6). Let x* = 2. denote one of the final particles and let the index

of the final particle we sample be denote as b which is sampled according to
N
b ~ DISCRETE <{w§}}5_1> . (6.13)

Sampling a particle also indicates an ancestral path which we denote as b = (/31 , ..., 8r), with
Br = band 3, = af “*1. The result of running a SMC sweep and sampling b thus proposes a
{x?, b}, though in the context of PIMH we only care about the particle x°. Given this proposal,
the acceptance ratio used for PIMH is given by the ratio of the marginal likelihood estimates
for the current point and the SMC used to propose the candidate particle. If we denote the
MCMC particle sample at iteration r as x'[r] and associated marginal likelihood as Z’[r], then
our proposed sample {x’, Z} is accepted with probability

P(Accept) = min (1, Z) (6.14)

Z'[r —1]

forming a MH sampler. Given our MCMC samples, the resulting Monte Carlo estimator is

defined in the normal way as

R

Exteun (o)) ~ 3, 2 £l 6.15)
Because our proposal is independent of our current point, this is strictly worse than just running
independent SMC sweeps (which can also be thought of as applying waste recycling [Frenkel,
2006] to PIMH). It might seem particularly wasteful to only use one particle from each sweep,
but we will be able to use Rao-Blackwellization to justify returning all the particles at each
step as we explain in Section [6.2.5]

The key component of proving the correctness of the PIMH algorithm is in showing that
it is a valid MH sampler on an extended target distribution whose marginal distribution on
x’ is the distribution of interest 7(x). The density of the distribution induced by running
an SMC sweep is given by

QSMC(@ = 1:[1611(9521) : H H

t=21i=1

4 i . Wt
Wy g (227 )| where  w! = Nitz (6.16)
D r—q Wy

and the distribution induced by running an SMC sweep and then choosing particle b

gevin (€, b) = Whgsmc(€) (6.17)

Our extended target distribution is now constructed using the following hypothetical process

1. Sample a particle exactly from the target x° ~ 7(x).
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2. Sample an ancestral path for the retained particle uniformly at random by independently

sampling each /3; ~ UNIFORMDISCRETE(1, V) and setting b = (31, . .., Or).

3. Sample all of the other particles and ancestor indices conditioned on {x’, b} using

N T N ; i
gesme (\{x",b} [ x"b) = T (=) -T1 II [wi‘ifqt(xi\xﬁtio, (6.18)

i=1,i#p1 t=2i=1,ib;

which corresponds to gsyic (&) as per (6.16), except for having one particle and path, {x°, b},

predefined, such that we can think of the sweep as being conditioned on {x° b}.

We can informally think of this as doing the PIMH process in reverse. Rather than running
an SMC sweep and sampling one of the produced particles to give {x’, b}, it first samples
{x® b} and then the rest of the variables in the SMC sweep conditioned on this particle and

accompanying ancestral path. Together these steps induce the distribution

m(x?)
NT

7(€,b) = geswe (§\{x",b} [ x",b) (6.19)

remembering that as ¢ includes all the particles and ancestral paths, sampling £ and b implies a
particular {x’, b}. By construction (i.e the first step of our hypothetical process), the marginal
of this distribution is 7(x%). Therefore, although it is not possible to actually sample from
7(&,b) directly (we started the definition by sampling exactly from the distribution of interest),
if we can construct a consistent MCMC estimator on (6.19) then this by proxy produces a
consistent estimator for 7(x”), remembering that Monte Carlo samples from a joint distribution
have the correct marginal distributions. We can now show that this is exactly what the PIMH
algorithm does by explicitly calculating the importance weight implied by targeting 7 (&, b)
using the proposal gpvu (&, b)

#e,0)  m()gesme (E\{x" b} [ x%,b) m(x?)

CJPIMH(f, b) NTwTQSMC(f) NTchh T o ) wft 11Qt($tt |$ﬁf 1)

)11
) () - (1) (o)

T 1 ¢ T N 7
_ (; Hw%) _ (Ht—l v Zéztl wt> ; 2; Z (6.20)

t=1 [1i— wy

We thus have that Z is the importance weight for sampling the unnormalized version of the
target ¥(&,b) = Z7(&,b) and so using the ratio of marginal likelihood estimates is exactly the
acceptance ratio required for the MH sampler. We have therefore proven that the PIMH algorithm

induces a convergent Markov chain for the target 7(x.7) and therefore that our estimator given



6. Particle-Based Inference Methods 117

in (6.15) is consistent. Note that as an aside, this also shows the unbiasedness of the SMC

marginal likelihood estimate as we see that
Egsuc® | 2] = Bammuten) | 2] = Erien 12] = Z. (6.21)

6.2.2 Particle Gibbs

One particularly widely used PMCMC algorithm is particle Gibbs (PG). The PG algorithm
modifies the SMC step in the PMCMC algorithm to sample the latent variables conditioned on
an existing particle trajectory, resulting in what is called a conditional sequential Monte Carlo
(CSMC) step. The PG method was first introduced as an efficient Gibbs sampler for latent
variable models with static parameters [[Andrieu et al., [2010]. Since then, the PG algorithm
and the extension by Lindsten et al.|[2014]] have found numerous applications in e.g. Bayesian
non-parametrics [Valera et al., 2015; Tripuraneni et al., 2015]], probabilistic programming [Wood
et al., 2014; van de Meent et al.,[2015]] and graphical models [Everitt, 2012; Naesseth et al., 2014,
2015]]. Whereas PIMH used independent proposals, PG transfers information from one MCMC
iteration to the next by using retained particles. It, therefore, introduces, typically desirable, hill-
climbing behavior, often resulting in improved performance compared with running independent
SMC sweeps, particularly for the latter states in the state sequence.

The PG algorithm targets the same extended target 7 (£, b) as the PIMH algorithm defined
in (6.19)), but rather than constructing a MH sampler with independent proposals for this target, it
constructs a Gibbs sampler. This is done by iteratively running CSMC sweeps. As described in
Algorithm a CSMC sweep is similar to a standard, unconditional SMC sweep, except that it
starts with an existing conditional trajectory x|, known as a retained particle in the PG context,
and runs the sweep conditioned on this conditional trajectory being present in the final sample set.
One can think of this as running an SMC sweep conditioned on the predefined particle surviving
each of the resampling steps. In other words, the other particles can sample the retained particle as
an ancestor but not vice versa, with the values and ancestral path of the retained particle prefixed.
Note that running Algorithm [6.4] corresponds to using a fixed choice for the index variables
b = (N ..., N). While these indices are used to facilitate the proof of validity of the proposed
method, they have no practical relevance (all paths are marginally equivalent by symmetry), and
can thus be set to arbitrary values, as is done in Algorithm[6.4] in a practical implementation.

Unlike SMC sweeps, CSMC sweeps can be linked together by conditioning each sweep
using a retained particle sampled from the previous sweep with probability proportional to

the final particle weights w%. Therefore, once initialized, say using a standard SMC sweep,
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Algorithm 6.4 Conditional sequential Monte Carlo

Inputs: data y;.7, number of particles N, proposals ¢;, conditional trajectory .,

1: xZiNQI(fL'l)? z':_1,...,N—landsetyc{\f:x’1
2: wli:%W, i=1,.
3: fort =2to 1 do

4: a;;lNDISCRETE({wf,l}N ), i=1,...,N—1

ey

=1
. a17 .
5: 'T;th(xt|‘r1:tt—11)7 Zzlu"'7N_1
6:  Seta),=Nandz =1
7. Setal, = (2, 2l), i=1,...,N

7
. . a
o gelyelat ) fe(aileyY)
8: wy = el g =1,...,N

A
ACHEN

9: end for

one can iterate between sampling a retained particle in the same manner ancestor indices are
sampled and running CSMC sweeps conditioned on this retained particle. This is known as
iterated CSMC (ICSMC) and, considerations about global parameters aside (see Section [6.2.4)),
constitutes the PG algorithm. Note that the resampling step must always be done for CSMC
sweeps (i.e. the techniques introduced in Section[6.1.5.2]cannot be used), as, unlike in an SMC
sweep, the resampling for a CSMC sweep does not maintain the target distribution. Another
important difference is that, unlike SMC, a CSMC sweep does not provide an unbiased estimate
for the marginal likelihood (expect in the limit N — o0).

The theoretical justification for the PG algorithm can be shown in a similar manner as the
PIMH algorithm. The sampled index b now corresponds the index of the retained particle and
we can think of the approach as alternating between Gibbs updates on b and £\{x®, b}. In

other words, we alternate between sampling

- - 7~T(§,b)
b~ 70O = T2 pa (6.222)
V[, b} ~ 7OV, b}t b) = -0 (6.22b)

I 7(E b)dE{x", b}
The key step to seeing that the PG algorithm samples from these distributions is noting that (6.18))
corresponds to the distribution induced by running a CSMC sweep with retained particle {x°, b}.
By construction then 7(£\{x’ b}|x’, b) = qesme(£\{x’, b}|x’, b) and so each CSMC sweep
—b

samples exactly from (6.22b)). To complete the derivation we need to show that 7(b|§) = wy,

so that choosing the retained particle corresponds exactly to sampling from (6.22a)). This
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can be done by noting that

N Ny

/ﬁ(f,b)db — /C]PIMH(Q b)Zdb = /wf}qSMc({)Edb = QSMC(g)E/w?de = gsmc(§)
and therefore
7(&, b)A _ QPIMH(§7b>% —b

Z z ~Ur
QSMC(f)Z QSMC(E)Z
as required. We thus have that both (6.22a) and (6.22b)) are valid Gibbs updates on our extended

target 7(&, b). Now applying each of (6.22a) and (6.22b) once can change all of the variables

T (0[¢) =

in our target as it can change the retained particle, the index b, and all the other particlesﬁ
Therefore the combination of the two updates forms a valid Gibbs sampler for the target 7 (&, b).
Because 7 (&, b) has a marginal distribution on the returned samples 7(x%) which is equal to the
desired target, we have thus proven that using the PG algorithm and calculating estimates in

the manner defined in (6.15]) leads to a consistent estimator.

6.2.3 Path Degeneracy

A drawback of particle-based methods, and in particular the PG algorithm, is that they can be
adversely affected by path degeneracy in the (C)SMC sweep. Path degeneracy is the tendency
of the number of unique samples to diminish as one follows the ancestry backward through
the sweep. In other words, because of the resampling, there will typically be fewer (and never
more) unique instances of z;_; than of z; in the final particle set {z¢.,., w’}_, and therefore
there are often few distinct samples for the earlier steps by the end of the sweep. It is not
uncommon for the ancestral paths to collapse back to a single sample for small ¢, an example
of which is demonstrated in the bottom right of Figure [6.2] where there is a collapse to a single
trajectory for ¢ < 6. Degeneracy can be especially detrimental when the posterior on the early
latent variables is significantly affected by later observations, e.g. when some of the early latent
variables correspond to global parameters, as this creates a significant mismatch between the
intermediate targets. Consequently, observations should be made as early as possible in the state
sequence when taking a particle-based inference approach, e.g. placing observe statements
as early as possible in probabilistic programming query.

For methods that run independent SMC sweeps such as SMC itself and PIMH, the detrimental
impact of path degeneracy is generally seen through high variance of the marginal likelihood

estimates, resulting in low effective sample sizes and or slow mixing rates. For PG then

®Note also that applying the update cycle twice can potentially completely remove the retained particle from the
system and so we need not worry about the possibility of the retained particle simply being “passed around”.
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path degeneracy can be even more catastrophic. Conditioning on an existing trajectory means
that whenever resampling of the trajectories results in a common ancestor, this ancestor must
correspond to this trajectory. For a PG sampler, any common ancestor is, by construction,
guaranteed to be equal to the retained particle, such that the early part of the trajectory in the
retained particle cannot change from one iteration to the next if the particle set has coalesced
to a single ancestor. This results in high correlation between the samples, and poor mixing
of the Markov chain. Approaches for alleviating this degeneracy include resample-move
methods [Chopin et al., [2013], which rejuvenate the particle set by interleaving resampling
with MCMC updates for the full trace, and, for the particular case of PG, ancestor sampling
[Lindsten et al., 2014]] methods, which sample new ancestors for the retained particle as the
CSMC sweep is run. Though highly effective, for many models these methods cause a quadratic
increase in the computational cost with the length of the state space, meaning that they are
often prohibitively expensive in practice. In Section [6.3] we introduce an alternative, and often
complementary, means of overcoming degeneracy problems in the form of the interacting

PMCMC algorithm [Rainforth et al., 2016c].

6.2.4 Global Parameters

An important feature of PMCMC methods that we have thus far omitted is that they allow for
distinct treatment of global parameters. Imagine we are interested in sampling from p(6, x1.7|y1.7)
where 6 are some global parameters that are of particular importance as they directly affect all
the other variables, e.g. because they are effect each transition and or emission distribution. As
we explained in Section[6.2.3] SMC / PMCMC methods can do relatively poorly on sampling the
earlier parameters, particularly if these have long-range dependencies. One may often therefore
wish to use a different sampling scheme for the global parameters, which is possible in PMCMC
methods using either Gibbs sampling or Metropolis-within-Gibbs sampling to update 6, rather
than including them in the SMC sweep.

Perhaps the simplest way of doing this is using the particle marginal Metropolis-Hastings
(PMMH) sampler. This extends the PIMH sampler by using a standard MH update proposal
q(0]0 = 6[r — 1)) before each SMC sweep such that the overall proposal is

esnn (&, 010[r — 1]) = q(010[r — 1])gorun (€10) (6.23)

and samples are now accepted with probability

(6.24)

P(Accept) = min (1 Zq(0lr — 1110) ) :

Z'[r — 1q(6]0[r — 1)
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Typically more effectively, one can also use manual updates for 6 in the PG algorithm by alternat-
ing between running CSMC sweeps, sampling the index of the retained particle, and updating
6 given the retained particle (note the difference to PMMH where 6 is updated independently
of x'[r]). Here one either relies on being able to sample from 6 ~ p(0|xy.r = X'[r], y1.7), Which
is occasionally possible, or uses a MH step to update 6 targeting p(0|x1.r = x'[r],y1.7) as a
Metropolis-with-Gibbs update. In the latter case ,it is typically preferable to carry out multiple
update steps on the parameters between each CSMC sweep to ensure fast mixing, noting that

the latter is generally at least a factor of /N more times expensive.

6.2.5 Rao-Blackwellization

At each MCMC iteration r, we generate /V full particle trajectories. Using only one of these as
in (6.15) might seem a bit wasteful. We can, however, make use of all particles to estimate
expectations of interest for all of the PMCMC methods introduced so far by analytically
averaging over the possible values of b that could be sampled at each iteration. We can do
this noting that E % SR f(x’[r])} = YR E[E[f(x'[r])|€]], and then replacing f(x'[r])
n (6.15) by the analytically calculable

E[f(x[r)¢] = E [f(h0)|¢] = Zme x.,) (6.25)

where the expectation is over the sampling of b and the second equality follows from the
definition of the expectation of a discrete distribution, remembering b ~ DISCRETE ({w%}f\il)
This procedure is known as Rao-Blackwellization of a statistical estimator and is (in terms of
variance) never detrimental [Casella and Robert, [1996|]. At a high level, we are taking an analytic

expectation over part of the randomness of the system, namely the sampling of b.

6.3 Interacting Particle Markov Chain Monte Carlo

In this section, we introduce interacting particle Markov chain Monte Carlo i(PMCMC) [Rain+
forth et al., 2016c]], a PMCMC method based on an interacting pool of standard and conditional
sequential Monte Carlo samplers. Like other PMCMC methods, iPMCMC is a Markov chain
Monte Carlo sampler on an extended space. In iPMCMC we run a pool of CSMC and
unconditional SMC algorithms as parallel processes that we refer to as nodes. After each
run of this pool, we apply successive Gibbs updates to the indexes of the CSMC nodes, such
that the indices of the CSMC nodes changes. Hence, the nodes from which retained particles
are sampled can change from one MCMC iteration to the next, reducing the sensitivity to

path degeneracy relative to PG by trading off exploration (SMC) and exploitation (CSMC)
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Figure 6.3: Changing of conditional node indices in iPMCMC algorithm. Blue/orange nodes respectively
run CSMC/SMC at the next iteration. Circle sizes correspond to the marginal likelihood estimate produced
by the sweep Zm. Lines signify passing a retained particle. We thus see that each of the nodes has breaks
in the passing of retained particles, which is desirable as whenever a node switches from SMC to CSMC,
we must generate an entirely new retained particle. We also see that nodes with higher marginal likelihood
estimates are more likely to become CSMC nodes at the next iteration.

to achieve improved mixing of the Markov chains. Crucially, the pool provides numerous
candidate indices at each Gibbs update, giving a significantly higher probability that an entirely
new retained particle will be “switched in” than in non-interacting alternatives. A high-level
characterization of iPMCMC is given in Figure

We prove that iPMCMC is a partially collapsed Gibbs sampler on the extended space
containing the particle sets for all nodes. In the special case where iPMCMC uses only one
CSMC node, it can in fact be seen as a non-trivial and unstudied instance of the a-SMC-based
[Whiteley et al.,|2016] PMCMC method introduced by Huggins and Roy|[2015]]. However, with
iPMCMC we extend this further to allow for an arbitrary number of CSMC and standard
SMC algorithms with interaction.

The interaction between nodes requires only minimal communication; each node must report
an estimate of the marginal likelihood and receive a new role (SMC or CSMC) for the next sweep.
This means that iPMCMC can be run in a distributed manner on multiple computers. However,
the advantages of iPMCMC go far beyond simple parallelization: our experimental evaluation
shows that IPMCMC outperforms both equivalent non-interacting PMCMC samplers as well as a
single PG sampler with the same number of particles run longer to give a matching computational
budget. An implementation of iPMCMC is provided in the probabilistic programming system
Anglicarﬂ [Wood et al., 2014]] as we discuss in Chapter A general purpose toolbox for
carrying out iPMCMC and other SMC / PMCMC inference in MATLAB is also provided by
the custom-made probabilistic MATLAB packageﬂ

7http://www.robots.ox.ac.uk/~fwood/anglican
8http://github.com/twgr/probabilistic_matlab
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Algorithm 6.5 iPMCMC sampler
Inputs: number of nodes M, conditional nodes P and MCMC steps R, initial x/. (0]
1: forr =1to Rdo

2 Workers 1 : M\¢;.p run Algorithm[6.2] (SMC)

3 Workers cy.p run Algorithm [6.4] (CSMC), conditional on x. [ — 1] respectively.
4 for j =1to P do

5: Select a new conditional node by simulating c; according to (6.26).

6 Set new MCMC sample x/[r] = xgj by simulating b, according to (6.28)

7 end for

8: end for

6.3.1 Method

The main goal of iPMCMC is to increase the efficiency of PMCMC, in particular, PG. As we
explain in Section PG is especially susceptible to the path degeneracy effect of SMC
samplers because the early time steps in the state-sequence can become stuck in the same
position for long periods if the ancestral paths in the CSMC sweeps typically coalesce to a
single sample, which is by construction guaranteed to be the retained particle. This results in
high correlation between the samples, and poor mixing of the Markov chain. To counteract
this we might need a very high number of particles to get good mixing for all latent variables
x1.7, which can be infeasible due to e.g. limited available memory. iPMCMC can alleviate
this issue by, from time to time, switching out a CSMC particle system with a completely
independent SMC one, resulting in improved mixing.

iPMCMC, summarized in Algorithm|6.5] consists of M interacting separate CSMC and SMC
algorithms, exchanging only very limited information at each iteration to draw new MCMC
samples. We will refer to these internal CSMC and SMC algorithms as nodes, and assign an
index m = 1,..., M. At every iteration, we have P nodes running local CSMC algorithms,
with the remaining M — P nodes running independent SMC. The CSMC nodes are given an
identifier¢; € {1,..., M}, j=1,..., P with¢; # ¢, k # j and we write ¢;.p = {c1,...,cp}.
Let x}, = 2.7, be the internal particle trajectories of node m.

Suppose we have access to P trajectories x}.p[0] = (x}[0],...,x’[0]) corresponding to
the initial retained particles, where the index [-] denotes MCMC iteration. At each iteration
r, the nodes ¢;.p run CSMC (Algorithm with the previous MCMC sample x;- [r — 1] as
the retained particle. The remaining M — P nodes run standard (unconditional) SMC, i.e.

Algorithm Each node m returns an estimate of the marginal likelihood Z,, for the internal
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particle system calculated as per (6.6). Note that whereas for the SMC sweeps this is an unbiased
estimate of the marginal likelihood, this a biased estimator for the CSMC sweeps that is being
specifically defined for our purposes.

The new conditional nodes are then set using a single loop 7 = 1 : P of Gibbs updates,

sampling new indices c; where

P(c; = mlci.p\j) = @n (6.26)
. /2 I
and (J, = ey (6.27)
Zn:l Zn]lnéécl:p\j
defining ci.p\; = {c1,...,¢j—1,¢j41, ..., cp}. We thus loop once through the conditional node

indices and resample them from the union of the current node index and the unconditional node
indiceﬂ in proportion to their marginal likelihood estimates. This is the key step that lets us
switch completely the nodes from which the retained particles are drawn.

One MCMC iteration r is concluded by setting the new samples X.,[r] by simulating
from the corresponding conditional node’s, c;, internal particle system in the same way as

b was sampled for the PG algorithm

P(b; = ile;) = Wy, X[r] =xg. (6.28)

Cj
The potential to pick from updated nodes c;, having run independent SMC algorithms, decreases
correlation and improves mixing of the MCMC sampler. Furthermore, as each Gibbs update
corresponds to a one-to-many comparison for maintaining the same conditional index, the
probability of switching is much higher than in an analogous non-interacting system.

The theoretical justification for iPMCMC is independent of how the initial trajectories x}. (0]
are generated. One simple and effective method (that we use in our experiments) is to run
standard SMC sweeps for the “conditional” nodes at the first iteration.

The iPMCMC samples x}.p[r] can be used to estimate expectations for test functions [ :

XT +— R in the standard Monte Carlo sense, with

ELf(0] = 55 > 3 FO5 1) (629)

r=1j=1

However, we can improve upon this using Rao-Blackwellization if we have access to all particles

generated by the algorithm, see Section [6.3.3]

9Unconditional node indices here refers to all m ¢ cy.p at that point in the loop. It may thus include nodes who
just ran a CSMC sweep, but have been “switched out” earlier in the loop.
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We note that iPMCMC is suited to distributed and multi-core architectures. In practice, the
particle to be retained, should the node be a conditional node at the next iteration, can be sampled
upfront and discarded if unused. Therefore, at each iteration, only a single particle trajectory
and normalization constant estimate need be communicated between the nodes, whilst the time
taken for calculation of the updates of c;.p is negligible. Further, iPMCMC should be amenable
to an asynchronous adaptation under the assumption of a random execution time, independent of

x;[r — 1] in Algorithm We leave this asynchronous variant to future work.

6.3.2 Theoretical Justification

In this section, we will give some crucial results to justify the proposed iPMCMC sampler.
We start by defining some additional notation, much of which is duplicated from the PIMH
introduction. Let { := {a:@}illé\[ U{ai}t =LN denote all generated particles and ancestor
variables of a (C)SMC sampler. We write &, when referring to the variables of the sampler
local to node m. Let the conditional particle trajectory and corresponding ancestor variables for
node c; be denoted by {xgﬁ, b}, with b, = (b1, ..., 0Brc,)s Bre, = b;j and By, = afgl ol

Let the posterior distribution of the latent variables be denoted by 7(x) := p(z1.7|y1.7) with
normalization constant Z := p(y;.r). Finally we note that the SMC and CSMC algorithms
induce the respective distributions over the random variables generated by the procedures

are given by (6.16) and (6.18)

Now we are ready to state the main theoretical result.

Theorem 6.1. The interacting particle Markov chain Monte Carlo sampler of Algorithm isa
partially collapsed Gibbs sampler [Van Dyk and Park, |2008] for the target distribution
(&1, C1:p, b1-P) =
1 P

NPT (M H smc (§m) - H[ ( fi) cjger;—19CsmMc (fcj\{xc ,bcj} | XC 7bcj>}- (6.30)
NET(E)

m¢c1 2
Proof. The proof follows similar ideas as our derivation for the PIMH and PG samplers and thus
follows similar ideas to those introduced by Andrieu et al. [2010]]. We prove that the interacting
particle Markov chain Monte Carlo sampler is, in fact, a standard partially collapsed Gibbs

sampler [[Van Dyk and Park, |2008|] on an extended space

T = XEMTN 5 [N]EMT-DN 5 (0] 5 [N]2F
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With 7 () with as per (6.30), we will show that following the Gibbs sampler on T

e \{Xeh beyp b~ (- X7 Pey s i, bip), (6.31a)
CjN7~T(' |€1:M,01:P\j)a ]: 1,...,P, (631b)
b] ~ 7Ff_( : |§1:M701:P)7 j = 1a s 7Pa (631C)

is equivalent to the iPMCMC method laid out in Algorithm[6.3]

First, the initial step corresponds to sampling from

7~T(f1:M\{XIc)ijfZ7 b.,.,} |X2 P beyp,crp,bip) =

M P
1H¢ gsmc (§m) 1_[1 dcsme (ﬁcj\{xz§, b, } | Xgiybcj7 Cj, bj) -
m=1,mecy.p J=

Given the conditional trajectories, this just corresponds to steps 3—4 in Algorithm[6.5] i.e. running
P CSMC and M — P SMC algorithms independently. We continue with a reformulation of

(6.30) which will be useful to prove correctness for the other two steps. Here we first note that

7 (&1, c1:psb1ip) H gsmc (&m)
(p)

m=1

bj b; bj
ﬁ U}b T (ch) dcsMmc (gcj\{XC; ) ij} | XC; ) ij7 ¢y, bj)
’ Cy¢01 -1 WTe; Y
j=1 NTUJ:/{CJ. gsmc (fcj)

Now by self similarity to importance weight calculated for the PIMH derivation in (6.20))

(6.32)

A

7 (xﬁj) dcsmc (fcj\{xg§>bcg'} | Xg’bcﬂ"cﬂ" bj) _ Ze;

— = — (6.33)
NTU};J,C]- gsmc (SC]') Z
and therefore
P
(€105 C1py biip) = H gsmc (Em) - H Lei¢er;- 1wac (6.34)
(p) =
By marginalizing this reformulation over b;.p we get
1 M P
7~T(§1:M7 C1:P) = 7 H gsmc (fm) H 7]]1Cj¢01:j71'
( P) m=1 j=1

From this it is easy to see that 7(c;|&1.ar, c1.pyj) = {"g'j, which corresponds to sampling the
conditional node indices, i.e. step 6 in Algorithm [6.5] Finally, from (6.34) we can see that
simulating b;.p can be done independently as follows

’ﬁ'(bl;P;él:M7CIIP) . r —b;
~ - wT7Cj.
7T(£1:M7 C1:P) j=1

This corresponds to step 7 in Algorithm[6.5] We now have that the procedure defined by (6.31)) is

ﬁ(bl:P‘fl:Mu ClZP) =

a partially collapsed Gibbs sampler, derived from (6.30), and we have shown that it is exactly
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equal to the iPMCMC sampler described in Algorithm[6.5] O

b1

b, ... xPP), under

Remark 1. The marginal distribution of (X2, ¢1.p, bi.p), with X0'F = (x

(6.30) is by construction given by

P bj
e e
P

because our extended target is formulated as being the process of sampling exactly from (6.33)
and then running the P CSMC sweeps and M — P SMC sweeps. This means that each trajectory
ch)j is marginally distributed according to the posterior distribution of interest, 7. Indeed, the P
retained trajectories of iPMCMC will in the limit R — oo be independent draws from w. Note

similarly that it follows that (6.29) is a consistent estimator (as R — o0).

Note that adding a backward or ancestor simulation step can drastically increase mixing when
sampling the conditional trajectories x’;[r] [Lindsten and Schon, 2013|]. In the iPMCMC sampler,
we can replace simulating from the final weights on line 7 by a backward simulation step. Another
option for the CSMC nodes is to replace this step by internal ancestor sampling [Lindsten et al.,

2014] steps and simulate from the final weights as normal.

6.3.3 Using All the Particles

As we discussed for the PIMH and PG cases in Section [6.2.5] it can be wasteful to throw away
most of our generated samples. Thankfully we can again carry out a Rao-Blackwellization for
1IPMCMC to make use of all particles when estimating expectations of interest. To do this we

average over the possible new values for the conditional node index c; and corresponding particle

index b; at each Gibbs update j. We can do this by replacing & Zle f(x}[r]) in (6.29) by
1 M

P B e = 5 5 (z cf) (= w;,mﬂxm)]

where the expectation is over b; and ¢;. We highlight that each (/,, as defined in (6.27)), depends

on which indices are sampled earlier in the index reassignment loop.
P
To derive this we first note that for iteration r we calculate 5 >>i_, f(x}[r]) = % Z 1 f (XCJ)
where we can Rao-Blackwellize the selection of the retained particle along with each individual

Gibbs update and thereby replace f (x?) with its expectation over c¢; and b; as follows

—ZE{ XJ flM,ClP\]}_ ZElZwTQ CJ

51 M C1: P\]‘|

S a1 [(S) (S|
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Here we have made use of the knowledge that the internal particle system {(x},, w5,,,) } does not
change between Gibbs updates of the ¢;’s, whereas the fﬁn do. We emphasize that this is a separate
Rao-Blackwellization of each Gibbs update of the conditional node indices, such that each is
conditioned upon the actual update made at j — 1, rather than a simultaneous Rao-Blackwellization
of the full batch of P updates. Though the latter also has analytic form and should theoretically
be lower variance, it suffers from inherent numerical instability and so is difficult to calculate in
practice. We found that empirically there was not a noticeable difference between the performance
of the two procedures. Furthermore, one can always run additional Gibbs updates on the c;’s

and obtain an improved estimate on the relative sample weightings if desired.

6.3.4 Choosing P

Before jumping into the full details of our experimentation, we quickly consider the choice of
P. Intuitively we can think of the independent SMC’s as particularly useful if they are selected
as the next conditional node. The probability of the event that at least one conditional node

switches with an unconditional, is given by

A

P Z.
P({switch}) = 1 — IE[ . 5 | (6.36)
j=1 Ze; + Z%gchp Zim

There exist theoretical and experimental results [Pitt et al., 2012; Bérard et al., 2014; |Doucet et al.,
2015] that show that the distributions of the normalization constants are well-approximated by
their log-Normal limiting distributions. With o2 (ox %) being the variance of the (C)SMC estimate,
we have log (Z”ZCJ.) ~ N(%,0?) and log (Z*Zm) ~ N(=Z,0%), m ¢ c1.p at stationarity,
where Z is the true normalization constant. Under this assumption, we can accurately estimate the
probability (6.36) for different choices of P an example of which is shown in Figure [6.4a] along
with additional analysis given in the supplementary material of |Rainforth et al.| [2016c]]. These
provide strong empirical evidence that the switching probability is maximised for P = M/2.
In practice we also see that best results are achieved when P makes up roughly half of the
nodes, see Figure [6.4b] for performance on the state space model introduced in (6.37). Note
also that the accuracy seems to be fairly robust with respect to the choice of P. Based on these

results, we set the value of P = M /2 for the rest of our experiments.

6.3.5 Experiments

To demonstrate the empirical performance of iPMCMC we report experiments on two state-space
models. Although both the models considered are Markovian, we emphasise that iPMCMC

goes far beyond this and can be applied to arbitrary graphical models and even probabilistic
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Figure 6.4: a) Estimation of switching probability for different choices of P and M assuming the log-
Normal limiting distribution for Zm with 0 = 3. b) Median error in mean estimate for different choices of
P and M over 10 different synthetic datasets of the linear Gaussian state space model given in (6.37) after
1000 MCMC iterations. Here errors are normalized by the error of a multi-start PG sampler which is a
special case of iPMCMC for which PP = M (see Section[6.3.5).

programs as explained in Section[7.4.2.3] We will focus our comparison on the trivially distributed
alternatives, whereby M independent PMCMC samplers are run in parallel-these are PG, particle
independent Metropolis-Hastings (PIMH) [Andrieu et al., 2010] and the alternate move PG
sampler (APG) [Holenstein, 2009]]. Comparisons to other alternatives, including independent
SMC, serialized implementations of PG and PIMH, and running a mixture of independent PG
and PIMH samplers, are provided in the supplementary material of Rainforth et al.|[2016c].
None outperformed the methods considered here, with the exception of running a serialized PG
implementation with an increased number of particles, requiring significant additional memory
(O(MN) as opposed to O(M + N)).

