

ii

COMPSCI 111/111G
An Introduction to Practical Computing

Reference Manual
June 10, 2016

Andrew Luxton-Reilly
Copyright c© 2008

Copyright Notice

This coursebook may be used only for the University’s educational purposes. It in-
cludes extracts of copyright works copied under copyright licences. You may not copy
or distribute any part of this coursebook to any other person. Where this coursebook is
provided to you in electronic format you may only print from it for your own use. You may
not make a further copy for any other purpose. Failure to comply with the terms of this
warning may expose you to legal action for copyright infringement and/or disciplinary
action by the University.

Acknowledgements

Thanks to everyone who contributed to the development of this resource. Particular
thanks go to Ann Cameron for extensive feedback and endless proofreading.

Feedback

We welcome any and all feedback on the coursebook. Please send all corrections,
comments and other feedback on this coursebook to andrew@cs.auckland.ac.nz

iv

andrew@cs.auckland.ac.nz

Contents

Learning Outcomes xv

1 Digital information 1
1.1 Analogue vs. Digital Systems . 1

1.1.1 Analogue Systems . 1
1.1.2 Digits . 1
1.1.3 Digital Systems . 2

1.2 Encoding Information Digitally . 3
1.2.1 Encoding Images . 3
1.2.2 Encoding Sounds . 3

1.3 Binary Numbers . 4
1.3.1 Storing Decimal Numbers in a Machine 4
1.3.2 Bits . 5
1.3.3 Converting Binary to Decimal Numbers 5
1.3.4 Bytes . 6

1.4 Recommended Reading . 6
1.5 Self-Test Questions . 7

2 Computer Systems 9
2.1 Introduction . 9
2.2 Processing hardware . 10

2.2.1 Inside a CPU — Advanced, not examinable 11
2.3 Storage components . 14

2.3.1 Primary memory . 14
2.3.2 Mass storage (Secondary storage) 15

2.4 Input components . 15
2.5 Output components . 16

3 Online Publishing 17
3.1 Introduction . 17
3.2 The World-Wide Web as a media source 17
3.3 Blog . 18
3.4 Wiki . 18
3.5 Recommended Reading . 18

4 Wiki 19
4.1 Introduction - What is a wiki? . 19
4.2 The stage one wiki . 19

4.2.1 Teaching and learning . 20

v

CONTENTS CONTENTS

4.2.2 Expectations . 20
4.3 Using MediaWiki . 21

4.3.1 Logging in . 21
4.3.2 Tabs . 25
4.3.3 Article tab . 25
4.3.4 Discussion tab . 25
4.3.5 Edit tab . 25
4.3.6 Editing conflicts . 28
4.3.7 History tab . 30
4.3.8 Move tab . 30
4.3.9 Watch tab . 31

4.4 Markup . 31
4.4.1 Headings . 31
4.4.2 New lines . 34
4.4.3 Lists . 34
4.4.4 Indentation . 37
4.4.5 Pre-formatted text . 37
4.4.6 Horizontal lines . 38
4.4.7 Adding the author’s name . 39
4.4.8 Links . 39
4.4.9 Character formatting . 41

4.5 Creating a new page . 42
4.5.1 Following a link . 43
4.5.2 Creating a new link . 43

4.6 References . 43

5 HTML 45
5.0.1 Versions of HTML and XHTML 45
5.0.2 Document Type Definition 46
5.0.3 Encoding standards . 46

5.1 Hypertext Markup Language (HTML) 46
5.2 Tags . 47

5.2.1 Nested tags . 48
5.2.2 Attributes of tags . 48

5.3 Essential HTML tags . 49
5.3.1 <html> . 49
5.3.2 <head> . 50
5.3.3 <title> . 50
5.3.4 <body> . 51
5.3.5 A simple example . 51

5.4 Block-level tags . 52
5.4.1 <h1> to <h6> . 53
5.4.2 <p> . 53
5.4.3 <hr> . 54
5.4.4 <pre> . 55
5.4.5 Tables . 56
5.4.6 Lists . 58

5.5 Inline tags . 60
5.5.1
 . 61
5.5.2 . 62

vi

CONTENTS CONTENTS

5.5.3 <a> . 65
5.6 Uniform Resource Locator . 67

5.6.1 Protocol . 67
5.6.2 Host Name . 67
5.6.3 Path . 67
5.6.4 Resource Name . 67
5.6.5 Examples . 67

5.7 Comments . 68
5.8 HTML5 Semantic Elements . 69
5.9 Videos in HTML . 71
5.10 Validating your pages . 72
5.11 Quick Reference List . 74
5.12 References . 75

6 CSS 77
6.1 Introduction . 77
6.2 Style definitions . 77

6.2.1 Changing multiple properties for a selector 78
6.2.2 Defining a style that has multiple selectors 78
6.2.3 The class selector . 79
6.2.4 The id selector . 80
6.2.5 Other selectors . 80

6.3 Location of styles . 82
6.3.1 An external style sheet . 82
6.3.2 An internal style sheet . 82
6.3.3 An inline style . 83
6.3.4 Applying styles in order . 83

6.4 <div> and . 83
6.5 Properties . 84

6.5.1 Font . 85
6.5.2 Background . 86
6.5.3 Text . 87
6.5.4 Borders . 87
6.5.5 Table Borders . 88
6.5.6 Lengths . 88
6.5.7 Colours . 88

6.6 Advanced CSS (not examinable) . 90
6.6.1 Box model . 90
6.6.2 Padding . 91
6.6.3 Margins . 91
6.6.4 Positioning . 92
6.6.5 Dimension . 92

6.7 References . 92

7 PowerPoint 95
7.1 Overview . 95
7.2 Getting started . 95

7.2.1 Views . 97
7.2.2 Options . 98

7.3 Adding content . 99

vii

CONTENTS CONTENTS

7.3.1 Title slide . 99
7.3.2 Adding a new slide . 99
7.3.3 Bullet Points . 100
7.3.4 Headers and Footers . 100
7.3.5 Drawing tools . 101
7.3.6 Pictures . 103

7.4 Making beautiful slides . 105
7.4.1 Formatting text . 105
7.4.2 Background and Font colour 105
7.4.3 Design Theme . 106
7.4.4 Colour scheme . 107
7.4.5 Design layout . 107
7.4.6 Using Masters . 108

7.5 Interactivity — animation and multimedia 109
7.5.1 Slide transitions . 109
7.5.2 Linking to external resources 110
7.5.3 Custom animation . 111
7.5.4 Package for CD . 113

7.6 Presentation . 114
7.6.1 Rehearsing a presentation . 114
7.6.2 Navigating during a presentation 115
7.6.3 Annotating a presentation . 115

7.7 Design and presentation advice . 116
7.7.1 Printing the presentation . 116

7.8 Advice on slide design . 117
7.8.1 Your slides support you, not replace you! 117
7.8.2 Aim for consistency . 117
7.8.3 Keep it simple . 117
7.8.4 Limit bullet points and text 117
7.8.5 Limit animation . 118
7.8.6 Limit sound and keep it professional 118
7.8.7 Use high-quality visuals . 118
7.8.8 Design your own templates 118
7.8.9 Make good use of colour . 118
7.8.10 Don’t do too much in a single slide 118
7.8.11 Choose fonts well . 118
7.8.12 Tell a story . 119

7.9 References and further reading . 119

8 Spreadsheets 121
8.1 Visicalc . 121
8.2 Introduction . 122

8.2.1 Menus and Toolbars . 123
8.3 Adding data . 124

8.3.1 Entering data . 124
8.3.2 Selecting a range of cells . 125
8.3.3 Selecting an entire row or column 125
8.3.4 Copying and pasting . 126
8.3.5 Filling data . 127
8.3.6 Insert/delete rows and columns 128

viii

CONTENTS CONTENTS

8.4 Formula . 129
8.4.1 Relative references . 129
8.4.2 Absolute references . 131
8.4.3 Good spreadsheet design . 132
8.4.4 Defining names . 134

8.5 Functions . 135
8.5.1 Inserting functions . 136
8.5.2 Common mathematical and statistical functions 137
8.5.3 Counting functions . 137
8.5.4 Conditional Functions . 138
8.5.5 Information functions . 139
8.5.6 Lookup functions . 140
8.5.7 VLOOKUP Examples . 141

8.6 Sorting, filtering and removing duplicates 143
8.6.1 Sorting . 144
8.6.2 Filtering . 145
8.6.3 Remove duplicates . 146

8.7 Freezing, locking and hiding cells . 146
8.7.1 Freezing cells . 146
8.7.2 Splitting panes . 147
8.7.3 Hide and display cells . 148

8.8 Cell Formatting . 149
8.8.1 Font formatting . 149
8.8.2 Alignment . 149
8.8.3 Number formatting . 150
8.8.4 Cell Formatting . 151
8.8.5 Example . 152

8.9 Charts . 153
8.10 Annotating data using the drawing tools 154

8.10.1 Shapes . 154
8.10.2 Grid . 155

8.11 Adding comments to cells . 156
8.12 Multiple worksheets . 156
8.13 Printing . 157

9 Databases 159
9.1 Introduction . 159

9.1.1 Databases and Database Management Systems 159
9.2 Elements of a database . 160

9.2.1 Table . 160
9.2.2 Record . 160
9.2.3 Fields . 160
9.2.4 Relationships between tables 161
9.2.5 What can we do with a database? 161
9.2.6 What are some advantages of databases? 162

9.3 Creating your own database . 162
9.3.1 Working with database objects 163

9.4 Tables . 163
9.4.1 Design view . 164
9.4.2 Defining fields . 164

ix

CONTENTS CONTENTS

9.4.3 Field descriptions . 165
9.4.4 Field properties . 165
9.4.5 Primary keys . 168
9.4.6 Foreign key . 168
9.4.7 Entering data . 169
9.4.8 Creating more than one table 169
9.4.9 Lookup fields . 169
9.4.10 Formatting datasheets . 170

9.5 Forms . 170
9.5.1 Form tool . 170
9.5.2 Form wizard . 171
9.5.3 Navigating through forms . 172
9.5.4 Changing the layout . 172

9.6 Queries . 173
9.6.1 Filtering results . 173
9.6.2 Query Design view . 174

9.7 Reports . 174
9.7.1 Report tool . 175
9.7.2 Report wizard . 175
9.7.3 Design View . 178

9.8 Structured Query Language (SQL) 178
9.8.1 SELECT . 178
9.8.2 ORDER BY . 179
9.8.3 WHERE . 179

10 Python 181
10.1 Computer programming . 181
10.2 Using IDLE to program in Python . 181

10.2.1 Using an interactive interpreter 182
10.2.2 Writing a Python program . 182

10.3 Statements . 183
10.4 Comments . 183
10.5 A first program . 183
10.6 Printing . 184
10.7 Strings . 185
10.8 Numbers . 185

10.8.1 Printing numbers . 186
10.9 Mathematical operations . 186

10.9.1 Order of precedence . 187
10.10 String operations . 188
10.11 Variables . 189

10.11.1 Assigning a value to a variable 190
10.11.2 Using the value stored in a variable 190
10.11.3 Assignment happens last . 190

10.12 Reading input from the user . 191
10.13 Making Decisions: if, elif, and else statements 192

10.13.1 If. . .Else Statement . 193
10.13.2 If. . .Elif. . .Else Statement . 194
10.13.3 Comparison operators . 195
10.13.4 Logical operators . 195

x

CONTENTS CONTENTS

10.13.5 Example . 196
10.14 While loops . 197

10.14.1 Example . 199
10.15 Turtle Graphics . 200

10.15.1 Importing Python Modules 200
10.15.2 Basic Turtle Commands . 201
10.15.3 Example - Drawing A Square 203
10.15.4 Example - Using A While Loop For Drawing 203

11 LATEX 205
11.1 Introduction . 205

11.1.1 Why would we use LATEX? 206
11.2 Overview of the language elements 206

11.2.1 Comments . 206
11.2.2 Whitespace . 207
11.2.3 Commands . 207
11.2.4 Environments . 208
11.2.5 Special characters . 209
11.2.6 Paragraphs and line breaks 209

11.3 Document class . 210
11.3.1 Classes of document . 211
11.3.2 Preamble . 212
11.3.3 A simple LATEX document . 212

11.4 Titles . 212
11.5 Structuring a document . 213

11.5.1 Parts . 214
11.5.2 Chapters . 214
11.5.3 Sections and subsections . 214

11.6 Table of contents . 216
11.7 Footnotes . 217
11.8 Symbols used in text . 218

11.8.1 Quote marks . 218
11.8.2 Special symbols . 218
11.8.3 Dashes . 219
11.8.4 Ellipsis . 220
11.8.5 Spaces . 220

11.9 Text styles . 221
11.9.1 Emphasis . 222
11.9.2 Font styles . 222
11.9.3 Font size . 222

11.10 Alignment environments . 223
11.10.1 Left aligned text . 223
11.10.2 Right aligned text . 224
11.10.3 Centred text . 225