APG interleaves PG steps with PIMH steps in an attempt to overcome the issues caused by
path degeneracy in PG. We refer to the trivially distributed versions of these algorithms as multi-
start PG, PIMH and APG respectively (mPG, mPIMH and mAPG). We use Rao-Blackwellization,
as described in[6.3.3] to average over all the generated particles for all methods, weighting the
independent Markov chains equally for mPG, mPIMH and mAPG. We note that mPG is a special
case of iPMCMC for which P = M. Because our interest is in alleviating degeneracy, we used
the bootstrap proposal and multinomial resampling in our experiments M = 32 nodes and
N = 100 particles were used unless otherwise stated. Initialization of the retained particles for

1IPMCMC and mPG was done by using standard SMC sweeps.

1"However, we recommend using systematic resampling, as is the default in the provided implementations.
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(a) Convergence in mean for full sequence (b) Final error in mean for latent marginals

Figure 6.5: Mean squared error averaged over all dimensions and steps in the state sequence as a function
of MCMC iterations (left) and mean squared error after 10* iterations averaged over dimensions as a
function of position in the state sequence (right) for with 50 time sequences. The solid line shows
the median error across the 10 tested synthetic datasets, while the shading shows the upper and lower
quartiles. Ground truth was calculated using the Rauch—Tung—Striebel smoother |Rauch et al.| [1965].

6.3.5.1 Linear Gaussian State Space Model

We first consider a linear Gaussian state-space model (LGSSM) with 3-dimensional latent states

x1.7, 20-dimensional observations ;.7 and dynamics given by

xy ~ N (u, V) (6.37a)
Ty = Qxy_q + (St,1 5t71 ~ N(O, Q) (637b)
yr = Bz + & g ~N(0,%). (6.37¢)

Weset = [0,1,1]7,V = 0.1 1, Q =Tand ¥ = 0.1 I where I represents the identity matrix.
of I 3r

The constant transition matrix, «, corresponds to successively applying rotations of {7, 17

and J; about the first, second and third dimensions of x;_; respectively followed by a scaling
of 0.99 to ensure that the dynamics remain stable. A total of 10 different synthetic datasets
of length 7" = 50 were generated by simulating from (6.37a)—(6.37¢), each with a different
emission matrix [ generated by sampling each column independently from a symmetric Dirichlet
distribution with concentration parameter 0.2.

Figure [6.5a) shows convergence (in MCMC iterations) in the estimate of the latent variable
means to the ground-truth solution for IPMCMC and the benchmark algorithms. It shows that
1IPMCMC comfortably outperforms the alternatives from around 200 iterations onwards, with
only iPMCMC and mAPG demonstrating behavior consistent with the Monte Carlo convergence
rate, suggesting that mPG and mPIMH are still far from the ergodic regime. Figure[6.5b|shows the
same errors after 10* MCMC iterations as a function of position in state sequence. It demonstrates

that IPMCMC outperformed all the other algorithms for the early stages of the state sequence, for
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(a) LGSSM (b) NLSSM

Figure 6.6: Normalized effective sample size (NESS) for LGSSM (left) and NLSSM (right).

which mPG performed particularly poorly. Toward the end of state sequence, iPMCMC, mPG

and mAPG all gave similar performance, whilst that of mPIMH was significantly worse.
6.3.5.2 Nonlinear State Space Model

We next consider the one-dimensional nonlinear state-space model (NLSSM) considered by,

among others, (Gordon et al. [1993]]; |Andrieu et al.| [2010]

zy ~ N (p,0?) (6.382)
Ty Ty

7, = tz L4 25+ +t:z:%_1 +8cos (1.2t) + 6y (6.38b)
Z‘tQ

b=t (6.38¢)

where d;_; ~ N (0,w?) and g, ~ N (0, 0%). We set the parameters as p = 0, v = /5, w = /10
and ¢ = v/10. Unlike the LGSSM, this model does not have an analytic solution and therefore
one must resort to approximate inference methods. Further, the multi-modal nature of the latent
space makes full posterior inference over .7 challenging for long state sequences.

To examine the relative mixing of iPMCMC we calculate an effective sample size (ESS) for
different steps in the state sequence as described in Section[5.3.2.3] taking care to condensed

identical samples. To be precise, let
uy € {a},,[r] ELNEER kel K, tel...T

denote the unique samples of z; generated by all the nodes and sweeps of particular algorithm
after R iterations, where K is the total number of unique samples generated. The weight

assigned to these unique samples, vF, is given by the combined weights of all particles for
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Figure 6.7: Histograms of generated samples at £ = 1,100, and 200 for a single dataset generated from
(6.38) with T = 200. Dashed red line shows an approximate estimate of the ground truth, found by
running a kernel density estimator on the combined samples from a small number of independent SMC
sweeps, each with 107 particles.

which z, takes the value u!:

M N
of =20 D0 D Wi (1) (6.39)
where 5wi,m 7] (uf) is the Kronecker delta function and 7", is a node weight. For iPMCMC the node
weight is given by as per the Rao-Blackwellized estimator described in Section[6.3.3] For mPG
and mPIMH, 7/ is simply RLM, as samples from the different nodes are weighted equally in the
absence of interaction. Finally we define our effective sample size as ESS; = <ZkK:1 (vf)2> B
Figure[6.6shows the ESS for the LGSSM and NLSSM as a function of position in the state
sequence. For this, we omit the samples generated by the initialization step as this SMC sweep is
common to all the tested algorithms. We further normalize by the number of MCMC iterations
so as to give an idea of the rate at which unique samples are generated. These show that for
both models the ESS of iPMCMC, mPG and mAPG is similar towards the end of the space
sequence, but that iPMCMC outperforms all the other methods at the early stages. The ESS of
mPG was particularly poor at early iterations. PIMH performed poorly throughout, reflecting
the very low observed acceptance ratio of around 7.3% on average.
It should be noted that the ESS is not a direct measure of performance for these models. For

example, the equal weighting of nodes is likely to make the ESS artificially high for mPG, mPIMH
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and mAPG, when compared with methods such as iPMCMC that assign a weighting to the nodes
at each iteration. To acknowledge this, we also plot histograms for the marginal distributions of a
number of different position in the state sequence as shown in Figure These confirm that
iPMCMC and mPG have similar performance at the latter state sequence steps, whilst iPMCMC
is superior at the earlier stages, with mPG producing almost no more new samples than those from
the initialization sweep due to the degeneracy. The performance of PIMH was consistently worse

than iPMCMC throughout the state sequence, with even the final step exhibiting noticeable noise.

6.3.6 Discussion

The iPMCMC sampler overcomes degeneracy issues in PG by allowing the newly sampled
particles from SMC nodes to replace the retained particles in CSMC nodes. Our experimental
results demonstrate that, for the models considered, this switching in rate is far higher than the rate
at which PG generates fully independent samples. Moreover, the results in Figure[6.4b|suggest that
the degree of improvement over an mPG sampler with the same total number of nodes increases
with the total number of nodes in the pool. The mAPG sampler performs an accept-reject step
that compares the marginal likelihood estimate of a single CSMC sweep to that of a single SMC
sweep. In the iPMCMC sampler, the CSMC estimate of the marginal likelihood is compared to a
population sample of SMC estimates, resulting in a higher probability that at least one of the SMC
nodes will become a CSMC node. Since the original PMCMC paper [Andrieu and Roberts, [2009]]
there have been several papers studying and improving upon the basic PG algorithm [Chopin and
Singh, [2015; |Lindsten et al., [2015; Whiteley et al., [2010; |Lindsten and Schon, [2013; |Lindsten
et al., 2014]], many of which also be used to improve the iPMCMC method even further.



General Purpose Inference for Probabilistic
Programs

In Chapter 4] we showed how probabilistic programming systems (PPSs) provide an expressive
framework for specifying probabilistic models. We now consider the other major component for
PPSs: automating inference for any model the user is allowed to specify using general-purpose
inference engines. For most PPSs this requires two things — the inference engine itself and either
an interpreter controlling the probabilistic semantics or a compiler to convert the guery to a
suitable form for input to the inference engine. Our focus will be on the compiled case.

For the inference driven PPSs discussed in Section 4.2.1] the inference engine typically
comprises of a standard Bayesian inference method for graphical models such as those discussed
in Chapters [3]and[6] Developing these in a way to robustly work for a wide range of problems
typically requires careful engineering and algorithmic innovation — e.g. because many inference
methods require the definition of a proposal, upon which performance can critically depend
— but does not generally require the development of approaches distinct to those used outside
a probabilistic programming context. In these systems, the inference algorithm(s) is usually
chosen first, with the language and its restrictions built around it. Therefore the challenges
of designing the system are generally rooted in generalizing and increasing the robustness of
the specific inference method(s) used. Similarly, the language itself and associated compiler is
generally built around providing the easiest representation to work with the target model class,
while the fact that most of these such systems do not support higher order functions usually
substantially simplifies the compilation process.

Because the design of these systems is very much driven by the particular inference algorithm
used, it is beyond the scope of this thesis to do the associated literature justice. Our focus will
instead mostly be on conducting inference for universal PPSs, though some of what we introduce
will apply to both. Unfortunately, we will find that there are very few (known) inference methods
which can actually cope with the most general possible models as we introduced in Section
all of which suffer particularly badly from the curse of dimensionality. Consequently, it will be

necessary to make certain (mostly very small) concessions in generality to achieve any reasonable
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performance on non-toy models. We will focus on conducting inference in Anglican [Wood et al.,
2014; Tolpin et al., 2016] to give us a basis for explanation, but much of what we discuss will still
be relevant to other universal systems, in particular, those which are also built around sample-
observe syntaxes, such as VentureScript [Mansinghka et al., 2014], WebPPL [Goodman and
Stuhlmiiller, 2014], and Probabilistic C [Paige and Wood, 2014]].

7.1 A High-Level Introduction to General Purpose Inference

Before getting into the nitty-gritty of designing a compiler and inference engine for a universal
PPL, we first consider at a high-level how we might hope to do inference in such systems. The
simplest thing we could do is self-normalized importance sampling (SNIS) using the generative
model specified by the sample statements as a proposal. This strategy is sometimes known as
likelihood weighting in the probabilistic programming literature and simply involves directly
sampling from the forward model and accumulating weights from the observe conditioning
statements in a sequential importance sampling fashion (see Section[6.1.2). In Section4.3.2] we
specified with (4.3)) the unnormalized conditional distribution of the program using execution
trace. If we sample from the generative model then it is clear that all samples will constitute
valid traces, i.e. they will satisfy B(z1.,,, A) = 1, while the support of our proposal will clearly
cover that of the posterior provided the conditioning density terms are always finite. This is
also a proposal we can always sample from because our observe terms will only affect the
probability of a trace, not the variables it generates. Using the notation from Section §.3.2] this

approach leads to the following SNIS characterization of the posterior

p(xlznw |)\) Il Mg |A Z wn(sa:? xl:n;;) where (71)
n T _ w,
‘rl:nz ~ H faj (x]|77j)7 Wp, = N ; H gb" ’wk (72)
j=1 > om—1 Wp

69@111:% (-) is a delta function centered at 27, ; 7; and a; are deterministic functions of 27,
and \; and 7y, BZ, Ui, and zﬁ,ff are random variables that are deterministic functions of Z7,
and \. Here we are sampling 27, from the generative model defined by the program, which
is equivalent to a running the forward program ignoring all of the observe statements. Our
unnormalized likelihood weights w,, correspond to the product of all the probabilities accumulated
from the observe terms. We remind the reader that each x; corresponds to the direct output
of a sample statement, not an explicit variable in the program, with the program variables and

outputs being deterministic functions of x1.,, (see Section 4.4.2). In addition to providing a
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characterization of the conditional distribution through p(x1.,,|\), we can also use our samples
to construct consistent estimates from the outputs of program (2, remembering that these are a
deterministic function of x;.,, and so an expectation over €2 can be represented as an expectation
over xi.,,. This convergence follows in the standard way for SNIS provided our program
terminates with probability 1.

In practice, our importance sampling inference engine will not sample a full 27, before
evaluating its weight in one go — it will use a sequential importance sampling strategy whereby
we sample directly from any sample statement as we encounter it and accumulate weights from
observe statements as we go (see Figure[d.3|in Section#.3.2)). Another way of viewing this is
that we will repeatedly run our query as if it were an ordinary program, except for the fact that
we accumulate a weight as a side effect that is then returned with the produced sample. Such a
guess-and-check strategy will obviously be ineffective except in very low dimensions. However,
it will both be a go-to strategy for the most extreme possible problems that fail to satisfy any of
the required assumptions for more advanced methods and a basis for more complex inference
strategies. For example, as we will show in Section we can convert this to an SMC strategy,
provided n,, is fixed, by running a number of separate executions in parallel and performing
resampling at each of the observe statements. Alternatively, we can develop component-wise
MCMC strategies by proposing changes to individual z; and then re-evaluating the weights.
However, doing this will require our inference strategy to have more control than simply forward
sampling the program in its entirety. More specifically, we will need both a compiler (or

interpreter) and an interface for inference, which will be the focus of the next two sections.

7.2 Compiling Queries

Non-probabilistic languages can be either compiled, whereby high-level source code is converted
to a lower level language (e.g. byte-code) before being evaluated, or interpreted, whereby an
interpreter reads the program and directly evaluates it based on the language semantics. The same
is true for PPLs, for which compilation usually comprises of converting the query to a model
artifact in a host language in which the inference algorithm itself is written. Though its original
implementation was interpreted, the current version of Anglican is compiled and our focus will
be on this compiled approach. Rather than just being a technical hurdle, compilation is also
often an important tool in the ability of probabilistic programming systems to perform effective
inference as, in addition to offering potential speed improvements, it can often be used to establish

helpful salient features in the model, such as dependency structures, variable types, features of the
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model that can guide which inference algorithm is likely to be most successful, or even elements
of the model that can be calculated analytically. Hakaru [Narayanan et al., | 2016; [Zinkov and
Shan, 2016] is a good example of what can be achieved in probabilistic programming through
compilation alone, as it, for example, uses the computer algebra system Maple to automatically
simplify models when possible. Once a compiler is written for a PPL, the abstraction it provides
often substantially simplifies the process of writing new inference algorithms by providing a

common representation of models and allowing inheritance from existing algorithms.

7.2.1 What Do We Want to Achieve Through Compilation?

So what are the aims of our PPL compiler? First and foremost, we need to perform a source-
to-source transformation of the program to produce some representation in the conventional
programming language in which the inference engine is written, such that execution of the
program is possible and inference can be carried out. As a simple example, consider the case
of an Anglican program where we wish only to run importance sampling using the generative
model as a proposal (i.e. the query with all the observe statements removed). Here we need
only produce a Clojure program that samples directly from the generative model and accumulates
weights from the observe terms as a side-effect. We can then rerun this program arbitrarily
many times, each returning a sampled output and accompanying weight, to produce a sequence
of importance samples which can then be used to make consistent Monte Carlo estimations. Such
a strategy would be naive though as we would be able to use our Clojure program for little else
than importance sampling with this particular proposal. Clearly, we want to compile to a more
general purpose representation that permits a wider array of inference algorithms and proposals,
and which ideally allows features of the model, such as its dependency structure, to be exploited.

One desirable feature of our compiled representation is an ability to make partial program
evaluations. This will allow us to re-evaluate elements of the program in isolation in a Metropolis
within Gibbs fashion and it will allow us to interrupt the execution of the program, giving us the
ability to add in things such as the resampling step in SMC. Supporting partial evaluation can
also allow us to avoid gratuitous re-executions of elements of the program whose result is already
known, by using databases to store and recall the effect of previous executions.

Another desirable feature is to avoid being restricted to only directly sampling from sample
statements. We may wish to sample from a different distribution as a proposal or to evaluate
the probability density of the sample statement producing a particular output, e.g. as part

of an acceptance ratio calculation for an MCMC scheme. The key requirement for both of
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these is the knowledge of density function associated with the sample statement, rather than
just access to a black-box sampling scheme. This is the motivation behind why we defined
the syntax of sample as taking as input a distribution object which encodes both the density
function and means of sampling from that density.

It will also often be helpful for our compiler to delineate between probabilistic and determin-
istic elements of the code. Other than potentially trying to make efficiency gains by avoiding
repeated computation, we know that any deterministic parts of our code, namely code in between
consecutive sample and or observe statements, can be safely run without the need to worry
about the implications this has on the inference (remembering that we have presumed that our
program has no side effects of than those caused by sample and observe). The execution of
these segments of the program in isolation can thus be as per the semantics of the language
being compiled to, without needing to worry about the probabilistic implication. On the other
hand, we will generally desire the identification of checkpoints for positions in the program
where sample or observe statements are made so that the behavior of the program at these
points can be handed over to the inference engine.

This example list of desirable features for our compiler is far from exhaustive. In particular,
there will be many inference specific features required for some systems, such as the need to have
a representation of the derivations, to carry out Hamiltonian Monte Carlo inference [[Carpenter
et al., 2015]] or common variational inference methods [[Kucukelbir et al.l 2015]]. This is often
done using automatic differentiation [Baydin et al., 2015]. As we said earlier, we will often
also want our compilation to, when possible, pick out salient features of the model, carry out
simplifications, and even automatically establish the most suitable inference algorithm for a
particular problem. The compiler (or equivalently interpreter) is an integral part of any PPL and
there is no one best approach for all situations. One of the key distinguishing features between
different PPLs is how they approach this compilation problem, with different design choices

inevitably leading to systems geared towards different models or inference algorithms.

7.2.2 Compilation of Anglican Queries

As it is infeasible to detail the inner workings of a PPL compiler in a general manner, we
now provide a more in-depth introduction to the compilation employed by Anglican. Our
introduction is inevitably not exhaustive, focusing more on intuition than being exactly true to

the implementation details. We refer the reader to [Tolpin et al., [2016] for a more complete
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introduction, emphasizing that what follows is an exposition of their excellent work, rather
than a novel contribution of our own.

As we explained in Section #.4.2] Anglican programs, or queries, are compiled using the
macro query which provides a Clojure function that can be passed to one of the provided
inference algorithms. The key element of this compilation for providing the desirable properties
discussed in the last section is that Anglican compiles queries to continuation passing style
(CPS) [Appel and Jim, [1989] Clojure functions[] At a high level, a continuation is a function
that represents the rest of the program. CPS is a style of functional programming that uses a
series of continuations to represent the program through a series of nested function calls, where
the program is run by evaluating each function and then passing the output to the continuation
which invokes the rest of the program. This is perhaps easiest to see through example. Consider
the simple function +, which in Clojure has syntax (+ a b). The CPS-transformed version
of +, which we will call +& takes an extra input of the continuation P and invokes it after
evaluation such that we have (defn +& [a b P] (P (+ a b))). More generally, for any
anonymous function £, we have that its CPS transformation is (defn fs [args P] (P
(f args))). We will use this notation of adding an & to an expression name to denote its
CPS transformation throughout. To give a more detailed example, the CPS transform of the
program (max 6 (* 4 (+ 2 3))) would be

(fn [P] (+& 2 3 (fn [x] (+& 4 x (fn [y] (max& 6 y P)))))
where & and maxs& are analogous to +& defined as before. Here we respectively have that
(fn [x] (*& 4 x (fn [y] (max& 6 y P)))) and (fn [y] (maxs 6 y P)) are our
first and second continuations. Note that the CPS transformed code is itself a function because
it takes a continuation.

Things are a little trickier for general expression that are neither literals nor simple first
order functions, for example, binding forms like 1et, Anglican special forms like sample,
and branching statements like i£. For these expressions, the high-level idea is the same,
but the CPS transformation is, unfortunately, expression specific and must, in general, be
implemented on a case-by-case basis. For example, one can CPS transform let by going
from (let [x (fool 4) y (foo2 8)] (foo3 x y)) to

(fn [P] (fool& 4 (fn [x] (foo2& 8 (fn [y] (foo3& x vy P))))))

"Note WebPPL also does a CPS style transformation, namely to a purely functional subset of Javascript.
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noting that within the (fn [x] .) closure, x is bound to the input of the function, giving
behavior synonymous to the original 1et block. Another special case of particular note is 1oop-
recur blocks. These can be CPS transformed by explicitly redefining them as a self-recursive

function which can then be transformed in the normal way. For example,

(loop [x 10] (if (> x 1) (recur (- x 2)) x))
becomes
(fn [P] ((fn foo [x] (if (> x 1) (foo (- x 2)) (P x))) 10))

where we have exploited the fact that £n allows the function to be named (in this case to
foo) so that it can call itself.

In CPS-style code, functions never return (until the final tail call) and every function takes
an extra input corresponding to the continuation. This would be a somewhat awkward method
for writing programs directly, as the whole program must be written as a single nested function.
However, it can be a very useful form to compile to as the execution of the program becomes
exceptionally simple and just involves evaluating functions and passing the output to the next
continuation — it explicitly linearizes the computation. For our purposes, having access to
functions representing the rest of the program in the form of continuations will be particularly
useful as it will allow for partial program evaluations. It will also be convenient for adding
checkpoints at particular points in the program — namely at the sample and observe calls —
where control is handed over to the inference algorithm.

Compilation of an Anglican query, triggered through the query macro, is done recursively in
a top-down manner. The key function in doing this, called cps—of-expression, dispatches to
the individual CPS transformations by matching types of expression, or, if necessary, directly
by name. Individual CPS transformations then recursively call cps—of-expression until the
full query is transformed. These individual Anglican CPS transformations are marginally more
complicated than the framework we have laid out thus far. This is because it is necessary to
not just run the program, but also track its state from a probabilistic perspective, storing things
such as sample weights and other probabilistic side-effects. To deal with this, the transformed
Anglican continuations take as input an internal state, which we will denote as S, in addition to
the computed value. Thus, for example, the transformation for a generic function £ becomes

(defn f& [args P 8] (P (f args) §)).

More generally, we will simply pass on § unchanged except for the Anglican special forms which

can use and manipulate the internal state. S itself is defined to be a hash map, initialized as follows

(def initial-state {:log-weight 0.0 :result nil ...})
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where . .. includes some fields we will not directly consider at the moment, some of which
are algorithm specific. Here the field :log-weight allows the program to be assigned a
weight as accumulated by, for example, observe statements or when sampling from a different
distribution than that provided to the sample statement. The return for each sample in our
inference will effectively be the S, hence the inclusion of the :result field which is set to
the output of the query at its tail call.

One of the key components of the Anglican compilation is the transformation applied to
the special forms and in particular the probabilistic forms sample and observe. These are
respectively transformed to the Clojure record constructors —>sample and —>observe which
have the call syntaxes of (->sample id dist P &) and (—>observe id dist value P
S) respectively, where id is a unique checkpoint identifier (e.g. the {1,...,ns} and {1,...,n,}
identifiers we used in 4.3.2)) set at compilation time, and dist and value are the original
inputs to the sample and observe statements. The final return of the program is similarly
transformed to the record constructor (->result §). Ata high level, one can think of a Clojure
record as defining a new class type (here trap.sample, trap.observe, and trap.result
respectively) with given fields (here :id, :dist etc). Our constructors thus create an object of
the given type with appropriately set fields. The significance of this is that it allows definition
of a multimethod, which we call checkpoint, to provide a runtime polymorphism (exposing a
single interface) for dispatching depending on the checkpoint type and the inference algorithm.
In other words, we will have one function, checkpoint, whose behavior can be redefined
for different checkpoint types and inference algorithms. There are many consequences of
this. Firstly, our compiler does not need to be inference algorithm specific because we can
use checkpoint to distribute the behavior to the required inference algorithm at run time.
Secondly, it creates an abstraction barrier for writing inference algorithms — implementing an
inference algorithm now only requires us to implement, along with a top-level function infer
that we will discuss later, new methods describing the behavior of checkpoint at sample,
observe, and result checkpoints. Furthermore, these methods can be inherited from other
inference algorithms, for example, the observe checkpoints for particle Gibbs are inherited
from SMC in Anglican’s implementation.

A slightly more subtle consequence of compiling the Anglican special forms to a constructor
with explicit output type is that we can use this to catch the checkpoints themselves. Once
compiled, individual instances of a program in the Anglican inference engines are run using a

function called exec. The role of exec is to run the program until it reaches a checkpoint that
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requires control to be transferred to the top-level inference function of a particular method, i.e.
the infer function, such as when a particular trace has finished running or when interaction is
required between different samples, e.g. the resampling step in SMC. In Anglican this is achieved
using trampolining. In functional programming languages, trampolining is a process of looping
execution where if an iteration of a loop returns a function, that function is immediately evaluated
without passing forward any arguments, with this process continuing until a non-functional
output is returned. The primary use of trampolining in functional languages is generally for
managing stack sizes by constructing a nested call structure of thunks (i.e. functions which
require no input arguments) that when called by the trampolining function (called trampoline
in Clojure) invokes the full set of nested calls without requiring a stack to be constructed or
stored, as would be necessary for an ordinary nested function structure. In the context of our
CPS transformations, we can do this by simply wrapping each call with an anonymous function,
namely converting (foo args P S) to (fn [] (foo args P §)) to delay execution until
trampolined, which will be carried out for all continuations except the checkpoints. Though a
large part of the motivation for doing this in Anglican is similarly to maintain the stack size, it
is also highly useful for using the checkpoints to trigger control to be transferred to the infer
function. To be precise, the exec function is defined as

(defn exec [algorithm prog value §S]
(loop [step (trampoline prog value §)]
(let [next (checkpoint algorithm step) ]
(if (fn? next) (recur (trampoline next)) next))))

where algorithm specifies the inference algorithm; prog is the program to call (which is
always either a full program or a continuation); value is the input required by prog, comprising
of either the original program inputs or the value passed to the continuation; and S is the program
state as before. Here we see that exec first creates the variable step by making a trampolined
call to prog. As all continuations are now represented by anonymous functions with no inputs
except for our checkpoints, this will run until it hits one of those checkpoints, returning the
corresponding constructed checkpoint object. In other words, this causes the program to run
until it reaches a sample or observe statements, or it reaches the end of the program. This is
a highly desirable behavior, as it means the deterministic elements of our program can be run
as normal using a single function call. Once returned, our multimethod checkpoint is called
using algorithm and step, which distributes to the appropriate checkpoint implementation
based on the value of algorithm and the type of step (e.g. calling to the sample checkpoint

method of an algorithm if it is of type trap.sample). Invoking the appropriate checkpoint
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(query [y] (fn [y S]
(let [s (sample (gamma 1 2))] (=>sample ’'S30744
(observe (normal 0 s) vy) (gamma 1 2)
s)) (fn var30743 [s S]
(—>observe 030742
Figure 7.1: Example compilation of an Anglican query (normal 0 s)
(above) to a CPS Clojure function (right). Here * S30744 y

(fn do30741 [_ 8]
(->result s §))
S))

and ' 030742 provide unique identifiers for the (lexi-
cal) sample and observe statement respectively, while
var30743 and do30741 are function identifiers. S))

method will cause inference algorithm specific behavior, e.g. updating a weight in S, and provide
areturn value next. If next is a function, the loop is recurred, with step now replaced by the
output of a trampolined call of next. If next is not a function, the exec function terminates,
returning next. The reason for this looping is that it allows different inference algorithms to
specify when control needs to be passed back to the infer function in an algorithm specific way,
by defining the checkpoint methods to either return a checkpoint object (for which the exec call
will terminate) or the continuation wrapped in a thunk (for which execution will continue). For
example, when running SMC, action distinct to running the program forwards only needs to be
taken at the observe statement checkpoints. As different traces may have a different number
of sample statements between observations, it is therefore convenient to a have a function that
does not terminate at the sample checkpoints, returning only once an observe or the end of the
program is reached. On the other hand, for MCMC samplers, we will need to externally control
the sampling behavior and so it may be necessary to return control at each sample statement.

We have now demonstrated how an Anglican query is compiled, a summarizing example for
which is provided in Figure[7.1] We have also, by proxy, laid out a framework for writing inference
algorithms in Anglican: we need to implement methods of the checkpoint multimethod and a
top level inference function infer. In the rest of this Chapter we will explain how this abstraction

allows us to write inference algorithms suitable for arbitrary programs.

7.3 Writing Inference Algorithms in Anglican

Taking stock, what has our compilation given access to and what do we not have access to?
The key upshots of our compilation are that we have access to a continuation representing the
rest of the program at any point during the execution and the interactions between the inference
back-end and the query code happens only through the sample and observe statements and

the final returned S of each execution. Consequently, we have means of running the program
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forwards and controlling the behavior at each sample and observe statement. We can stop
or restart the program at any one of our checkpoints and chose whether to do so adaptively,
for example, by killing of certain evaluations or duplicating others. Once a program is run,
we can test the effect of changing one or more of our sampled variables in an MCMC fashion,
though it may be difficult to statically determine an appropriate global proposal as we can only
establish the structure of the target through evaluation. Although we might be able to do so
with other code analysis, we do not directly have access to any information about independence
relationships or even knowledge under what conditions a certain variable will exist. In theory,
we can query the unnormalized density v(z1.,,, A) of any fixed set of parameter values z1.,,,
given fixed inputs ), by effectively making sample operate as an observe statement. However,
it may be difficult, or even impossible, to find values of z;.,, that have non-zero probability
unless they are generated by running the program forwards. In particular, it might be arbitrarily
hard to find a trajectory that satisfies B(x1.,,, \) = 1, or construct an external proposal more
generally, without forward sampling from the program.

These availabilities and restrictions suggest that Anglican is, and universal PPSs more
generally are, best suited to evaluation based inference methods. At a high level, we can think
of such methods as acting like a controller wrapping around the standard program execution
(or potentially multiple simultaneous executions). When the program hits a checkpoint, control
is transferred to the inference engine, providing information about the current state through S
and about the current checkpoint command (i.e. checkpoint type, distribution object, etc). The
inference engine then decides exactly how the checkpoint command should be executed (e.g. how
to sample the new variable for a sample statement), updates the S appropriately, and decides if
and how the execution should continue. Once an execution is complete (i.e. the return checkpoint
is reached), the inference controller decides what to run next, which could, for example, be an
entirely new independent execution or an MCMC update to the current execution. Two important
things the inference controller does not do is alter the deterministic elements of the program
(which we can think of as being single deterministic functions from one checkpoint to the next)
or do further analysis on the program source code itself.

There are four functions required to define an Anglican inference algorithm more generally:
a top-level infer function and three checkpoint implementations for types trap. sample,
trap.observe, and trap.return . The infer implementation must always be written
anew, but the checkpoint implementations can be inherited from another inference algorithm

of default behavior. Other than some top-level book keeping, the user inference command
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doquery directly calls the infer function of the specified inference algorithm, providing as
input the CPS-transformed query, the fixed query inputs, and inference algorithm specific options.
The infer function is required to then return a lazy infinite sequence of samples, each in
the form of a §. To carry out inference, infer uses the exec function introduced earlier to
run (partial) executions of the program, which will run until they hit a checkpoint that returns
something other than a thunk (see below).

All of the checkpoint implementations take as their only input of note an instance of
the relevant Clojure record, i.e. a trap.sample, trap.observe, Or trap.result. Here
trap.sample has fields :id which is a unique identifier for the corresponding lexical sample
statement, : dist which is the distribution object input, : cont which is the continuation function
P, and :state which is the current instance of S. Meanwhile, t rap.observe has the same
fields and additionally a :value field giving the observation and trap.result has only the
:state field. Each checkpoint method should either return a thunk, in which case the exec
function will resume running, or an instance of the relevant Clojure record, in which case exec
terminates and returns control to the infer function (or some intermediate function used by
the infer function). For example, in SMC methods then we will want to return control to
infer at an observe point to do the resampling, while all methods return control for a return
checkpoint. Default behaviors are provided for each checkpoint that dictate their behavior unless
overwritten by a particular inference algorithm. The default behavior of sample is to sample
from the distribution object and return a thunk that calls the continuation with this sample and
S as input arguments. The default behavior of observe is to update the : log-weight field in
S with the current observation term and then returns a thunk which calls the continuation with

inputs nil and §. The default behavior of return simply returns the trap.result object.

7.4 Inference Strategies

As we previously alluded to, the simplest inference strategy we can carry out is importance
sampling. This is in fact so simple in our current framework that it uses the default behavior
of all the checkpoints, while the infer function only involves constructing a lazy infinite
sequence of the output from independent calls of exec on the full program. Keeping the default
behavior for the sample implicitly means that our inference will use a bootstrap proposal (i.e.
the generative model is taken as the proposal). Though not technically required, this is still a

highly convenient choice of proposal as amongst other things, this ensures that we can always
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sample from the proposal and that the proposal is valid in terms of its tail behavior (presuming

the conditional probabilities are bounded).

74.1 MCMC Strategies

We have already explained why it might be difficult to construct a global MH proposal for our
program due to the difficulties in varying dimensionality and unknown variable supports. One
solution to this is to try and use compilation to establish this support so that a valid proposal can
be specified. However, doing this in a general manner is somewhat challenging and remains an
open problem in the field. Another more immediately viable approach is to use a proposal that
looks to update particular z; in the trace in a component-wise MH manner (see Section [5.3.4.5),
potentially rerunning the rest of the program after that choice if necessary. In the context of PPSs
such approaches are generally known as either single-site MH, random database sampling, or
lightweight MH (LMH), and were originally suggested by [Wingate et al., 201 I]EI There are two
key factors that make such approaches viable. Firstly, if we update a term x; in our trace, there is
no need to update any of the factors in our trace probability that occur before the sampling x;,
while we may be able to avoid evaluating many of those after as well by establishing conditional
independence. Secondly, the support for a particular z; given xy.;_ 1s typically known (as we
have access to the appropriate distribution object) and so it is generally possible to specify an
appropriate proposal for an individual z;. Even if that transpired not to be possible, simply
using the prior as the proposal is still often reasonable as individual z; terms will typically be
low dimensional. However, a key downside of this approach is that changing a particular z;
might lead to an invalid trace and checking for this might require revaluation of the entire rest
of the trace, making it an O(n, + n,) operation. Perhaps even more problematically, if n,, is
not fixed then, unless we make adjustments to the algorithm, the approach will not produce a
valid Markov chain. Similarly, as we showed in Section [5.3.4.5] there are models for which
component-wise MH approaches lead to reducible Markov chains that no longer admit the
correct target. The emphasis on branching in universal PPSs further means that the chance of
falling into this category of invalid models is relatively high. As noted by [Kiselyov, 2016]),
this is a rather serious issue missed (or at least not acknowledged) by |Wingate et al. [2011] and
various follow-up implementations. See also issues highlighted by [Hur et al., 2015] in other
implementations. The problem is not shared by all implementations though, with the Anglican

LMH method, amongst others, not suffering from the issue. More generally, there are means

>The MH acceptance ratio in the original version of this work is incorrect so we point the reader to the following
updated version https://stuhlmueller.org/papers/lightweight-mcmc—aistats2011.pdf.
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of potentially overcoming both the reducibility and computational issues of LMH as we will
discuss later, but they still represent noticeable practical and theoretical hurdles.

As a simple illustrative approach that avoids some of the theoretical pitfalls associated
with LMH approaches, consider an MH sampler whose proposal simply chooses one of the
sample statements, m, uniformly at random from {1, ..., n,}, proposes a new x/ using a local
reversible MH kernel for that sample statement x(x/, |z,,) (which can always be independently
sampling from f,,(z,,|n) if necessary) and then reruns the entire rest of the program from that

point [Wood et al., 2014]. This equates to using the proposa]ﬂ

(@ [21m,) = G210, ) (2| T, m)Q(%H-nzlwl-m_l, M, T )@y = T1m-1)
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which in turn gives an acceptance probability of
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where ko(z1.,) is equal to the number of observe statements encountered by the partial trace
Z1.m. Here we have used the fact that the trace probability factors for terms before x,,, cancel
exactly, while the sample terms for m + 1 onwards cancel between the target and the proposal.

We can intuitively break down the terms in (7/.4) by first noting that the first ratio of terms,

K(@m |T5,) fam (T3 [1m)
5(@ 7 |Zm) fam (%75, [1m)

of terms, n, /n/, reflects the fact that if our new trace is longer it is less likely that we would have

, is what we would get from doing MH targeting f,, (Z.,|7). The next ratio

chosen the point m to resample and vice versa. The final ratio of terms reflects the ratio of the
likelihood weight for the new generated section of the trace over the existing section of the trace.

This approach avoids the reducibility issues because it includes as a possible step generating
a completely new trace from the generative model. However, it will clearly be heavily limited
in practical performance because each iteration is effectively using importance sampling in
n, — m dimensions such that, once the sampler has burnt in, its acceptance rate will typically
decrease dramatically with dimension. Each iteration is also O(n, + n,) as the complete new
trace needs to be proposed each time. To get around these issues, we would like to have some
concept of whether we can update x,,, without invalidating the trace. This can sometimes be done

using code analysis or compilation to establish the Markov blanket of z,, [Yang et al., 2014;

3We omit our trace validity term because it always holds when sampling from the generative model.
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Mansinghka et al., [2014; Ritchie et al., 2016b], thereby providing a representation of which
terms will be unaffected by an update. One needs to be careful, however, not to reintroduce
reducibility issues and, in general, correctness of LMH schemes is far from trivial and perhaps
requires further consideration in the literature.

Even if we do not have a convenient means of extracting Markov blankets, it will still generally
be desirable to reuse x,,1.,, if it produces a valid trace, i.e. if B([21.m—1, %), Tmi1m,), A) = 1,
and reducibility issues can be guarded against, in order to avoid the terrible scaling in the
acceptance rate of with n, — m. One way to do this would be to propose a new z/ in the
same way but then deterministically run the program forward with the old z,, 1., to evaluate
whether the trace is valid, noting that if it is, it must also be the case that any extension or
reduction of the trace, i.e. increasing or decreasing 7., is invalid as the program is deterministic
given xy.,,. If z,, — ! gives a valid trace, then Y([x1._1,%),, Tmi1m, ], A) Will be well
defined (though not necessarily non-zero) and we can use the update as a proposal without
needing to regenerate Z,,1.,,. Note though that as the a;, by, 1;, and 1), terms downstream
of m can change, the probability of the new trace still needs recalculating. In this scenario,

our acceptance ratio becomes

(7.5)

/. )\ . ’
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where all terms in y(z/,, ,A) (i.e. both sample and observe) will need to be evaluated for
j > m, as will y(xy.,,,A) if these are not already known.

If, on the other hand, our trace becomes invalid at any point (noting that we can evaluate the
validity of sub-traces as we rerun them), we can resort to resampling the trace anew from the
required point onwards. Note that we can do this validity evaluation and regeneration during
the same single forward pass through trace and that whether we do regeneration is deterministic
for given {z,,, !, } pair (and thus does not affect the MH acceptance ratio by symmetry). If
we regenerate from sample ¢ onwards then we now have
(s (@l T, o (fvjlnj))

=t To % (7.6)
V(@ 1ing s N0 @), T2 far (25]77)

P(Accept) = min (1,

We can further overcome reducibility issues with such a scheme by forcing a fresh trace generation
not only when we realize the trace is invalid, but also when we find a term in our trace with
probability zero. Once this occurs, it is clear that the full trace probability must be zero, even if it
produces a valid path. We could just immediately reject the trace, but we would not solve the

reducibility issues. By instead regenerating the rest of the trace in this scenario, at each iteration



7. General Purpose Inference for Probabilistic Programs 149

we can propose any value of x; that has non-zero marginal mass under ~y(xy.,,, \) regardless
of our current state, so we clearly have mixing on z;. For a given value of x;, we can similarly
propose any value of x5 with non-zero density under the marginal conditional distribution of
x2|x1. As we have mixing of x1, this now implies we have mixing on x1.» as well. By induction,
our method now leads to mixing on all of ;.,,, which coupled with detailed balance provides
an informal demonstration of the consistency of the method.

We can refine this process further by using the concept of a database. To do this we mark
each sample statement in the trace with a unique identifier that is common to all traces that
evaluate the same sample statement at the same point, i.e. points in the trace for which both the
sample number j and the lexical sample identifier a; are the same. Our database can be used
to store previous samples and deterministically return them when revisiting a sample statement
with the same identifier if this old value still constitutes a valid sample with non-zero probability,
regenerating it if not. If we use D(;j) = 0 to denote terms taken from the database and D(j) = 1

to indicate terms that are redrawn, then our acceptance ratio now becomes

, , - D(5)
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Note the importance of points in the database being defined by both j and a; — if we hit the

P(Accept) = min | 1,

(7.7)

same lexical sample statement at a different point in the program, we always need to redraw it.
Care is also needed to ensure superfluous terms are removed from the database at each iteration
— it should contain only terms from the current trace.

Note, however, that our identification scheme for points in the database, namely points for
which both j and a; are the same have the same point in the database, is potentially stronger than
necessary and there may be more useful addressing schemes. Remembering back to Section[4.3.2]
each of the sample and observe statements are exchangeable up to the required inputs being
in scope. Now consider the case where the update x] < x,, triggers an inconsequential extra
sample to be invoked between points j and j + 1, with everything else staying the same.
Under our current system then all points after 7 would need to be resampled. However, our
program would define the same distribution if this superfluous sample statement came at the
end of the program, in which case our method would mean that x;,.,, no longer necessarily
needs updating. From a more practical perspective, we can consider using more useful naming
strategies for our database entries that exploit this exchangeability such that 2, could, for

example, inherit from x;;; [Wingate et al., 2011].
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We finish the section by briefly discussing some choices in the proposal. The simplest

choice for k(z!,|x,,) is just to redraw a new value from the prior. In this case then all the

K(@m |T3,) fam (T3 [1m)
5@ |[2m) fam (%75, 11m)

other than the aforementioned reducibility issues. We will refer to this strategy simply as LMH in

terms will cancel in our acceptance ratios and giving a trivially valid proposal,

the rest of the thesis. For models with significant prior-posterior mismatch, such an approach could
be slow to mix as it does not allow for any locality in the moves (i.e. x(z/,|x,,) is independent
of z,,). As suggested by, for example, |Le|[2015]], one can sometimes achieve improvements by
instead using the type of the distribution object associated with z,,, to automatically construct a
valid random walk proposal that allows for improved hill climbing behavior on the individual
updates. We will refer to this method as RMH elsewhere in the thesisﬂ Thus far, we have
presumed that which sample statement to update at each iteration is selected uniformly at
random. This is not actually a necessary assumption, with Tolpin et al.|[2015a]] demonstrating
that one can construct an adaptive LMH (ALMH) that adaptively updates proposal probabilities

for which term in the trace to update.

7.4.2 Particle-Based Inference Strategies
7.4.2.1 Sequential Monte Carlo

Going from importance sampling to SMC in our framework is remarkably simple from an
implementation perspective [Wood et al., 2014} Paige and Wood, |2014]]. The behavior of the
sample and result checkpoints are kept as per the default. The observe checkpoints are
redefined to carry out the same operations, but return a record rather than a thunk, returning
control to the infer function. This means that calling exec for the SMC checkpoint setup
will run the program up to and including the next observe statement. Consequently, if we
run multiple threads of exec at once, each corresponding to a separate particle, these will all
stop exactly when the next resampling point is required for SMC. Thus all the infer function
needs to do for SMC, other than some bookkeeping, is alternate between mapping an exec call
across all of the particles and performing resampling steps (remembering to reset the internal
weights for the traces to be the same). The marginal likelihood estimate can also be calculated in
the standard way, so the required lazy infinite sequence of output samples can be produced by
running independent SMC sweeps and setting the weights to the product of the sweep marginal

likelihood and local sample weightE]

“Note that the Anglican RMH implementation uses a mixture proposal where it samples from the prior, as per
LMH, half the time and from the random walk proposal the other half.
>In practice, Anglican resamples after the last observation, so the local sample weights are all actually the same.
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From a theoretical perspective, running SMC in Anglican requires us to make one small model
assumption — that the number of observations n, is fixed. In practice, this assumption is usually
satisfied, particularly if there are no observations of internally sampled variables. Violations are
caught at run time. Given a fixed n,, we can define the series of targets for SMC as being the
distributions induced by running the program up to the t" observe statement, namely

1521 fa, (x51m;) My 9oy, (Wkltok) if Be(@1m,, A) = 1

. (7.8)
0 otherwise
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where B;(z1.,,,A) is a function establishing the validity of the partial program trace. More
formally, we can define B;(z1.,,,\) as being a function indicating validity of a trace for

transformation of the original program that terminates after making its ™

observe. It may be
that executions corresponding to different particles have not gone through the same sample and
observe statements at any particular point, but this not a problem, from a theoretical perspective,
as provided that n,, is fixed, still defines an appropriate series of targets for SMC inference.
Although changing the position of the observe statements in our program does not change the
final distribution targeted by running SMC, we note that it can change the intermediate target
distributions, by adjusting at what point during the series of targets the sample statements are
introduced. Consequently, changing the position of the observe statements can have a dramatic
effect on the practical performance of the inference, e.g. placing all the observe statements
just before the program returns will cause the algorithm to reduce to basic importance sampling.
The earlier the observe statements are in the program, or more precisely the later variables are
sampled relative to the observe statements, the better inference will perform as less information

is lost in the resampling. Tricks such as lazily sampling variables (such that sample statements

are only invoked when needed) can, therefore, lead to substantial performance gains.
7.4.2.2 Particle Gibbs

Provided one does not try to support the special treatment of global variables that particle Gibbs
allows (i.e. restricting to the iterated CSMC case), extending SMC to particle Gibbs is relatively
straightforward in our framework. From a theoretical perspective, the algorithm extends from
the SMC case in the same way as outside of the probabilistic programming framework. From a
practical perspective, there are two distinct challenges. Firstly, resampling for CSMC sweeps
does not maintain the target distribution in the same way as SMC [Holenstein, 2009] and so
one has to be careful that there is no possibility for gratuitous resampling or missing a required

resampling step (e.g. we cannot use the adaptive resampling discussed in Section [6.1.5.2)). At
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first this would make it seem like one would need to take care not to resample after the nzh
observation. However, resampling and choosing the retained particle uniformly at random from
the present particles turns out to be identical to sampling the retained particle in proportion
to weight and so this is, in fact, not a problem. Secondly, we need a method of storing and
retrieving the state of the retained particle in a manner that allows other particles to inherit from
it. Given our inference methods do not use a stack, this is done by storing the raw x;.,,, samples
within S for each particle and then retrieving them for the retained particle. The retained particle
is thus re-run in a deterministic fashion from a stored z,.,,, regenerating all the variables in
the program and the continuation. This is achieved by editing the sample checkpoint so that
it deterministically retrieves the x; for the retained particle, but samples normally for other
particles. For all particles it also stores the current x; in case this particle becomes the retained
particle at the next sweep. Provided one is running a reasonably large number of particles the
extra computational cost for re-running the retained particle is negligible, but the need to store
all the {27, }2; can noticeably increase the memory requirements. Other than these minor
complications, the extension from SMC to particles Gibbs in the probabilistic programming

setting is identical to that for conventional settings as discussed in Section [6.2.2]
7.4.2.3 Interacting PMCMC

Given the particle Gibbs and SMC implementations, iPMCMC can be implemented relatively
simply by using those implementations for the CSMC and SMC sweeps respectively. All
checkpoint implementations are inherited from particle Gibbs and the extension does not have
any distinct challenges unique to probabilistic programming. We note though that the Anglican
implementation of iPMCMC exploits the algorithmic ability for parallelization by creating a pool
of threads to distribute computation of the different nodes. Consequently, the implementation has
substantial computational benefits over that of say particle Gibbs, in addition to the improved

per-sample performance demonstrated in Section [6.3]

7.4.3 Other Methods

Though it would be impractical to do justice to all of the methods one can use for general purpose
in universal PPSs, we briefly lay out some other algorithms of particular note.

The particle cascade [Paige et al., 2014] is an asynchronous and anytime variant of SMC
that can provide improved in-sweep parallelization compared to SMC and an alternative to
PMCMC methods for overcoming memory restrictions in SMC. It has the crucial advantage over

PMCMC methods of maintaining an unbiased estimate of the marginal likelihood, but it can
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suffer instability issues in the number of particles produced by the schedule strategy during a
sweep. It also does not permit any distinct treatment of global variables.

Particle Gibbs with ancestor sampling (PGAS) [Lindsten et al., 2014} van de Meent et al.,
2015]] looks to alleviate degeneracy for the particle Gibbs algorithm by performing ancestor
sampling for the retained particle. This can substantially improve mixing for the early samples,
but can result in very large computational overheads, sometimes requiring O(N ng) computation
(compared to O(Nn,)). This can be partly mitigated by using database techniques to avoid
unnecessary repeated computation [van de Meent et al., 2015], but is still typically substantially
more computationally intensive than standard particle Gibbs.

Some black-box variational methods [Ranganath et al., 2014] have been developed for
general purpose PPSs [Kucukelbir et al., 2015] including Anglican [van de Meent et al., 2016
Paige, 2016[]. Though these can suffer from difficulties in finding effective addressing schemes
and or high variance of the ELBO gradients, they can still form an effective approximate

approach for certain problems.

7.4.4 Which Anglican Inference Algorithm Should I Use?

The question of which inference algorithm one should use is a critical, but somewhat subjective
and problem dependent question. We now provide some (inevitably biased) practical recom-
mendations for which inference algorithms to use in Anglican in its current form. These should
be taken as a rough starting point rather than clear-cut truth.

Firstly, except for very low dimensional problems, importance sampling should be avoided
as it is almost universally worse than, e.g. SMC. Similarly, there is very little reason to use
PIMH instead of SMC or other PMCMC methods, while RMH or ALMH should generally be
preferable to vanilla LMH. The relative performance of the MCMC based and particle-based
(including PMCMC) methods will depend on the amount of structure that can be exploited
in the system by the respective approaches. The particle-based approaches will generally be
substantially preferable when the observe statements are interlaced with the sample statements
so that the intermediate information can be exploited. However, if all the variables need to be
sampled before making observations, or if all the variables are completely independent of one
another given the data, SMC will reduce to importance sampling, while the MCMC methods
can still take advantage of hill-climbing effects.

If using SMC or PMCMC based methods, then, as per Section[6.1.5.1] the most important

thing is not the exact algorithm, but ensuring that sufficient particles are used. Because PMCMC
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methods in Anglican do not use separate updates for global parameters, using enough particles
can be even more important than in conventional settings. Presume that your computational
budget is M particles and your memory budget is /V particles. Our recommendation is that if
M < N, you should look to run a single SMC sweep with M particles — all the more advanced
algorithms are mostly setup to avoid issues that are easily solved by running more particles when
you can. For larger values of M, then you should keep the number of particles as high as possible
(ideally V). Our recommendation here is to use iPMCMC as the go-to algorithm as this will
rarely be noticeably worse than the other particle-based approaches and sometimes substantially
better, both in terms of per-sample performance and its support for parallelization. Two possible
exceptions to this are that PGAS and the particle cascade can sometimes still be better when
M > N, with the latter also supporting effective parallelization of computation. For example,
PGAS can be very effective in models where there are extreme restrictions on the number of

particles that can be run, e.g. due to calling an expensive external simulator.



A Predominantly Bayesian Approach to
Optimization

From designing engineering components to managing portfolios and tuning control systems,
optimization is used ubiquitously throughout engineering and the sciences. Whereas inference
dealt with cases where we desire to calculate an expectation or approximate a probability
distribution given data, optimization considers cases where only a single output is desired. For
example, in a decision problem only a single action can be taken, meaning a single optimal
action must be found. It is also often used in machine learning as a tractable alternative when full
inference is infeasible [Murphy, [2012]. In the next Chapter, we discuss a method for introducing
optimization into the probabilistic programming framework. Before doing this though, we
provide background on optimization in general and detail a particular approach called Bayesian

optimization [Jones et al., 1998} Shahriari et al., 2016b].

8.1 Optimization in Probabilistic Machine Learning

In general, all optimization problems can be expressed in the form

0" = argmax f (6)
oed

s.t. gi(0) =c¢; Vie{l,...,n.} (8.1)
hi(0) > d; Yie{l,...,n;}
where f: 19 — R is the target function with input variables 6, ) is the space of permissible
solutions, ¢;(0) = ¢; are equality constraints, h;(6) > d; are inequality constraints, and 6* is
the optimum value of . We note that careful definition of ¥/ can remove the need to define
constraints explicitly, a fact which we exploit in Chapter [9] while minimization problems can
be dealt with by maximizing — f () instead of f (0).

A large range of problems are covered by (8.1). For example, there are arbitrary different
types ¥ might correspond to from the set of real values to the setup of race car. There is also
a wide range of information that might be known about f — we might have access to the exact
function and all its derivatives, or it might be that the only way to evaluate it is to conduct an

expensive real-world experiment with stochastic results at a given value of §. Naturally this
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leads to a plethora of different techniques to suit the different problems at hand such as dynamic
programming [Bellman, 2013]], evolutionary algorithms [Béack, |1996], combinatorial optimization
methods [Papadimitriou and Steiglitz, 1982]], gradient-based methods [Boyd and Vandenberghe,
2004, and Monte Carlo based methods [Robert, 2004]]. Such optimization algorithms can be split
into two key categories: local optimization approaches and global optimization approaches. The
latter strictly aims to solve the true target as laid out in (8.1)), but is in often infeasible in practice.
The former instead only tries to find a point where there is no better point in its immediate
vicinity. Local optimization is generally used either when the problem is known or expected
to be convex (such that there is only one such local optimum), or when global optimization
is infeasible and a local optimum is expected to still for a good approximate solution, as is
typically the case in, for example, neural network training.

In a probabilistic machine learning context, common optimization problems include maximum
likelihood (ML) estimation, maximum a posterior (MAP) estimation, maximum marginal
likelihood (MML) estimation, marginal maximum a posteriori (MMAP) estimation, and risk
minimization. ML estimation looks to find the most probable set of parameters for a given

distribution, namely given data Y they look to find

0 = argmax p(Y|0). (8.2)
0ey

Many classical statistical and machine learning techniques on based on ML estimation as it is
intuitively the most probable set of parameters given data and a model. However, this can be
prone to overfitting and so it typically requires some form of regularization [Hastie et al., 2001].

MAP estimation corresponds to maximizing the posterior probability, which is equivalent to

extending ML estimation to also include a prior term, noting that p(Y) is a constant

0" = argmax p(0|Y) = arg max p(Y'|0)p(6). (8.3)
oev ey

This provides regularization compared to ML estimation (indeed many priors and ML regular-
ization methods are exactly equivalent [Bishop, |2006]]), but still has a number of drawbacks
compared to full inference when the latter is possible. For example, the position of the MAP
estimate is dependent of the parametrization of the problem (see Section [2.6). Using a MAP
estimate also, of course, incorporates less information into the predictive distribution than
using a fully Bayesian approach. Nonetheless, MAP estimation is still an important tool of

Bayesian machine learning, necessary when a single estimate or decision is required, or when
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inference is infeasible. Note that when ¥ is bounded, then ML estimation is recovered from
MAP estimation by using a uniform prior.

MML estimation is often referred to using a number of different names such as expectation
maximization, type-II maximum likelihood estimation, hyperparameter optimization, and empiri-
cal Bayes. Despite the multitude of names, the aim of all these methods is the same: to maximize

the likelihood of a model marginalized over some latent variables X, namely

0" = argmax p(Y|0) = argmax E [p(Y, X|0)|Y, 0] (8.4)
fev fev

where the expectation is with respect to p(X|0). Common examples of MML problems include
parameter tuning, decision making, model learning, and policy search [Deisenroth et al., 2013]].
MMAP estimation varies from MML in the same manner as MAP from ML: the inclusion

of a prior on the target parameters. Specifically it aims to optimize

* = argmax p(0]Y) = argmax p(Y,0) = argmax E [p(Y, X|0)p(0)|Y, 0] . (8.5)
oed fed fev

As with MML and MMAP estimation, risk minimization problems consider the optimization
of an expectation. The key difference is in the fact that they are a minimization rather than

a maximization, namely they look to find

§* = argminE [L(X,Y;0)] (8.6)
oy

for some loss function L which is parametrized by # and is typically positive only. Depending on
the context, Y can either be taken as fixed, or the expectation can be over both X and Y. The
latter corresponds to the classical risk taken in the frequentist view of supervised learning. At
first, the change from maximization to minimization might seem trivial. However, the fact that
probabilities are positive only means that the two problems behave very differently. For example,
imagine the problem of designing a bridge and let Y = (), X be the loadings the bridge will see
in its lifetime, and 6 the design. Even though the probability of failure will generally be very
low, the loss in the case where the bridge collapses is very large. Therefore the expected loss
is dominated by rare adversarial events and the desire is to choose a “safe” value for 6. Such
a problem cannot be encoded effectively as a MML or MMAP estimation problem where we
are maximizing the probability of the bridge not collapsing, as this expected probability cannot
be dominated by the rare adversarial loading cases. In essence, expectations over probabilities
are “optimistic” and by construction focus on the more probable cases.

In the rest of this chapter, we will consider in more depth a particular approach for carrying

out such optimizations known as Bayesian optimization (BO).
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5 0 5 5 0 5
0 6

Figure 8.1: Example GP regression for points shown in left dots. Shown left is GP where the solid dark
blue line is the mean of the GP and the light blue shading is the mean 42 standard deviations. Shown right
is 4 example functions drawn from the GP with covariance function as per (8.8).

8.2 Gaussian Processes

Before introducing BO directly, we first digress to introduce Gaussian processes (GPs) as they
are an essential precursor to much of the BO literature. As we will show in the next section, BO
relies on modeling the target with a surrogate, which can then be used to estimate the expected
value and uncertainty estimates for the value of a function away from points that have been
evaluated. The most common surrogate taken in the BO literature is a GP and the one we will
use later in Chapter [9] hence their central importance to the BO method.

Informally one can think of a GP [Rasmussen and Williams, 2006]] as being a nonparametric
distributiorﬂ over functions. Equivalently, one can think of it as a generalization of a Gaussian
distribution to (uncountably) infinite dimensions. Practically, they are powerful tools for
regression, classification, and feature extraction [Kuss and Rasmussen, 2005} Lawrencel 2004].

We focus here on regression as it is generally the simplest usage and the most relevant to our needs.

8.2.1 Function-Space View

A GP is fully specified by a mean function x: ¥ — R and covariance function k: ¥ x ¥ — R,
the latter of which must be a bounded (i.e. k (0,0") < oo, V0,0 € 9) and reproducing kernel
(we will return to this in depth later in Section [8.2.3). We can informally describe a function
f as being distributed according to a GP:

f(0) ~GP(n(0), k(6,0)) (8.7)

which by definition means that the functional evaluations realized at any finite number of sample
points is distributed according to a multivariate Gaussian. Note that the inputs to x and £ need

not be numeric and as such a GP can be defined over anything for which kernel can be defined.

I'Technically speaking they are stochastic processes, not distributions.
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Figure|8.1|shows an example GP regression with a small number of data points {6;, v;};—1..

Here we wish to regress a function f from 6 to y. To do this, we place a GP prior on f

fprior(0> ~ GP (;U/prior(g)7 kprior(67 Ql)) 3

and take ftprior(6) = 0 V0, noting the generality of this choice as one can simply regress y— fiprior(#)

if a different fiyri0r 1s desired. We further take for the covariance function

A 0—0
Eprior (6, 60") —03/2 (1 + \/_ ) exp <—\/§ ) -+
P3/2 P3/2

a1 (10 o 520)

(8.8)

P52 3\ ps/2 P52

which corresponds to a combination of a Matérn-3/2 and Matérn-5/2 kernel with hyperparameters
03/2, 05/2, P3/2, and ps ;2. We will return to how to choose the kernel function and these parameters
later, the latter of which are set to 03/, = 0.04, 05/, = 0.47, p3/2 = 1.89, and p5;2 = 0.98 in
Figure[8.1] For now, we simply note that the choice of covariance function and its parameters
will heavily influence the nature of functions generated by the GP, dictating things such as

smoothness and characteristic length scales of variation.

An important property of a GP that we now exploit is that it is conjugate with a Gaussian
likelihood. Let © = {6,};-1., and V' = {v;},—1.,, be the set of observed inputs and outputs

respectively. We use a separable Gaussian likelihood function
C_ £(0.))?
exp <_ (U] f( ])) > (8.9)

where o,, is an observation noise, set to 0.001 in our example. Combining this with the GP prior

m

V’@ f H ’UJ‘f :jl;Ilg \/%

we previously defined leads to GP process posterior and predictive distribution. To see this we

can consider the joint distribution between the points we have considered so far, and a new set
. * * . * kprior(0170 ) pnor(ol ) .

of points {©*, V*}. Introducing the shorthand kprior(©, ©%) = | 1 i0r(62.6%) Kirir (02, 6) .. | then we

have by the fact that any finite realizations of points is Gaussian

- bipior(©,0) + 71 Fyrin(©, @*>]>
) “ . 8.10
[f*] N ( 7 |~ kprior(@*, 6) kprior(@*a @*) ( )

where [ is the identity matrix, O is a vector of zeros, and f* is the true function values at ©* (such

that V* — f* ~ N(0,021)). We can now use standard results for Gaussians (see e.g. Petersen
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et al. [2008]]) to get the conditional distribution for f* given all the other variables
10, V, 0% ~ N (fipost (O7) , kpost (O7,0%))  where
Hpost (0%) = Kyrior (67,0) [kyrir (0,0) + 021] ' V (8.11)
Fipost (6,0%) = Eiior (67, 0%) — hpror (0%, 0) [Kyrior (6, 0) + 021] " Ky (©, ).
Now as ©* are arbitrary points, this corresponds to our predictive distribution. Further, as the

predictive distribution is still a GP, we can refer to our model as having a GP posterior

fpost(e) |@a V ~ GP (Mpost(g)y kpost(ea ‘9,)) .

Going back to Figure[8.1] we see the result of this process. Our GP regression gives us a posterior
mean function that represents the expected value at every possible input points, along with a
variance that represents our subjective uncertainty in the value of the function at that point. It is
important to note that, as is always the case in Bayesian modeling, these uncertainty estimates
are generally an underestimate, as they do not account for the “unknown unknowns”. Figure [8.1]
also shows that we can draw from the GP by choosing some set of evaluation points ©* and
then drawing from (8.11)). We see that there is a larger variation in the function values away
from the points that have been evaluated, as would be expected.

An important point of note is that the marginal likelihood for our model is also analytic,

namely

1 o
logp(V10) = = SV [Jprio (©,0) + 021 v 5108 [Fyror (0,0) + 01| - % log 27
8.12)

where m is the number of points in ©. This is important as it means it will be tractable to

optimize or do inference over the GP hyperparameters.

8.2.2 Kernels and Hyperparameters

As we showed in the last section, GPs form powerful and expressive priors over functions. In this
section, we show that their practical behavior varies substantially depending on the choice of the
covariance function, aka kernel, and the hyperparameters. Informally, we can think of the kernel
as expressing the similarity between the evaluation of the function at two different input points 0
and ¢’. When k(0, 0') is large, these evaluations are strongly correlated such that the evaluations
will have similar values. When it is small, there is little correlation between the points and so their
evaluations will be roughly independent. Note that it is possible for k(6, 6") < 0 provided 0 # ¢,
but as kernels must be positive definition functions as explained in the next section, k (0, ©) is

always a positive definite matrix. Though it is not necessary for the kernel to be stationary (i.e.
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Figure 8.2: Effective of changing the length scale for Matérn-5/2 kernel.

that it only depends on # — @’ rather than the absolute values), we will not consider non-stationary
cases further here (see Rasmussen and Williams| [2006] for further information).