11.11 List environments . 225
11.11.1 Unordered lists . 225
11.11.2 Ordered lists . 226
11.11.3 Description lists . 226

11.12 Quote and quotation environments 227
11.12.1 Quote . 227

xi

CONTENTS CONTENTS

11.12.2 Quotation . 228
11.13 Verbatim environment . 229
11.14 Mathematics mode . 230

11.14.1 Inline mathematics . 230
11.14.2 Display mathematics . 230
11.14.3 Equation environment . 231

11.15 Mathematics . 231
11.15.1 Greek letters . 232
11.15.2 Exponents and subscripts . 232
11.15.3 Square roots . 232
11.15.4 Fractions . 232
11.15.5 Other common operators . 233

11.16 Adding functionality with packages 233
11.16.1 Graphicx package . 234

11.17 References . 234

12 History 239
12.1 Early history . 239

12.1.1 Abacus (1000–500BC) . 239
12.1.2 Arabic numerals . 240
12.1.3 Wilhelm Schickard (1592–1635) 240
12.1.4 Blaise Pascal (1623–1662) 240
12.1.5 Gottfried Wilhelm von Leibniz (1646 - 1716) 241
12.1.6 Joseph Jacquard (1752 - 1834) 241
12.1.7 Charles Babbage (1791 - 1871) 242
12.1.8 Ada Augusta Lovelace (1816 - 1852) 243

12.2 The electronic computer . 244
12.2.1 Dr. Herman Hollerith (1860 - 1929) 244
12.2.2 Atanasoff-Berry Computer (ABC) 244
12.2.3 Z3 . 245
12.2.4 Colossus Mark I . 245
12.2.5 Harvard Mark I . 245
12.2.6 ENIAC . 246
12.2.7 John von Neumann (1903 - 1957) 247

12.3 Commercialisation . 247
12.4 The personal computer industry . 248

12.4.1 Mainframes . 248
12.4.2 Xerox . 248
12.4.3 Intel . 249

12.5 The first personal computer—Altair 8800 249
12.5.1 Microsoft . 249
12.5.2 Homebrew Computer Club 250

12.6 Apple . 251
12.6.1 VisiCalc . 251

12.7 IBM PC . 252
12.7.1 CPM . 252
12.7.2 Microsoft DOS . 253
12.7.3 Clones . 253
12.7.4 Compaq 386 . 253

12.8 Apple Macintosh . 254

xii

CONTENTS CONTENTS

12.8.1 Adobe . 254
12.9 Microsoft Windows . 255
12.10 Conclusion . 255
12.11 References . 255

xiii

CONTENTS CONTENTS

xiv

Learning Outcomes

Bits, bytes and binary numbers

Students will be familiar with the binary representation of numbers and the prefixes
commonly used with binary numbers.

Students should be able to:

• define the terms “bit” and “byte”.

• use the decimal SI units (kilo, mega, giga, and tera) appropriately.

• compare and contrast the binary SI units (kibi, mebi, gibi, tebi) with the corre-
sponding decimal SI units.

• state the biggest decimal number that can be represented using a given number
of binary digits.

• state the number of binary digits required to represent a given decimal number.

Standards

Students will have an appreciation of how numbers can be used to represent different
kinds of information (such as text and images). Students will understand the importance
of standard methods of encoding.

Students should be able to:

• describe how numbers can be used to encode text and images.

• compare and contrast open standards with proprietary standards, giving exam-
ples of each.

xv

LEARNING OUTCOMES

Hardware

Students will understand the purpose of the major components of a computer system,
and will be able to identify those components visually.

Students should be able to:

• assign common hardware to one of the categories “Input”, “Output”, “Processing”,
“Storage” and “Communication”.

• identify the major components of a computer system.

• explain the purpose of each of the hardware components found in a typical desk-
top computer.

• state Moore’s Law and discuss the implications for computing.

• compare and contrast primary memory with mass storage devices.

• describe the major factors influencing the performance of a computer, and explain
the different ways that computer performance is measured.

• read an advertisement for a computer system and explain what it means.

Software

Students will be aware of some major software companies. Students will have an un-
derstanding of different software licences, and the purpose of common system and
application software.

Students should be able to:

• distinguish between software and hardware.

• identify some major software companies and the products that they create.

• distinguish between application software and system software.

• describe the different categories of software licences.

Operating systems

Students will be aware of the major operating systems available today, will be able to
explain the purpose of an operating system and will be able to use a standard operating
system comfortably.

Students should be able to:

• identify common file extensions and the applications they correspond to.

• give examples of different operating systems.

• discuss the purpose of an operating system.

xvi

LEARNING OUTCOMES

User interfaces

Students will understand the purpose of a user interface and will be aware of the differ-
ences between command line interfaces and graphical user interfaces.

Students should be able to:

• explain the meaning of the acronyms GUI and CLI.

• compare and contrast a GUI with a CLI.

• use the correct terminology to identify parts of a graphical user interface.

Internet

Students will have a basic understanding of the development of the Internet, and will be
familiar with simple networking terminology.

Students should be able to:

• explain the meaning and purpose of TCP/IP.

• put a series of Internet related events into chronological order.

• describe some of the design features of the Internet and explain why it was de-
signed the way it was.

• state the purpose of the DNS and describe how it works.

• describe the purpose of networking components required for a home network —
network card, modem, router.

• describe,in simple terms, how information is transferred through the Internet.

WWW

Students will be familiar with the development of the WWW, its relationship to the Inter-
net and how to effectively use the WWW.

Students should be able to:

• put a series of events related to the WWW into chronological order.

• describe the difference between the WWW and the Internet.

• describe the underlying process that occurs when a user looks at a web page.

• describe the way that web page access is logged.

• discuss how search engines rank pages

• discuss the implications arising from our use of search engines to access the
WWW.

• describe some of the copyright issues that relate to the use of search engines.

xvii

LEARNING OUTCOMES

• define the following terms/acronyms: www, http, hypertext, hypermedia, url.

• use a search engine to find information on the WWW.

Electronic communication — Email, IM, Forums

Students will be familiar with different tools used to communicate online.

Students should be able to:

• explain the purpose of the common header fields — To, From, Reply-to, CC, BCC,
Subject.

• compare and contrast IMAP and POP3.

• describe how an email message is transferred from the sender to the receiver.

• discuss issues around the privacy of email and the use of email in the workplace.

• state some of the benefits and dangers present in electronic communication.

• compare and contrast different forms of communication — Email, IM, Forums.

• give examples of good and bad netiquette.

• explain what spam is and why it is undesirable.

• describe some of the tools that are typically included with an email system —
address books, filters.

• define (with examples) common terminology used with electronic communication
systems — threads, moderators, flames, quotes, emoticons, acronymns.

• use webmail to send and receive email messages.

• create and use address book entries.

• read and post messages to an electronic forum.

Online community tools — Blogs, Wikis

Students will have an appreciation of the tools that are commonly used by online com-
munities.

Students should be able to:

• describe what a blog is.

• discuss the social implications of blogs.

• compare and contrast the different tools used to publish information online —
Forums, Blogs, Wikis.

• describe what a wiki is.

• discuss the accuracy of information on a wiki.

xviii

LEARNING OUTCOMES

• explain how a community can effectively maintain a wiki.

• describe the common tools that are used within a wiki.

• create a blog.

• add a new posting to a blog.

• use wiki markup to create a wiki page.

• contribute to an existing wiki.

Word processing

Students will be familiar with the idea of encoding text, and the importance of standards.
Students will gain experience using a word processor to format documents.

Students should be able to:

• describe the meaning of the acronym “ASCII” and explain why ASCII is important.

• use ASCII to encode or decode text.

• explain the difference between a text editor and a word processor.

• distinguish between examples of surface formatting and examples of structural
formatting.

• describe the advantages of structural formatting over surface formatting.

• use common formatting commands to format a document.

• create, modify and apply user-defined styles within a document.

• use EndNote to create citations.

Digital images

Students will have an appreciation of different methods of encoding digital images.

Students should be able to:

• describe how a bitmap is used to represent an image.

• describe how vector graphics are used to represent an image.

• compare and contrast bitmaps and vector graphics.

• calculate the size (in bytes) of a given bitmap image.

• compare and contrast jpeg and gif compression methods.

• use common drawing tools to create a diagram within a word processing docu-
ment.

xix

LEARNING OUTCOMES

HTML5

Students will understand how web pages are created using a recent standard (HTML5),
and will be able to create their own web pages using this standard.

Students should be able to:

• discuss the importance of using published standards.

• state what a Document Type Definition is used for.

• state the meaning of the acronym HTML.

• use HTML tags to create a web page that adheres to the HTML5 standard.

• validate web pages using an online validation tool.

CSS

Students will understand the advantages of using Cascading Style Sheets, and will be
able to create a web page that uses both HTML5 and CSS.

Students should be able to:

• state the meaning of the acronym CSS.

• compare and contrast the different locations that styles can be defined.

• distinguish between <div> and .

• distinguish between class and id selectors.

• write a style sheet that will produce a specified appearance (given a table of
attributes).

• use style sheets to create a standard appearance for a web site that includes at
least three web pages.

Web page design

Student will gain an appreciation of simple aspects of web page design.

Students should be able to:

• describe design that will aid navigation.

• discuss design decisions that arise with hypertext links.

• discuss the use of fonts, colour and backgrounds in web pages.

xx

LEARNING OUTCOMES

PowerPoint

Students will understand the functions and limitations of PowerPoint software, and will
be able to use PowerPoint to create a presentation.

Students should be able to:

• state some of the criticisms of PowerPoint.

• identify aspects of good and bad presentation design.

• describe good use of structure and appearance (colour, backgrounds, font).

• use design templates, master slides, and animation to create a short presenta-
tion.

Spreadsheet

Students will understand how to create spreadsheets using cell references and simple
functions.

Students should be able to:

• distinguish between absolute references and relative references.

• write formulae that calculate results based on the contents of other cells.

• write formulae that use common mathematical functions.

• evaluate boolean expressions.

• use IF, VLOOKUP and HLOOKUP functions.

Database

Students will understand what a relational database is, how to create and how to use a
relational database.

Students should be able to:

• explain the difference between a database and a database management system.

• identify a field, record and table in a relational database.

• define and identify primary and foreign keys.

• use a relationship diagram to identify the relationships between different fields.

• create a simple relational database.

• compare and contrast QBE with SQL

• use QBE to create simple queries and run them on an existing database.

• write simple SQL queries that use SELECT, FROM, WHERE, ORDER BY and
GROUP BY

xxi

LEARNING OUTCOMES

Programming/Python

Students will understand simple programming concepts and be able to write very simple
programs.

Students should be able to:

• compare and contrast interpreters with compilers.

• identify and use comments.

• distinguish between different types of information (strings, integers and floating
point numbers).

• create expressions using standard mathematical operators.

• use the print statement to generate output.

• identify and use variables to store and recall values.

• read and store input from the user.

• write simple programs that read input, perform a calculation and produce output.

• evaluate boolean expressions that include comparison operators and logical op-
erators.

• use an if statement.

• use a while loop to perform repetitive tasks.

• read a simple program and determine the output that would be produced.

• write simple programs that contain a while loop and/or if statements.

LATEX

Students will be able to use LATEX to typeset a document, including the typesetting of
mathematical formulae.

Students should be able to:

• compare and contrast LATEX with MS-Word.

• distinguish between the preamble and the document body.

• identify and use comments.

• use environments and simple commands

• distinguish between the three commonly used math modes.

• use math commands to typeset a complex mathematical formula.

• typeset a document that includes titles, columns, sections, footnotes, images and
mathematical formulae.

xxii

LEARNING OUTCOMES

History

Students will have a basic understanding of the history of the personal computer, the
major companies and the people involved in that history.

Students should be able to:

• put a list of historically important events into chronological order.

• match the names of people with their accomplishments.

• explain why IBM failed to dominate the personal computer industry.

• explain how VISICALC and Apple are related.

• explain the relationship between Microsoft, MS-DOS, IBM and PC clones.

Social issues

Students will have an appreciation of some of the complex social issues that result from
the Internet.

Students should be able to:

• explain how anonymous the Internet is.

• discuss advantages and disadvantages of anonymity.

• discuss issues of cultural dominance.

• describe the complexity of Internet censorship.

• discuss methods of protecting children from undesirable content on the Internet.

• compare and contrast different forms of malware — viruses, worms, trojans and
logic bombs.

Acronyms

Students will be able to state the meaning of the following acronyms:

• CPU

• HDD, FDD

• RAM, ROM

• AGP

• ASCII

• GUI, CLI

• WYSIWYG

• OS

xxiii

LEARNING OUTCOMES

• TCP/IP, HTTP, FTP, SMTP, IMAP, POP3

• ISP

• DNS, WWW, URL

• JPEG, GIF, PNG, SVG

• HTML/XHTML, CSS

• DBMS, SQL, QBE

xxiv

CHAPTER 1

Digital information

1.1 Analogue vs. Digital Systems

1.1.1 Analogue Systems

In an analogue system, information changes in a continuous manner. That is, values
can change gradually in infinitely small steps. Examples for analogue systems are
mechanic scales, tape measures, vinyl records and the brake and accelerator pedals of
a car.

Figure 1.1: Both the tape measure and the dial are analogue devices

1.1.2 Digits

Digits are the building blocks of numbers. They are symbols such as “0”, “1”, “2” etc.
which can be combined to express a quantity. If we combine the digits “1”, “0” and “3”

1

1.1 Analogue vs. Digital Systems DIGITAL INFORMATION

Figure 1.2: An analogue signal is continuous, i.e. it changes in infinitely small steps.

we get the number “one hundred and three”. The more digits we combine, the higher
are the numbers that we can represent with them.

1.1.3 Digital Systems

In a digital system, information can only change within a fixed number of predefined,
discrete steps. That is, only a certain number of values are actually possible. There
are no in-between values as in the analogue systems, which have a continuous value
range as described before. As a result, we can represent digital information precisely
by using digits, hence the term “digital”. Examples for digital systems are computers,
CD players, electronic scales and calculators.

Figure 1.3: A digital system that has only 3 digits cannot represent numbers more
precisely than .001.

How many values a digital system can process depends on the maximum number of
digits it can use. For example, most modern calculators have space to display around
10 different digits on the screen. The biggest number that could be displayed using
these 10 digits is 9 999 999 999. The smallest number that could be represented using
10 digits is .000 000 000 1.

2

DIGITAL INFORMATION 1.2 Encoding Information Digitally

1.2 Encoding Information Digitally

Any information can be encoded using numbers. We just have to decide what encoding
system to use. If we have analogue information and want to store it digitally, then we
need to do something called sampling: sampling means that we divide the analogue
information with its infinitely small changes into discrete blocks (samples) that can each
be described by one value of a predefined set of values. In the following, let us consider
how this works for images and sounds.

1.2.1 Encoding Images

In the real world, images consist of colours and shapes which change in infinitely small
steps. That is, they are a type of analogue information and therefore change continu-
ously. Devices that store images digitally, such as digital cameras, cannot cope with all
these infinitely many colors and shapes. So they reduce an image to a finite number
of building blocks called pixels (short for picture element). A pixel is a rectangular area
that has a single colour. Each colour is encoded as a number using a certain number of
digits. The reduction from the real image to the set of pixels is an example for sampling.
As we can see in the figure below, the pixels are arranged in a matrix so that they look
like the original image (although they do not contain all the infinitely small steps of the
original anymore).

When magnifying the digital image on the left, we can see its pixels (middle), which are
represented as a matrix of numbers (right).

1.2.2 Encoding Sounds

In the real world, sounds such as noises or music consist of vibrations in the air that
make our eardrums vibrate as well. Since those vibrations are analogue information,
they change continuously and in infinitely small steps. The vibrations can be described
as a waveform over time, that is, as a description of how much our eardrum is stretched
at each point in time. Such a waveform is shown on the left side of the figure below:
time flows from left to right, and the zigzag deviations up and down signify the vibrations
in the air. In order to make it possible to store sound on a digital device, such as an
MP3 player, we need to break the waveform down into discrete steps that can each be
described digitally with a number – another example of sampling. On the left side of
the figure we see the magnified waveform and how the waveform is broken down into
discrete steps by sampling. Each of the small boxes has the same width, i.e. we break

3

1.3 Binary Numbers DIGITAL INFORMATION

down the time into equal units (usually around 1/44000 of a second), and the height
of each approximates the degree to which our eardrum is stretched at that time. The
boxes are simply called samples and are represented as a sequence of numbers, each
number describing the height of one box.

Sound is recorded as a sequence of samples, each of which can be represented by a
number.

When a sound is played by a digital device, the device goes through the samples in
order and generates an electrical voltage with a strength proportional to the respective
number. The electrical voltage is sent to a loudspeaker, and the membrane of the
loudspeaker starts vibrating just as expressed by the samples. The membrane makes
the air vibrate, which in turn makes our eardrums vibrate. Modern digital music players
use clever tricks to store music with as little numbers as possible. The main idea behind
music compression formats such as MP3 is that the human ear cannot hear all the
samples anyway, so they do not store them all.

1.3 Binary Numbers

The way we usually represent our numbers is called the decimal representation. “Deci-
mal” comes from the Latin word for “ten” and means that we use ten digits: “0”, “1”, “2”,
“3”, “4”, “5”, “6”, “7”, “8” and “9”. The reason why we use ten digits is that we have ten
fingers, which can be very convenient for counting. In fact, the word “digit” is also Latin
and means “finger”. Computers store numbers using a different number representation,
the binary representation. In the following we will learn how the binary representation
of numbers works.

1.3.1 Storing Decimal Numbers in a Machine

Before learning how to use binary numbers, let us first consider how we would store
decimal numbers in a machine such as a computer. For each of the decimal digits, we
would need some sort of a dial that can be set to ten different states. Of course, in a
computer we would not have mechanical dials but some sort of electronic storage units.

If we want to represent, say, decimal number with three digits (from 0 to 999) then

4

DIGITAL INFORMATION 1.3 Binary Numbers

we need three such dials. The leftmost dial would store how many 100’s there are in
our number, the middle dial would store how many 10’s there are, and the rightmost
dial would store how many 1’s there are. If we have a single dial, we could represent
101 = 10 different values, with two dial we could represent 102 = 100, with three dials
103 = 1000 etc. In the general case, if we have n dials, we can represent 10n different
values.

1.3.2 Bits

Digital systems do not use decimal numbers because they are usually electronic sys-
tems, and in order to represent the ten different values of a decimal digit they would
need to deal with ten different electric voltages. Technically this would be very difficult.
As a consequence, digital systems use binary digits which have only two possible val-
ues: 0 and 1. The word “binary” comes from the Latin word for “two”. This is technically
much easier because the systems need to deal with only two different voltages: a very
low voltage for 0, and a much higher voltage for 1. This is similar to a light switch: either
the light is switched off (0) and no electric current is flowing, or it is on (1) and the elec-
tric current can flow and power the light. A binary digit is called a bit (short for binary
digit).

If we want to store bits, we could do so with switches. A switch has two different states,
on and off, which correspond to the binary values 0 and 1. Of course, in an electronic
system the switches would not be mechanical but some sort of electronic switching
units. For each bit that we want to store, we install a switch. With a single switch, we
could represent 21 = 2 different values. With two switches we could represent twice
as many values, that is 22 = 4: for each of the two states of the first switch the second
switch could assume two different states. If we add a third switch, the number of possible
values again doubles to 23 = 8 etc. Note that this is just like the aforementioned dials
we used to explain storage of decimal numbers, only that the binary system is based on
the number 2, so that with n bits (or switches) we can represent 2n different values.

1.3.3 Converting Binary to Decimal Numbers

When we read numbers, we go through the digits and because we know the quantity
each digit represents we can understand what quantity is represented by the number as
a whole. In this regard, binary numbers are just the same as decimal numbers. Let us
first have a look at how we actually understand the quantity represented by a decimal
number:

135 = 1×100 + 3×10 + 5×1
= 1×102 + 3×101 + 5×100

The number “one hundred and thirty-five” is made up of one 100, three 10s and five
1s. Going through the decimal digits from right to left, the rightmost digit always refers
to the 1s, i.e. the quantity 100 = 1. The next digit refers to the 10s, i.e. 101 = 10.
In general, the ith digit from the right refers to the quantity 10i−1. The value of the
whole number can always be calculated arithmetically by multiplying each digit with the
quantity it refers to, and then adding up all these products.

Let us now consider how we can calculate the decimal value of a binary number. The
key is to know which quantity (as a decimal number) each of the bits in the binary

5

1.4 Recommended Reading DIGITAL INFORMATION

number represents. Let us consider the binary number 10101b (note that in the following
equation we add the suffix b to all binary numbers to distinguish them clearly from the
decimal numbers):

10101b = 1×16 + 0×8 + 1×4 + 0×2 + 1×1
= 1×24 + 0×23 + 1×22 + 0×21 + 1×20

= 21

Going through the bits from right to left, the rightmost bit always refers to the 1s, i.e. the
quantity 20 = 1. The next bit refers to the 2s, i.e. 21 = 2. The bit after that refers to the
4s, i.e. 22 = 4, etc. In general, the ith bit from the right refers to the quantity 2i−1. Just
as for the decimal numbers, the decimal value of the whole binary number can always
be calculated arithmetically by multiplying each digit with the decimal quantity it refers
to, and then adding up all these products.

1.3.4 Bytes

A single bit can only represent two different values, which is not much. In order to
store information such as text or images it makes sense to combine the bits into groups,
so that more values can be represented. A group of eight bits is called a byte. From
the previous sections we know that a byte can be used to represent 28 = 256 different
values.

A common use of a byte is to store a single character. A common way of encoding
characters in a single byte is called ASCII (pronounced “ask-ee”, short for American
Standard Code for Information Interchange). ASCII simply defines a mapping between
each of the numbers of a byte from 0 to 255 to a character. For example, the character
“a” has the number 97.

When describing the size of data, we usually use bytes as a unit. For example, if we
have a text document on our computer that contains 50 characters in ASCII encod-
ing, then the size of this document would be 50 B (“B” is the common abbreviation for
“bytes”). Many types of data are thousands, millions or even billions of bytes big. As a
result, we use prefixes in front of the B that express that we mean thousands, millions
or billions etc. of bytes. The prefixes are the same as the ones used for meters, e.g.
thousand meters are one kilometer (1000m= 1km) and thousand bytes are one kilobyte
(1000B = 1kB). The following table lists the most important prefixes, and also points
out what types of data usually require numbers of bytes in the order of a prefix.

Prefix pronounced as is equal to used for
kB kilobyte 1,000 B text documents

small and medium sized images
MB megabyte 1,000,000 B large images

music files (e.g. MP3 files)
GB gigabyte 1,000,000,000 B movies (e.g. on a DVD)

1.4 Recommended Reading

• Digital systems

6

DIGITAL INFORMATION 1.5 Self-Test Questions

– http://en.wikipedia.org/wiki/Digital

• Binary

– http://en.wikipedia.org/wiki/Binary_numeral_system

• Bits

– http://en.wikipedia.org/wiki/Bit

• Bytes

– http://en.wikipedia.org/wiki/Byte

• Standard decimal prefixes

– http://en.wikipedia.org/wiki/SI_prefix

• Binary Prefixes

– http://en.wikipedia.org/wiki/Binary_prefix

1.5 Self-Test Questions

1. What is the main difference between a digital and an analogue system?

2. What is sampling? Give a definition and an example.

3. How can we encode the colours in a picture?

4. How many different values can we represent with 7 bits?

5. Which decimal number corresponds to the binary number 10111?

7

http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/SI_prefix
http://en.wikipedia.org/wiki/Binary_prefix

1.5 Self-Test Questions DIGITAL INFORMATION

8

CHAPTER 2

Computer Systems

A computer system consists of both hardware and software. Computer hardware is
the physical equipment that makes up a computer system. Some people call this “the
stuff you can kick”. In this chapter, we will discuss what the most important pieces of
hardware do.

2.1 Introduction

A computer is an electronic machine that can automatically execute simple instructions.
Many of the instructions tell the computer to manipulate data, or move them from one
place in the computer to another. For example, a computer can add, subtract, multiply
and divide numbers. It can also compare them and make simple decisions based on
comparisons such as “number x is equal to zero” or “number x is greater than number
y”. Usually computers can receive new data from users, e.g. through a keyboard, and
they can also show their data to users, e.g. on a screen.

The main part of a computer is called the central processing unit (CPU), which is the part
that executes the instructions given to the computer. However, a number of additional
components are required so that we can use computer systems effectively. These com-
ponents perform jobs such as translating information between humans and computers
(input and output), storing information, and transferring information between different
computers.