[Duvenaud, 2014, Figure 2.1] shows some simple example kernels. Note x here is equivalent
to 6 in our notation. The figure shows that the qualitative behavior of the GP changes substantially
with changes to the kernel. All of these kernels also behave substantially differently to the
compound Matérn kernel we considered in the last section. The choice of kernel is therefore
critical to the performance of GPs. Though there is work, including some of our own [Janz et al.,
2016, that examines methods for learning the kernel directly [Duvenaud et al., 2013} Lloyd et al.,
2014; |Wilson et al., 2014]], this is typically too computationally intensive to carry out in practice.
One must therefore either use prior knowledge about the problem, or use a relatively general
purpose kernel to ensure that the nuances of the data are not overwhelmed.

A particularly common problem in the choice of kernel is in the desired level of smoothness.

At the one extreme, one can use the squared exponential kernel

6 — 0>
ke (0,0') = oF exp <—”22”2> (8.13)
P

which is infinitely differentiable. Here 0]% is the “signal standard deviation” — a hyperparameter
that affects the scaling of the output from the GP: the larger o, the higher the average standard
deviation of the function. Meanwhile, p is a hyperparameter that dictates the characteristic length
scale of variation for the function — the higher p is, the slower the correlation decreases as one
moves away from the current point, and therefore the less “wiggly” the function is. Both these
hyperparameters are shared by most commonly used kernels. Although the presented kernel is

isotropic, this is easily relaxed by having a different p for each dimension.
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In many practical problems, the squared exponential kernel is too smooth. One possible

alternative in these scenarios are the Matérn kernels. The Matérn-» kernel, given by
21 (/2 Y V2
e 0.0) = arg s (Y210 00) K (Y2001 .14
L)\ p p
where K, is the modified Bessel function of second kind order v and I'(-) is the gamma function,

is [ — 1] times differentiable and therefore different values of v can be used to express different
levels of smoothness. Typically v is set to n + 1/2 for some integer n, for which it has a simple
closed form [Rasmussen and Williams, 2006].

Though the choice of kernel function is critical for a GP, the choice of hyperparameters such
as the scaling and length scale can have equally significant impact on the behavior. Figure 8.2]
shows the effect of changing the length scale of a Matérn-5/2 kernel. When the length scale is
too large as shown in orange, the regressed function is overly smooth and does not capture the
data. When the length scale is too small, as shown in green, wild fluctuations are permitted in
between the datapoints such that there is very high uncertainty between points and also potentially
overfitting as the regressor can model all the fluctuations in the data, including those originating
simply from noisy evaluations. As the hyperparameters are rarely known upfront, one must

typically either optimize them, or perform inference over them to produce a mixture of GPs.

8.2.3 Weight-Space View and Reproducing Kernel Hilbert Space

One of the key advantages of GPs is that they can be used effectively without needing to know
the intricacies for why they work. The derivations we introduced in the last section and in
particular the calculations required to derive the GP posterior were spectacularly simple, albeit
computationally intensive (the need for a matrix inversion to calculate (8.11]) means that training
is O(m?) for m training points). However, what is going on beneath the surface is substantially
more complicated, which is perhaps not surprising when one remembers that they are defined over
uncountably infinite many variables. To truly understand the underlying rationale and assumptions
for GPs, and to properly appreciate the restrictions on possible kernels, it is necessary to delve
into GPs more formally, taking a so-called weight-space view. In this section, we, therefore,
outline a more formal derivation of a GP from the viewpoint of reproducing kernels [Hofmann
et al., 2008]] and show how they can be thought of as Bayesian linear regression using an infinite

number of features. We start with the following definitions.
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Definition 8.1. An inner product (-, -)4 is a function H x H — R associated with a vector space
H that is symmetric (u,v)y = (v, u)y, linear (au; + bug,v)y = aluy,v)y + b(uz, v)y, and

positive definitive (u,u) > 0, (u,u)yy =0 < u=0.

Definition 8.2. A Hilbert space, H, is a, potentially uncountably infinite, vector space associated

with an inner product (-, -)» which is complete with respect to the norm |[ul|,, = \/(u, u)y.

Less formally, we can think of Hilbert spaces as being a generalization of Euclidean space (i.e.
the space vectors live in) to include functions. Using Hilbert spaces, we can think of a function as
being an uncountably long vector defining the value of the function at each possible input point.

Consider now the linear (in the weights w) model
fO)=w"'ZO)+p®), w~N(0C) (8.15)

where Z(-) = [G(),....¢n ()], C: ¥ — Rfora = 1,...,m is a feature map in m-
dimensional Hilbert space #. For any set of points 6y, ...,0; then F = [f(6,),....f(6,)]"
will be distributed according to a t—dimensional Gaussian with mean [z (61) , ..., ¢ (6;)]" and
covariance k (6;,0;) = Z (6;)" CZ(0;), Vi,j € {1,...,t}. Note that

ZO)"cz©®) = Z ZOabCa )G (0) >0, V6,60 €9 (8.16)

a=1b=1

as C' must be positive semi-definite for the distribution on w to be well deﬁne(ﬂ This also
means that the Cholesky decomposition C''/2 exists and we can define ¥ (-) = C1/2Z () =

(1 (-) ... 1w ()] to give a covariance function k: ¢ x ¥ — R of the form

B(0,6)) = (U(6), 9 (6) = > tha (6) 1o (¢) < JZ (e WJ S (W (09?817

a=1 a=1 a=1
where the inequality trivially follows using Cauchy-Schwarz. Now consider the case where m is
uncountably infinite such that H represents a functional space along with an inner product.

If W () remains in L? space, i.e.

o0

3 (e (0))° < 00, VO €9, (8.18)

a=1

then & (0,0") < oo, V0,0 € ¥ using the inequality from equation (8.17)), and our covariance
will remain bounded with infinitely many basis functions.
The key realization is now that the distribution of F' only depends on Z and C' through

the inner product (¥ (6), ¥ (#'))% such that we need never compute the (potentially infinite)

2z.0,)" cz (8;) = 01is only possible if w lives in a lower dimensional subspace of R™
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mapping U () if we can find a way to implicitly compute the inner product, for example

if k has the reproducing property
(u(), k(0))n=u(®), Vocd, Yu(-)ecH. (8.19)

This is called the kernel trick, where we have used the representation W (6) = k (-, §) noting that
any feature map can be thought of as parameterizing a mapping ‘H — R through the inner product.

We can now introduce the notion of reproducing kernel Hilbert space (RKHS) [Aronszajn, |1950].

Definition 8.3. Given a Hilbert space ‘H, then a function k: 9 X ¥ — R is a reproducing kernel
and H is a reproducing kernel Hilbert space if k (-,0) € H, VO € 9 and the reproducing property
described in equation (8.19) is satisfied.

The significance of RKHSs for GPs is that their covariance functions correspond to reproducing
kernels and so a GP is defined over an RKHS. Most RKHSs do not contain all possible
functions — e.g. the RKHS associated with the squared exponential kernel contains only infinitely
differentiable functions — and so the choice of GP kernel will dictate the range functions it is
capable of encapsulating. Note that as k (0,0") = (k(-,0) ,k(-,0")) = k (¢, 0), all reproducing
kernels are symmetric.

Going back to our GP derivation, then for the realization of k (0, ¢’) at a finite number of

points to be a valid covariance matrix we further require it to be positive definite, i.e:

ZZ/BZ'/BJ'IC (0;,0;) >0, VYn>1, V{p,...,0.} € R", V{0,...,0,} € " (8.20)
i=1j=1

which can be proved to be the case given the restrictions we have placed on k by noting

2

> 0. (8.21)
H

n n

D> BiBik (6:,0;) = iﬂi\l’ )" iﬂj\p (0;) =

i=1j=1

> A (6)

Consequently, (8.18) is a sufficient condition for the distribution of F' to be a multivariate
t—dimensional Gaussian with a valid and finite covariance matrix when we consider an un-
countable infinite number of basis functions. Furthermore, we note that many choices for
U will lead to closed-form analytic expressions of (W (0), U (6’))3 without the need to ever
calculate W (0) explicitly.

To show a simple example of this consider the one-dimensional case where # € R and basis

(B—ca)?

functions of the form v, = o, exp (— 55

) where ¢, € [Cin, Cmax] Tepresents the center of

ﬁ(cmax_cmin)

- , 1.e.

the basis function and p is a common length scale. Further specify that o2 =
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that o2 is proportional to the number of functions per unit length, then we have

m . ) o 2 r_ 2
K0,0) =Y s (Cma>;n Crnin) exp (_wnga)> exp <_(92p§“)> ‘ (8.22)

a=1

If we assume that the basis functions are evenly space in [¢iin, Cmax]» then in the limit m — oo

we recover the integral

Cmax (0 —c)? 0 —¢)?
k (07 0/) = ﬁ - exp <— 2p2 exXp —TPQ de. (823)
Now if we further take c¢,,;, — —o0 and ¢, — 00 then we have the analytic solution
0—0)
k(0,0") = /7mpBexp <—(42)> . (8.24)
p

which is the common squared exponential kernel in one dimension. Thus we have managed
to analytically marginalize over all basis functions and are left with a simple expression that
can be used to evaluate the covariance between any two given points that implicitly uses an
uncountably infinite number of basis functions.

More generally, the Moore-Aronszajin theorem [Aronszajn, |1950] states that

Theorem 8.1. Any symmetric, positive definite kernel k: ¥ x ¥ — R has a unique RKHS for

which k is a reproducing kernel.

In other words, if we define a kernel function that is symmetric k£ (0,6') = k(#',0) and
positive definite as per (8.20), then at least one corresponding feature map V: ¢ — H must
exist. Therefore a corresponding Z: ¥ — H and C' must also exist (for example we can
trivially take C' as the identity matrix and Z = W), and if we further ensure that & is bounded
k(6,60") < oo, V6,0 € ¥, then finite realizations [f (61) ..., f (8;)]" of equation (§8.13) must
be distributed to a finite multivariate Gaussian distribution with mean [;: (), ..., (6;)]" and
covariance k (0;,0;) Vi,j € 1,...,t.

We can, therefore, think of GP regression as Bayesian linear regression using a feature
mapping to an RKHS. This shows the power of a GP — for appropriate choices of kernel it uses an
uncountable number of features — but also highlights their assumptions: the co-Gaussianity of the

weights and reliance of the target function to fall in RKHS represented by the covariance function.

8.3 Bayesian Optimization

Bayesian optimization (BO) is a global optimization scheme that requires only that the target

function can be evaluated (noisily) at any given point [Mockus|, 1975} |Jones et al., 1998}, |(Osborne
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et al., 2009; Brochu et al., 2010; Shahriari et al., 2016b]]. It does not require derivatives,ﬂ
naturally incorporates noisy evaluations, and is typically highly efficient in the number of function
evaluations. It is therefore suited to problems where the target function corresponds to the output
of a simulator, estimation scheme, algorithm performance evaluation, or other cases where the
target is not known in closed form. It remains a fast growing area of active research and has been
successfully applied to a wide range of applications such as hyperparameter tuning [Snoek et al.,
2012]], robotics [Calandra et al., [2016]], and sensor networks [Garnett et al., 2010].

The key idea of BO is to place a prior on f, most commonly a GP, that expresses beliefs
about the space of functions within which f might live. When the function is evaluated, the
resultant information is incorporated by conditioning upon the observed data to give a posterior
over functions. This allows estimation of the expected value and uncertainty in f (6) for all § € 9.
From this, an acquisition function ¢ : ¥ — R is defined, which assigns an expected utility to
evaluating f at particular 6, based on the trade-off between exploration and exploitation in finding
the maximum. When direct evaluation of f is expensive, the acquisition function constitutes
a cheaper to evaluate substitute, which is optimized to ascertain the next point at which the
target function should be evaluated in a sequential fashion. By interleaving optimization of the
acquisition function, evaluating f at the suggested point, and updating the surrogate, BO forms a
global optimization algorithm that is typically very efficient in the required number of function
evaluations, whilst naturally dealing with noise in the outputs.

Figure [8.3]shows BO being used to maximize the following simple one-dimensional function

2 .
f(@):e—g—w@le, ~5<0<5 (8.25)

with noisy observations v ~ N'(f(#),0.012). As we explained before, BO employs only point-
wise function evaluations and so the optimization problem boils down to deciding

1. What input point should be evaluated at each iteration?

2. Where do we think the optimum is given our evaluations?
Both of these are done using a GP regressed to the existing evaluations, which therefore forms

the first step of each BO iteration. As shown in Figure this gives an estimated value and

uncertainty for the function at every point in the form of the GP posterior mean /i, (6) and

3Nonetheless, derivative measurements, if available, can still often be exploited to improve the BO procedure.
For example, when using a GP surrogate, we can exploit the linearity of differentiation to update our surrogate
with evaluations of the function derivative in an analogous manner as updating with function evaluations. See, for
example, [Osborne, 2010, Section 4.7] for more details.
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(a) 10 iterations (b) 11 Iterations (¢) 20 Iterations

Figure 8.3: Illustration of using Bayesian optimization to optimize the toy one dimensional problem given
in (8.25)). Red dots show the function evaluations, the dotted red line shows the true function, the solid
blue line is the GP mean, the shaded region is the GP mean +2 standard deviations, the green line is the
acquisition function, and the dotted purple line is the location of the maximum of the acquisition function.
See main text for further description.

marginal standard deviation ops(6) = 1/kpost(0, ), Where fipos and Ky are as per (8.11). We

will drop the po subscript in the rest of this chapter to avoid clutter. The second decision —
deciding the location of the optimum — is now straight forward: our estimate for the most optimal
point of those evaluated is simply the point with the highest mean, or if we allow our estimate to
be a non-evaluated point, we can the instead take the maximum of the mean function.

To solve the first decision — where to evaluate next — we specify a so-called acquisition
function (¢ : ¥ — R that encodes the relative utility of evaluating a new point. The optimum of
this acquisition function is then the optimal point to evaluate at the next iteration. At a high level,
the utility of a point is based on a trade-off between exploration, namely the desire to evaluate
points where our uncertainty is high to reduce the uncertainty in those regions, and exploitation,
namely the desire to evaluate points where the expected function value is high so that we get a
good characterization of the function in promising regions. One could alternatively think about
this as wanting to refine the estimates of promising local optima and sample in places that are
likely to contain a missing mode. We will return to discuss specific acquisition functions in depth
in the next section and for now we simply note that the most desirable points to evaluate will
be those that provide both exploration and exploitation. For example, consider the expected
improvement acquisition function (see (8.29)) after 10 iterations shown in green in Figure [8.3a
This is reasonably large in the two regions of highest uncertainty, but it is highest in the region
near the true global optima where both the expected value and uncertainty are high. After 11
iterations, on the other hand, the uncertainty in this region has dropped dramatically and the

point with the highest uncertainty now has the largest value for the acquisition function. Note
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that the scales for the acquisition functions are different for the different iterations and that the
acquisition function typically decreases as more points are observed.

At first, it might seem strange to replace our original optimization problem with another in
the form of optimizing the acquisition function to choose the point to evaluate next. This new
optimization problem is itself a global optimization of a typically highly multi-modal function
and we need to carry it out at each iteration of the BO algorithm. Indeed if the target function
f is cheap to evaluate, taking such an approach would be rather foolish. The key difference is
that the surrogate optimization problem can be solved without the need to evaluate the original
target function. Therefore, if f is expensive to evaluate, this additional computation can be
justified if it keeps the number of required evaluations of f to a minimum. There are also a
number of other features that mean the problem of optimizing the acquisition function is typically
much easier than the original target — it can be evaluated exactly, derivatives are often available,
and provided an appropriate kernel is used then it is guaranteed to be smooth. It is also not
typically necessary to ensure that the acquisition function is optimized exactly, as evaluating
a point that is sub-optimal under the acquisition function simply means that a point expected
to be less helpful is evaluated at the next iteration. This can be useful when the time for a BO
iteration is comparable to a function evaluation, as the amount of computational effort undertaken
by the BO can be tuned to the problem at hand. It is also worth noting that the computational
complexity for optimizing the acquisition function is theoretically less (in terms of BO iterations)
than the GP training (O(N?) instead of O(N?)), though the two are still often comparable for
the modest number of iterations BO is generally run for.

Going back to Figure [8.3] we see that BO works by interleaving regressing a GP to the
evaluations, optimizing the acquisition function to find the next point to evaluate, evaluating the
target function at that point, and the updating the GP regression again. After 20 iterations for our
simple problem, the GP regression around the optimum has become very accurate, while it is less
accurate elsewhere. This highlights the sample efficiency of BO as it shows how computational
resources are focused on where they are required.

Though we have thus far assumed that a GP is used for the surrogate, this is far from the only
possible choice and one can, for example, use random forests [Bergstra et al., 2011; Hutter et al.,
2011]] or neural networks [Snoek et al.,[2015]]. There are a number of characteristics that make
GPs suitable for the surrogate model. For example, they are very powerful regressors that can
accurately represent the function from relatively few evaluations, especially for low-dimensional

smooth functions. They also naturally produce uncertainty estimates that are typically more
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accurate than those produced by alternatives which often have to resort to post-processing or
heuristics to estimate uncertainty. This also leads to simple and tractable acquisition functions.
Similarly, their ability to incorporate noisy observations is often helpful, though because GP
inference is only analytic for Gaussian likelihoods, it is often impractical to incorporate non-
Gaussian noise. This problem can be particularly manifest when the observations are bounded,
such as when the target is a probability and thus always positive. A common way of dealing
with this is to optimize a mapping of the original function, for example optimizing the log
probability in (M)MAP problems [[Osborne, [2010].

When prior information is known about the function, the flexibility in choosing the covariance
kernel can also be very helpful, for example allowing known smoothness to be incorporated.
However, this can also be a curse as an inappropriate choice of kernel can severely hamper
the performance. In particular, it will typically be necessary to do inference over, or at least
optimize, the GP hyperparameters. Another drawback to using GPs is poor scaling in the
number of iterations — training is a O(N?3) operation due to the required matrix inversion. This
typically restricts BO using GPs to using on the order of hundreds of iterations unless appropriate
approximations are made [Snelson and Ghahramani, 2006; Hensman et al., 2013]]. Another
drawback can be poor scaling in the dimensionality of the inputs — most common kernels
only encode information about the inputs through the (scaled) Euclidean distances between
points, which can break down in high dimensions because all points are typically “far away”

from one another [Bengio et al., [2006].

8.3.1 Acquisition Functions

As we previously explained, the GP posterior provides convenient analytic representations for
the expected value and uncertainty in the function in the form of the GP posterior mean 1(6) and
marginal standard deviation o (f) respectively. We now introduce a number of common acquisi-
tion functions, many, but not all, of which will use these representations directly. The choice of
acquisition function can be critical to the performance of Bayesian optimization and its choice
forms a basis for a significant proportion of the Bayesian optimization literature [Shahriari et al.,
2016b]. In particular, some acquisition functions have pathologies, for example probability of
improvement has a tendency to insufficiently explore, which can severely impede the performance
of BO. This has lead to the development of some very powerful, but computationally intensive
and algorithmically complicated, acquisition strategies (e.g. Hernandez-Lobato et al.| [2014]),

such that there is often a speed/simplicity vs per iteration performance trade-off in their selection.
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8.3.1.1 Probability of Improvement

One of the conceptually simplest acquisition functions is the probability of improvement (PI,
Kushner| [1964]), namely the probability that the function value at a point is higher than the
current estimated optimum. As shown by, for example, Brochu et al. [2010], the probability
of improvement has a simple analytic form because the marginal distributions for function

evaluations are Gaussian. Specifically, let

pm = max u(6;) (8.26)

jeflm}

denote the point with the highest expected value and define

p(@)—pt=¢
v (0) = - (0) : (8.27)

where £ > 0 is a user set parameter. The probability of improvement is then defined as the

probability of improving the objective function by at least an amount &

PLO) =p (£(0) > p* +€) = (v(0)) (8.28)

where @ (-) represents the unit normal cumulative distribution function. Note that £ = 0
corresponds to pure exploitation and & — oo corresponds to pure exploration. Typically for PI,
one will employ a cooling schedule for £ to incorporate the intuitive idea that one should first
explore and then exploit. However, as shown by for example Jones [2001]], the performance
of the PI acquisition function is sensitive to the choice of ¢ and therefore the cooling strategy
requires careful tuning. Doing this effectively in a general purpose way is very challenging,

meaning that PI is rarely used in practice.
8.3.1.2 [Expected Improvement

A method less sensitive to tuning is the expected improvement [Mockus, [1975]]. It is conceptually
similar to PI, but incorporates the idea that large improvements are more beneficial to small
improvements. It, therefore, better represents the importance of exploration and is less prone
to over-exploitation. It can also be calculated analytically for a GP (see e.g. Brochu et al.

[2010]) leading to the following definition
BL(6) = [ p(FO)|u(0).00) (£ ()~ 1~ &) df ()

8.29

fu ) e (@) +o ) 0(1(0). c@>0 &
0, o(0)=0

where ¢ () represents the probability density function of the unit normal distribution. The

parameter £ plays a similar role as for the PI, but in this case £ = 0 no longer corresponds to
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pure exploitation. [Lizotte| [2008] suggests that cooling schedules on & are not helpful for EI
and that £ = 0.01E [0 (6)] where E [0 (0)] is signal standard deviation works well in almost all
cases. Simply setting & = 0 is also a common choice, but it can be prone to doing insufficient

exploration. Convergence rates for EI have been demonstrated by [Bull| [2011]].
8.3.1.3 Upper Confidence Bounding

Another possible acquisition strategy is to maximize the upper confidence bound (UCB) for the

function value [La1 and Robbins, |1985} Srinivas et al., 2009], namely
UCB (0) = u (0) + ko (6) (8.30)

where £ > 0 is again a parameter that will control the exploration/exploitation trade-off. This
bound represents the point at which the probability the function is less than this value is ® (k).
A particularly nice feature of the UCB acquisition function is that given certain conditions on
¥ and k, k can be chosen in a manner such that acquisition has bounded cumulative regret
with high probability, this is known as GP-UCB [Srinivas et al., 2009]. However, the need to

(often adaptively) set x can be a noticeable drawback.
8.3.1.4 Information-Based Policies

At the end of the day, the aim of BO is to find the location of the optimum. The true utility
of evaluating a new point is, therefore, in the information it provides about the location of the
true maximum 6* and the assistance it provides in guiding future evaluations. Though the latter
of these is difficult to actively incorporate, the former is something that can be targeted in a
principled manner by considering the distribution on the location of the maximum p(6*|©, V)
where © and V' are the previously evaluated input and output points as per Section

The simplest way this can be done is using Thompson sampling [Thompson, [1933]], where
instead of optimizing an acquisition function directly, one looks to sample the next point to
evaluate from p(0*|©, V') [Shahriari et al., 2014; Bijl et al., 2016; Kandasamy et al., 2017]. In
the GP setting, this is equivalent to sampling a particular function realization f and then taking
Onext as the optimum of this particular realization. This can prove surprisingly expensive, as
sampling a joint realization of a GP at M points is an O(M?) operation.

A more complicated, but theoretically more powerful approach, is to try and directly optimize
for the point that will, in expectation, most reduce the uncertainty about the location of the
maximum. These so-called entropy search (ES) methods [[Villemonteix et al., [2009; Hennig

and Schuler, 2012; Hernandez-Lobato et al., |2014]] use as an acquisition function the expected
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gain in Shannon information about the location of the optimum, or equivalently the reduction

in entropy of the location of the maximum. Namely they take
C(e) =H [p(e*’@7 ‘/7 0)] - Ep(v\@,V,@) [H [p(0*|@7 V7 97 U)H (831)

where H[p(z)] = — [ p(z) log p(x)dx is the differential entropy of its argument and p(v|©, V, 0)
is the predictive distribution of the GP such that v ~ N (u(6),0(0)* + 02) as explained in
Section Entropy search methods are closely linked to the idea of Bayesian experimental
design, in which an equivalent target has been used for some time Chaloner and Verdinelli [[1995].
We return to Bayesian experimental design in detail in Chapter [T1]

Unfortunately, is not analytically tractable and so entropy search methods must rely on
methods for approximately solving (8.31)). This can be particularly difficult as (8.31) represents
a nested estimation problem that cannot be solved simply by, for example, Monte Carlo (see
Chapter [10). An important advancement in this regard was the development of an estimation
scheme by Hernandez-Lobato et al.|[2014]] that uses a combination of analytic approximations
and Monte Carlo sampling. Despite these approximations, the resulting predictive ES algorithm
provides excellent empirical performance in terms of the number of function evaluations and

remains arguably the state-of-the-art acquisition function for BO.
8.3.1.5 Other Acquisition Functions

Many more acquisition strategies have been developed than we have space to cover here. However,

some of other strategies of particular note include

* Contal et al. [2014] use a combination of the GP mean and an approximation of the mutual
information between the function and the noisy evaluations at the chosen input points,

providing impressive theoretical and empirical results.

* |Osborne et al.[[2009] and Gonzalez et al. [2016b]] develop non-myopic methods that incor-
porate the effect of future hypothetical evaluations on the relative optimality of evaluating
a point at the current iteration. Such lookahead methods can improve performance, but at

the expense of substantially increased computational cost.

 |Wang et al. [2016] introduce a strategy explicitly estimating, then using, the value of f(6*)

and establish connections between their approach, UCB, and PI.

» Swersky et al.| [2013]]; Shah and Ghahramani [2016]; Hernandez-Lobato et al.|[2016a]; Fe+

liot et al.| [2017] introduce acquisition functions for dealing with multi-objective problems,
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for which we wish to optimize many functions simultaneously, e.g. by approximating the

so-called Pareto front, constituting the set of non-dominated solutions.

8.3.2 GP Hyperparameters

Generally, the performance of BO will be strongly dependent on the choice of GP hyperparameters
«. Rather than optimizing for « it is natural, when tractable, to take a fully Bayesian view and
marginalize over « [Osborne et al., 2009], leading to mixture of GPs posterior. This was shown
by |Snoek et al.|[2012] to substantially improve the performance of BO. An easy way to do this
for simple acquisition functions is to consider an integrated acquisition function corresponding to

the expectation of the acquisition function over the GP hyperparameters [Snoek et al., [2012]]

(0) = By (€ (9:0)] =~

where p(«) is a prior on the hyperparameters, p (V|©) is a constant that can be ignored as it does

Epa) [€ (0;0) p (V]O,a)] (8.32)

not affect the position of the optimum, and p (V'|©, «) is the GP marginal likelihood as per (8.12).
The expectation can be approximated using Monte Carlo inference, with slice sampling [Murray,

and Adams, 2010] and Hamiltonian Monte Carlo [Hensman et al., [2015] being common choices.

8.3.3 Parallelization

In recent years there has been increased interest in performing Bayesian optimization in the
setting where function evaluations can be performed in parallel [Contal et al.,|2013; |[Desautels
et al., 2014; Gonzalez et al., 2016a; |[Kathuria et al., [2016]]. Such methods usually predict a
batch of evaluation points that are then evaluated simultaneously. It is desirable for the batch to
both include points that have high acquisition functions values, but which are well separated to
minimize the correlation between their outputs. Recent work by [Kandasamy et al. [2017]] has
also looked at the case where evaluation times can vary greatly, such that is desirable to carry

out evaluations asynchronously in parallel, rather than in batches.

8.3.4 Constraints

Bayesian optimization approaches mostly assume that the target function is constrained by a
bounding box, i.e. that each input is independently constrained. In practice, this assumption is
rarely fulfilled, though for technically unbounded problems then it is not uncommon for the user to
be able to specify a box conveying a region where it is reasonable to assume the true optimum falls
within the box. To go beyond this assumption, it is necessary to design strategies that can deal with

constraints and that deal with unbounded problems. Dealing with the former when using a GP
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surrogate can be particularly challenging, as simply setting the points that violate the constraints
to have very low objective function evaluations will severely undermine the GP regression.

Known inequality constraints with simple closed forms can easily be incorporated into most
BO methods by adapting the acquisition function to be arbitrarily bad when the constraints
are violated [[Gramacy and Lee, 2010]. In other words, the constraints can be incorporated by
optimizing the acquisition function as a constrained optimization problem. If the constraints
are not known a-priori and expensive to evaluate, then is typically also necessary to model
the constraints as well as the target function. \Gardner et al.| [2014] introduced a method for
carrying out BO in the scenario where the constraint function is evaluated concurrently to the
target function. Their approach learns the constraint function in a similar way as the target
function using a Gaussian process and they then adapt the EI acquisition function to incorporate
this constraint information. In independently developed work, |Gelbart et al. [2014] introduce a
similar, but more general, approach where the constraints can be evaluated independently and the
constraint evaluations may be noisy. Hernandez-Lobato et al. [2016b] take this further by showing
that the trade-off between improving the models of the target and constraints respectively can
be dealt with naturally by ES based acquisition strategies.

A weakness of all these approaches is that they do not allow for dealing with equality
constraints and will similarly perform poorly for constraint functions that are not well modeled
by a GP. They also do not guarantee that the target function with only be evaluated at places
where the constraints are satisfied. This can be inefficient as evaluations are wasted and makes
the method inappropriate for scenarios where it is essential that the constraints are never violated.
In the next Chapter, we show how probabilistic programming can be used to overcome both these
problems, creating a BO strategy that automatically satisfies the problem constraints at every
evaluation, even when these constraints are equality constraints. Our method also introduces

an approach for dealing with unconstrained BO problems.



Automating Learning — Bayesian
Optimization for Probabilistic Programs

So far in this thesis, and in the literature more generally, the focus has been on automating
inference for probabilistic programs. However, as we explained in Section [8.1] optimization
is also a very important tool in the machine learning arsenal. Further, many problems require
coincident inference and optimization in the form of marginal maximum a posteriori (MMAP)
estimation, maximum marginal likelihood (MML) estimation, or risk minimization. In this
chapter, we develop a probabilistic programming framework for automating the solution of these
mixed inference-optimization problems. We will focus for the most part on MMAP estimation,
highlighting differences for MML estimation and risk minimization when necessary.

MMAP estimation is challenging as it corresponds to the optimization of an intractable
integral, such that the optimization target is expensive to evaluate and gives noisy results. Current
PPS inference engines are typically unsuited to such settings. We, therefore, introduce BOPPE]
(Bayesian optimization for probabilistic programs) [Rainforth et al., 2015} 2016b], which uses a
series of code transformations, existing inference algorithms, and a bespoke Gaussian process
(GP) based Bayesian optimization (BO) package, which we call Deodoranﬂ to optimize the
evidence of a query with respect to an arbitrary subset of its internally sampled Variables

BOPP can be viewed from two different perspectives, providing distinct contributions to
both the probabilistic programming and Bayesian optimization literatures. From a probabilistic
programming perspective, we can view BOPP as extending PPSs beyond their typical inference
setting to a more general mixed inference-optimization framework. It allows users to specify
a model in the same manner as existing systems, but then select some subset of the sampled
variables in the query to be optimized, with the rest marginalized out using existing inference
algorithms. Though the exact code transformations we introduce are inevitably language specific

and have been implemented for Anglican, the concepts we introduce apply more widely and

Code available atlhttp://www.github.com/probprog/bopp/

2Code available athttp://www.github.com/probprog/deodorant /

3There is no need to provide separate consideration for optimizing with respect to the inputs of the query as, if
required, it is trivial to include variables internally to the program and then do MML estimation.


http://www.github.com/probprog/bopp/
http://www.github.com/probprog/deodorant/
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Deodorant, the BO package itself, is not PPL specific and is provided as a stand-alone package.
More generally, the optimization query we introduce can be implemented and utilized in any
PPL that supports an inference method returning a partition function estimate. This framework
increases the scope of models that can be expressed in PPSs and gives additional flexibility
in the outputs a user can request from a program.