9

2.2 Processing hardware COMPUTER SYSTEMS

Components of a typical computer system

2.2 Processing hardware

The most important part of any computer system is the Central Processing Unit (CPU). It
reads and follows the instructions that make up a program. It also does any calculations
required, and controls the rest of the computer system.

Analogy: It might help to think of a CPU as the “brain” of the computer. Like
a brain, the CPU receives input from input devices, processes and makes deci-
sions based on that data, and sends commands to output devices. In the case
of a computer, common input devices are the keyboard and the mouse, and
common output devices are a screen, speakers or a printer. The “input devices”
of our brain are our sensory organs, i.e. our eyes, ears etc. The brain’s “out-
put devices” include our voice and the skeletal muscles that allow us to move
freely. However, keep in mind that computers are not intelligent, in contrast to
us human beings. CPUs are very good at performing exact operations such as
adding or comparing numbers, but if we do not tell them exactly what to do they
are completely useless. They cannot “think” by themselves.

The performance of a CPU is commonly measured in operations per second. How many
operations a CPU can perform in a second depends on several factors. One factor is the
CPU’s clock speed, i.e. the frequency with which electrical impulses are sent through

10

COMPUTER SYSTEMS 2.2 Processing hardware

the CPU. The more electrical impulses per second we send through a CPU, the more
operations it will be able to perform.

It is worth noting that while the CPU can follow instructions extremely rapidly, it is limited
by the speed of the other components. If a job requires a lot of calculations, then the
speed of the CPU will be the most significant factor. However, if the job relies heavily on
other parts of the computer, the speed of the CPU may not be important because the
other parts may act like bottlenecks that slow down the whole process.

Analogy: For example, you might take an hour to make a decision about the
colour to paint a room in your house. It will take substantially longer to actually
paint the room, perhaps as long as a week. In this case, making the decision
twice as fast will not make any real difference to the time it takes for the room to
be painted.

However, if you were buying a car then it might take an entire week to decide
exactly what model of car you wanted. Paying for the car would only take a
few minutes. In this case, making the decision twice as fast makes a significant
different to the time it takes to buy a car.

2.2.1 Inside a CPU — Advanced, not examinable

Although there are many different designs of CPU, they all have some common features.
These are discussed below:

Main Control Unit

The main control unit is the part of a CPU that controls everything. The main control
unit follows a repetitive cycle where it

• asks for the next instruction
• decodes that instruction (figures out what needs to be done), and
• executes the instruction (tells the other parts of the system what to do so that the

instruction is followed).

The fetch-decode-execute cycle of a main control unit

11

2.2 Processing hardware COMPUTER SYSTEMS

Analogy: It may help to think of the main control unit as the manager of the
CPU. It is responsible for figuring out what to do next and ensuring that it actually
gets done. If we think of the CPU as being a large building, then the main control
unit would be the manager in charge of that building.

Arithmetic and Logic Unit

The arithmetic and logic unit is designed specifically to do calculations. The circuits in
this unit can perform simple arithmetic on numbers. It holds the logic circuits that allow
the computer to compare numbers to see if they are equal to, greater than, or less than
one another. It can also apply logical operators such as AND, OR and NOT.

Analogy: It might help to think of the ALU as a mathematician that sits in an
office doing calculations all day. People bring numbers to the door and ask the
mathematician to do something with them (add, subtract, multiple, divide). The
mathematician can quickly do the calculation and pass the result back.

Registers

The CPU needs a place that it can hold the numbers that it is currently working on.
The registers provide this temporary storage location. Each register can hold a single
number. Each CPU has a very small number of registers (typically less than 100).

For example, if an instruction tell the computer to add together the numbers 7 and 8,
then the CPU needs to remember the number 7, the number 8 and also the result of
adding the numbers together, the number 15.

Analogy: If we think of a mathematician in an office being the ALU, it might be
useful to think of the registers as being boxes that sit on the shelf of the office.
The mathematician can quickly do many complicated calculations by getting
numbers from the boxes and putting any answers into other boxes.

12

COMPUTER SYSTEMS 2.2 Processing hardware

Cache

Accessing the information in a register is extremely rapid, but there are very few regis-
ters available. Getting any information from outside the CPU takes a long time, since
the information has to travel a long way to get from the primary memory to the CPU.
Most modern CPUs have a small amount of additional memory that is included inside
the CPU itself and therefore is able to be accessed fairly rapidly (although not as fast as
the registers). This is called the cache.

Analogy: Returning to our mathematician, the cache would be like having a set
of storage lockers located in the same building as the mathematician. We might
have thousands of storage lockers in the basement. It is reasonably fast to get
information out of those lockers, but if were working on the numbers regularly,
we would prefer that they were stored in the registers. However, we only have a
small number of registers, so numbers that we don’t need as often would have
to be put into the lockers in the basement.

Bus

A bus is an electronic pathway that is used to transfer information. It carries information
from one part of the computer to another. There are normally a few different buses
inside a CPU. The size of the bus determines how much information can be transferred
at any one time.

13

2.3 Storage components COMPUTER SYSTEMS

Analogy: We return again to our mathematician in their office. Imagine that
they have a small lift that runs through the floor, down into the basement where
the lockers are stored. When the manager (CPU) gets an instruction telling
them to multiply the number stored inside locker 7829 by the number stored
inside locker 998, then they would send send a request out for the numbers to
be delivered. A person in the basement would open up the right lockers and get
out the right numbers. They would ride up in the lift and put the numbers in the
correct boxes in the mathematician’s office. We can think of the lift as being the
bus.

2.3 Storage components

Computers store a lot of information. This information can be stored in different ways,
using different pieces of hardware. The devices that store information for long-term use
are generally very cheap, but slow. We call these devices mass storage or secondary
storage devices. Information that needs to be accessed very rapidly has to be stored in
more expensive components known as primary memory.

2.3.1 Primary memory

The form of primary memory that we are most concerned with is the Random Access
Memory (RAM). This is the memory that stores any programs that we are currently
executing, and the data that we are working on.

Because the CPU can follow instructions very rapidly, it has to be able to retrieve the
next instruction from memory as fast as possible. When we want to run a program (i.e. a
series of instructions), we copy those instructions from a mass storage device (such as
a hard drive) into the RAM. When the CPU asks for the next instruction, it is loaded from
the RAM into the CPU where it can be decoded and executed. Any data that is required
by the CPU is also shifted from the mass storage device into the RAM. That way, when
the CPU needs to read some data, or make changes to the data, it will happen very
rapidly.

RAM consists of electronic circuits that store an electrical charge. These circuits are
normally printed onto silicon chips. Memory of this type is extremely fast to access,
since it only requires an electrical charge to be sent from one location to another. Man-
ufacturing memory of this type is fairly expensive (usually about 100 times as expensive
as mass storage devices). Although the RAM is extremely fast to access and modify,
when the power is turned off, the information is lost. This kind of memory is known as
volatile memory.

14

COMPUTER SYSTEMS 2.4 Input components

Analogy: Think of the CPU as a building filled with people doing paperwork.
The instructions that specify the jobs that need to be done are located at a
nearby warehouse. An instruction is fetched from the warehouse and brought
back to the CPU building where it is executed. Once the instruction has been
completed, the next instruction is fetched from the warehouse. These instruc-
tions are very simple, so they might say something like “Add the number located
in locker number 77445 to the number stored in locker number 982 and put the
answer into locker 14528”.

In this analogy, the warehouse plays the role of the RAM.

The physical RAM is divided up into a set of discrete boxes, each of which can hold a
single byte (a number between 0 and 255). The number of boxes in a normal RAM chip
is huge. A RAM chip that holds 1 GB of memory will have space to store 1,000,000,000
different numbers.

2.3.2 Mass storage (Secondary storage)

Devices used for mass storage are capable of storing information over a long period
of time while the computer is switched off. Accessing this information is much slower
than accessing RAM (thousands of times slower). It is much cheaper to store infor-
mation using a mass storage device than it is to store it on RAM (hundreds of times
cheaper). When we compare mass storage devices with primary memory, we see that
mass storage devices are:

• cheaper
• slower
• and store information when the power is turned off (non-volatile).

The most commonly used forms of mass storage are: hard disk, solid-state drive (SSD),
optical disk (CD-ROM / DVD). Magnetic tape is still used for backup as it is very cost
effective. However, access is very slow compared to the other storage devices.

2.4 Input components

Input devices are those components that are used by humans to provide information to
the computer. These devices are used to put data into the computer, hence the term
“input”. This type of equipment often acts as a translator, converting signals which are
used and understood by humans into an electronic form which can be processed by a
computer. The most common device of this type is a keyboard, which allows a user to

15

2.5 Output components COMPUTER SYSTEMS

perform almost any task. Other input devices are typically used for more specialised
tasks.

A graphical user interface often requires a device to control a pointer, and the most
common device for this task is the mouse. However, other devices such as the light-pen,
tablet, and track-ball provide more flexibility for specialised applications. Today, touch
screens are becoming more common in publicly accessible terminals where another
form of pointing device is likely to be damaged.

Direct input is required where the data is too complex (or it is inconvenient) to be entered
using a keyboard or pointing device. An image scanner or fax machine is used to input
entire images into the computer, and bar-code readers and magnetic stripe readers
provide a quick (and private) method to enter specific information. Optical recognition
systems are used by banks to read cheque numbers (using magnetic-ink character
recognition), and by other organisations to read pen or pencil marks in allocated spaces
(e.g. lotto sheets, or multi-choice examinations). More recently, the development of
software has encouraged voice input (using a microphone) as a method of dictation or
control of computer systems.

2.5 Output components

Output devices are the complement to input devices. Equipment used for output acts as
a translator, converting the digital signals a computer uses into a form which is readily
understood by humans. The monitor or screen is the most common example of an
output device. Any device that produces something understandable (to humans) from
the computer is classified as an output device. Common examples include screens
(monitor), speakers, printers and plotters.

16

CHAPTER 3

Online Publishing

3.1 Introduction

The Internet is a communication medium that we can use to publish information and
distribute our ideas. There are commonly available tools that provide a way for us to
easily publish information alone, or work collaboratively with others.

3.2 The World-Wide Web as a media source

The World-Wide Web has provided the opportunity for anyone to publish anything. How-
ever, although it is possible for anyone to publish, a certain amount of technical expertise
is required to create and maintain a web site. The difficulty in authoring and hosting a
web site is a barrier to most people.

It is also difficult to contribute to a community through the publication of web sites since
each web site exists independently. It is easy to author a site which links to other
content, but getting reciprocal links to form a network of related information can be
difficult or impossible.

The benefits are that you own and control the content on your own web site and can
express any opinion you have. The costs are that each web site is independent, rather
than part of an existing network of pages. It can be technically difficult, financially costly,
impossible to integrate into an existing community. Few people may ever find or read
the web site.

Most content on the web is produced by individuals, or by small teams of people who
know each other. A single person will typically write the content. This content will often
be reviewed and edited before it is published. Small teams of people are sometimes

17

3.3 Blog ONLINE PUBLISHING

given the responsibility of writing or maintaining content about a particular topic. These
individuals or teams that publish content are frequently normal members of the public
without any official affiliation with a traditional media organisation.

3.3 Blog

The word “blog” was shortened from the term “weblog”. A weblog is a web page which
consists of a series of posted messages. These messages normally appear in reverse
chronological order (i.e. with the newest message appearing at the top of the page).
Blogs are frequently used to maintain online journals. The content published in blogs is
often the opinion of an individual (similar to the editorial in a newspaper).

3.4 Wiki

A Wiki is a piece of server software that allows users to freely create and edit Web page
content using any Web browser. Wiki supports hyperlinks and has a simple text syntax
for creating new pages and crosslinks between internal pages on the fly.

The content stored by a wiki is produced collaboratively by the users of the system.

The wiki system is claimed to work because:

• Everybody feels that they have a sense of responsibility because anybody can
contribute.

• Any information can be changed or deleted by anyone. Wiki pages represent
consensus because it’s much easier to delete insults than to indulge them. The
content that remains is naturally meaningful.

• Anyone can play. This sounds like a recipe for disaster, but to make an impact
on a Wiki, you need to generate real content. Anything else will be removed. So
anyone can play, but only good players remain.

• There’s usually a strong commitment from the wiki community to keep the wiki
clean and nice. Everyone uses it, so they all try to maintain it in a usable state.

• A wiki is not like online chat. It doesn’t work in real time. People take time to think,
sometimes days or weeks, before they follow up some edit. So what people write
is generally well-considered.

3.5 Recommended Reading

• Blogs

– http://en.wikipedia.org/wiki/Blog

• Wikis

– http://en.wikipedia.org/wiki/Wiki

18

http://en.wikipedia.org/wiki/Blog
http://en.wikipedia.org/wiki/Wiki

CHAPTER 4

Wiki

4.1 Introduction - What is a wiki?

A wiki is a system that allows a user to easily create and edit web pages. However,
unlike traditional web pages, the content in a wiki is able to be edited by anyone. Anyone
using the system can freely edit the content of the pages, add hyperlinks and rearrange
the structure of the pages as they wish. Since a wiki is designed to be extremely easy
to use and freely accessible to everyone, it provides a real opportunity for anyone who
wants to contribute. This “open-editing” approach encourages the democratic use of the
web and promotes the development of content by non-technical users.

4.2 The stage one wiki

We have set up a wiki for stage one students in Computer Science. Everyone enrolled in
a stage one Computer Science course will have an account set up for them so that they
can log in and start contributing. Note that the Computer Science wiki uses the same
software as the Wikipedia, i.e. the MediaWiki system, but looks a bit different because
it was changed to fit better into the Computer Science website. The screenshots and
descriptions in this chapter refer to the standard MediaWiki user interface, so they will
differ a bit from the Computer Science wiki. However, the underlying software is the
same, therefore you will find the same functions in the Computer Science wiki, although
possibly at slightly different locations in the user interface. The figure below shows a
Wikipedia page (left) and a CS Wiki page (right). In both wikis, the main document area
works just the same. But while the Wikipedia arranges the links for the functions (e.g.
“discussion”, “preferences” and “search”) at the top and left border of each wiki page,
the CS wiki arranges those links at the right border. Some of the links are different, too:

19

4.2 The stage one wiki WIKI

for example, only the Wikipedia offers a link “Donate to Wikipedia” and the possibility to
change between different languages.

4.2.1 Teaching and learning

Students learn best when they are involved in activities. The process of actually doing
something engages more attention and promotes deeper understanding of the material.
Research has shown that one of the best ways to learn something is to try and teach it
to someone else. This applies to students of all ages, from primary school through to
post-graduate students.

In order to explain a topic to somebody, information must be arranged so that it is easy
to understand. The act of structuring the material requires the teacher to really think
carefully about the topic, and they almost always learn something from the process.
Because students learn so much when they try and teach, a really good learning envi-
ronment will provide the opportunity for students to teach others. Using a wiki will help
us achieve this goal.

4.2.2 Expectations

Everyone involved in the course is expected to contribute regularly to the Computer
Science stage one wiki. The more that a wiki is used, the more useful it becomes.
Everyone can contribute something, and anything that is contributed is likely to be edited
and improved over time. Some of the ways you might be able to contribute are:

• Writing a new page about a topic

• Improving an existing page

• Correcting spelling and grammar

• Rearranging the structure of the information (reorganising within a page, or reor-
ganising the pages themselves

• Creating a Frequently Asked Questions list (FAQ)

• Asking questions

20

WIKI 4.3 Using MediaWiki

• Answering questions on a Frequently Asked Questions list (FAQ)

• Maintaining a table of contents or index of important topics

• Creating or adding to a set of links to other helpful resources

• Contributing to a discussion about one of the pages

If you want a page on a particular topic, then write one yourself (or at least make a
start). Once a page is created then other students will probably start to add content and
improve the page. Always remember that a wiki is designed to be a tool that allows a
community of people to work together to create content.

4.3 Using MediaWiki

MediaWiki is the product used to create Wikipedia. It is one of many wiki systems
currently available. MediaWiki is distributed under the GNU General Public Licence,
so that means that it is free and open-source. It is reasonably easy to use and has a
professional looking interface. We will be using MediaWiki throughout the course. When
you arrive at the main page of a MediaWiki site, it will look something like the following:

At the very top of the page, we see a link that allows us to “Create an account or log in”.

4.3.1 Logging in

MediaWiki has the ability to protect pages and restrict access. Anyone can read the
wiki, but it can be set up to ensure that only some people can edit the pages. We have
set up MediaWiki so that only students enrolled in the course can make changes. Before
we can start contributing to the wiki, we must first log in. We use our normal NetLogin
username and password here.

21

4.3 Using MediaWiki WIKI

Once we are logged in, we can return to the main page and explore the system.

At the very top of the page, we now see a variety of links. They are (in order):

• User (alux001 in the screenshot above)
• my talk
• preferences
• my watchlist
• my contributions
• log out

user

The first link shows the name of the user. Each user of a wiki is given their own personal
home page. Clicking on the name of the user will lead to the user’s home page (within
the wiki). Initially this will be empty, but each user should endeavour to include some
simple details about themselves on their home page.

22

WIKI 4.3 Using MediaWiki

my talk

The second link leads to a discussion page about the user. Any discussion or personal
messages directed towards an individual user should be posted in their discussion page.

preferences

The third link allows a user to customise the way the wiki displays information. Users
are welcome to change these preferences.

23

4.3 Using MediaWiki WIKI

my watchlist

The fourth link leads to a page containing the watchlist of a user. This is a list of all the
pages that a user has specified that they are interested in watching. The pages on the
watchlist are listed in the order that they were last modified. Any pages that have been
modified since the user last looked at them are highlighted. This makes it very easy to
keep track of specific articles or pages that the user finds interesting. See section 4.3.9
for details about how to add a page to the watchlist.

my contributions

The fifth link displays a list of all the contributions the user has made to the content of
the wiki.

24

WIKI 4.3 Using MediaWiki

log out

When we have finished with the wiki, then we should log out.

4.3.2 Tabs

Along the top of the page we can see a number of tabs. These are article ,

discussion , edit , history , move and watch/unwatch .

4.3.3 Article tab

The article tab contains the main content on this topic. Most users are interested in
the articles that are contributed to a wiki. Anyone can read the articles contained in the
wiki, even if they are not logged in.

4.3.4 Discussion tab

The discussion tab will display a page containing a discussion about the article. This is
an area where users can make comments, suggest improvements, argue and generally
discuss the topic in question. When a new article is created, there will be no actual
comments on the discussion section. Whenever we have any questions or comments
about a given article, then the discussion page is the ideal place to post them.

When a question or comment is posted in a discussion page, it is conventional to state
who is making the comment or question. We should always include our name when we
contribute to a discussion. See section 4.4.7 for more information about adding your
name to a contribution. Note that you must be logged in to edit a discussion page.

4.3.5 Edit tab

The edit tab allows a user to edit the article shown on this page. We have set up the
MediaWiki so that you must be logged in before you can edit a page. Not all wikis have
this restriction. In fact, most wikis allow anonymous users to edit pages without logging
in to anything.

Editing a page

To edit a page we simply need to click on the edit tab which appears at the top of the
page. This will allow us to immediately start making changes to the content.

25

4.3 Using MediaWiki WIKI

One of the advantages of using a wiki is that it is easy to edit pages. If we change a
page and then realise we made a mistake, then we can easily edit the same page and
correct the mistake.

Preview and save

When we are happy with the changes we have made, the
�� ��Show preview button will

allow us to check how it looks.

It is always a good idea to preview the changes and just verify that the page is correct
before we commit to saving the page. We must remember to click the

�� ��Save page
button when we are finished.

26

WIKI 4.3 Using MediaWiki

Summaries

Note that there is a space to enter a summary of our changes. The summary should be
used to describe the kind of change we made to the content. The purpose of providing
a summary is so that people that are keeping track of the wiki can see what changes
are being made without looking up the individual pages.

Some examples of suitable summaries might be:

• Corrected spelling mistakes
• Added section on variable identifiers
• Deleted paragraph on loops
• Updated links
• Added new FAQ item

Keeping up to date with changes

When we look at the recent changes to the wiki (by clicking on the link to recent changes
in the toolbox that appears on the left side of the page) then you will see a list of changes
along with their corresponding summaries.

27

4.3 Using MediaWiki WIKI

4.3.6 Editing conflicts

Since the content can be changed by anyone, it is possible that two people will try to
edit the same page at the same time. This is especially common with popular pages, or
pages that are changed frequently. If a lot of people are working on the same content at
same time, then it can be useful to follow some simple conventions. These are outlined
below:

Announcing your edits

When you are about to edit a page that you know is reasonably popular and might be
changed by someone else, then you can simply add a note to the top of that page that
tells people that you are working on it. For example:

28

WIKI 4.3 Using MediaWiki

If you are announcing that you are editing a page and you don’t want other people to edit
until you are finished, then it is a really good idea to include the automatically generated
author link with the date and time included (see section 4.4.7 for more details). For
example, the message in the example above was generated with the markup:

Page Source

1 == Note: Currently being edited by ˜˜˜˜ ==

Removing your announcement

It is extremely important that you remember to remove any edit warnings when you have
finished editing the page. If you say that you are working on a page, then you should
work on it quickly, make the changes you want and remove the warning when you are
finished.

Saving your work locally

Whenever you fill in a form and submit it to a website, there is a chance that a problem
will occur with the transfer and you will lose the information in the form. To prevent the
loss of information in this way, it is always worthwhile to store a local copy.

Before you hit the
�� ��Submit button on a web-based form, select the text that you want to

submit and copy it to the clipboard. If a problem occurs during the process of submitting,
then at least you have a copy stored on the clipboard. This copy can either be pasted
into a text file and saved on your disk (so that you can submit it later), or can simply be
resubmitted again (using the form).

29

4.3 Using MediaWiki WIKI

4.3.7 History tab

The history tab shows a list of all the changes made to that page. It is worth noting
that all the previous changes that are made are recorded. It is easy for the community
to see who is changing the pages, what they changed the page from, and what they
changed the page to. This recorded history ensures that people are accountable for the
changes that are made to the wiki. This in turn encourages high quality contributions
and discourages destructive behaviour.

4.3.8 Move tab

The move tab allows us to rename a page. If the page is renamed, then any link that
connected to that page will need to be updated. This is not recommended for popular
pages that have a lot of links that lead to them. Renaming a page should be done only
when necessary.

30

WIKI 4.4 Markup

4.3.9 Watch tab

Clicking on the watch tab for a given page will add that page to our watchlist. We can
easily keep track of changes that are made to that page.

4.4 Markup

The markup language that is used in a wiki is kept deliberately simple to ensure that
people can learn to use the language quickly and easily.

4.4.1 Headings

MediaWiki supports four different levels of heading. To mark some text as being a
heading, a series of equals signs (=) are placed before and after the text. The following
table summarises the different headings available.

31

4.4 Markup WIKI

Wiki Markup Meaning
= Text = Level 1 heading (most important)

== Text == Level 2 heading
=== Text === Level 3 heading

==== Text ==== Level 4 heading (least important)

Table 4.1: Headings supported by MediaWiki

Level 1 heading - main page heading

At the top of each page appears the main heading of that page. The main heading is a
level 1 heading, and it is the same as the name of the page. For example, a page called
“Sandbox” will begin with the word “Sandbox” in large typeface. A horizontal ruled line
will appear below the main heading:

Sandbox

Each page should have only one main heading, so there is no need to create additional
level 1 headings.

Level 2 heading - section heading

The largest heading size that we manually add to a page should be a level 2 heading (a
section heading). Each new section we write should start with a new section heading.

The syntax for this is to add two equals signs either side of the section name as follows:
Page Source

1 ==My new section==

Each section appears in a large bold font. A horizontal ruled line appears below the
section heading as follows:

My new section

Level 3 heading - subsection

To create a subsection, we use three equals signs either side of the subheading as
follows:

Page Source

1 ===My new subsection===

This will appear on screen as a large bold heading, but not quite as large as the section
heading. There will be no ruled line below a subheading.

32

WIKI 4.4 Markup

My new subsection

Level 4 heading - sub-subsection

The lowest level of heading is used to create a sub-subsection. To create this level of
heading, we use four equals signs either side of the name. For example, the markup:

Page Source

1 ====The smallest level of heading====

will result in the heading:

The smallest level of heading

Example

The following page illustrates the use of different levels of heading:

Heading Information

1 This page contains information about headings.
2 The name of the page is Heading Information.
3

4 ==A section heading==
5 This is the largest heading you would normally use
6

7 ===A subsection heading===
8 A smaller heading used for subsections
9

10 ====A sub-subsection heading====
11 This is the smallest heading you would use.

When the page is displayed in a wiki, it will appear as follows:

33

4.4 Markup WIKI

4.4.2 New lines

To start a new paragraph, we need to leave a line empty. A single newline (e.g. created
when you hit the Enter key) has no effect on the layout of the page.