From a BO perspective, we can view BOPP as the first package to directly exploit the source
code of its target. This leads to a number of novel contributions to the BO literature, such as
innovations in problem-independent hyperpriors, unbounded optimization, and implicit constraint
satisfaction. The ability to do these is rooted in the ability provided by PPLs to manipulate the
target source code and return artifacts suitable for carrying out certain tasks on a model. For
example, we use a code transformation to produce a problem-specific optimizer for the acquisition
function that ensures the implicit constraints specified by the query, including equality constraints,
are automatically and exactly satisfied. As a consequence, BOPP provides significant novel

features and performance improvements even when used simply as a conventional BO package.

9.1 Motivation

To demonstrate the functionality provided by BOPP, we consider an example application of
engineering design. Engineering design relies extensively on simulations which typically have
two things in common: the desire of the user to find a single best design and an uncertainty in
the environment in which the designed component will live. Even when these simulations are
deterministic, this is an approximation to a truly stochastic world. By expressing the utility of a
particular design-environment combination using an approximate Bayesian computation (ABC)
likelihood [[Csilléry et al.,|2010]], one can pose this as a MMAP problem, optimizing the design
while marginalizing out the environmental uncertaintyﬂ Figure 9.1|illustrates how BOPP can be
applied to engineering design, taking the example of optimizing the distribution of power between
radiators in a house so as to homogenize the temperature, while marginalizing out possible weather
conditions and subject to a total energy budget. The Anglican program shown in Figure [0.2]
allows us to define a prior over the uncertain weather, while conditioning on the output of a
deterministic simulator (here Energy2D [Xie, 2012] — a finite element package for heat transfer)
using an ABC likelihood. BOPP now allows the required coincident inference and optimization

to be carried out automatically, directly returning increasingly optimal configurations.

“For the reasons explained in Section it will often be more convenient to use the risk minimization framework
for engineering design because one generally wishes to place emphasis on rare catastrophic events.



9. Automating Learning — Bayesian Optimization for Probabilistic Programs 177

0.25

0.2

-BOPP
~Even Powers

0.15

0)

p(Y

0.1
0.05

50 100
Iteration
Figure 9.1: Simulation-based optimization of radiator powers subject to varying solar intensity. Shown
are output heat maps from Energy2D [Xiel 2012]] simulations at one intensity, corresponding from left to
right to setting all the radiators to the same power, the best result from a set of randomly chosen powers,
and the best setup found after 100 iterations of BOPP. The far right plot shows convergence of the evidence
of the respective model, giving the median and 25/75% quatrtiles.

(defopt house-heating [alphas target-temps] [powers]
(let [solar-intensity (sample weather-prior)
powers (sample (dirichlet alphas))
temps (simulate solar-intensity powers) ]
(observe (abc-likelihood temps) target-temps)))

Figure 9.2: BOPP query for optimizing the power allocation to radiators in a house. Here
weather—-prior is a distribution over the solar intensity and a uniform Dirichlet prior with concentration
alpha is placed over the powers. Calling simulate performs an Energy2D simulation of house
temperatures. The utility of the resulting output is incorporated using abc—likelihood, which
measures a discrepancy from the target-temps. Calling doopt on this query invokes BOPP to
perform MMAP estimation, with the second input powers indicating the variable(s) to be optimized.
Full details on the model and experiment are provided in Rainforth et al.[[2017b].

BO is an attractive choice for the required optimization in MMAP as it is typically efficient in
the number of target evaluations, operates on non-differentiable targets, and incorporates noise in
the target function evaluations (see Section[8.3). However, applying BO to probabilistic programs
presents challenges, such as the need to give robust performance on a wide range of problems
with varying scaling and potentially unbounded support. Furthermore, the target program may
contain unknown constraints, implicitly defined by the generative model, and variables whose
type is unknown (i.e. they may be continuous or discrete). On the other hand, the availability of
the target source code in a PPS presents opportunities to overcome these issues and go beyond
what can be done with existing BO packages. BOPP exploits the source code in a number of ways,
such as optimizing the acquisition function using the original generative model to ensure the
solution satisfies the implicit constraints, performing adaptive domain scaling to ensure that GP
kernel hyperparameters can be set according to problem-independent hyperpriors, and defining
an adaptive non-stationary mean function to support unbounded BO.

Together, these innovations mean that BOPP can be run in a manner that is fully black-box

from the user’s perspective, requiring only the identification of the target variables relative to
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current syntax for operating on arbitrary programs. We further show that BOPP is competitive
with existing BO engines for direct optimization on common benchmarks problems that do

not require marginalization.

9.2 Related Work

Reasonable consideration has been given before to solving maximum likelihood and marginal
a posteriori (MAP) problems with PPSs and many systems provide some form of appropriate
estimation scheme (see e.g. [Goodman and Stuhlmdiiller, 2014; Carpenter et al.,|2015; [Salvatier
et al., 2016]). One simple approach is to apply an annealing to the observe densities (for
maximum likelihood estimation) or both the sample and observe densities (for MAP esti-
mation) in a conventional MCMC sampler such as LMH (see Section [/.4.1). This results in
a simulated annealing algorithm [Aarts and Korst, 1988|] for general purpose programs. An
alternative approach, introduced by [Tolpin and Wood|[2015]] instead uses ideas from Monte Carlo
tree search to construct a general purpose MAP estimator. However, all of these approaches do
not permit the more challenging scenario where the target is to optimize a marginal distribution.
They are, therefore, not suitable for combined inference and optimization problems.

One approach that does consider optimization of marginal probabilities of probabilistic
programs is given by van de Meent et al.| [2016], which thus perhaps presents the closest approach
to our own work. The aim of |[van de Meent et al. [2016] is, on the surface, somewhat different
to our own as they look to automate policy search problems [Deisenroth et al., 2013]] using
probabilistic programs. However, policy search is a particular instance of MML estimation
and so falls within our general problem class. Moreover, their approach of maximizing an
evidence lower bound [Blei et al., 2016]] using stochastic gradient ascent [Robbins and Monro,
1951]] 1s, in principle, substantially more general than policy search problems and constitutes
a general MML estimation scheme in its own right. However, the approach has a number of
restrictions and assumptions. Perhaps the most critical for our purposes is that gradients are
estimated using importance sampling and thus will generally become increasingly noisy as the
dimensionality of the nuisance variables (i.e. those we wish to marginalize over) increases. The
approach also requires mean field approximations to be made, the appropriateness of which will
vary from problem to problem, while, as with other stochastic gradient ascent approaches, a
large number of optimization iterations is typically required to reach convergence, which can
be prohibitive for some problems. BOPP, on the other hand, requires very few assumptions

to be made and is free to use more advanced inference approaches, for example SMC, for
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estimating the marginal likelihood. One consequence of this is that it can scale to far higher
dimensions in the nuisance variables. For example, our HMM model in Section [0.5| marginalizes
over a roughly 5000-dimensional space.

Another interesting alternative approach, developed since the publication of BOPP, involves
taking derivatives through an SMC sweep [Le et al., 2017c; Naesseth et al., 2017; Maddison et al.,
2017]]. More precisely, these methods allow the derivative of the marginal likelihood estimate
(or more typically its logarithm) to be calculated during an SMC sweep, for example by using
automatic differentiation on the calculation of the original estimate [Le et al., 2017c]. This can
be used for MML or MMAP estimation of global parameters by using these gradients as input to
a stochastic gradient ascent scheme. A key difference of this approach, to say van de Meent et al.
[2016], is that using SMC instead of importance sampling means that substantially lower variance
gradient estimates can be achieved. Though, to the best of our knowledge, no such approach is
currently implemented in a PPS, doing so is in theory perfectly possible given a system supporting
automatic differentiation. InLe et al. [2017c|], we also show how this approach can be extended
to perform simultaneous model learning and proposal adaptation and further to an amortized
inference setting, whereby we learn an inference artifact that returns a proposal at run time. This
means that, when the model of interest comprises of a deep neural network, then the method can
be viewed as extending so-called auto-encoding methods [Kingma and Welling, 2014} Burda

et al., 2015] from their limited importance sampling setting, to a more powerful SMC framework.

9.3 Problem Formulation

As we explained in Section4.3.2] probabilistic program queries define unnormalized distributions
Y(%1.n,, A) on program traces as defined in (4.3). At a high level, our aim is to optimize with
respect to some of the x;.,, variables while marginalizing out the rest, as per MMAP estimation,
MML estimation, and risk minimization introduced in Section @ However, formalizing what
we mean by “some variables” is less trivial than it would first appear and will require specialist
syntax for specifying models. To this end, we introduce a new query macro defopt. The syntax
of defopt is identical to defquery except that it has an additional input identifying the variables
to be optimized. As we will explain later, defopt invokes a series of code transformations
to produce a number of different Anglican queries, each of which is compiled to a CPS-style
Clojure function using query and that is then used by the BOPP back end.

A possible naive strategy for identifying the target variables would be to simply predefine

some subset of the sample indices ¢ C N* and optimize for {z,};c.. However, this is clearly
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not satisfactory because it is generally an awkward method of identifying the target variables
and the variables we wish to optimize may not always be sampled at the same position in our
trace (i.e. we do not want superfluous sample statements to effect which variables constitute our
target variables). Unfortunately though, the more natural choice of specifying any variable in the
program, including those which are deterministic functions of other variables, is not possible in
general, because of complications originating from changes of variables, namely that nonlinear
deterministic mappings change the density function in ways that it might not be possible to
track. Instead, we will still specify our target variables § = ¢;.;, by name (i.e. using the lexical
name of the variable as bound by a let block in the raw program code), but we will place
some restrictions, enforced at run time (see Rainforth et al. [2017b]) to ensure validity of the
model. First, each optimization variable ¢, must be bound to a value directly by a sample
statement to avoid change of variable complications. Second, in order for the optimization to
be well defined, the program must be written in such a way that any possible execution trace
binds each optimization variable ¢, exactly once. By proxy, this also ensures that the number of
variables to be optimized, L, remains fixed. Finally, although any ¢, may be lexically multiply
bound, it must have the same reference measure in all possible execution traces, because, for
instance, if the reference measure of a ¢, were to change between Lebesgue to counting, the
notion of optimality would no longer admit a conventional interpretation. Note that we impose
no restrictions on the latent variables which will be marginalized over.

From a developer’s perspective, these minor restrictions mean that all sample statements
are either associated with a particular target variable ¢, or never associated with any target
variable. Further, sample statements associated with the target variables will never be evaluated
more than once (but might never be evaluated if there are multiple possible sample statements
associated with a particular ¢,) and the total number of sample statements associated with
the target variables is always L. Therefore building on the notation from Section #.3.2] we
will redefine z;.,, as the variables that are to be marginalized over, with all associated terms
similarly redefined (except ). We next denote the m, lexical sample statements associated
with each ¢y as hgy, ..., hym, with associated density functions hy;(¢,|&,) where & is the
provided distribution object (which can be a random variable but its reference measure must
be deterministic). We further denote ¢, € {1,...,m,}, V¢ € {1,..., L} as the (potentially

random) variable used to index which lexical sample statement ¢, is drawn from in a particular
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execution. We now have that the conditional distribution on the trace 7 implied by the query
is p(T = {b1.0, T1m, HA) o< Y(0,21:0,, A) where
TT7s Pty (001€0) TG0 fay (25105) TIRZy 9o, (uklton) i B0, 21, A) = 1

0 otherwise

V0, Trin,, A) = {
9.1)
and we have redefined the trace validity function B(¢1.1, =1.,,, A) appropriately. As before, many
terms in our trace probability might be random variables, but all are deterministic functions of
{#1.L, x1.n, }- Note that the relative ordering of the ¢;.;, to the x1.,, does not affect the validity of
the trace or the probability, as the sample statements associated with each are mutually exclusive.
We can now use (9.1)) to define the MMAP estimate targeted by a defopt query as

0*(\) = argmax E [p(T = {¢1., T1., }|N)]0] = argmax E [y(0, x1.,,, A)|0]

oed(N) ELI0N!
L

Ny Ty
— argmax | T Ao (6ele) TT Fo, Cslns) T1 g (vt} derv,
T1:ng €{X:B( j=1 k=1

0eI(N) 0,X,\)=1} p_

9.2)

where 9(\) := {0 : {3x1., : B(0,21.,,,\) = 1}} is the support of # given . The target for the
optimization is effectively the partition function of the program that results from “clamping” 6 to
a particular value. Though, in theory, one can conduct GP-based BO for non-numerical inputs by
defining an appropriate kernel, we will not consider this case here for simplicity. However, we will
allow for inputs of unknown type (i.e. discrete or continuous) as well as unknown constraints. We

can therefore alternatively express our MMAP problem as the following constrained optimization

0*(\) = argmax E [y(0, 21, A)|0]  s.t. [(3z1, : B0, 210, A) =1) =1 (9.3)

HcRP

where we have applied the constraint that there is at least one valid trace associated with 6. For
example, in Figure 9.2|the use of a Dirichlet distribution imposes the constraint 37, ¢, = 1.

For MML estimation, the []%, hee,(¢0|&e) term is removed from the target formulation,
thereby removing the terms from the generative model on 6, analogously to removing the prior
in conventional frameworksE] The generative model on @ is still important here, specifying the
constraints on . Thus, for example, doing MML estimation for the model defined in Figure 9.2
would retain the constraint ZZLZI ¢¢ = 1. Almost all BO problems are constrained in some way:
if nothing else, one almost always needs to define some sort of bounding box for GP based BO,
which can be encoded using uniform distributions in BOPP. Therefore, in addition to providing

the first MML estimation scheme for PPS, BOPP forms a highly convenient means of specifying,

>Because the ), could still depend on 6, this definition does not necessarily always correspond to the conventional
notion of an MML solution. However, this is a necessary design decision and it does not place any restrictions on the
problems that can be encoded as one can always manually remove the relevant observe statements if desired.
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and automating the solution for, conventional constrained BO problems. In particular, BOPP
is, to the best of our knowledge, the first system to support equality constraints.

The only thing that needs to change from the MML definition for the risk minimization case
is that the arg max is replaced with an arg min. As we presume that \ is fixed, this is analogous
to solving with a fixed Y such that the expectation is only over X.

For simplicity and notational consistency with our original paper [Rainforth et al., 2016b]],
we will now drop the dependency on A and switch to the standard graphical model notation given
in with Y representing data, X are variables marginalized over, and 6 the target variables
(e.g. we express the MMAP problem as 6* = arg maxy, p(Y, )). We note though that is not
always completely accurate as per Section §.3.2] and (9.2).

To carry out the interleaving of inference and optimization required by BOPP, we introduce
doopt, which, analogous to doquery, takes a compiled output from defopt and an estimation
type to carry out (i.e. MMAP, MML, or risk minimization), and returns a lazy sequence
{é,’fn, Q;;, Uy, }m=1,.. Where Q,*n C X are the program outputs associated with § = QA; and
each 4, € RT is an estimate of the corresponding log partition function log p(Y, é;fn) (see
Section . The sequence is defined such that, at any time, GA;;L corresponds to the point
expected to be most optimal of those evaluated so far (using the GP surrogate) and allows both

inference and optimization to be carried out online.

9.4 Bayesian Program Optimization

On top of the syntax introduced in the previous section, there are five main components to BOPP:

A program transformation, g—g-marg, allowing estimation of the partition function

p(Y, 0) at a fixed 6.

A bespoke, GP based, BO implementation for actively sampling 6.

A program transformation, g—g-prior, used for automatic and adaptive domain scaling,

such that a problem-independent hyperprior can be placed over the GP hyperparameters.

An adaptive non-stationary mean function to support unbounded optimization.

A program transformation, g—g-acqg, and maximum likelihood estimation method to

optimize the acquisition function subject the implicit constraints imposed by query.

Together these allow BOPP to perform online MMAP estimation for arbitrary programs in a
manner that is black-box from the user’s perspective — requiring only the definition of the target

program in the same way as existing PPS and identifying which variables to optimize. The
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(defopt q [y] [0]
(let [a (sample (p-a)) (defquery g-prior [y]
0 (sample (p-0 a)) (let [a (sample (p-a)) [P ———
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Figure 9.3: Overview of the BOPP algorithm, description given in main text. p—a, p—6, p—b and 1ik
all represent distribution object constructors. observe<- is identical to observe except it returns the
observation. factor is a special distribution constructor that here factors the trace probability by ¢(6).

BO component of BOPP is both probabilistic programming and language independent, and
is provided as a stand-alone package. It requires as input only a target function, a sampler
to establish rough input scaling, and a problem specific optimizer for the acquisition function
that imposes the problem constraints.

Figure [0.3|provides a high level overview of the algorithm invoked when doopt is called on
a query q that defines a distribution p (Y, a, 6, b). We wish to optimize ¢ whilst marginalizing out
a and b, as indicated by the the second input to g. In summary, BOPP performs iterative

optimization in 5 steps

Step 1 (blue arrows) generates exact samples from the prior program g-prior (fop center),

constructed by removing all conditioning. This initializes the domain scaling for 6.

Step 2 (red arrows) evaluates the marginal p(Y, ) at a small number of the generated 6 by
performing inference on the marginal program g-marg (middle center), which returns
samples from the distribution p (a, b|Y,#) along with an estimate of logp(Y,6). The
evaluated points (middle right) provide an initial domain scaling of the outputs and starting

points for the BO surrogate.
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Step 3 (black arrow) fits a mixture of GPs posterior to the scaled data (bottom centre) using a
problem independent hyperprior. The solid blue line and shaded area show the posterior
mean and +2 standard deviations respectively. The new estimate of the optimum 6* is the

value for which the mean estimate is largest, with 4* equal to the corresponding mean.

Step 4 (purple arrows) constructs an acquisition function (: ¥ — R™ (bottom left) using the
GPs. This is optimized, giving the next point to evaluate Opexct. using simulated annealing on
a transformed program g-acq (middle left) in which all observe statements are removed

and replaced with a single observe adding a ((6) factor to the trace probability.

Step 5 (green arrow) evaluates Brexct using g—marg and continues to step 3.

9.4.1 Program Transformation to Generate the Target

Consider the defopt query g in Figure 0.3] the body of which defines the joint distribution
p(Y,a,0,b). Calculating (8.5) (defining X = {a,b}) using a standard optimization scheme
presents two issues: 6 is a random variable within the program rather than something we control
and its probability distribution is only defined conditioned on a.

We deal with both these issues simultaneously using a program transformation similar to the
disintegration transformation in Hakaru [Zinkov and Shan, 2016]. Our marginal transformation
can be thought of generating a new query, g-marg as shown in Figure that defines the
same unnormalized joint distribution on program variables and inputs (i.e. (0, %1, A) is
unchanged), but now accepts the value for # as an input (i.e. the ¢;.;, become terms in A
rather than being random variables). As such, the partition function of the program is now a
function of § and therefore can be optimized using an external algorithm. The transformation
itself replaces all sample statements associated with each ¢, with an equivalent observe<-
statement, taking ¢, as the observed value, where observe<- is identical to observe except
that it returns the observed value instead of nil. As both sample and observe operate on the
same variable type — a distribution object — this transformation can always be made, while the
identical returns of sample and observe<- trivially ensures the validity of the transformed
program. The transformation used for MML and risk minimization is equivalent except that the
observe statements are replaced by an identity function (rather than observe<-), such that
the transformation effectively removes the original sample statements.

In truth, the transformations used by BOPP are not exactly as shown in[9.3]and as described
above. This is because, although for simple programs, such as the given example, these

transformations can be easily expressed as static transformations, for more complicated programs
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it would be difficult to actually implement these as purely static generic transformations in a
higher-order language. Therefore, even though all the transformations dynamically execute as
shown at runtime, in truth, the generated source code for the prior and acquisition transformations
varies from what is shown and has been presented this way in the interest of exposition. Our
true transformations exploit the existing Anglican special forms store and retrieve and two
new special forms we introduce called catch and throw, in order to generate programs that
dynamically execute in the same way at run time as the static examples shown, but whose actual

source code varies significantly. Full details are given in [Rainforth et al. [2017/b].

9.4.2 Bayesian Optimization of the Marginal

The target function for our BO scheme is log p(Y, 6), noting arg max f () = arg max log f (6)
for any f : 9 — R*. The log is taken because GPs have unbounded support, while p (Y, 0) is
always positive, and because we expect variations over many orders of magnitude. PPS with
importance sampling based inference engines, e.g. SMC or the particle cascade (see Section[7.4),
can return noisy estimates of this target given the transformed program g-marg. Full details on
our BO scheme can be found in|Rainforth et al. [2017b]], a summary of which is provided below.

Our BO scheme uses a GP prior and a Gaussian likelihood. Though the rationale for the latter
is predominantly computational, giving an analytic posterior, there are also theoretical results
suggesting that this choice is appropriate Bérard et al. [2014]. We use as a default covariance
function a combination of a Matérn-3/2 and Matérn-5/2 kernel (see Section [8.2). By using
automatic domain scaling as described in the next section, problem independent priors are placed
over the GP hyperparameters such as the length scales and observation noise. Inference over
hyperparameters is performed using Hamiltonian Monte Carlo (HMC) [Duane et al., [1987],
giving an unweighted mixture of GPs. Each term in this mixture has an analytic distribution
fully specified by its mean function y’, : ¥ — R and covariance function £’ : ¥ x 9 — R, where
m indexes the BO iteration and ¢ the hyperparameter sample.

This posterior is first used to estimate which of the previously evaluated éj is the most optimal,
by taking the point with highest expected value, 4}, = max;ci. o, S, ,uin(éj) This completes
the definition of the output sequence returned by the doopt macro. Note that as the posterior
updates globally with each new observation, the relative estimated optimality of previously
evaluated points changes at each iteration. Secondly, it is used to define the acquisition function

¢, for which we take a Monte Carlo estimate of the integrated expected improvement Snoek
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et al [2012], defining o7, () = /ki, (0,0) and ~;, (9) = “alf) i,

C0) =" (1 (0) = 13,) @ (73, (0)) + 0k (0) & (3, (6)) 9.4)

1=

where ¢ and ¢ represent the pdf and cdf of a unit normal distribution respectively. We note
that more powerful, but more involved, acquisition functions, e.g. Hernandez-Lobato et al.

[2014]], could be used instead.

9.4.3 Automatic and Adaptive Domain Scaling

Domain scaling, by mapping to a common space, is crucial for BOPP to operate in the required
black-box fashion as it allows a general purpose and problem independent hyperprior to be placed
on the GP hyperparameters. BOPP, therefore, employs an affine scaling to a [—1, 1] hypercube
for both the inputs and outputs of the GPs. To initialize scaling for the input variables, we sample
directly from the generative model defined by the program. This is achieved using a second
transformed program, g-prior, which removes all conditioning, i.e. observe statements, and
returns 6. This transformation also introduces code to terminate execution of the query once all
6 are sampled, in order to avoid unnecessary computation. As observe statements return nil,
this transformation trivially preserves the generative model of the program, but the probability
of the execution changes. Specifically, if we denote ny as the number of non-target sample
statements that have been invoked by the time all ¢,.;, are sampled, then g-prior more formally
defines the unconditional distribution px(7 = {¢1.1, T1:ny }) X Vprior(0, T1:n,, A) Where

iy hae, (0el€0) T2 fa, (25]m;) if B(6, 1y, A) = 1

) (9.5)
0 otherwise

’yprior(ea T1ng s >\) = {

and the trace validity function B(6,x;.,,, A) is redefined appropriately. Because is an
unconditional distribution, it can be sampled from directly by running the program forwards,
returning exact samples from the corresponding marginal distribution on . This is computa-
tionally inexpensive, as it does not require inference or calling potentially expensive likelihood
functions. It can thus be cheaply sampled from a number of times to initialize the input scaling.
By further running inference on g-marg given a small number of these samples as arguments,
a rough initial characterization of output scaling can also be achieved.

If points are later observed that fall outside the hypercube under this initial scaling, the domain
scaling is appropriately updated so that the target for the GP remains the [—1, 1| hypercube. An
important exception to this is that the output mapping to the bottom of the hypercube remains

fixed and any points with partition function estimates lower than this are not incorporated into
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the scaling in any way, i.e. the input scaling is not updated to incorporate these points either.
For MMAP estimation, this ensures stability for unbounded problems as there can only be a
finite region of the input space where the true value of the partition function is above any given
value because its integral over # must be finite. Similarly, the maximum possible estimate the
inference algorithm might return will be bounded given some weak assumptions (roughly that
p(Y, X, 6) is itself bounded). Consequently, the fixed base of the hypercube ensures that the there
is a maximum possible size the hypercube can reach. For risk minimization (where our target is
—log p(Y'|6)) and MML estimation (where our target is log p(Y'|#)) problems then we have no
such guarantee that the adaptation will eventually cease. However, this is somewhat inherent to

unbounded global optimization problems, rather than being a specific issue of BOPP.

9.4.4 Unbounded Bayesian Optimization via Mean Function Adaptation

Unlike standard BO implementations, BOPP is not provided with external constraints and we,
therefore, develop a scheme for operating on targets with potentially unbounded support. For
MMAP estimation, the target function is an unnormalized density, implying that the area that must
be searched in practice to find the optimum is finite. For MML estimation and risk minimization
this assumption is still reasonable in practice as if it is not true, we are effectively doomed to fail
anyway. We, therefore, exploit this assumption by defining a non-stationary prior mean function.
This takes the form of a bump function that is constant within a region of interest, but decays
rapidly outside. Specifically, we define this bump function in the transformed space as

0 if r<wre

log ( — ) + ;=" otherwise

Too—Te Te

(9.6)

Hprior (7’, Te, roo) - {

where r is the radius from the origin, 7. is the maximum radius of any point generated in
the initial scaling or subsequent evaluations, and r, is a parameter set to 1.5, by default.
Consequently, the acquisition function also decays and new points are never suggested arbitrarily
far away. Adaptation of the scaling will automatically update this mean function appropriately,
learning a region of interest that matches that of the true problem, without complicating the
optimization by over-extending this region. We note that our method is very similar to the
independently developed work of Shahriari et al. [2016a], but overcomes the sensitivity of
their method upon a user-specified bounding box representing soft constraints, by initializing
automatically and adapting as more data is observed.

An important consequence of this approach is that BOPP is not always an entirely global

optimizer as the adaptation can, at least in theory, become stuck around a single mode if there
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is extreme prior-target mismatch. Specifically, because “bad” points are not incorporated into
the rescaling as described in the last section, we might have a “bad” region blocking expansion
to another mode. In practice, such occurrences should be extremely rare (at least for MMAP
estimation) as the initial scaling is approximately set to the region where the generative model has
significant density, such that the problem would need to be both multi-modal and have extreme
prior-target mismatch for BOPP to get stuck. One could, in theory, refine our method to provide
better guarantees against such occurrences, but given the inherent difficulty of such problems
and the fact that BOPP, like other GP-based BO methods, is heavily restricted in the number of
iterations before the GP training cost becomes prohibitive (usually in the hundreds of iterations),

doing so seems more likely to do harm than good in practice.

9.4.5 Optimizing the Acquisition Function

As we previously alluded to, BOPP presents the issue that the query contains implicit constraints
that are unknown to the surrogate function. As we discussed in Section [8.3.4] constraints have
previously been considered in the BO literature using a second surrogate model or an appropriate
adaptation to the existing surrogate. Along with the potentially significant expense such a
method incurs, this approach is inappropriate for equality constraints or when the target variables
are potentially discrete. We, therefore, take an alternative approach based on directly using the
program to optimize the acquisition function. To do so we consider a transformed program g-acqg
that is identical to g-prior (see Section[9.4.3)), but adds an additional observe statement that

assigns a weight ((6) to the execution such that the unnormalized joint distribution is now

'Yacq(ea T1ng, )\) = 7prior<9> T1ing, )\)C(Q) (97)

By setting ((f) to the acquisition function, the maximum likelihood solution of Y,eq(0, Z1.n,, A)
corresponds to the optimum of the acquisition function subject to the implicit program constraints.

More precisely, we maximize ((¢) subject to the constraint that

0 € 9(N) :=1{0: {Fr1n, : Vprior(0, T1:ny, A) > 0} }.
Such an estimate is achieved by running on g—-acq a variant of the simulated annealing algorithm
discussed in Section[9.2]in which RMH (see Section is used for the transition kernel. Using
an RMH, rather than LMH, transition kernel here is important as it will often be the case that the

optimum of the transition function is in a position of very low prior mass (see e.g. Figure [9.4),

such that LMH could take an unreasonably long time to propose an appropriate set of parameters.
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Figure 9.4: Convergence on an unconstrained bimodal problem with p () = Normal(0,0.5) and

p (Y']0) = Normal(5 — |6],0.5) giving significant prior misspecification. The top plots show a regressed
GP, with the solid line corresponding to the mean and the shading shows + 2 standard deviations. The
bottom plots show the corresponding acquisition functions.
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Figure 9.5: Comparison of BOPP used as an optimizer to prominent BO packages on common benchmark
problems. The dashed lines shows the final mean error of SMAC (red), Spearmint (green) and TPE (black)
as quoted by Eggensperger et al.|[2013]]. The dark blue line shows the mean error for BOPP averaged over
100 runs, whilst the median and 25/75% percentiles are shown in cyan. Results for Spearmint on Branin
and SMAC on SVM on-grid are omitted because both BOPP and the respective algorithms averaged zero
error to the provided number of significant figures in [Eggensperger et al.| [2013)]].

9.5 Experiments

We first demonstrate the ability of BOPP to carry out unbounded optimization using a 1D
problem with a significant prior-posterior mismatch as shown in Figure It shows BOPP
adapting to the target and effectively establishing a maxima in the presence of multiple modes.
After 20 evaluations the acquisitions begin to explore the right mode, after 50 both modes

have been fully uncovered.

9.5.1 Classic Optimization Benchmarks

Next we compare BOPP to the prominent BO packages SMAC |[Hutter et al.|[2011]], Spearmint
Snoek et al.|[2012] and TPE Bergstra et al.|[2011] on a number of classical benchmarks as shown
in Figure These results demonstrate that BOPP provides substantial advantages over these

systems when used simply as an optimizer on both continuous and discrete optimization problems.
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Figure 9.6: Convergence for transition dynamics parameters of the pickover attractor in terms of the
cumulative best log p (Y, 6) (left) and distance to the “true” 6 used in generating the data (right). Solid line
shows median over 100 runs, whilst the shaded region the 25/75% quantiles.

(a) 1 iteration (b) 20 iterations (¢) 100 iterations (d) Ground truth

Figure 9.7: A series of trajectories for different parameters, demonstrating convergence to the true attractor.
The colormap is based on the speed and curvature of the trajectory, with rendering done using the program
Chaoscope (available at http://www.chaoscope.org/).

In particular, it offers a large advantage over SMAC and TPE on the continuous problems (Branin
and Hartmann), due to using a more powerful surrogate, and over Spearmint on the others due

to not needing to make approximations to deal with discrete problems.

9.5.2 Marginal Maximum a Posteriori Estimation Problems

We now demonstrate application of BOPP on a number of MMAP problems. Comparisons
here are more difficult due to the dearth of existing alternatives for PPS. In particular, simply
running inference on the original query does not return estimates for p (Y, 6). We consider the
possible alternative of using our conditional code transformation to design a particle marginal
Metropolis Hastings (PMMH, see Section [6.2.4)) sampler which operates in a similar fashion
to BOPP except that new 6 are chosen using either an LMH or RMH step instead of actively
sampling with BO. For these experiments we will only provide summaries here and refer the

reader to Rainforth et al. [2017b] for full details and an additional example.
9.5.2.1 Extended Kalman Filter for the Pickover Chaotic Attractor

Our first MMAP example considers the case of learning the dynamics parameters of a chaotic

attractor. Specifically, we will aim to optimize the parameters of a Kalman smoother, where
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Figure 9.8: Convergence for HMM in terms of the cumulative best log p (Y, 0) (left) and distance to the
“true” 0 used in generating the data (right). Solid line shows median over 100 runs, whilst the shaded
region the 25/75% quantiles. Note that for the distance to true  was calculated by selecting the three states
(out of the 5 generated) that were closest to the true parameters.

we observe a noisy signal y, € RX, ¢t =1,2,....7T in some K dimensional observation space

and each observation has a lower dimensional latent parameter x, € R”, t = 1,2,..., 7. In

addition to an initial distribution z; ~ N (uy1,011), our model is specified by

i =A ((’Etfl, 9) + 5,5,1, 51571 ~ N (O, O'q[> (983)
yr =Cwy + &y, g ~ N (0,0,1) (9.8b)

where [ is the identity matrix, C'is a known K x D matrix, and p1, 01, 0, and o, are all known
scalars. Our aim is to learn the dynamics parameters 6 given y,.7, marginalizing over the latent
variables x1.7. We use a uniform prior on the parameters 6, which means that the MMAP values
for 6 coincide with their (constrained) MML values. A synthetic dataset was generated with
T = 500 and K = 20 (see Rainforth et al.| [2017b]]). Inference on g-marg was carried out
using SMC with 500 particles. Convergence results are given in Figure [9.6| showing that BOPP
comfortably outperforms the PMMH variants, while Figure 9.7|shows the simulated attractors

generated from the dynamics parameters output by various iterations of a particular run of BOPP.
9.5.2.2 Hidden Markov Model with Unknown Number of States

We finish by considering a hidden Markov model (HMM) with an unknown number of discrete
possible states. This example demonstrates how BOPP can still be applied to models which
conceptually have an unknown number of target variables, by generating all possible variables
that might be needed, but then leaving some variables unused for some execution traces. This
avoids problems of varying reference measures so that the MMAP problem is well defined and
provides a function with a fixed number of inputs as required by the BO scheme. From the BO
perspective, the target function is simply constant for variations in an unused variable.

Our model places a uniform prior on the number of states X' ~ DISCRETE{1, 2, 3,4, 5}.

Each emission distribution corresponds to a Gaussian with unknown mean (which we wish
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to optimize) and known variance. We marginalize over the transition distribution parameters
and the HMM latent states. Rather than constructing a model where the emission distribution
parameters only exist conditioned on the value of K, we generate variables for all 5 emission
distributions that might be required, with only the first K actually then used. A synthetic dataset
was generated using K = 3 and 7" = 1000 observations. Results of running BOPP are given
in Figure[9.8] again showing that BOPP outperforms these PMMH alternatives. See Rainforth
et al.| [2017b] for further details.

9.6 Discussion

We have introduced a new method for carrying out MMAP estimation, MML estimation, and
risk minimization of probabilistic program variables using Bayesian optimization, representing
the first unified framework for optimization and inference of probabilistic programs. By using
a series of code transformations, our method allows an arbitrary program to be optimized with
respect to an arbitrary defined subset of its sampled variables, whilst marginalizing out the rest.
To carry out the required optimization, we have introduced a new GP-based BO package that
exploits the availability of the target source code to provide a number of novel features, such as
automatic domain scaling and constraint satisfaction. The concepts we introduce lead directly to
a number of extensions of interest, including but not restricted to smart initialization of inference
algorithms, adaptive proposals, and nested optimization.

The main drawbacks of BOPP are inherited from GP-based BO more generally, most
notably poor performance scaling in the dimensionality of the target variables 6 and poor
computational scaling in the number of iterations used (see Section [8.3). The former is arguably
an almost inevitable consequence of the inherent difficultly of global optimization, though is
perhaps more pronounced for GP-based BO than alternatives. It can be alleviated by making
alternative assumptions, for example using a local optimization method (e.g. using stochastic
gradient ascent), the suitability of which will be problem dependent. The latter drawback
can be substantially alleviated by using a more lightweight surrogate regressor, e.g a random
forest [Hutter et al.,|[2011]], at the expense of typically reducing per-sample performance. From
a practical usage perspective, there would be clear utility of such a system as an alternative or
addition to BOPP, e.g. by automatically making approximations to the GP once a certain

number of iterations has passed.



Nested Estimation

The convergence of Monte Carlo estimators has been considered extensively in the literature
(see Chapter [5]). However, the theoretical implications arising from the nesting of Monte Carlo
estimators, where terms in the integrand depend on the result of separate, nested, Monte Carlo
estimators, is generally less well known. This chapter examines the convergence of such nested
Monte Carlo (NMC) methods [Rainforth et al., 20164, 2017a]]. We demonstrate that NMC can
provide consistent estimates of nested expectations, including cases of repeated nesting, under
mild conditions; establish corresponding rates of convergence; and provide empirical evidence
that suggests these rates are observed in practice. We further establish a number of pitfalls
that can arise from naive nesting of Monte Carlo estimators and provide guidelines about how
they can be avoided. Our results show that whenever an outer estimator depends nonlinearly
on an inner estimator, then the number of samples used in both the inner and outer estimators
must, in general, be driven to infinity for convergence. In other words, an infinite number of
samples need to be used for each term in the outer estimator.

A key motivation behind this work is the ability of some PPSs to allow arbitrary nesting of
models [Mantadelis and Janssens, 201 1; Stuhlmiiller and Goodman) 2014 (for example using
the conditional construct in Anglican) such that it is easy to define and run nested inference
problems, such as done by [Ouyang et al., 2016; Le et al., 2016]. These nested inference problems
fall outside the scope of the conventional proof of the convergence of Monte Carlo estimation.
Thus additional work is required to prove the validity of the corresponding back-end inference
engines. However, the prevalence of NMC goes far beyond PPSs and so we will introduce it in a
more general context, before returning to assess the implications for PPSs in Section

We note that NMC should not be confused with a number of similarly named methods such
as nested sampling [Skillingl [2004]], nested SMC [Naesseth et al., [2015]], or multilevel Monte
Carlo [Heinrich, 2001]], none of which target explicitly nested estimation problems. Of these,
only nested SMC “nests” Monte Carlo methods as per our definition, but, as we will show later, it

is based on one of our special cases where the problem can be rearranged to a single, non-nested,
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estimation problem. Nested simulation, on the other hand, is an alternative term for NMC used

in, for example, the financial statistics literature [Gordy and Juneja, 2010].

10.1 Background

There are various problems involving nested expectations that require the use of nested estimation
schemes such as NMC. For example, the expected information gain used in Bayesian experimental
design requires the calculation of an entropy of a marginal distribution (see Chapter [I 1), and
therefore includes the expectation of the logarithm of an expectation. By extension, any
Kullback-Leibler divergence where one of the terms is a marginal distribution also involves
a nested expectation. Hence, our results have important implications for relaxing mean field
assumptions in variational inference [Hoffman and Blei, |2015; Naesseth et al., [2017; Maddison
et al., 2017] and deep generative models [Burda et al., 2015; Maalge et al., [2016; |Le et al.,
2017c]. Another common nested estimation scenario is calculating expectations with respect
to so-called doubly-intractable distributions [Mgller et al., 2006; [Murray et al., 2006; Liang,
2010], whereby the target distribution is only known up to a parameter-dependent normalizing
constant. Here the normalization constant itself represents an intractable expectation nested
within the overall expectation. NMC can also arise in contexts demanding the use of direct
Monte Carlo simulations, for example in portfolio risk management [Gordy and Juneja, |2010]]
and stochastic control [Belomestny et al., 2010]]. In particular, simulations of agents that reason
about decisions of other agents or which reason about sequential decision making processes
tend to include nested expectations. Thus problems like planning in games and “theory-of-
mind” type meta-reasoning tend to require some form of nested estimation [Stuhlmiiller and
Goodman, 2014; [Evans et al., [2017].

Certain nested estimation problems can be tackled by so-called pseudo-marginal methods
[Beaumont, 2003; |Andrieu and Roberts, 2009; Andrieu et al., 2010, [2015; Naesseth et al.,
2015]. These consider cases of Bayesian inference where the likelihood is intractable, but
can be estimated unbiasedly. From a theoretical perspective, they involve reformulating the
problem in an extended space with auxiliary variables that are used to represent the stochasticity
in the likelihood computation. This then enables the problem to be expressed as a single
expectation. Our work goes beyond this by also considering cases in which a non-linear mapping
is applied to the output of the inner expectation (such as the logarithm in the experimental
design case or the inverse for general doubly-intractable distributions), so that this reformulation

to a single expectation is no longer possible.
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NMC with non-linear mappings of the inner expectation has been previously considered in
the financial statistics literature, for example in the pricing of American options [Longstatf and
Schwartz,, 2001]]. Though most of this literature focuses on particular application-specific non-
linear mappings [Broadie et al.,|2011; Gordy and Juneja, 2010], convergence bounds for a more
general class of models has been shown by Hong and Juneja [2009]. We build on these results
and outline the opportunities and pitfalls of nesting Monte Carlo estimators in a machine learning
context. Our proofs apply to a more general class of problems than existing approaches. For
example, we provide the first convergence bounds for cases of multiple levels of estimator nesting
as might occur in a probabilistic programming system. We further lay out novel methods for
reformulating certain classes of nested expectation problems into a single expectation, allowing
the use of conventional Monte Carlo estimation schemes with superior convergence rates than
the naive use of NMC, one of which we exploit in Chapter [I1]to derive an improved estimator
for discrete Bayesian experimental design problems. Meanwhile, we provide theoretical results
showing that any Monte Carlo estimator using imperfect nested estimates is, in general, biased.

Finally, we provide numerical experiments, corroborating our theoretical results.

10.2 Problem Formulation

To recap from Chapter [5] the key idea of Monte Carlo is that the expectation of an arbitrary
function A\: ) — F C R under a probability distribution p(y) for its input y € ) can be

approximately calculated using:

1 X iid.
I=Epy) My)l & 5 2 Aya)  where y, < p(y). (10.1)
n=1

In this chapter, we consider the case that ) is itself intractable, defined only in terms of a
functional mapping of an expectation. Specifically, A(y) = f(y,7(y)) where we can evaluate
f:Y x ® — F exactly for a given y and y(y), but v(y) is the output of the following intractable

expectation of another variable z € Z:

either (y) = Epy) [0(y, 2)] (10.2a)

or Y(y) =Ey) [6(y, 2)] (10.2b)

depending on the problem, with ¢: ) x Z — ® C RP%. All our results apply to both cases,
but we will focus on (10.2a) for clarity. Estimating / involves computing two integrals, one

for y and the other for z. We refer to the approach of tackling both integrations using Monte
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Carlo as nested Monte Carlo (NMC):

I~ Zf Yn, (Aar)n)  where 1y, & p(y) and (10.32)
n—l

&(Yn, #nm) Where each z,,, ~ p(z|y,) independently .  (10.3b)

TL

||M§

In Section [T0.4] we will build on this further by considering cases with multiple levels of nesting,

where computing ¢(y, z) requires the computation of an intractable (nested) expectation.

10.3 Special Cases

We begin by discussing some special cases where it is possible to achieve a convergence rate of
O(1/N) in the mean square error (MSE) as per conventional Monte Carlo estimation [Robert,
2004]. Establishing these cases is important because it identifies what problems we can use
existing results for, when we can achieve an improved convergence rate, and what precautions
we must take to ensure this. The first case is that the top-level integrand f in our estimation
problem is linear. Section @ summarizes the well-known result in this case, which forms the
basis for pseudo-marginal, nested SMC [Naesseth et al., 2015]], and ABC methods. The next is
that y has finite possible realizations. The result for this case is given in Section[10.3.2] Though
intuitively straight-forward, it requires significant care to prove. The third case in Section [[0.3.3|
is concerned with the product of expectations. This result applies to many latent variable models
and a number of probabilistic program examples, e.g. when the probability of a program trace
is weighted by marginal likelihood estimates from other programs. The last case is that the
integrand f is a polynomial (Section [I0.3.4). It covers cases such as moment estimation and

opens up interesting possibilities in using tractable approximations to the integrand f.

10.3.1 Linear f

Suppose that f is integrable and linear in its second argument, i.e. f(y, av + pw) = af(y,v) +

Bf(y,w). In this case, we can rearrange the problem to a single expectation:

I=E[f (1. Elo(y. o)) = EBL 003, 2Dlyll = ELF0, 000 D] % 37 3 S0 6,20

where (Y, z,) ~ p(y)p(z|y) if v(y) is of the form of (10.2d) and y,, ~ p(y) and z, ~ p(z)
are independently drawn if (y) is of the form of (10.2b).
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10.3.2 Finite Possible Realizations of y

If y must take one of finitely many values y1, - - - , yc, then it is possible to use another approach
to ensure the same convergence rate as standard Monte Carlo. The key observation is to note that

in this case we can convert the nested problem (I0.1) into C' separate non-nested problems

I= ZP S Wes v (ye)) (10.4)

which can then be estimated using

C
In =Y (Py)c(fn). where (10.5)
c:Al 1 N
P(y:yc) ~ (PN)c: Nzﬂ(yn:yt) (10.6)
n=1
. 1 X
o2 = e = £ (1 3 6l 200 ) (10)
n=1

with y,, "% p(y) and Zne ~ D(2|ye) or z, . ~ p(z) depending on whether our formulation uses

(10.2al) or (10.2b). We can now show the following result, noting that as the same set of y,,’s is

used for every (PN)C, calculating Iy requires N samples of y, C'N samples of z (each drawn

independently to the samples of y), C'N evaluations of ¢, and C' evaluations of f.

Theorem 10.1. If f is Lipschitz continuous, then the mean squared error of Iy = 25:1 (]5]\/)c ( f' N)e

as an estimator for [ = X%, P(y = ye) f (e, 7(y.)) converges at rate O(1/N).
Proof. See [Rainforth et al., 2017al]. O

10.3.3 Products of Expectations

In this section we consider the scenario where () is equal to the product of multiple expectations,
rather than just a single expectation as per (10.2a)), namely
L
I'= By [f <y> 11 B [?ﬂe(%%)])] : (10.8)
=1
We now show that the product of expectations [1;_; E,(.,1,) [¢e(y, 2¢)] can be rearranged to
a single expectation and so the estimation of [ corresponds to the formulation laid out in
Section Consider the set of random variables {z;},—;.;, such that each zj|y ~ p(z¢|y) and
the z; are independent of one another. This can be achieved by, for example, taking L independent
samples from the joint Z, g p(21.1]y) and using the /*" such draw for the /*" dimension of
2/, i.e. setting z; = {Z;},. For every y € ) we now have

L
HEp(zdy Q/JE ,%Zﬁ HE 21Y) W Y, ZZ)] = E ({zp}e=1:L1y) lH y,Zg ]

(=1
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which is a single expectation on an extended space and implies that (10.8) fits the NMC formula-
tion. Furthermore, we can now show that if f is linear, the MSE of the NMC estimator ((10.8))
converges at the standard Monte Carlo rate O(1/N), provided that the number of samples used

in the inner estimators remains fixed.

Theorem 10.2. Consider the NMC estimator
1 N L 1 M,
_7Zf ynaHiZ¢é(ymZ;gm)
N n=1 =1 M, m=1 .

where each y,, € Y and z! € 2, are independently drawn from y, ~ p(y) and 2}, 4 ,|yn ~

n,l,m
p(2e|yn), respectively. If f is linear, the estimator converges almost surely to I, with a convergence

rate of O(1/N) in the mean square error for any fixed choice of { My} ¢—1.1.
Proof. See [Rainforth et al., 2017a]. O

As this result holds in the case L = 1, an important consequence is that whenever f is linear,
the same convergence rate is achieved regardless of whether we reformulate the problem to
a single expectation or not, provided that the number of samples used by the inner estimator
remains fixed. Conversely, as we will show in Section [10.4] if f is nonlinear, it will be necessary
for the number of samples in both the inner and the outer estimators, i.e. N and each M, to

increase in order to achieve the convergence of (10.3).

10.3.4 Polynomial f

Perhaps surprisingly, when f is of the form
J
)= g;(y)vi(y)* where «; € Zso, Vi€ {L,...,J} (10.9)

then it is also possible to construct a standard Monte Carlo estimator by building on the ideas

introduced in Section [[0.3.3]and those introduced by (Godal[2016]]. The key idea is to note that

(El2])’ =E[]E[2] = E[22]

construct the following non-nested Monte Carlo estimator:

&y

where z and 2’ are i.i.d. Therefore, assuming appropriate integrability requirements, we can
_ J
= 3B loy ) Bloto. 51" = - 508 [Tl o030
j=1 j=1 =1

J Qj 1 N J Qaj
=ZE[gj<y>H¢<y,zM]z zzgynn e (1010)
1

(=1 nlj 1 =

Here each z;,,, ~ p(z;]y) is drawn i.i.d. from the corresponding conditional distribution.
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10.4 Convergence of Nested Monte Carlo

Since we cannot always unravel the target estimation using one of the special cases in the previous
section, we must resort to NMC (or another nested estimation scheme) in order to compute [ in
general. Our aim here is to show that approximating / ~ I, is in principle possible, at least
when f is well-behaved. In particular, we establish a convergence rate of the mean squared error
of Iy ar and prove a form of almost sure convergence to I. We further generalize our convergence
rate to apply to the case of multiple levels of estimator nesting.

Before providing a formal examination of the

convergence of NMC, we first provide more intuition

about how we might expect to construct a convergent @ @ @ oo
NMC estimator. Consider the diagram shown in

Figure [I0.1] and suppose that we want our error o e o o
to be less than some arbitrary . Assume that f
is sufficiently smooth that we can choose M large a1 ZM2 aa)| e
enough to make |1 — E [f(yn, (Jar)n)]| < € (we will

characterize the exact requirements for this later). . . . g

) Fi 10.1: C tati
For this fixed M, we have a standard Monte Carlo lgure onvergence representation

estimator on an extended space v, z1, . . . , 2)s such that each sample constitutes one of the red
boxes. As we take N — oo, 1.e. taking all the samples in the green box, this estimator converges
such that Iy — E[f(Yn, (Far)n)] a8 N — oo for fixed M. As we can make ¢ arbitrarily
small, we can also achieve an arbitrarily small error.

Convergence bounds for NMC have previously been shown by Hong and Juneja [2009] in
the financial statistics literature. Under the assumption that 4 is Gaussian distributed (which is
often reasonable due to the central limit theorem) and that f is thrice differentiable other than at
some finite number of points, they have shown that it is possible to achieve a converge rate of
O(1/N + 1/M?). We now show that these assumptions can be relaxed to only requiring f to
be Lipschitz continuous, at the expense of weakening this bound to O(1/N + 1/M).

Theorem 10.3. If f is Lipschitz continuous and f (Y, Y(Yn))s ®(Yn, 2n.m) € L?, the mean squared
error of In p converges to 0 at rate O (1/N + 1/M).

Proof. The Theorem follows as a special case of Theorem [10.5 which provides an exact form for
this bound and a tighter bound that holds when f is continuously differentiable. See also|Rainforth

et al. [2017a] for a more accessible proof of this particular result. [
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Remark 10.1. This result can be carried over to cases where there are finite numbers of points
for which f is not Lipschitz continuous by decomposing the estimator into separate truncated

functions as per Hong and Juneja [2009)].

Inspection of the convergence rate above shows that, given a total number of samples 7" = M N,
our bound is tightest when N oc M, with a corresponding rate O(1/+/T) (see Rainforth et al.
[2017a]). When the additional assumptions of Hong and Junejal [2009] apply, this rate can be
lowered to O(1/72/3) by setting N o< M?2. We note that the result of Theorem was recently
independently derived by Fort et al.| [2017] in work published shortly after our own [Rainforth
et al., 2016a]. [Fort et al. [2017]] also show that a O(1/N + 1/M?) convergence rate can be
achieved under weaker assumptions than those of |Hong and Junejal [2009], namely that f is
continuously differentiable, and that these results hold when the y,, are generated by a valid
Markov chain, instead of being i.i.d..

We next consider the question of what is the minimal requirement on f to ensures some
form of convergence? For a fixed single y1, we have that (§u)1 = =7 Som—; d(y1, 21,m) — V(Y1)
almost surely as M — oo, because the left-hand side is a Monte Carlo estimator. If f is continuous
around vy, this also implies f(y1, (9ar)1) — f(y1,7(y1)). Our candidate requirement is that this
holds in expectation, i.e. that it holds when we incorporate the effect of the outer estimator. More
precisely, we define (€rr)n = | f(Yn, (9ar)n) — f(Yn, 7(yn))| and require that E [(epr);] — 0 as
M — oo (noting that (ey/), are i.i.d. and so E[(ep)1] = E[(ex)n],¥n € N). Informally,
this “expected continuity” requirement is weaker than uniform continuity (and much weaker
than Lipschitz continuity) because it does allow (potentially infinitely many) discontinuities

in f. More formally we have the following result.

Theorem 10.4. Forn € N, let (éxr)n, = | f(Yn, Aar)n) — fWYn, Y(Yn))| . Assume that E [(epr)1] —
0 as M — oo. Denote by §2 the sample space of our underlying probability space, so that Iy v
can be thought of as a map from <) to R. Then, for every § > 0, there exists a measurable As C )
with P(As) < 6, and a function 75 : N — N such that, for all w & As,

I,

sonm(w) =1 as M — oo.

Proof. See [Rainforth et al., 2017a]. ]

As well as providing proof of a different form of convergence to any existing results, this result
is particularly important because many, if not most, functions are not Lipschitz continuous due

to the their behavior in the limits. For example, even the function f(y,v(y)) = (v(y))” is not



10. Nested Estimation 201

Lipschitz continuous because the derivative is unbounded as |y(y)| — oo. On the other hand,
the vast majority of problems involving this f will satisfy E [(exs)1] — O.

We next consider the case of multiple levels of nesting. To formalize what we mean by
arbitrary nesting, we first assume some fixed integral depth D > 0, and real-valued functions

fo,-++, fp. We then define

YD (y(O:D_1)> =E [fD ( )‘y (-0~ } and
’Yk(y(ozkfl)) [fk ( 77k+1 ( ))‘y . }
for 0 < k < D, where y®) ~ p (y(k) \y(ozk‘l)). Note that our single nested case corresponds to

the settingof D =1, fo = f, f1 = ¢,y =y, y) = 2,4y = I, and 7; = 7. Our goal is to
estimate v = E [ fo (y(o Y1 (y( )))} To do so we will use the following NMC scheme:

I (y(O:D—1)> _ 1 %Jif <y(OD 1) y( )) and

D ND — D yIn

I (V) = ]\1, %k: i (v 5Dy 0 I (550, )
k n=1

for 0 < k < D — 1, where each y(k) ~ P ( (k) |y(0’k_1)) is drawn independently. Note thus
that there are multiple values of y'*) for each possible 3**~1) and that I, (y(O:k_l)) is still
a random variable given y(®*~1),

We are now ready to provide our general result for the convergence bounds that applies to
cases of repeated nesting, provides constant factors (rather than just using big O notation), and
shows how the bound can be improved if the additional assumption of continuous differentiability
holds. We note that for the particular case of a single nesting without continuous differentiability,

then the bound is exact is the sense that, in addition to providing the required constant factors,

there are no higher-order terms that are only dominated asymptotically.

Theorem 10.5. If fy,--- , fp are all Lipschitz continuous with associated Lipschitz constants
Ofk ) Y (y O
K, = sup ( 1l >>, VkeO,...,D—1
y(0:h) OVrg1

and if

{(fk( 9 (5)) =7 (‘0“>))2]<oo Vk€0,...,D

then the mean squared error E {(IO — Y% 2} converges to 0 with rate

E[(lo—%)*] < ngi Z(H f@) O(e) (10.11)
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where O(€) represents terms that become dominated as Ny, ..., Np — oc.

If fo,- -+, fp are also continuously differentiable with first derivative bounds Ky, ..., Kp
02 fr (v O g1 (y(O))

and second derivative bounds Cj, = sup o) 577 ,Vk €0,...,D — 1, then
k+1
this mean square error bound can be tightened to
C D—-2 O C 2
E [l — 0] < 2 + 1 Ogl > H K| Z552) Lo, (1012)
Ny 4 N2

In the case of a single nesting we can further characterize O(¢) to give
]E{([o— )2} < §0 4K§ 2Ky Kg§12
No NON1 NO\/WI Nl
s Cidt 1 K3t 2Koq C3st 1
E (1, — ~)2 S0 051 <1 > 051 051 L
(o =0)"] < Ny Tanve Ut TN, T v, 0t e Y\
(10.14)

(10.13)

for when the continuous differentiability assumption does not hold and holds respectively.
Proof. See [Rainforth et al., 2017al]. ]

At a high level, the key points of these results are a convergence rate of O(>"._, 1/N}.) when only
Lipschitz continuity holds and O(1/Ny + (3£_, 1/N)?) when all the f; are also continuously
differentiable. As estimation requires drawing 7' = []5_, N, samples, the convergence rate
will rapidly diminish with repeated nesting. More precisely then the optimal convergence rates,
as shown Rainforth et al.| [2017a], are O(T' D;fl) and O(T D;+22) respectively for the two cases
(note the single nesting case is ) = 1), both of which imply that exponentially more samples

are required to achieve a given error as D is increased.

10.5 The Inevitable Bias of Nested Estimation

The previous section confirmed the capabilities of NMC; in this section we establish a limitation
by proving that NMC schemes must produce biased estimates of I(f) for certain functions
f. In fact, our result applies more generally: we show that this holds for any Monte Carlo
scheme that makes use of imperfect estimates én of v(yn), either via a nested Monte Carlo
procedure (e.g. fn = (Am)n), or when these inner estimates are generated by some other
potentially deterministic methods such as a variational approximation [Ble1 et al., [2016] or

Bayesian quadrature [O’Hagan, |1991].

Theorem 10.6. Suppose that the random variables C, satisfy P(fn # Y(yn)) > 0. Then we can
choose f such that if y, ~ p(y), E [% SN F(yn, fn)} # I(f) for any N (including N — 00).
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Proof. Take f(y,w) = (v(y) — w)? Then f(y,~(y)) = 0, so that I( f) = 0. On the other hand,
F(¥n,Ca) = 0since f is non-negative. Moreover, f(y,,C,) > 0 on the event {C, # v(yn)}.

Since we assumed this event has nonzero probability, it follows that £ [ £ (Yn, f‘n)] > (0 and hence

[ nyn,cn]— ZE[ (s Gn)] > 0= 1(f)

which gives the required result. 0

By Jensen’s inequality, it also follows relatively straightforwardly (see Rainforth et al. [2017a])
that any strictly convex or concave f entails a biased estimator when (, is unbiased but has
non-zero variance given y,, €.g. when fn is a Monte Carlo estimate. For certain nonlinear
f, it may still be possible to develop unbiased estimation schemes using Russian roulette
sampling [Lyne et al., |2015] or other debiasing techniques. However, this induces its own
complications: for some problems the resultant estimates have infinite variance [Lyne et al.,
2015]] and as shown by Jacob et al.| [2015], there are no general purpose “f-factories” that
produce both non-negative and unbiased estimates for non-constant, positive output functions

f : R — RT, given unbiased estimates for the inputs.

10.6 Empirical Verification

The convergence rates proven in Section [I0.4] are only upper bounds on the worst-case per-
formance we can expect. We will now examine whether these convergence rates are tight
in practice, investigate what happens when our guidelines are not followed, and examine the
effect of different strategies for choosing N, under a sample budget. We note that one of the
main applications of our results is provided later in Chapter[TT] while an additional real-world

example is given in [Rainforth et al., 2017a].

10.6.1 Simple Analytic Model

We start with the following simple analytically calculable problem
y ~ Uniform(—1, 1), z ~N(0,1),

o(y,2) = \/2/mexp (<2(y — 2)), F(,7(y)) = log(y(y)) = log(E.[6(y, )])

for which I = E, ) [f (y,Ep(z‘y) [o(y, z)])} =  (log(2) — log(5) — log(m)) — &. Figure|10.2a)
shows the corresponding empirical convergence obtained by applying (10.3)) to (10.13]) directly.

(10.15)

It shows that for this problem the theoretical convergence rates from Theorem [10.5]are indeed

realizedﬂ The figure also demonstrates the danger of not increasing M with /N, showing that

"Note the continuous differentiability assumption is satisfied as y(y) # 0 or oo for any y € [—1,1].
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(a) Convergence of NMC for different 7. (b) Final error for different 7" and V.

Figure 10.2: Empirical convergence of NMC for (I0.13]). Shown left is the convergence in total samples
for different ways of setting M and N. Results are averaged over 1000 independent runs, while shaded
regions give the 25%-75% quantiles. We see that the theoretical convergence rates (as shown by the dash
lines) are observed. The fixed M case converges at the Monte Carlo error rate, but to a biased solution.
Shown right is the final error for different total sample budgets as a function of o where N = T and
M = T~ iterations are used for the outer and inner estimators respectively. This shows that even though
a = 2/3 is the asymptotically optimal allocation strategy, this is not the optimal solution for finite 7.
Nonetheless, as 7" increases, the optimum value of « increases, starting at around 0.5 for T' = 102 and
reaching around 0.6 for 7' = 107.

the NMC estimator converges to an incorrect solution when )/ is held constant. Figure[10.2b|
shows the effect of varying N and M for various fixed sample budgets 7" and demonstrates that

the asymptotically optimal strategy can be suboptimal for finite budgets.

10.6.2 Repeated Nesting

We next consider some simple models with multiple levels of nesting, starting with

y @ ~ Uniform(0,1), y® ~N(0,1), y@ ~ N(0,1), (10.16a)
fo (¥ (¥9)) =logn (y) (10.16b)
A1 (4,9 (yO1)) = exp (—; (4 = 5@ —log . (y(“)))) (10.16¢)
fo (%) = exp (y@) - W) (10.16d)
)

which has analytic solution / = [E [fo (y(o .E [fl (y((“), E [fg (y(0:2)> ‘y(m)D ‘y(O)D} = —3/32.
The converge plot shown in Figure shows that the theoretically expected convergenceﬂ
behaviors are observed for different methods of setting Ny, /N1, and Ns.

We next consider the empirical performance of different strategies for choosing Ny, Ny, No

under a finite fixed budget 7' = Ny /N1 N>. To do this, we define «; and o such that Ny = T,

2Strictly speaking the assumptions of Theorem are not actually satisfied for this model and the later
modifications because K1 = C; = oo. However, we see convergence behavior as if the assumptions were satisfied.
This highlights the importance of Theorem because f; does satisfy this weaker assumption.
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Figure 10.3: Empirical convergence of NMC to (I0.16) for an increasing total sample budget 7' =
NoN1Ns. Results are averaged over 1000 independent runs, while shaded regions give the 25%-75%
quantiles. Shown in red is the convergence with a fixed No = 5 and N; = N3, for which we see gives
convergence to a biased solution, such that the error remains bounded as 7" increases. Shown in blue is the
convergence when setting Ny = N1 = Na, which we see converges at the expected O (T -1/ 3) rate. The
black dashed lines provide a reference for this expected convergence of this estimator. Shown in green is
the convergence when setting Ng = N7 = N2 which we see again gives the theoretical convergence rate,
this time O(Tfl/ 2) with the dashed green lines providing reference.

N, = Te2(=21) "and N, = T(1=e1)(1=a2) and then consider the variation in the mean squared
error with (a1, ). In particular, we look to establish the optimal empirical setting under the
fixed budget 7' = 10°. To investigate how sensitive the empirically optimal allocation is to the
problem at hand, we consider both the model described in and also two slight variations.

The first keeps everything the same as (10.16) except the following replacements

y© ~ Uniform(—1,1), (10.17a)
(1) 4 @) — 4O
fo (42 = exp <y i T ) (10.17b)

while the second instead replaces y(*) with 3 /10 in the definitions of f; and f,. The two
respectively have analytic solutions of / = 11/32 and I = 39/160.