For example, the text:
Page Source

1 This is part of a
2 sentence. However, there
3 are many different lines here.
4

5 This is a new paragraph.

will be displayed in a wiki as follows:

This is part of a sentence. However, there are many different lines here.

This is a new paragraph.

4.4.3 Lists

Three kinds of lists can be created; ordered lists, unordered lists and definition lists. The
following table summarizes the different lists available:

Each kind of list is described in more detail below.

34

WIKI 4.4 Markup

Wiki Markup Meaning
#Item Ordered list
*Item Unordered list

;Term : Definition Definition list

Table 4.2: Lists supported by MediaWiki

Ordered lists

An ordered list is created by putting a hash sign (also known as the number sign) at the
start of each line. For example, the wiki markup:

Page Source

1 #Apple
2 #Orange
3 #Banana

will be displayed in a wiki as follows:

1. Apple
2. Orange
3. Banana

These lists can be nested by simply increasing the number of hash signs used at the
start of each item. The more hash signs that are used, the greater the indentation level
of the list. For example, the wiki markup:

Page Source

1 ====Lists====
2

3 Shopping list
4

5 #Fruit
6 ##Apple
7 ###Granny Smith
8 ##Banana
9 ###Green

10 ###Yellow
11 ##Orange
12 ##Passionfruit
13 #Vegetables
14 ## ...

will be displayed in a wiki as follows:

35

4.4 Markup WIKI

Unordered lists

An unordered list is similar to an ordered list, except that instead of using a hash sign,
an asterisk is used at the start of each line. For example, the wiki markup:

Page Source

1 *Apple
2 *Orange
3 *Banana

will be displayed in a wiki as follows:

• Apple
• Orange
• Banana

These lists can be nested in the same way that the ordered lists are nested.

Definition lists

A definition list is used to give a definition for a term. Firstly, the term needs to be listed,
then the definition needs to be listed. The term is prefixed with a semicolon and the
definition is prefixed with a colon. For example, the wiki markup:

Page Source

1 ;Apple : A brand of computer
2 ;Orange : A county in California
3 ;Banana : A fruit

36

WIKI 4.4 Markup

will be displayed in a wiki as follows:

Apple
A brand of computer

Orange
A county in California

Banana
A fruit

4.4.4 Indentation

Using a colon at the start of a line will indent that paragraph of text. For example, the
wiki markup:

Page Source

1 This is a normal line of text.
2

3 : This line of text begins with a colon,
4 so the entire paragraph will be indented.
5 This can prove to be very useful when
6 some text needs to stand out from other
7 text (e.g. for examples, quotes, answers to
8 questions and so on).
9

10 This is another normal line of text.

This is a normal line of text.

This line of text begins with a colon, so the entire paragraph will
be indented. This can prove to be very useful when some text
needs to stand out from other text (e.g. for examples, quotes,
answers to questions and so on).

This is another normal line of text.

4.4.5 Pre-formatted text

There are occasions when we want the text to remain exactly as we type it. A fixed-width
font will be used to display such text, which is commonly called pre-formatted text. To
ensure that the text is treated as pre-formatted text, we must start the line with a blank
space. If any given line begins with a space, then the wiki will display that line of text
as pre-formatted. A box will be drawn around the text and it will be separated from the
surrounding text. This is very useful for displaying computer code.

For example, look very carefully at the following wiki markup. We have started all of the
lines containing HTML code with a single space. This page:

37

4.4 Markup WIKI

Page Source

1 The following HTML document is used to display
2 a simple page
3 <html>
4 <head>
5 <title>Welcome</title>
6 </head>
7 <body>
8 This is a simple HTML document
9 </body>

10 </html>

will be displayed as follows:

4.4.6 Horizontal lines

To create a horizontal line, simply use four minus signs in a row ----. For example, the
wiki markup:

Page Source

1 Above the ruled line
2 ----
3 Below the ruled line

will be displayed as follows:

Above the ruled line

Below the ruled line

38

WIKI 4.4 Markup

4.4.7 Adding the author’s name

When we are creating content and contributing to the information in the wiki, then we
don’t need to add our own name anywhere since it is a collaborative effort. However, if
we are using the wiki to carry out a discussion about a topic, then it is useful to know
who made a given comment. This is particularly relevant for the talk pages that are
used for general discussion about the content of a page.

When we are editing a page, we can get the system to automatically add our names
at a given location by simply using a series of three tilde characters in a row ˜˜˜. The
system will automatically insert a link to our user name at this point. If we also want the
time and date (very useful for discussions), then four tilde characters in a row should be
used ˜˜˜˜. For example, the wiki markup:

Page Source

1 Your formula is incorrect. You have forgotten
2 to take account of the GST. ˜˜˜
3

4 Ooops. Sorry about that.
5 : ˜˜˜˜

will be displayed as:

You forgot to add the GST in your formula. Alux001

Ooops. Sorry about that.
Alux001 11:33, 8 Sep 2005 (NZST)

Note that we added the markup : to indent the author in the second example.

4.4.8 Links

There are different kinds of links that can be created in a wiki. The following table
summarises the different links available.

Wiki Markup Meaning
[[Link]] Internal link

[[Link|Label]] Internal link with label
URL External link

[URL Label] External link with label

Table 4.3: Links supported by MediaWiki

Internal links

The simplest kind of link is to another page within the wiki. To do this, simply put the
name of the page inside nested square brackets [[name goes here]]. For example,
the wiki markup:

39

4.4 Markup WIKI

Page Source

1 For more information see [[Bees]]

will be displayed as follows:

For more information see Bees

This has created a link to the page titled “Bees” within the wiki.

Labels for internal links

By default, the link that we see on the page will be the same as the name of the page
that we are linking to. However, if we label the link, then the the viewer will see the label
instead of the actual name of the page. The general format for this is:

[[Page Name|Link Label]]

When this link is displayed, the text will show the “Link Label” as the link on the page.
When the link is clicked, the wiki will display the page called “Page Name”. For example,
the wiki markup:

Page Source

1 For more information about links click [[Help|here]]

will be displayed as follows:

For more information about links click here

External links

The easiest way to create an external link is to simply include the URL of the link in the
normal text. The wiki will recognise that the text contains a URL and will automatically
create a link for that address. For example, the wiki markup:

Page Source

1 The link to all the course pages can be found on
2 the main computer science department website.
3 The address is http://www.cs.auckland.ac.nz/courses

will be displayed as follows:

The link to all the course pages can be found on the main computer science
department website. The address is htt p : //www.cs.auckland.ac.nz/courses

40

WIKI 4.4 Markup

Labels for external links

If we want to include a label for an external link, then we need to enclose the link in
square brackets. After the link, we leave a single blank space and then include the
label. The label will be displayed on the page, and if clicked, it will link to the address
given by the URL. The formal syntax for this is as follows:

[URL Label]

For example, the following wiki markup:
Page Source

1 All of the courses offered this year in Computer
2 Science have a web page. A link to each web page
3 can be found on the main
4 [http://www.cs.auckland.ac.nz Computer Science department]
5 website.

will be displayed as follows:

All of the courses offered this year in Computer Science have a web page. A
link to each web page can be found on the main Computer Science department
website.

4.4.9 Character formatting

MediaWiki allows us to format individual characters or words. The following table sum-
marizes the character formatting supported by MediaWiki.

Wiki Markup Meaning
’’Text’’ Emphasis (italic)

’’’ Text ’’’ Strong (bold)
’’’’’ Text ’’’’’ Very strong (bold and italic)

Table 4.4: Character formatting supported by MediaWiki

The most commonly used markup is described below.

Emphasize

In order to emphasize some text, we can use two single quote marks around the text.
The browser will normally display the emphasized text in an italic font. The formal syntax
for this is:

’’Some text’’

For example, the wiki markup:
Page Source

1 This topic is ’’extremely’’ important

41

4.5 Creating a new page WIKI

will be displayed as follows:

This topic is extremely important

Strong

In order to make some text stand out in a strong way, we can use three single quote
marks around the text. The browser will normally display the strong text in a bold font.
The formal syntax for this is:

’’’Some text’’’

For example, the wiki markup:
Page Source

1 This topic is ’’’extremely’’’ important

will be displayed as follows:

This topic is extremely important

Very strong

In order to make some text stand out in a very strong way, we can use five single quote
marks around the text. The browser will normally display the very strong text in both
italic and bold font. The formal syntax for this is:

’’’’’Some text’’’’’

For example, the wiki markup:
Page Source

1 This topic is ’’’’’extremely’’’’’ important

will be displayed as follows:

This topic is extremely important

4.5 Creating a new page

Creating a new page in a wiki is a simple process.

42

WIKI 4.6 References

4.5.1 Following a link

A new page is created when we click on a link that does not have a destination page. In
this case, the wiki will tell us that the destination of that link does not exist and we will
be given the option to create the content of that page.

The links that do not have a destination page are coloured red in MediaWiki.

4.5.2 Creating a new link

If we want to create a completely new page on a given topic (for example, a page
containing “Frequently Asked Questions about HTML”), then we need to first create a
link to that page.

We should browse the wiki and find the appropriate place to add a link. For example,
if we wanted to add a page called “Frequently Asked Questions about HTML” then we
might decide to create a link on a page called “HTML” that leads to our new page.

Once we have found the appropriate page, we simply edit that page and add
a link to our proposed new page. In the example here, the link would be
[[Frequently Asked Questions about HTML]]. Once this page has been saved,
our wiki will have a new link that leads to a non-existent page. When someone clicks on
the link, then they will be given an option to create the content of that page.

4.6 References
• http://meta.wikimedia.org/wiki/MediaWiki_User’s_Guide
• http://en.wikipedia.org/wiki/Wiki

43

http://meta.wikimedia.org/wiki/MediaWiki_User's_Guide
http://en.wikipedia.org/wiki/Wiki

4.6 References WIKI

44

CHAPTER 5

Hypertext Markup Language (HTML5)

5.0.1 Versions of HTML and XHTML

The first version of the Hypertext Markup Language was written by Tim Berners-Lee
in 1993 when he was developing the system that grew into the WWW. This was never
established as an official standard and it lacked the ability to display images. As the web
become available to the general public in 1995, HTML 2.0 was released as an official
standard. It continued to be used until 1997, when it was replaced by HTML 3.2 and
later the same year, HTML 4.0. Some minor modifications were made, and HTML 4.01
was released in 1999. This version has been widely used and it defines the standard
that most web sites adhere to.

In 2000, the W3 Consortium released a newer, cleaner version of HTML called XHTML
1.0. This language is almost identical to HTML 4.01, with minor changes to ensure
consistency and ease of use. The W3C defines XHTML as the latest version of HTML,
and states that XHTML is intended to gradually replace HTML.

The latest official version is XHTML 1.1 which is designed to support the use of mobile
devices (such as mobile phones and personal organisers) to access web pages. Inter-
net Explorer causes problems viewing XHTML 1.1 pages, so most people use XHTML
1.0 instead. The W3 Consortium are currently working on XHTML5.

On 14 February 2011, the W3C extended the charter of its HTML Working Group with
clear milestones for HTML5. In May 2011, the working group advanced HTML5 to “Last
Call”, an invitation to communities inside and outside W3C to confirm the technical
soundness of the specification. The W3C has developed a comprehensive test suite to
achieve broad interoperability for the full specification in 2014.

45

5.1 Hypertext Markup Language (HTML) HTML

5.0.2 Document Type Definition

Since there are so many different versions of HTML and XHTML, it is important to tell
the browser what version of the language is being used. The format for representing
that information is known as the DTD (Document Type Definition). The DTD specifies
the type of the language that is being used for that document.

If we are using XHTML 1.0 Strict, we must include that information first in any file that will
be displayed using a browser. The DTD is usually copied and pasted from a reference
page. For example, in XHTML1.0:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

In HTML5 the DTD specification is:

<!DOCTYPE html>

5.0.3 Encoding standards

In addition to the DTD, we also need to tell the browser what encoding system was
used to store the page. This is important for compatibility across different platforms and
different languages. We will use the following line of code and it is stored in the <head>
tags:

<meta charset="UTF-8">

So at the start of every HTML5 page that you write, you should copy and paste the text:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
</head>

5.1 Hypertext Markup Language (HTML)

Hypertext Markup Language (HTML) is used to describe the structure and formatting
of a document which forms part of the World-Wide Web. In other words, web pages
are written in HTML. Although most web pages include text of different sizes, pictures
and coloured backgrounds, the HTML code which tells the browser how to display the
information is written in plain ASCII text.