To try and find the optimal (v, a5) and establish the variation of the MSE more generally, we
ran a Bayesian optimization algorithm (specifically the “Black-box Bayesian optimization™ algo-
rithm of Rainforth et al.|[2015]) to optimize the mean squared error, estimated by averaging 1000
trials at each iteration, with respect to (v, ap). This produced the performance characterizations
shown in Figure corresponding to contour plots of log,, (E [(Iy — 7)?]) as estimated by the
surrogate function generated after 200 Bayesian optimization iterations. It further found respective
optimal values for (a, as) of (0.53,0.36), (0.55,0.69), and (0.38, 0.45), giving corresponding
values for (No, Ny, No) of (1563,10,64), (1957,73,7), and (192,47,111)f] By comparison,

3Note that there is inevitably a small bias introduced by the fact that each Ny, has to be a whole number. The true
values of 7" used for these solutions were 1000320, 1000027, and 1001664 respectively.
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(a) Original (b) First modification (¢) Second modification

Figure 10.4: Contour plots of log; (E [(Zo — 70)?]) (i-e. log;y MSE, estimated by averaging over 1000
individual estimations) for different allocations of the sample budget ' = 10% between Ny, Ny, and N
for problem shown in (10.16) and two modifications explained in the text.

the asymptotically optimal setup suggested by our theoretical results is a; = ap = 0.5 giving
Ny = 977, N1 = 32, and N, = 32. This demonstrates that even for relatively large values of
T, the finite budget optimal allocation can vary significantly from the asymptotically optimal
solution. We also see that the relative optimally can change quite significantly with changes
to the target problem. For example, the second modification meant it was more preferable to
run fewer iterations of the outer estimator, perhaps because it reduced the relative importance
of ©) compared to the other variables in f; and f,. However, further work is required to
establish concrete empirical guidelines and investigate whether methods that adaptively allocate
the number of samples might be feasible. In the meantime, the asymptotically optimal choice
(presuming continuous differentiability) of Ny oc N7 oc -+ oc N2 seems to a reasonable

practical choice on average.

10.7 Implications For Nesting Probabilistic Programs

Given our results, it is now natural to ask: what are the implications for nesting probabilistic
programming queries In particular, when is doing this valid and are there any precautions
we can take to avoid problems? Before we get to these questions though, we first need to
explicitly define what we mean by a nested query. To this end, we distinguish between nested
calling structures (such as the example given in Figure and queries that do not represent a
single estimation, which we will refer to as nested queries. Our motivation for defining only
the latter as nested is that cases of the former can always be represented as a single query,
because they still represent a single expectation and define models for which the unnormalized

target distribution can be evaluated exactly. Therefore, although these models are of clear

*A more up-to-date version of the work in this section is provided in [Rainforth, [2018].
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importance, they are not a fundamentally different problem class to standard Bayesian inference
problems and so we assert that existing Monte Carlo converge results directly apply. However, it
can be deceptively difficult to establish whether a model requires query nesting or just nested
calling. For example, the Schelling coordination example we gave in Figure is clearly an
example of a nested calling structure as it is explicitly a single query, while the original version
of this problem [Stuhlmiiller and Goodman, 2014, Figure 6] is actually an (equivalent!) example
of a true nested query. It turns out that this constitutes one of our special cases that can be
reformulated to a single estimate (namely no random variables are passed fo the nested query). In
the rest of this section, we will delineate possible ways one might want to nested probabilistic
program queries and assert their respective correctness (or lack thereof) and required conditions.
Namely, we will consider sampling from the conditional distribution of another query, observing
another query, and using estimates as variables in another query. We will further identify some
special cases which can be rearranged to single estimators or provide Monte Carlo convergence

rates even when expressed as nested queries.

10.7.1 Nested Sampling

One of the clearest ways one might want to nest queries is by sampling from the conditional
distribution of one query inside another query. Due to the “sample then check™ setup of
Church, all of the examples given in [Stuhlmiiller and Goodman| [2014]] are by proxy this
type of query nestingE] as is any usage of the conditional predicate in Anglicanﬁ Such
problems fall under a more general framework of nested inference Mantadelis and Janssens
[2011] or equivalently inference for so-called doubly intractable distributions [Murray et al.,
2006]] (or multiply intractable distributions for repeated nesting [Stuhlmiiller and Goodman,
2014]). The key feature of these problems is that they include terms with unknown, parameter
dependent, normalization constants. For nested probabilistic programming queries, this is
manifested in conditional normalization within a query. Consider as an example the following

model using a nested calling structure

(defm inner [y D] (defquery outer [D]

(let [z (sample (gamma y 1)) ] (let [y (sample (beta 2 3))
(observe (normal z y) D) z (inner y D)]

z)) (* v 2)))

SEven though the nested calls are made inside the conditioning predicate for these examples, the semantics of the
language is to sample these and then check if the predicate holds as a hard constraint. This is equivalent to doing a
nested sampling in the program and then evaluating a deterministic predicate using our PPL notation.

SThis is because conditional is only currently supported for use with sample statements and inference
algorithms that do not require the density to be evaluated.



10. Nested Estimation 208

compared to a following nested query model

(defquery inner [y D] (defquery outer [D]
(let [z (sample (gamma y 1))] (let [y (sample (beta 2 3))
(observe (normal z y) D) dist (conditional inner)
z)) z (sample (dist y D))]
(* vy 2)))

where we have replaced the defm with a query nesting. The unnormalized distribution on traces

for the first model is straightforwardly given by
n(z,y,D) = p(y)p(z|y)p(Dly, 2) = BETA(y; 2, 3)GAMMA (23 y, N (D; 2, %),

for which we can clearly use conventional Monte Carlo inference schemes. The second model
is only subtly, but critically different in that p(z|y)p(D|y, z) is conditionally normalized before

being used in the outer query

ply)p(Ply,2) ()p(Z\y)p(Dw’Z)
I p(zly)p(Dly, 2)dz p(Dly)

The key point here is that the partial normalization constant p(D|y) depends on y and so

Ya2(z,y, D) = p(y)p(zly, D) = p(y) # (2,9, D).

v2(z,y, D) is doubly intractable because we cannot evaluate our unnormalized target distribution
exactly. By normalizing p(z|y)p(D|y, z) within the outer query, conditional has changed the
distribution defined by the program. Another interesting way of looking at this is that wrapping
inner in conditional has “protected” y from the conditioning in inner — noting that
Y1 (2,9, D)  p(y|D)p(z|y, D) — such that the observe statement only affects the probability
of z given y and not the probability of y.

Unfortunately the inverse function f(z) = 1/x constitutes a nonlinear mapping and so
expectations with respect to nested queries defined in this way using conditional will generally
require nested estimation schemes unless we can find a means of sampling from p(z|y, D) exactly
with finite computational budget. The obvious question is therefore what behavior do we need for
conditional, or query nesting through sampling more generally, in order to ensure consistency?

One possible approach would be to attempt to use an exact sampling method for sampling
from conditional. Presuming we cannot do this analytically [Cornish et al., [ 2017]], the most
obvious way to generate such exact samples is using rejection sampling (see Section[5.3.1)), as
done in Church[] However, even this opens up a minefield of theoretical and practical questions.
For example, because the acceptance rate of an inner query might depend on the value of the input
variable, it would presumably not be valid to generate all the variables at once and then only accept

the sample if every condition is satisfied. Church instead takes an approach whereby no sample

"Note, though, that this is not the only way to generate exact samples from an unnormalized target distribution
(see e.g. [Craiu and Meng, 2011]).
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ever returns until it passes its local acceptance criterion. Although doing this for soft conditioning
in an automated way might be insurmountably problematic (because of the need to choose a
valid C in (5.18)), it does open up the intriguing prospect of providing a standard Monte Carlo
convergence rate for a set of inherently nested problems. This is because although the performance
clearly gets exponentially worse with increased nesting (as the probability of a successful return is
the product of an increasing number of expected acceptance rates), this is a change in the constant
factor of the computation, not its scaling with the number of samples taken. This is perhaps
easiest to see by noting that generating a single exact sample of the distribution can be done in
finite time using rejection sampling (and thus still converges with a fixed Ny, ..., Np), whereas
in general NMC we had that Ny, ..., Np need to increase as N, increases for convergence. If
correct, this assertion would be a somewhat startling result: it suggests that Monte Carlo estimates
made using nested rejection sampling have a fundamentally different convergence rate for nested
inference problems (though not nested estimation problems more generally) than, say, nested
self-normalized importance sampling (SNIS). Amongst other things, this might lead, perhaps
through combination with the work of Mgller et al.| [2006], to a contradiction of the, ostensibly
very reasonable, conjecture made by Murray and Ghahramani| [2004] that there are no generic
tractable MCMC schemes for doubly intractable distributions. It is beyond the scope of the work
to analyze this hypothesis more formally, or the rabbit hole of nested exact sampling methods
more generally, but we highlight that this constitutes a potentially fascinating line of inquiry.
Without access to exact sampling methods, it is straightforward to see that asymptotic bias
(i.e. bias even if we take an infinite number of samples from the outer query) is, in general,
unavoidable for query nesting if each call of conditional only carries out finite computation.
This follows from our general NMC results and the fact that normalization constitutes a nonlinear
mapping. For example, imagine we use SNIS to generate outputs from conditional with a fixed
number of internal samples proposed for each given as output. As we showed in Section[5.3.2.1]
expectations with respect to these samples will be biased, which we can think of in the NMC
context as occurring because the inversion of the unbiased marginal likelihood estimate induces a
bias. In addition to the possibility that we might be able to get around this problem using exact
sampling as discussed in the last paragraph, it might also be possible to use debiasing techniques
to remove the particular bias that is generated, see e.g. Glynn and Rhee [2014]]; Jacob et al.|[2017].
One special case where consistency can be maintained, even without rearrangement, is if
the inner query takes no random variables as inputs, as is the case for the Schelling coordinate

example in [Stuhlmiiller and Goodman, 2014, Figure 6]. A condition for this is that we use a
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method that provides an unbiased estimate of the marginal likelihood (e.g. importance sampling
or SMC) and weight the trace appropriately with the product of this marginal likelihood estimate
and the internal self-normalized weight of the returned sample. If this conditioned is maintained,
we can demonstrate the validity of the approach by noting that the normalization constant of
the nested query is not parameter dependent, i.e. p(D|y) = p(D) using the notation from our
earlier example. It can, therefore, be factored into that of the outer query as the nested query
now defines the same distribution as if the conditional query were replaced with a defm. We
can therefore actually view inference on such problems as taking a pseudo-marginal approach,
provided that all samples returned from conditional are properly weighted [Naesseth et al., 2015]]
as previously described. The correctness of this approach then clearly follows from a combination
of Theorems[10.1]and [10.2] However, Anglican’s current use of conditional does not satisfy
our requirement as it only returns unweighted samples Therefore, for Anglican to provide
consistent estimates in such situations, we would need to change the probabilistic semantics of
conditional, such that it both produces a sample and simultaneously weights the trace using
the unnormalized weight of the returned particle in the inner query. In other words, it would

need to operate in a similar fashion to the following simplified code

(defn conditional-sample [inner—-query inputs inf-alg M inf-opts]
(let [samp (nth M (doquery inf-alg inner—-query inputs inf-opts)) ]
(observe (factor) (get-log-weight samp))
(:result samp)))

where we first run inference with budget M to produce a sample, then weight the program trace
using the (unnormalized) sample weight, and finally return the value of the sample. Remember
though that this only addresses the special case where input is not a random variable and
inf-alg is an inference algorithm producing properly weighted samples.

Another special case is problems where the variables passed to the inner query can only take
on, say C, finite possible values. As explained in Section |[10.3.1} such problems can always
be rearranged to C' separate estimators such that the standard Monte Carlo error rate can be
achieved. For repeated nesting, this rearrangement can be recursively applied until one achieves
a complete set of non-nested estimators. This special case is one which requires rearrangement
or a specialist consideration by the language back-end (as done by Stuhlmiiller and Goodman
[2012,2014]; Cornish et al.| [2017]), with naive implementations leading to NMC convergence

rates. It emphasizes that nested problems with continuous variables are a fundamentally different

8Unfortunately, this means that, though still practically potentially useful, Anglican’s current usage of
conditional for nesting never provides consistent estimates unless the inner query contains no conditioning, in
which case its behavior is equivalent to defm anyway. It should be noted, though, that no claims to the contrary
have ever been made, with conditional still very much a developmental feature of the language.
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problem class to those with only discrete bounded variables (or only continuous variables at the
bottom layer) and we must, therefore, be wary of presuming that results from the discrete case
carry over. Nonetheless, in the same way that it is often necessary to use Monte Carlo rather than
enumeration for inference in discrete problems because there are too many possible outcomes to
enumerate, it will still often be necessary from a practical perspective to use NMC for discrete
problems. Ideally one should then do this in a manner that identifies and exploits the fact that the
inner estimator is often called multiple times with the same inputs such that the samples from

these calling can be combined (e.g. as done by Stuhlmiiller and Goodman| [2012])).

10.7.2 Nested Observation

An alternative way one might wish to nest queries is through nested observation, whereby we
observe the output of another query rather than sampling from it. For hard-constraints such
as used in Church, this is equivalent to query nesting through sampling. However, for soft
constraints it can be substantially different. The distinction is the same as that between sample
and observe — we are observing an outcome of a program, rather than sampling from it. As
observe returns no outputs, the mathematical interpretation of observing the output of another
query is that we are weighting the outer program trace by the partition function estimate of the
inner query. Presuming that our partition function estimates are unbiased (which they will be
if we use, say, SMC for the inner estimator), then this corresponds to a particular instance of
the products of expectations special case covered by Theorem [I0.2] It, therefore, immediately
follows that if the outer estimator uses importance sampling, then such an approach is consistent.
More generally, this case corresponds to a pseudo-marginal approach where the samples from
the inner estimator are never returned. We can, therefore, use existing results to demonstrate
the consistency of the approach for other choices of outer estimator. For example, consistency
when using SMC in the outer estimator follows directly from a combination of Theorem [10.2]
and the results of [Naesseth et al.| [2015]. It should also be possible to construct consistent
approaches using MCMC samplers at the top level as per Andrieu and Roberts| [2009]], but
this would require more careful consideration.

In addition to the statistical complications just discussed, there are some significant semantic
complications associated with observing another query: there are actually two ways we might
want to “observe” a nested query. The first is simply to run the nested query unmodified and
factor the trace probability by the marginal likelihood estimate. This is a perfectly reasonable

thing to want to do, allowing us to, for example, construct a PMMH sampler (see Section [6.2.4).
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(defm prior [] (normal 0 1)) (defquery outer—-g [d M]
(defm 1lik [theta d] (normal theta d)) (let [theta (sample (prior))
y (sample (lik theta d))
(defquery inner-qg [y d] log-lik (observex
(let [theta (sample (prior))] (lik theta d) vy)
(observe (lik theta d) vy))) log-marg (inner-E y d M)]

(= log-lik log-marg))))
(defn inner-E [y d M]

(=>> (doquery :importance (defn outer—-E [d M N]
inner-g [y d]) (=>> (doquery :importance
(take M) outer—-qg [d M])
log-marginal)) (take N)
(map :result)
(with-primitive-procedures [inner-E] mean) )

Figure 10.5: Anglican code for Bayesian experimental design corresponding to the estimator given
in (IT.8). By changing the definitions of prior and 1ik, this code can be used as a NMC estimator
(consistent as N, M — oo) for any static Bayesian experimental design problem. Here observex is
a function for returning the log likelihood (it does not affect the trace probability), log-marginal
produces a marginal likelihood estimated from a collection of weighted samples, and —>> successively
applies a series of functions calls, using the result of one as the last input the next. When outer-E
is invoked, this runs importance sampling on outer—g, which, in addition to carrying out its own
computation, calls inner—E. This in turn invokes another inference over inner—gq, such that a Monte
Carlo estimate using M samples is constructed for each sample of outer—qg. Thus 1og-marg is Monte
Carlo estimate itself. The final return is the (weighted) empirical mean for the outputs of outer—-aq.

In fact, this was exactly what we did alongside some manual code transformations to construct
the PMMH benchmarks for BOPP in Section[9.5] However, this is not really observing the output
of the inner query: it is instead a means of replacing an analytic likelihood term with an unbiased
estimate. The other way we might thus want to observe a query is to estimate the likelihood
of it producing a particular output. Unfortunately, in general, this will be infeasible (at least
without code analysis) because the density of the output variables is affected by deterministic
computations in the query (see discussion of program outputs in Section 4.3.T)). This is identical
to the problem we encountered for BOPP, where we could not optimize with respect to arbitrary
variables in the program because of not being able to calculate their density. This now presents
an interesting possibility — we could use exactly the same marginal transformation as in BOPP,
but then use this to estimate the partition function with certain variables “clamped”. We can
actually think of BOPP as being a nested estimation scheme where the outer estimator is an
optimizer. Therefore, we could use the same framework as BOPP but replace the BO optimizer
with an estimation scheme, i.e. the outer query. In fact, if desired, we could even maintain the
same usage of the GP surrogate in BOPP to, for example, carry out estimation using Bayesian

quadrature [Osborne et al., 2012] or the scheme laid out by [[Gutmann and Corander, 2016].
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10.7.3 Estimates as Variables

The third and final way we consider using nested estimation in probabilistic programming is
to use expectation estimates as first class variables. In our previous examples, nonlinear usage
of expectations only ever manifested through inversion of the normalization constant. These
methods are therefore clearly insufficient for expressing more general nested estimation problems
as would be required by, for example, experimental design. Anglican does not explicitly support
such behavior inside pure Anglican code, but one can still enforce such behavior by either
calling doquery inside a defdist deceleration or in a defn function passed to a query using
with-primitive-procedures. An example of this is shown in Figure[I0.5|corresponding to
a program for carrying out Bayesian experimental design (see Chapter [IT). The validity of this
“estimates as variables” approach is effectively equivalent to that of NMC more generally (as this
effectively allows any nested estimation problem to be defined) and needs to be considered on a

case-by-case basis as per the general guidelines we have provided throughout this chapter.



Automated Adaptive Design

From tuning microscopes to designing surveys on politics, all problems of experimental design can
be reduced to the same mathematical abstraction: choosing a design that maximizes the expected
information gained from the experiment. Bayesian experimental design (BED) [Chaloner and
Verdinelli, |1995; Sebastiani and Wynn), 2000] provides a powerful framework for this abstraction.
In BED one constructs a likelihood model for the experiment outcome and then uses this, along
with a prior on the parameters one wishes to learn about, to find the experimental setup that
maximizes the expected information gathered by the experiment. If the model is correct, this
forms a design strategy that is optimal from an information-theoretic viewpoint [Sebastiani and
Wynn, 2000]. The general nature of its formulation means that BED can, at least in principle,
be applied to almost any experimental design situation and it has been successfully used in a
wide array of fields such as psychology [Myung et al., 2013}; (Cavagnaro et al., 2014; Vincent and
Rainforth, 2017]], Bayesian optimization [Hennig and Schuler, 2012} |Hernandez-Lobato et al.,
2014], and bioinformatics [[Vanlier et al., 2012]. BED can be particularly useful in sequential
design settings, where it provides a means of constructing adaptive strategies that use previous
experience in order to make decisions which optimize the sequential learning process.
Unfortunately, as we alluded to in the previous chapter, BED problems, in general, require
the calculation of a nested estimation. In this chapter, we will provide a brief introduction to
BED and show how our results from the last chapter can be used to derive a new estimator for
BED equations which has a better convergence rate for discrete output problems than the naive
estimator often used. We will further introduce a novel framework for automating the design
of sequential experiments and demonstrate how this can be effectively applied to automating

psychological trials [[Vincent and Rainforth, 2017].

11.1 Bayesian Experimental Design

In this section, we will introduce the BED equations more formally. Let the parameters of
interest be denoted by 6 € O, for which we define a prior distribution p(f). Let the probability

of achieving outcome y € ), given parameters § and a design d € D, be defined by the
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likelihood model p(y|d, d). Under our model, the outcome of the experiment given a chosen

d is distributed according to

plld) = [ ply.0ld)do = [ p(s]6. d)p(6)ae. (11.1)

where we have used the fact that p(6) = p(#|d) because 6 is independent of the design. Our aim
is to choose the optimal design d under some criterion. We, therefore, define a utility function,
U(y, d), representing the utility of choosing a design d and getting a response y. Typically our
aim is to maximize information gathered from the experiment, and so we set Uy, d) to be the

gain in Shannon information between the prior and the posterior

Uly.d) = [ p(Oly.d)Log(p(0ly,d))ab — | p(6)log(p(0))ds. (11.2)

However, we are still uncertain about the outcome. Thus, we use the expectation of U (y, d)

with respect to p(y|d) as our target:
0@ = [ p(uld) [, p(0ly, &) 10g((0ly. d))a0 — [ p(6)105(p(6))a0) dy

:/y/ep(y,0|d) log (W) dody (11.3)

noting that this corresponds to the mutual information between the parameters 6 and the

observations y. The Bayesian-optimal design is then given by

d* = arg max U(d). (11.4)

deD

We can intuitively interpret d* as being the design that most reduces the uncertainty in ¢ on
average over possible experimental results. If our likelihood model is correct, i.e. if experimental
outcomes are truly distributed according to p(y|f, d) for a given 6 and d, then it is easy to
see from the above definition that d* is the true optimal design, in terms of information
gain, given our current information about the parameters p (6). In practice, our likelihood
model is an approximation of the real world. Nonetheless, BED remains a very powerful and
statistically principled approach that is typically significantly superior to other, more heuristic-
based, alternatives. For example, the state-of-the-art entropy based Bayesian optimization
acquisition strategies we discussed in Section [8.3.1.4] are particular cases of BED. However, a
major drawback to the BED approach is that it is typically difficult and computationally intensive
to carry out. Not only does it represent an optimization of an intractable expectation, this

expectation is itself nested because the integrand is itself intractable due to the p (6|y, d) term.
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11.2 An Improved Estimator for Discrete Problems

As we explained in the last section, estimating d* is in general challenging because the posterior
p(0]y, d) is rarely known in closed form. One popular method within the psychology literature
is to use a grid-search approach to the required inference [Kontsevich and Tyler, 1999 Prins,
2013], which subsequently provides (biased) estimates for p(f|y, d). However, this is highly
unsatisfactory for a host of obvious reasons such as the generally poor performance of grid-search
for inference, the use of a nested estimation procedure with accompanying poor performance
as shown in Chapter [0} and the need to carefully choose the grid.

To address these issues, we instead derive a nested Monte Carlo estimator as per, for example,
Myung et al. [2013]] and further show how, when y can only take a finite number of values, a
substantially improved, non-nested, Monte Carlo estimator can be derived using the results from

Chapter[10} The first step is to rearrange (IT.3) using Bayes’ rule (remembering p(6) = p(6|d))

= [ [ o0 log< (('|d>))cwdy
:/y/ep(y,0|d) log(p(y6, d)) dﬁdy—/yp(y\d) log(p(y|d))dy

The former term can now be evaluated using standard MC approaches as the integrand is

(11.5)

analytic, namely we can use

1 N
:/)}/@P(yﬁ]d) log(p(y|0, d))d0dy ~ N;log(p(ynwmd)) (11.6)

where 6,, ~ p(6) and y,, ~ p(y|0 = 0,,, d)[] In contrast, the second term of (TT.3) is not directly
amenable to standard MC estimation as the marginal p(y|d) represents an expectation and taking

its logarithm represents a nonlinear functional mapping. Here we have

- 1 X 1 ¥
Us(d) =/ p(yld)log(p(yld))dy ~ — > _log | — D p(yalOnm, d) (11.7)
where 0,,,, ~ p(#) and y,, ~ p(y|d). We can sample the latter by first sampling an otherwise
unused 6, ~ p(f) and then sampling a single corresponding v,, ~ p(y|0,.0,d).
Putting (11.6) and (11.7) together (and renaming 6,, from (11.6) as 0,,, for notational

consistency with (11.7)) we now have the following complete estimator, implicitly used by

'Note that evaluating (TT.6)) involves both sampling from p(y|6, d) and directly evaluating it point-wise. The
latter of these cannot easily be avoided, but in the scenario where we do not have direct access to a sampler for
p(y]0, d), we can use the standard importance sampling trick, sampling instead y,, ~ ¢(y|6 = 0,,, d) and weighting

: — P(Yn|0n,d)
the samples in (TL.6) by wy, = C7™7> -
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Myung et al. [2013]] amongst others,

1 M
Z log yn|0n,0’ d)) - log (M Z p(yn|9n,m7 d)>‘| (118)

m=1

where 0,,,,, ~ p(0) Ym € 0: M, n € 1: Nandvy, ~ p(yld = 0,0,d) Yn € 1 : N. This
naive NMC estimator, Anglican code for which is provided in Figure[T0.5] gives a convergence
rate of O(1/N + 1/M?) as per Theorem [10.5]

We now show that if i can only take on one of C possible values (y1, . . ., y¢), we can achieve
significant improvements in the convergence rate by using a similar approach to that introduced

in Section [10.3.2]to derive the following non-nested estimator for (I1.5])
= | [, p(w 61 log(p(y16. d))dody — | p(s]d) og(p(uld)dy
c c

/ [Z p(yel0, d) log(p(ye|0, d))] df — > p(yeld) log(p(ycd))

c=1

1 N C c N 1N
o Z Z (YelOn, d) 1og (p(ye|0n, ) = > l( Z (el O, d) ) log (N > (Yelbn, d))]
n=1c=1 c=1 n=1 n=1
(11.9)
where 0,, ~ p(0) Vn € 1,..., N and y, are fixed constants. Here our estimate is a deterministic

function of a number of separate Monte Carlo estimators. Because there is no trivial canceling
of terms and there are no issues with continuity of the function because x log(z) = 0, and each
P(Ye|0n, d) < 1, no complications originate from this function application and the MSE of our
estimator will converge at the standard MC error rate of O(1/N). This requires ' = O(NC')
calculations and so we can express the per evaluation convergence rate as O(C/T). This
compares to an optimal rate of O(1/7%/%) for (T1.8). Though relatively straightforward, to the
best of our knowledge, this superior estimator has not appeared in the literature prior to our

own work [Rainforth et al., [2017aj; [Vincent and Rainforth, 2017]].

11.3 Automating Sequential Design Problems

We have thus far assumed that there is no previous data (i.e. design-outcome pairs). Though
this static experimental design setup is of use in its own right, the real potential of BED is not
realized until one considers using it in sequential settings. Here BED provides a framework
for adaptively making an optimal series of decisions in an online fashion in the presence of
uncertainty. For example, imagine a psychology trial where we ask a participant a series of
questions to learn about certain behavior characteristics. If a human is conducting this experiment

they are likely to adapt the questions they ask as they learn about the participant to try and
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maximize the information gathered. Similarly, a detective conducting an investigation will
adapt the questions they ask about a suspect as they learn information from previous answers.
Sequential BED provides a mathematical framework for reasoning about and optimizing such
processes, thereby providing a means of developing effective machine learning systems to carry
out such tasks. It is quite incredibly general and can, at least in theory, be applied to any situation
where we aim to sequentially gather information. For example, in Section[8.3.1.4] we described
strategies for Bayesian optimization which explicitly use the BED equations to sequentially
gather information about the location of the optimum. One could envisage similarly using the
framework for conducting proposal adaptation for inference problems. We could use it in vision
tasks to prioritize where to look in a scene. The number of potential applications is endless.
From a mathematical perspective, we can generalize to the sequential design setting by
incorporating data in the standard Bayesian fashion such that at experiment iteration ¢, we
replace p (0) with p (0|dy.4—1,y1.4—1), where dy.;— and y;.,—1 are respectively the designs and
outcomes at previous iterations. The likelihood p (v;|0, d;), on the other hand, is unchanged
(presuming it is a parametric distribution) as, conditioned on # and d, the current outcome is
independent of the previous data. Putting this together, we get that the expected information

gain criteria for the sequential case is

0ud) = [ [ p(Oldie s, yie1) plurld, de) log(p(wl9, di))dvdy,
v Je (11.10)

= [ Ploracs,du) ogpllni-r. di)y

We can now see that these terms are the same as in the non-sequential case, except that
expectations are taken with respect to p (0|dy.4_1, y1..—1) rather than p(6). Therefore, we can use
the same Monte Carlo estimators (I1.8) and (11.9), but instead drawing 6,, ~ p (0|d1.t—1, Y1.4-1)-
In the rest of this section, we will outline a framework for automating such sequential adaptive
design problems. This takes on a somewhat probabilistic programming flavor, as the aim is to
develop a system where the user provides only information about the model and design space,
with the next chosen design calculated automatically when provided with the outcome of the
last. However, as we will discuss in Section [I2.4] this actually goes beyond the capabilities
of current PPS. What we present is by no means a complete solution to this problem and
certainly does not represent a PPS itself, but it does perhaps provide an important step towards
building such a hypothetical system. Indeed the framework has already been applied to provide
automated sequential BED for a very restricted model class existing in the form of the DARC

toolbox [Vincent and Rainforth, 2017] introduced in Section [I1.4]
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11.3.1 Parameter Inference

Unlike p (0), it is typically not possible to evaluate, or sample from, p (6|dy.;—1,y1..—1) exactly
— we need to perform Bayesian inference to estimate it. Noting the implicit assumption of the

likelihood model that observations are independent of one other given the parameters we have

t—1

p(O]di:—1,y1:0-1) o< p(0) Hp(yi"gadi) (11.11)

=1

which is a typical Bayesian inference problem, such that we can use Monte Carlo inference
to generate the required samples 6,,. Note that this setup is very general. For example, there
might be a term in 6 for each round of the experiment, leading to a non-Markovian state space
model as per Section [0.1.1] There are many suitable candidates for the required inference such as
those discussed in Chapters [5|and [6] The relative merit of these will depend on characteristics of
the problem such as multi-modality, the dimensionality of §, and the total number of questions
that will be asked. For the DARC toolbox introduced later we will use population Monte Carlo
(PMC) [[Cappé et al., 2004]. However, our contribution here is independent of the choice of
inference algorithm, provided that algorithm can be appropriately automated for the range of
problems one wishes to run, as is the case for a PPS. One salient feature of note though is
that, by its nature, the inference problem requires a series of targets to be approximated and so
inference methods that can effectively exploit the approximation of the previous target (such as

particle-based methods, see Chapter [6) are likely to be particularly effective.

11.3.2 Design Optimization

We have now derived an estimator for U;(d) and demonstrated how we can generate the samples
required to evaluate this estimator. We will now look at how to optimize for d. Our problem
requires the optimization of an intractable expectation and thus shares substantial similarity to the
problems considered in Chapter [0} Indeed BOPP could form a suitable approach to estimating
d* at each iteration for many problems. However, BOPP is a somewhat heavy duty estimation
algorithm that may not be suitable for problems that are relatively simple, but for which speed is
paramount. Many of the possible applications of our approach, such as the DARC toolbox, require
rerunning in real-time with human participants, for which BOPP would thus be inappropriateﬂ
We instead construct a new approach that exploits the fact that need not generate distinct 6,

to evaluate different designs. Our novel method combines ideas from both the bandit and Monte

2Nonetheless, if the surrogate in BOPP was replaced with a more lightweight regressor, e.g. a random
forest [[Hutter et al.l 2011]], then the resulting algorithm could prove a viable alternative even under strict time
pressure.
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Algorithm 11.1 Design optimisation

Inputs: Reservoir {6, },—1.:, likelihood p(y|f, d), candidate designs D = {dj }r=1.x, number of
particles N, number of steps L, annealing schedule 7 : Z™ — R, minimum selection probability p
Outputs: Chosen design d*

1: U0 Vke{l,...,K} > Initialize estimates
2 g+ 1/K Vked{l,...,K} > Initialize selection probability
3: for/=1: Ldo

4: {nk}k=1.x ~ MULTINOMIAL (N, {qx } k=1.K) > Sample number of new samples to ad
5 fork=1: K do

6: éj < DISCRETE ({0 },,—1.0s) Vi=1,...,np > Draw ny, samples from reservoir
7: Uy, + UPDATE (Uk, {0} iz1in,, p(y]0, d), dk) > Use new samples to refine estimate
8: end for

9: G < U ,z Dy = 1,...,K > Unnormalized selection probability = annealed Uy,
10: Z Z,Ile qk > Normalization constant
11: qr ¢ max (%, %) Vk=1,....K > Ensure probabilities are all at least minimum value
12: qp ¢ <L— Vk=1,...,K > Renormalize

k=1:K Ik

13: end for
14: k™ «— argmaxycqy | iy Uy, > Best design is one with highest U},

15: return dj.«

Carlo literatures [Amzal et al., [2006; Neuteld et al., 2014] by adaptively allocating resources
to a set of candidate designs. We will presume that there are some fixed number of candidate
designs D = {d}}k=1.x Which could be randomly (or quasi-randomly) sampled up front if the
design space is continuous. This assumption is made because the algorithm was designed with
a particular application in mind, namely the DARC toolbox for which K is generally not more
than a few thousand. We note, though, that it should be possible to relax this assumption by
incorporating MCMC transitions in a manner akin to [Amzal et al., 2006].