46

HTML 5.2 Tags

The file containing the HTML is known as the source file. Since the source file contains
only plain text, a web page can be written using any plain text editor such as Notepad++.
When a web browser is used to view the page, it will understand the HTML and display
the content of the page accordingly.

The HTML source file appears on the left. The same page viewed by a web browser
appears on the right

5.2 Tags

HTML consists of a series of “codes” known as tags. These tags contain the information
that a web browser needs in order to display the page correctly. All tags are enclosed
within the < and > characters. For example, <i> is an HTML tag which is used to make
text italic.

Tags normally come in pairs, such as <i> and </i>. The first tag <i> tells the browser
to start making the text italic. The second tag (usually called the closing tag) tells the
browser to stop making the text italic. We normally think of the start and end tags as
containing the text which the tag applies to. For example, if we wanted to make the word
“distinct” appear in italics, we would use the <i> tag in the following way:

Two or more things are <i>distinct</i> if no two
of them are the same thing.

In general, tags have the form:

<tag> ... </tag>

The text in between the two tags (represented by “...”) is the text which is affected by
that tag. In HTML, tags must always be in lower case.

47

5.2 Tags HTML

5.2.1 Nested tags

When multiple tags are used, then it is important they they are nested correctly. It
can help to think of the tags as being containers. The text which appears between
an opening and closing pair of tags is contained by those tags. For example, in the
following sentence, the tag <i> can be said to contain the text “important”.

It is <i>important</i> that tags are
nested correctly.

Real containers can be placed inside one another.

Containers can hold other containers

Tags that “contain” text are similar. When we want to apply multiple tags to a piece of
text, we have to ensure that each tag is fully contained by another one. For example,
if we wanted to make the word “important” both bold and italic, then we could use the
HTML code:

It is <i>important</i> that tags are
nested correctly.

or we could use:

It is <i>important</i> that tags are
nested correctly.

but it would be incorrect to overlap them as follows:

It is <i>important</i> that tags are
nested correctly.

When we use multiple tags, we must ensure that they follow the general form

<tag1> <tag2> ... </tag2> </tag1>

In this case, we would say that <tag2> is nested within <tag1>.

5.2.2 Attributes of tags

Some tags require additional information to be used. For example, a tag used to display
an image would need to know the file name of the image. The format for tags of this

48

HTML 5.3 Essential HTML tags

sort are as follows:

<tag property="value"> ... </tag>

For example, the following anchor tag <a> uses the attribute href:

The W3 Consortium

Sometimes tags use more than one attribute. In this case, the attributes are simply
separated by a space as follows:

<tag property1="value1" property2="value2"> ... </tag>

For example, the following image tag uses two attributes:

The use of attributes will become more common in later sections of this document.

5.3 Essential HTML tags

There are four essential tags which define the structure of an HTML document. All
HTML documents should include these tags. They are:

• <html>
• <head>
• <title>
• <body>

Each of these tags will be described in more detail below.

5.3.1 <html>

The <html> tag should surround all other HTML text in the document. This tag is used
to define the start and end of the HTML document. For example:

Page Source

1 <!DOCTYPE html>
2

3 <html>
4

5 ... the rest of the code goes here
6

7 </html>

49

5.3 Essential HTML tags HTML

5.3.2 <head>

The head of a document contains information which the browser needs in order to man-
age the display of the page. The information within the head of an HTML document is
not intended to be viewed by a human user. None of the material in the head will be
displayed on the page itself, rather this is information used only by the browser. For
example:

Page Source

1 <!DOCTYPE html>
2

3 <html>
4 <head>
5 <meta charset="UTF-8">
6

7 ... this information is used by the browser
8

9 </head>
10

11 ... other HTML tags appear here
12

13 </html>

5.3.3 <title>

The title of the document is the only essential tag which should appear in the head.
The title defines the name of the document which is being displayed. This title typically
appears in the title bar of the web browser. The title is used by the browser to help the
user to navigate through the WWW. It is typically used when the page is bookmarked or
in the history list of the web browser (i.e. when you want to go back to a page that you
have previously visited). The title will not appear in the main page which is displayed.
For example:

Page Source

1 <!DOCTYPE html>
2

3 <html>
4 <head>
5 <meta charset="UTF-8">
6 <title> ... the title of the document ... </title>
7 </head>
8

9 ... other HTML tags appear here
10

11 </html>

50

HTML 5.3 Essential HTML tags

5.3.4 <body>

The body of a document contains the actual content of the page. Any material which
appears on a web page will be defined inside the body of the corresponding HTML
document. For example:

Page Source

1 <!DOCTYPE html>
2

3 <html>
4 <head>
5 <meta charset="UTF-8">
6 <title> ... the title of the document ... </title>
7 </head>
8 <body>
9

10 ... the body contains the content that is
11 displayed on the page.
12

13 </body>
14 </html>

5.3.5 A simple example

A complete HTML document is shown below:

Page Source

1 <!DOCTYPE html>
2

3 <html>
4 <head>
5 <meta charset="UTF-8">
6 <title>A simple web page</title>
7 </head>
8 <body>
9

10

11 </body>
12 </html>

When the page is viewed using a web browser, it will display an empty page. We need to
know more about the tags used to format the content before we can include information
in the body of the page. The empty page will look like:

51

5.4 Block-level tags HTML

Note that the title appears in the title bar or tab of the window. The only information
which is displayed in the main area of the web browser is the content which appears in
the body of the HTML document (in this case, nothing at all).

5.4 Block-level tags

When we consider the layout of a page, we think of it as being broken up into different
blocks. A blank line normally appears between each block.

We define the structure of our documents using block-level tags and inline tags. The
block-level tags are used to define the different blocks that make up our page. The
inline tags are normally used within blocks. The most commonly used block-level tags
are described below.

52

HTML 5.4 Block-level tags

5.4.1 <h1> to <h6>

There are six different levels of heading supported by HTML. The most important head-
ing is defined as “level one”. The least important heading is defined as “level-six”. The
tags used for headings are listed below:

<h1> Level-one heading. The most important heading.

<h2> Level-two heading

<h3> Level-three heading

<h4> Level-four heading

<h5> Level-five heading

<h6> Level-six heading. The least important heading.

Each document should have exactly one heading of level-one importance. You should
not choose the heading based on the appearance of the text (since the appearance can
be changed later), but rather consider the level of importance of the heading and use
the appropriate level of heading.

5.4.2 <p>

To define a paragraph in HTML, we use the <p> tag. Since a paragraph is a block-level
tag, paragraphs are normally separated with a blank line. For example, the page:

Page Source

1 <!DOCTYPE html>
2

3 <html>
4 <head>
5 <meta charset="UTF-8">
6 <title>Paragraph Example</title>
7 </head>
8 <body>
9 <h1>An example using paragraphs</h1>

10 <p>A paragraph of text is normally displayed as a
11 block of text which is separated from other
12 elements of the page by blank space. The text will
13 automatically wrap from one line to the next, based
14 on the size of the window. There is typically no
15 leading indent applied to the first line of the
16 paragraph.</p>
17 <p>This is the second paragraph. Note how it is
18 displayed by the web browser.</p>
19 </body>
20 </html>

will be displayed as follows:

53

5.4 Block-level tags HTML

5.4.3 <hr>

In HTML5, the <hr> tag defines a thematic break in content. It usually appears as a
horizontally ruled line when a page is displayed in a browser. Since this tag does not
format any content it does not require a closing tag. The following HTML source code
shows how the <hr> tag is used.

Page Source

1 <!DOCTYPE html >
2

3 <html>
4 <head>
5 <meta charset="UTF-8">
6 <title>Horizontal Rule Example</title>
7 </head>
8 <body>
9 <h1>Horizontal lines</h1>

10 <hr>
11 <p>
12 We can use a horizonal line to separate
13 block-level elements that differ thematically.
14 </p>
15 <hr>
16 <p>It can therefore be used between different
17 paragraphs, but not within a paragraph.
18 </p>
19 <hr>
20

21 </body>
22 </html>

54

HTML 5.4 Block-level tags

The code shown previously will be displayed in a web browser as:

5.4.4 <pre>

The <pre> tag is used to define a block of text as being pre-formatted. This means that
white space used in the original source code is kept when the block of text is displayed
by the browser. The font used to display the pre-formatted text is a fixed-width font such
as courier.

This is normally used when web pages are used to show computer code for programs.
For example, the HTML source file below uses the <pre> tag to surround a block of text
containing a Java computer program.

Page Source

1 <!DOCTYPE html>
2

3 <html>
4 <head>
5 <meta charset="UTF-8">
6 <title>Preformatted text example</title>
7 </head>
8 <body>
9 <h1>An example using pre-formatted text</h1>

10 <p>The following program is a simple Java program
11 used to print out a message to the screen:</p>
12 <pre>
13 public class TestProgram {
14 public static void main{String[] args) {
15 System.out.println("Hello World");
16 }
17 }
18 </pre>
19 </body>
20 </html>

The screenshot on the next page shows what the file would look like when viewed using

55

5.4 Block-level tags HTML

a web browser.

5.4.5 Tables

The <table> tag is used to format information into rows and columns. This tag is very
important. It is widely used in the design of web pages, and it is a powerful tool for laying
out documents.

<table>

The <table> tag should surround all the information about the table.

<table>
... table defined here ...
</table>

<tr>

A table consists of a series of rows. Each row is defined using the <tr> tag. A table
must have at least one row. There is no maximum number of rows.

<table>

<tr>... first row defined here ... </tr>
<tr>... second row defined here ... </tr>
<tr>... third row defined here ... </tr>

</table>

56

HTML 5.4 Block-level tags

<td>

A single row in a table consists of a series of different cells. Each cell in the row is
defined using the table data tag <td>.

<table>

<tr>
<td>First cell</td><td>Second cell</td>
</tr>

<tr>
<td>Another cell</td><td>And another cell</td>
</tr>

<tr>
<td>Still another cell</td><td>Yet another cell</td>
</tr>

</table>

The width of each cell in the table is automatically adjusted to ensure that the borders
of the cells align with each other. Cells which contain more information will generally be
wider.

An example of a table

The following HTML source code shows how the <table> tag can be used to present
information in a table.

Page Source

1 <!DOCTYPE html>
2

3 <html>
4 <head>
5 <meta charset="UTF-8">
6 <title>Tables</title>
7 </head>
8 <body>
9 <h1>Contact Details</h1>

10 <p>The following table contains the contact details
11 for a member of the staff:</p>
12 <table>
13 <tr><td>Name:</td><td>Fred Fish</td></tr>
14 <tr><td>Email:</td><td>fred@wet.school.nz</td></tr>
15 <tr><td>Phone:</td><td>77345</td></tr>
16 <tr><td>Room:</td><td>123</td></tr>
17 </table>

57

5.4 Block-level tags HTML

18 </body>
19 </html>

5.4.6 Lists

A list consists of a series of items. There are three kinds of lists that you can use:

• an ordered list,

• an unordered list,

• and a definition list.

Each of the different lists in HTML are discussed below.

The tag is used to define an ordered list. Each item in the list is numbered auto-
matically by the web browser. The tag is used to define each item in the list. The
general structure is as follows:

Apple
Orange
Pear

The tag is used to define an unordered list. Each item in the list begins with a
bullet point. The tag is used to define each item in the list. The general structure
is very similar to the described previously.

58

HTML 5.4 Block-level tags

Apple
Orange
Pear

<dl>

The <dl> tag is used to define a definition list. This is used when there are a series of
terms that need to be defined. Each entry in the definition list consists of a definition
term and a definition description. The <dt> tag is used for the definition term. The <dd>
tag is used for the definition description. The general structure is as follows:

<dl>
<dt>Apple</dt>
<dd>An innovative computer company</dd>
<dt>Orange</dt>
<dd>A colour which is a mixture of red and yellow</dd>
<dt>Pear</dt>
<dd>A fruit</dd>
</dl>

Example of lists

The following HTML source code includes all three types of list.
Page Source

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta charset="UTF-8">
5 <title>Lists</title>
6 </head>
7

8 <body>
9 <h1>Comparing different lists</h1>

10 <p>An ordered list:</p>
11
12 Apple
13 Orange
14 Pear
15
16

17 <p>An unordered list:</p>
18

59

5.5 Inline tags HTML

19 Apple
20 Orange
21 Pear
22
23

24 <p>A definition list:</p>
25 <dl>
26 <dt>Apple</dt>
27 <dd>An innovative computer company</dd>
28 <dt>Orange</dt>
29 <dd>A colour which is a mixture of red and yellow</dd>
30 <dt>Pear</dt>
31 <dd>A fruit</dd>
32 </dl>
33 </body>
34 </html>

The following screenshot shows the page when viewed using a web browser.