The underlying idea of the approach is that we are willing to accept higher variance in the
integral estimates for lower utility designs as this error is unlikely to lead to an incorrect estimation
of the optimum. Therefore, we desire to take more Monte Carlo samples, and thus achieve a more
accurate estimate, for the designs we estimate to have a higher chance of being the optimal design,
given the current noisy estimates. At a high level, this is similar to the idea of Thompson sampling
where a candidate is sampled in proportion to its probability of being the best [Thompson, |1933]],
a technique commonly used in the bandit literature [Agrawal and Goyal, 2012].

An overview of our approach is given in Algorithm [TT.1] As this shows, our algorithm
uses a reservoir of samples {0,, },,—1.as instead of drawing samples from p (6|dy.;—1, y1.4+—1) on-

demand. In short, we draw M samples from the posterior upfront to create the reservoir, then

30ne could use systematic “resampling” here too as per Section|5.3.2.4
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instead of sampling directly from p (0|dy.;1, y1..—1) during the design optimization, we draw
a sample from the reservoir. Careful coding (not shown in the algorithm block) ensures that
each sample in the reservoir is not used more than once in any particular estimate Uy, while
by using a reservoir that is larger than the number of samples we will need for any individual
estimate, we ensure that the reservoir itself does not cause any approximation in the posterior
(though it can cause correlation between the ﬁk). The use of a reservoir is a key innovation
of our approach as it allows us to modularize the parameter inference and design optimization
problems: the inference algorithm produces a reservoir as output and the optimizer can then
run without having to refer back to the inference algorithm.

The second key innovation of our approach is that rather than calculating each estimate U in
one go, we exploit the intermediate information from incomplete evaluations to reallocate com-
putational resources in a manner that has parallels with SMC, SMC search [Amzal et al., 2006],
annealed importance sampling [Neal, 2001]], adaptive Monte Carlo via bandit allocation [Neufeld
et al., 2014, and the Hyperband algorithm [Li et al., 2016]. Imagine that we are considering K
designs D = {dj }r=1.x With a total sample budget N K and decide to use the same number of
samples, N, to calculate an estimate U, for the utility of each design. After we have taken say n
samples for each estimate, where 1 < n < N, then we will have a set of intermediate estimates
U{f i for each utility. Now remembering that our aim 1is to establish which design is best (i.e.
which Uy, is largest), we note that our intermediate estimates convey valuable information — they
show that some designs are more likely to be optimal than others. Consequently, sticking to our
original plan and using the same number of samples, N — n, to complete our final estimates will
be inefficient as some designs will be highly unlikely to be optimal and therefore it is pointless to
spend a noticeable proportion of our computational budget to carefully refine their estimates. It is
clearly more efficient, in terms of the final optimization problem, to take relatively more samples
for the promising designs, so that we can better distinguish between their relative utilities, even if
this results in very poor estimates for the low utility designs. This is the key idea of our approach
— to adaptively change the number of samples used to estimate the utilities for different designs,
based on the probability the design may end up being optimal given its intermediate estimates.

More specifically, given a total budget of NL = NK samples for all our estimates, then
we will carry out L rounds of sampling, where at each round we adaptively allocate /N samples
between the different estimators in proportion to how relatively promising their respective
designs appear. To do this, we sample a number of samples to take for each design at each

round in proportion to an annealed version of its utility estimate (line {] of Algorithm [IT.1).
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Namely, if ¢ ¢ is the probability each sample from our budget is assigned to design £ at round
¢ and UW is the corresponding running estimate for the utility of that design, then we have

(line [9] of Algorithm [IT.1)

A

Gre < (U o)™ (11.12)

where y : Z* — R is an annealing function (see next paragraph). Thus we will, on average, add
E[nk¢] = qr¢N samples of 0 to the estimate for Uy at round ¢ (lines @ and of Algorithm .
By storing appropriate running estimates (e.g. for p(y|dy)), the estimates can be updated with
the n; new samples from the reservoir {éj}j:mk at each round. This corresponds to the
UPDATE function in Algorithm [TT.1]

The purpose of the annealing function is to control how aggressive our algorithm is in its
allocation of computational resources to promising designs. At the early rounds, we are quite
uncertain about the relative utilities and therefore wish to allocate samples fairly evenly. At the
later rounds, we become more certain about the estimates so we become more aggressive about
concentrating our efforts on promising designs. Therefore (/) is set to increase with /.

We finish the subsection by noting a small, but important, subtlety of our method. As
introduced so far, our algorithm is not guaranteed to converge. For example, it might be that
Uy~ = 0 after the first round of sampling where £* indicates the true optimal design and
Uy~ # 0. Presuming that another design has a non-zero estimate at this point, sampling naively
from (T1.12) would mean that no additional samples are ever added to Uk*, even if infinite
rounds are undertaken, meaning that the true optimum will be missed. To guard against this, we
introduce a new parameter 0 < p < 1, with lines [9]to[I2]in Algorithm[TT.T]ensuring that each
ke > iy (see|Vincent and Rainforth| [2017]]), which in turn ensures that |E [Zngl nkd > pL/2.
Therefore, for any finite value of p, each estimate will, in expectation, be assigned infinitely
many samples as L. — oo, regardless of the true utilities and the values of v(é)ﬂ As we show
in the next section, we can use this to prove the convergence of the algorithm, in the sense of

guaranteeing the optimal design will be found given infinite computational budget.

11.3.3 Tying it All Together

In the previous sections, we have shown how to construct an appropriate target for our design
optimization, estimate this target for a particular design given samples from the posterior on

parameters, produce the required approximate samples for this posterior, and use these samples

“Note that one should, if desired, be able to instead use an upper confidence bounding strategy [Auer, [2002] to
produce a zero-regret strategy whilst maintaining convergence
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Algorithm 11.2 Sequential BED
Inputs: Prior p(0), likelihood p(y|6, d), number of experiment iterations 7', candidate designs D

Outputs: Design-outcome pairs {dy, y; }+—1.7, posterior samples {0, }rn=1.11
1: 0y, ~p(@) Ym=1,....M
2: fort=1:Tdo

3: d; < DESIGNOPTIMIZATION ({0, } mn=1:11, (9|0, d), D) > Find next step optimal design
4: Yt < RUNEXPERIMENT(d;) > Get outcome using design d;
5: D« D\d; > Eliminate new design from candidate set (optional)
6: {0m}m=1.1 < INFERENCE (p(0),p(y|0,d), {d;, yi}i=1:t, {Om }m=1.1) > Update the posterior
7: end for

8: return {d;, y¢ }r—1.7, {Om tm=1:M

to find the optimal design. Algorithm shows how these components fit together to produce a
framework for automated online sequential design optimization. Algorithm parameters have been
omitted for clarity, but we note that it should, in general, be possible to set these to default values
if required, e.g. using the general purpose inference strategies taken by PPSs. We finish with
the following theoretical result that shows that the method is guaranteed to return the optimal

design at each iteration in the limit of large computational resources.

Theorem 11.1. Assume that each U, is a measurable function and that all other requirements for
consistency of the chosen inference algorithm are satisﬁed.E] Given a finite number of candidate
designs {dy }r—1.x, fixed parameters p > 0 and N € N*, and a function 7 : R — R such that
T7(L) > NL VL, then using Algorithms and to choose design outcome pairs with

M = 7(L) ensures that the chosen design at each iteration d, satisfies
Us(dy) = max U (d) (11.13)

with high probability in the limit L — oo, where Uy(d) is defined as per (I1.10).

Proof. We start by noting that by the definition of 7(-) then L — oo also predicates that M — oo
and so by assumption our Monte Carlo estimates made using the output of our inference algorithm
converge in probability (noting M > N L also ensures the reservoir is large enough to not need
to reuse samples).

As the ny, are not independent, we break each down into two terms ny, = myp + Ti
where my, ~ BINOMIAL(N, 5%) and 7, ~ BINOMIAL(N, gx¢ — 5% ) (which induces the

appropriate distribution on n; ). For any given £, all the m;, , are mutually independent and

P(mye>1) =1— (1 — &)Y (= 1 —exp(—p/2) as N — 00). Therefore, for any possible

3If the chosen inference algorithm also provides almost sure convergence, the result also holds almost surely.
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N (including N — oo) we have > 72, P(my, > 1) = oo and so by the second Borel-Cantelli
lemma, the event my,, > 1 occurs infinitely often with probability 1. Thus, as each 1, > 0, it
must also be the case that P(limy,_, S5 ngy = 00) = 1.

Combining these two results, we have convergence of each of the K estimates ﬁk at each
iteration and so we must choose the optimal design (or one the equally best designs if there is a

tie) with high probability in the limit L — oo. [

11.4 The DARC Toolbox

We now demonstrate the utility of our approach by considering its application to automating
the adaptive design psychology experiments via the DARC (Delay And Risky Choice) toolbox
introduced in [Vincent and Rainforth [2017]E] We will only provide a short introduction here
and refer the reader to [Vincent and Rainforth| [2017|] for further details.

The DARC toolbox allows users to encode their own (or use one of the provided) models for
human discounting behavior, whereby psychologists want to learn how delays and uncertainties
affect the subjective value people place on (typically monetary) rewards or costs. Given a model,
the toolbox uses the framework from the previous section to automate in an online fashion both
the inference of the model parameters and the sequential adaptation of the experiment itself
through choosing the questions the participant is asked. It, therefore, automates the full run-time
experimental pipeline by using the responses from previous questions to perform inference and
update the internal representation of the participant and then using this information to ask the
most informative questions for a particular participant as per the BED equations. The technical
innovations introduced earlier in this chapter are essential in allowing this to be done sufficiently
efficiently to permit real-time usage required for deployment with real participants.

A common style of experiment for the toolbox comprises of asking questions of the form
“Would you prefer £ A now, or £B in D days?”, where we desire to choose the question variables
d = {A, B, D%} in the manner that will give the most incisive questions. One possible participant
model, given in [Vincent, 2016], presumes that participants have parameters § = {log k, a},
where log k ~ N(—4.5,0.5%) represents a log discount rate and & ~ GAMMA(2, 0.5) (using the

shape-rate parameterization) a variability, and the following response model

1 B

®Code available at http://github.com/drbenvincent/darc-experiments-matlab.


http://github.com/drbenvincent/darc-experiments-matlab
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Figure 11.1: (Left) convergence of both NMC and our reformulated estimator (I1.9) for the BED problem.
A ground truth estimate was calculated using a single run of the reformulated estimator with 10'° samples.
Results are averaged over 1000 independent runs, while shaded regions give the 25%-75% quantiles. We
see that the theoretical convergence rates (shown by the dashed lines) are observed in all cases, with the
advantages of the reformulated estimator particularly pronounced. (Right) estimated expected utilities

U (d)for different values of one of the design parameters A € {1,2,...,100} given a fixed total sample
budget of 7 = 10*. Here the lines correspond to 10 independent runs, showing that the variance of (TT.8))
is far higher than (T1.9).

where y = 1 indicates choosing the delayed response and ® represents the cumulative normal
distribution. As more questions are asked, the distribution over the parameters 6 is updated in
the standard Bayesian fashion, such that the most optimal question to ask at a particular time
depends on the previous questions and responses.

Before considering the full BED pipeline, we will first examine the convergence and empirical
performance of our reformulated estimator (11.9)) compared to the naive alternative (11.8)). For
simplicity, we will consider the case where B = 100 and D® = 50 are fixed and we are only
choosing the delayed value A. We first examine the convergence in the estimate of U (d) for the
case A = 70, for which Figure demonstrates similar behavior for the naive NMC estimator
as seen in the experiments of Chapter [I0]and, as expected, substantial improvements for the
reformulated estimator in the form of a O(1/N) convergence rate.

We next consider setting a total sample budget 77 = 10* and look at the variation in
the estimated values of U(d) for different values of A for the two methods as shown in
Figure This shows that the improvement in MSE leads to clearly visible improvements in
the characterization of U (d) that will translate to improvements in seeking the optimum.

Finally, we examine the performance of the DARC toolbox compared to alternatives in the
psychology literature [Kirbyl 2009; [Frye et al., 2016] as shown in Figure[I1.2] Using the same
likelihood model as (TT.14), we fix = 2 and set the prior on k as logk ~ N(—4.5,0.5%).

We fixed B = 100 and then use three different methods for sequentially selecting designs
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[Kirby, 2009] [Frye et al., 2016] The DARC Toolbox
s = s
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Figure 11.2: Comparison of the DARC toolbox to alternative methods for two behavior styles: major
depressive disorder (top) which indicates a relatively strong desire for immediate rewards (k = 0.04)
and anorexia nervosa (bottom) which indicates relatively low discounting rate (k = 0.0028). Lines show
posterior samples from the final learned predictive distribution for the indifference curve (i.e. the curve
along which the participant is equally likely to choose the immediate or delayed reward), circles represent
questions where the delayed reward was preferred, and the filled dots correspond to the questions were the
immediate reward was preferred. The columns left to right corresponding to using the approaches of [Kirby
[2009] which uses pre-fixed questions rather than using online adaptation, [Frye et al. [2016]] which uses a
heuristic approach for choosing the best questions adaptively, and using our DARC toolbox which chooses
questions using our sequential BED approach. See |[Vincent and Rainforth|[2017]] for further details.

d; = { Ay, D'}, for two different hypothetical participants with respective ground truth parameters
of £ = 0.04 and £ = 0.0028. Responses are generated presuming the likelihood model is
correct and sampling directly from (T11.14) using the ground truth parameters. We then plot a
characterization of the posterior predictive after 27 questions have been asked. All methods are
capable of working in real time, taking about a second or less to choose the design at each iteration
when run on a mid-range laptop. Though hardly a rigorous performance assessment, these results
are still demonstrative of the potential utility of our method. The non-adaptive scheme of Kirby
[2009] always asks the same questions regardless of the participant’s responses. The heuristic
method of Frye et al.|[2016]] does better, but is still somewhat wasteful. The DARC toolbox, on
the other hand, takes only a couple of questions before achieving a reasonable representation of

the response surface, such that almost all of the questions asked are clearly pertinent and the final

posterior predictive distribution has far lower entropy than the other approaches.



Discussions, Conclusions, and Future
Directions

In this thesis, we have introduced a Bayesian approach to machine learning and demonstrated
how probabilistic programming systems (PPSs) provide an exciting framework for encoding rich
and expressive models in the Bayesian framework and then automating the process of drawing
inferences from these models. We explained how the long-term aim of probabilistic programming
is to automate the process of drawing inferences from any simulator the user might write, thereby
streamlining the modeling process and breaking down barriers to carrying out such analysis.
We have made steps towards this eventual aim by improving the inference engines used by
PPSs and expanding the probabilistic programming framework beyond its conventional Bayesian
inference setting to include, for example, mixed inference-optimization problems, thus allowing
automation of tasks such as model learning and engineering design.

We highlighted the importance of taking a Bayesian approach in scenarios where one has
access to substantial prior knowledge or domain-specific expertise, but noted that discriminative
machine learning approaches can be more effective, and typically substantially easier to imple-
ment, when one has access to large quantities of data, but little prior information. When opting
for a Bayesian approach, we explained that two key challenges are in writing good models and
solving the resultant Bayesian inference problem. PPSs can help in addressing both of these
challenges. Firstly, they provide an expressive framework that allows users to write models true
to their assumptions in a manner more in line with conventional scientific coding. Secondly,
they remove the burden of inference from the user by providing general purpose inference
engines capable of operating on arbitrary models. Together these mean that PPSs make effective
statistical methods accessible to non-experts, while streamlining the process of writing models
and inference algorithms for seasoned researchers. However, from a developers perspective,
designing inference engines for PPSs is challenging because of the need for them to work on
any model. This problem is especially pronounced for so-called universal PPSs, which, as we
explained, place almost no restrictions on the models the user can write. Consequently, universal

PPSs will rarely produce state-of-the-art performance on any particular task, though by directly
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using the source code of the target, they are still often able to exploit many salient features of
models and thus still provide effective inference for wide array of tasks. Their main utility is
thus in automation and in allowing models that would difficult, or even impossible, to encode
otherwise. In particular, they allow us to go beyond the confines of conventional Bayesian
modeling, allowing, for example, one to nest inference problems within one another.

There have been two core thrusts to the novel contributions of this thesis: improving
the inference engines for PPSs and extending the range of problems to which they can be
applied. For the former, we introduced the interacting particle Markov chain Monte Carlo
(APMCMC) algorithm [Rainforth et al., 2016c]|, a particle-based inference method delivering
better per-sample performance than existing methods for a given memory budget, while also
introducing the opportunity for parallelization. We then showed how iPMCMC is suitable for
inference in universal PPSs, detailing its implementation in the PPS Anglican [Tolpin et al.,
2016]. Towards the aim of increasing the range of problems to which PPSs can be applied, we
have firstly introduced Bayesian optimization for probabilistic programs (BOPP) [Rainforth
et al., 2016b]], providing the first framework for mixed inference-optimization problems in
probabilistic programs, allowing things such as model learning and principled engineering
design to be automated in the same manner as inference. BOPP also provides a significant
contribution to the Bayesian optimization literature, constituting a convenient and efficient
package for solving conventional optimization problems by exploiting the source code of its
target to provide innovations in problem-independent hyperpriors, unbounded optimization, and
implicit constraint satisfaction. We have further undertaken theoretical work looking into the
convergence of nested Monte Carlo (NMC) [Rainforth et al., 2017a], for which nested inference
problems are a particular example. We demonstrated that the convergence of NMC is possible,
but that some additional assumptions need to be satisfied, e.g. the number of samples used for
each inner estimate needs to be driven to infinity. Our results go beyond the cases considered by
previous results and, in particular, apply to cases of repeated nesting, as can occur in PPSs. We
then carefully considered the implications of our results for PPSs and provided recommendations
about how to ensure consistency is maintained. Our final contribution to extending PPSs was
in applying our theoretical results from nested estimation to consider the specific problem of
Bayesian experimental design, deriving an improved estimator for discrete problems and outlining
a framework for automating the solution of adaptive sequential design problems, as might be
experienced in, for example, psychological trials. Our technical innovations were applied to

automating a specific class of problems relating to delay and probability discounting experiments
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by introducing the DARC toolbox, perhaps providing a first step in demonstrating how one might
be able to construct a general purpose language for automating adaptive design problems.

A natural question is now where do we go next? In addition to the obvious ongoing challenges
of improving inference and range of problems covered by PPSs, perhaps the most clear-cut
extensions for our work is in its direct application. We have introduced various frameworks
which, while someway off our lofty long-term aims of tractably and automatically solving almost
any problem the user might write, are nonetheless clearly already useful for a number of existing
applications. More generally, the biggest potential impact of PPSs is arguably not in what they
provide for seasoned machine learning or statistics researchers, but in the democratization of
advanced statistical approaches to anybody with sufficient scientific programming background to
write a stochastic simulator. The best example of this is perhaps the BUGS system Spiegelhalter
et al. [1996], which has seen effective widespread use across many fields. More recently,
Stan [Carpenter et al., 2015] and PyMC [Salvatier et al., 2016] are seeing particularly widespread
usage that extends well beyond the machine learning community. Though some universal PPSs
are already relatively mature and user-friendly with a small base of users, they are arguably
still more at the stage of predominantly being a framework for probabilistic programming
research, than a commonly used tool by applied communities. Perhaps this is not surprising given
their inference engines inevitably tend to be less efficient than more inference-driven packages.
However, we believe that as inference engines improve and people’s modeling ambitions increase,
the flexibility that such systems provide will become increasingly important, particularly if we
want to achieve our long-term aims regarding arbitrary simulators. Existing applications requiring
this flexibility are already to be found in the form of Bayesian nonparametrics [Dhir et al., 2017]]
and theory-of-mind style modeling [Stuhlmiiller and Goodman), 2014]].

We now finish by briefly discussing some interesting high-level questions and outlining some

more specific possible future directions for research.

12.1 Shouldn’t We Just Use Deep Learning Instead?

In a word, no. As successful as deep learning, or artificial neural network (ANN) training [Bishop,
1995] as it was known before the hype, has been in recent years, it is not a panacea for machine
learning. Instead, it is a particular discriminative machine learning approach that has been
especially successful on certain kinds of machine learning tasks, namely those with huge
quantities of, usually high dimensional, data with rich underlying structure. To suggest that

ANNSs are universally dominant even among discriminative machine learning tasks is somewhat
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preposterous, e.g. they are often, if not usually, inferior to Gaussian processes on low-dimensional,
small-data regime, tasks, and still arguably trail behind decision tree ensemble approaches for
“out-of-the-box™ usage on, for example, generic classification tasks [Rainforth and Wood, [2015]].
Perhaps more significantly, many problems call for a generative, rather than discriminative,
approach, particularly when data is scarce or significant prior information is available as we
explained in Section [3.1] Interestingly, however, this is perhaps where a lot of the successes
of ANNSs actually originate. Compared to say random forests, ANNs constitute a very flexible
and composable framework for discriminative machine learning and perhaps provide a means of
indirectly imposing prior knowledge on the ANN through its structuring. A major weakness of
declarative generative approaches, such as those employed by PPSs, is that we almost always
have to impose more assumptions on the model then we would like — all models will inevitably be
misspecified. For ANNSs, on the other hand, when there is not an abundance of training data, one
often struggles to impose enough assumptions, sometimes, for example, resorting to generating
synthetic data to train the network [[Von Ahn et al., 2008]]. Doing this is, in effect, a somewhat
convoluted, though often very effective, method for imposing prior information on the model [Le
et al., 2017b]]. From this perspective, the Bayesian approach, and in particular probabilistic
programming, is perhaps also of significant consequence to the ANN literature [Gal, 2017]. In
particular, there may be a bright future for methods which take a model-based approach, but
without having assumptions as strict and prone to misspecification as conventional Bayesian

modeling, for which ANNs are likely to be a highly useful tool [Siddharth et al., 2017].

12.2 Do We Need Random Numbers?

An interesting question was recently raised by the probabilistic numerics [Hennig et al., 2015]
community about whether we should, at least as a long-term idealistic vision, look to do away
with randomization entirely [Schober, 2017]. This in many ways corresponds to taking the
Bayesian philosophy to its most extreme possible limit, by which we shun all notions of drawing
from probability distributions and view probability only as a measure of uncertainty. Given the
heavy use of Monte Carlo methods throughout this thesis, it perhaps comes as no surprise that we
are vehemently opposed to this idea. Nonetheless, it is still an insightful question that deserves
serious consideration. We here present arguments for why we believe randomization is essential
on a fundamental level. The intention is that this, inevitably subjective, discussion should be

seen as a pairing to [Schober, 2017]], who provides the other side of the argument.
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At a high-level, the crux of the argument against randomization is that, unless our aim is
sampling itself, we always have a certain amount of information available and a final aim we are
trying to achieve (e.g. calculating an expectation). Therefore, at least at a philosophical level,
randomization only serves to add noise to this process. Similarly to the likelihood principle, one
might argue that given the same data and model, we should always carry out the same calculations
and thus always reach the same conclusions. Doing otherwise, the argument follows, must
always be suboptimal, as it involves inconsequential information affecting the final decision. One
compelling motivation for this is that, in certain situations, some deterministic methods can deliver
substantially better convergence rates than Monte Carlo [Briol et al., 2015a; |Caflisch, |1998]],
though these are typically crippled by the curse of dimensionality in a way that Monte Carlo is not.

Though eminently reasonable, our opinion is that this argument, which almost completely
dismisses the entirety of frequentist statistics, is fundamentally flawed. Our argument can be
broken down into four main reasons why we need, and always will need, random numbers:
Honesty and reliability — The alternative to randomness is almost always approximation, intro-

ducing bias that might be impossible to effectively quantify.

Lack of repeatability — Though it is always convenient when an experiment is repeatable,

systematically returning the same incorrect answer is far more dangerous.

Composability — Methods such as Monte Carlo are ambivalent to how the samples are to be
used, creating a scalable ability to modularize, compose and reuse. Non-composable
systems, on the other hand, are doomed to fail for large frameworks through the curse of

repeated nesting of estimators as we discussed in Chapter

Speed and simplicity — Sometimes even if there is the information available to improve a
computation, uncovering or incorporating that information in a principled manner may
require substantially more computational power than not doing so.

While the latter two arguments are computational, the others are related to the following principle:

Once we have imparted all possible information upon a system, we must treat what
is left as truly stochastic or introduce bias.

In other words, imagine we can construct a problem in a manner that utilizes all available
prior information, both in terms of the model itself and in how best to draw inferences from
that model. Any remaining uncertainty is now, at least for all practical purposes, inherent to
the problem and so any further attempt to remove randomness from the system is indirectly
adding additional prior information that we did intend to impart. Furthermore, as soon as we

make approximations to our model, we lose calibration in our estimate: we can estimate the
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variance resulting from randomness through repetition, but there is usually no way to estimate
the bias resulting from approximation.

As we explained in Section [3.4] frequentist statistics is all about repeatability and focuses on
the fact that any data we collect is random in a many-worlds point of view: multiple possible
datasets could have been generated. We demonstrated that there are many times when this
frequentist approach is absolutely essential. For example, in medical tasks we need to make
sure that our confidence intervals are actually correct when we repeat a procedure — we need
guarantees on their calibration. This is not possible in a Bayesian framework as, by its very nature,
it presumes the data is fixed and thus permits no concept of repetition. Once we realize that we
sometimes need to take a frequentist approach, the need for randomness becomes obvious, as in
the frequentist framework probability originates only through random variables. As powerful
as the Bayesian framework is, it is inherently optimistic and subjective (e.g. there are always
unknown unknowns), and as such, it can never really be the whole story. If we try to do away with
randomness completely it is impossible to be objective — we have to choose our approximation,
sometimes in an arbitrary fashion — and so we can never provide properly calibrated confidence
intervals that are not prone to subjective interpretation.

One of its most powerful consequences of the honesty of Monte Carlo is the composability
of estimates: give a sample from a marginal, one can generate a valid sample of the joint by
sampling from the conditional. Similarly, if we have samples from a joint, we also have samples
from the marginal distributions. This behavior is essential when composing different components
into a greater system, as one can ensure each component takes in samples as inputs and outputs
corresponding samples that can be used by the next process in the pipeline. If we instead make
some deterministic approximation at each stage, we flaunt the flaw of averages and our biases
will conflagulate to give a result that might be substantially different to the truth. If we stick
with unbiased Monte Carlo estimation methods then although it is, of course, possible that our
variance will explode, this can almost always be checked. If we do away with randomness, we
might generate large errors without even knowing we have.

This lack of repeatability is actually an essential advantage of Monte Carlo. It is better for a
system to give you a different wrong answer each time it is queried, particularly if these answers
are unbiased, than to always give the same wrong answer. When we write scientific papers we
run our experiments multiple times to show the variability in the results. Systems that always
give the same answer and instead return a single subjective uncertainty estimate (e.g. a Gaussian

process) are not generally trustworthy because there is no true calibration or sense of whether
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the experimenter simply got lucky with a system that will not generalize. Furthermore, such a
setting is very open to intentional or unintentional abuse. If we fix our randomness a priori and
then adapt our algorithm until it works, we may well simply be over-fitting to what works best
for that random number seed or approximation. To maintain scientific integrity, we have to report
results on experiments that have not been tested during the design of our algorithm and which
are tested with multiple different choices for arbitrary or subjective decisions, to show that those
results are actually stable and representative. If we do away with randomness, we lose, or at the
very least seriously hamper, this ability to repeat experiments in an objective manner.

To summarize, we need randomness because we do not know everything. In the Bayesian
framework, we place distributions on what we are not sure about to reflect this lack of knowledge.
A key part of this process is acknowledging that once we have done this, what is left is random.
For example, if we have a sampler that converts u ~ UNIFORM(0, 1) draws to samples from the
posterior, then the u corresponding to the ground truth parameters is equally likely to be any
value between 0 and 1 and is truly random. Yes, we might be able to impart more knowledge on
problems that we currently do, such as by decorrelating our samples, but there always become a

point where we have imparted everything we know, after which what is left is truly random.

12.3 Amortizing Inference

An interesting recent advancement in PPSs is the idea of amortizing the process of inference [Paige
and Wood, 2016; [Ritchie et al., 2016a; |Le et al., 2017a]. The high-level idea is that we often
repeatedly use the same models for multiple different datasets and therefore it can be wasteful to
attempt to do inference from scratch each time. Instead, one can, before any data is actually seen,
look to learn a regressor from the space of data to, for example, proposals, such that when any
particular dataset is actually observed, one can use this regressor to produce an artifact to assist
with the resulting inference. To do this, amortization methods exploit the fact that generative
approaches specify a distribution over both data and parameters. It is thus theoretically possible
to learn the form of the posterior as a function of the dataset by sampling parameter-data pairs
from the joint distribution and then using these to train a regressor from data to some variables
providing a characterization of posterior. In practice, doing this is can be very challenging
— learning a posterior for any possible dataset is inevitably far harder than learning one for a
particular dataset — but in applications where the same model is repeatedly used, the additional
cost can be easily justified. Current methods share a number of weaknesses, such as being

restricted by the fidelity of the underlying regressor, mostly only allowing importance sampling
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for the final inference, and being potentially even more sensitive to model misspecification than
conventional Bayesian approaches. Nonetheless, they represent a very interesting avenue for
future research and offer the potential for substantial long-term impact. In particular, as current
methods are already effective at amortizing inference for low-dimensional problems, the utility
of such approaches might be dramatically increased if one can develop methods for breaking
an overall inference problem down into a number of smaller problems that can be amortized

separately and then usefully combined at run time.

12.4 A General Purpose Experimental Design Language

We finish by discussing an exciting and direct possible extension of our work: developing the
framework we introduced in Chapter [[T]into a general purpose tool for automating sequential
design problems. The potential applications for such a system would be huge, ranging from
designing clinical trials to smart online surveys and classic autonomous agent problems. In the
same way all Bayesian modeling problems can be reduced to a common inference framework,
such problems can be reduced to a common Bayesian experimental design framework. This
suggests that they are highly suited to a probabilistic programming style approach. However,
there are a number of reasons existing systems are not suited to such problems. Firstly, such
problems require coincident inference and optimization. Our introduction of BOPP could be of
help for overcoming this problem, but its computationally intensive nature means that it is perhaps
not suitable for some scenarios, e.g. the psychological trials we considered in Section [11.4]
for which the approach we outlined in Section [I[1.3] or an extension thereof, might be more
suitable. If BOPP were to be used, suitable adjustments would also be necessary to account for
sequential design problems. Secondly, Bayesian experiment design problems, in general, require
the calculation of a nested estimation. For discrete outputs, we showed how a superior estimator
can be derived and so it would be important to exploit this, when possible, in any hypothetical
system. For continuous problems that cannot be rearranged, then as we explained in Section [[0.7]
we need to be careful to avoid the pitfalls of nested estimation, for which existing systems appear
to need suitable adaptation. It may also to be beneficial to develop application specific estimation
schemes for this setting, potentially exploiting the known form of the nonlinear mapping to devise
methods for bias reduction. Finally, to make such a system user-friendly, it would be important to
provide a convenient means of encoding a suitable design space alongside the model. It might, for
example, be possible to do this in a similar manner as constraints were enforced in BOPP, noting

that each iteration in a sequential design is effectively a maximum marginal likelihood problem.
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