5.5 Inline tags

An inline tag is applied to something which exists inside a block. For example, if you
had a paragraph of text, you could use an inline tag to apply italics to a word within the

60

HTML 5.5 Inline tags

paragraph. The tag would be applied without breaking the line of text, so it is known as
an inline tag.

The most commonly used inline tags are described below.

5.5.1

To end the current line of text, we can use the
 tag. This forces a line break at the
location of the tag (it causes the same effect as if the

�� ��Enter key was pressed). Since
this tag does not apply to any existing text on the page it does not require a closing tag.
The following HTML source code shows how the
 tag is used:

Page Source

1 <!DOCTYPE html>
2

3 <html>
4 <head>
5 <meta charset="UTF-8">
6 <title>Break Example</title>
7 </head>
8 <body>
9 <h1>An example using paragraphs and breaks</h1>

10 <p>
11 Blank lines in the
12

13 source code are replaced
14

15 by a simple space. If we want to have a break

16 then we use the break tag.</p>
17 <p>
18 Author: Andrew Luxton-Reilly

19 Date: 01/01/06
20 </p>
21 </body>
22 </html>

will be displayed by a web browser as:

61

5.5 Inline tags HTML

5.5.2

The tag is used to include an inline image in the page. It uses a series of
attributes which tell the browser which image to display, and how it should be displayed.
The image referred to in the tag will be displayed on the web page at the location that
the tag appears.

The tag uses the following attributes:

src The source of the image. This attribute is used to specify where the image is
located so that the web browser can load the image from that location. A normal
URL should be used here. Typically, this is a relative reference which refers to
an image in the same directory as the web page. Every tag must include
the src attribute. Note that most web browsers are only able to display pictures
which are stored in .jpg, .gif or .png format.

alt Alternative text which is displayed if the browser is unable to display the image.
This text should describe the image so that the viewer of the page knows what
content they are missing out on if the browser cannot display the image (or if the
user chooses not to load the images). All image tags should include the alt
attribute.

height The height of the image. If the height specified is not the same as the original
image then the browser will scale the image to the height required. Note that the
browser software is not designed to scale images, so the quality of the modified
image may be worse than if it was scaled using image processing software.

Using a specified height allows the browser to set aside enough room for the
picture and continue to render the remainder of the page. If a height is not speci-
fied, then the browser has to wait until it has downloaded the image before it can
start to draw anything on the page. Using the height attribute will often mean
that pages are displayed quicker when they are downloaded. If the height is not
specified, but the width has been specified then the height will automatically be
adjusted to maintain the same ratio of height to width as the original image.

The use of this attribute is recommended, although not required.

width The width of the image. The comments about the height attribute above apply
here with respect to the width.

62

HTML 5.5 Inline tags

For example the source code:

<p>The following picture shows a camel:

</p>

would produce the following:

Note that there is no closing tag . This is because the tag is not making a change
to any text that appears on the page, rather the picture that will be displayed by the tag
will be obtained from a file located on disk.

If we use the width and height attributes, we can scale the image and make it smaller.
The following source code:

<p>The following picture shows a camel:

<img src="camel.jpg" alt="A camel" width="200"
height="100">
</p>

would produce the following picture:

A complete HTML page is provided on the next page.

63

5.5 Inline tags HTML

Page Source

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta charset="UTF-8">
5 <title>Camels</title>
6 </head>
7 <body>
8 <h1>Ships of the Desert</h1>
9

10 <p>
11 The camel has a reputation for being a foul-tempered
12 beast, but in fact camels are good-natured animals.
13 They are intelligent, friendly animals which make
14 good companions for desert travel.
15 </p>
16 <p>
17 <img src="camel.jpg" alt="A camel" width="200"
18 height="100">
19 </p>
20 <p>
21 A camel can last five to seven days without water. This
22 is due to an extremely efficient biology. The camel does
23 not store water in its hump. Rather, the hump is a fatty
24 deposit used to store energy. The fat reserves are used
25 when food is scarce.
26 </p>
27

28 </body>
29 </html>

The HTML document above would be displayed by a web browser as:

64

HTML 5.5 Inline tags

In books and newspapers, it is common to have captions with images. The purpose of
a caption is to add a visual explanation to an image. With HTML5, images and captions
can be grouped together in <figure> elements:

<p>The following picture shows a camel:

<figure>

<img src="camel.jpg" alt="A camel" width="200"
height="100">

<figcaption>Fig1. - Camel Resting.</figcaption>
</figure>
</p>

The HTML document above would be displayed by a web browser as:

5.5.3 <a>

Perhaps the most important tag of the HTML language is the “anchor” tag <a>. This tag
is used to create the hyperlinks that connect different pages to each other. The <a> tag
uses the following attribute:

href This attribute is used to create a hypertext reference (in other words a clickable
link to another location in the WWW). The href attribute specifies the destination
of the hyperlink. The destination may be a relative or absolute URL.

65

5.5 Inline tags HTML

The following example shows some HTML source code that contains a link to another
document.

Page Source

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta charset="UTF-8">
5 <title>Hypertext Reference Example</title>
6 </head>
7 <body>
8 <h1>An example using Hypertext References</h1>
9

10 <p>
11 A hypertext reference is commonly called a link. A
12 link is used to connect two pages together. The link
13 text is usually underlined when it is displayed on a
14 web browser. When the user clicks on a link, the web
15 browser will load the destination page. In other
16 words, you can think of a link as being a command
17 to tell the web browser to load a new page.
18 </p>
19

20 <p>
21 For more information, see the
22
23 lectures page
24 </p>
25

26 </body>
27 </html>

When this page is viewed using a web browser, then it will appear as follows:

66

HTML 5.6 Uniform Resource Locator

5.6 Uniform Resource Locator

A uniform resource locator (URL) is a standard address that specifies the location of a
resource on the Internet. The URL is formed from different parts.

5.6.1 Protocol

The first part of a URL is the protocol. The protocol specifies how the data will be
transferred. For example, if the resource is a file, then it will be transferred using the File
Transfer Protocol (FTP). If the resource is a web page, then it will be transferred using
the HyperText Transfer Protocol (HTTP).

5.6.2 Host Name

The second part of a URL specifies which host computer on the Internet is used to store
the resource. Typically, this host name is a Domain Name such as www.cs.auckland.
ac.nz.

5.6.3 Path

The third part of a URL is the path. The path specifies where on the host computer the
file is located. In other words, the path specifies the directory where the resource is
stored.

5.6.4 Resource Name

The last part of a URL is the name of the actual resource that we are looking for. This
is normally a file name.

5.6.5 Examples

A typical URL is:

http://www.cs.auckland.ac.nz/compsci111s1c/lectures/
index.html

This URL can be broken up into its constituent parts as follows:

Description Value used
protocol http

host www.cs.auckland.ac.nz
path /compsci101s1c/lectures/

resource index.html

67

www.cs.auckland.ac.nz
www.cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/compsci111s1c/lectures/index.html
http://www.cs.auckland.ac.nz/compsci111s1c/lectures/index.html

5.7 Comments HTML

5.7 Comments

It can be helpful to include comments in your HTML code. These comments are de-
signed to help other people understand the code and are not displayed by the web
browser. A special tag is used to include comments in your code.

<!--
Comments go here
-->

This HTML tag does not follow the normal rules of syntax. There is no start and end tag,
and there are no attributes. Instead, the tag itself begins with the symbols <!-- and the
tag ends with the symbols -->. Any other text that is used between these symbols will
be ignored by the browser (it will not display the text that is part of a comment).

For example, the following HTML code:
Page Source

1 <!DOCTYPE html>
2 <!--
3 Created Date: 01/04/06
4 Modified Date: 13/10/14
5 -->
6 <html>
7 <head>
8 <meta charset="UTF-8">
9

10 <!-- The title is used when we bookmark the page -->
11 <title>Hypertext Reference Example</title>
12 </head>
13 <body>
14 <h1>An example using Hypertext References</h1>
15

16 <p>
17 A hypertext reference is commonly called a link. A
18 link is used to connect two pages together. The link
19 text is usually underlined when it is displayed on a
20 web browser. When the user clicks on a link, the web
21 browser will load the destination page. In other
22 words, you can think of a link as being a command
23 to tell the web browser to load a new page.
24 </p>
25

26 <!-- Note: We could add other references here -->
27 <p>
28 For more information, see the
29
30 lectures page
31
32 </p>
33

68

HTML 5.8 HTML5 Semantic Elements

34 </body>
35 </html>

will produce the same page as the example in the previous section as shown below:

5.8 HTML5 Semantic Elements

Semantics is the study of meaning. Semantic elements are elements with a meaning. A
semantic element clearly describes its meaning to both the browser and the developer.

Examples of non-semantic elements: <div> and . These elements tell nothing
about their content. Examples of semantic elements are <form>, <table>, and .
These elements clearly define their content.

Many web sites contain HTML code like: <div id="nav">, <div class="header">,
<div id="footer"> to indicate navigation, header, and footer.

HTML5 offers semantic elements to define different parts of a web page.

For example, the <section> element defines a section in a document. A Web site’s
home page could be split into sections for introduction, content, and contact information.

69

5.8 HTML5 Semantic Elements HTML

Page Source

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title> WWF </title>
5 </head>
6 <body>
7

8 <section>
9 <h1>WWF</h1>

10 <p>
11 The World Wide Fund for Nature (WWF) is an international
12 organization working on issues regarding the conservation,
13 research and restoration of the environment, formerly
14 named the World Wildlife Fund. WWF was founded in 1961.
15 </p>
16 </section>
17

18 <section>
19 <h1>WWF’s Panda symbol</h1>
20 <p>
21 The Panda has become the symbol of WWF. The well-known
22 panda logo of WWF originated from a panda named Chi Chi
23 that was transferred from the Beijing Zoo to the London
24 Zoo in the same year of the establishment of WWF.
25 </p>
26 </section>
27

28 </body>
29 </html>

70

HTML 5.9 Videos in HTML

5.9 Videos in HTML

Before HTML5, there was no standard for showing videos on a web page and videos
could only be played with a plug-in (like flash). The HTML5 <video> element specifies
a standard way to embed a video in a web page.

To show a video in HTML, use the <video> element:
Page Source

1 <!DOCTYPE html>
2 <html>
3 <body>
4

5 <video width="320" height="240" controls>
6 <source src="movie.mp4" type="video/mp4">
7 <source src="movie.ogg" type="video/ogg">
8 Your browser does not support the video tag.
9 </video>

10

11 </body>
12 </html>

To start a video automatically use the autoplay attribute:

<video width="320" height="240" autoplay>
<source src="movie.mp4" type="video/mp4">
<source src="movie.ogg" type="video/ogg">

71

5.10 Validating your pages HTML

Your browser does not support video tag.
</video>

5.10 Validating your pages

The W3C provides a free service that can be used to check your HTML or XHMTL code
to see if it meets the official standard (in other words, to see if it is correct). The URL of
the validation service is:

http://validator.w3.org/

You can check pages using three different methods. Give the URL of the page, upload
the file containing the page, or copy and paste the page source into the form provided.

You should use this validation service to check and correct any web page that you
design. The easiest way to use the service is to simply click on the

�� ��Browse button
on the page, and select the HTML file that you wish to check. Once the file has been
selected, click on the

�� ��Check button to validate the code. If the page uses correct
HTML code, then you should see something similar to the following:

72

http://validator.w3.org/

HTML 5.10 Validating your pages

73

5.11 Quick Reference List HTML

5.11 Quick Reference List

The following chart lists the tags we have covered in this document.

Essential tags Purpose
<!DOCTYPE> The type of the document (DTD)
<html> The entire HTML document
<head> The head of the document (information for the browser)
<title> The title for the window (also used for navigation)
<body> The body of the document (the page content)

Basic formatting tags Purpose
<h1> to <h6> Headings level one to six
<p> A paragraph

 A line break
<hr> A horizontal rule
<pre> Preformatted text

List tags Purpose
 An unordered list
 An ordered list
 A list item
<dl> A definition list
<dt> A definition term
<dd> A definition description

Table tags Purpose
<table> A table
<tr> A row in the table
<td> A cell within the row

Special tags Purpose
<!-- ... --> A comment

Link tags Purpose
<a> An anchor (hypertext reference)

Image tags Purpose
<figure> Group image and caption
 An image
<figcaption> A figure caption

HTML5 Non-Semantic Purpose
<div> Division
 Group inline-elements
<section> Defines a section

Video Purpose
<video> A video

74

HTML 5.12 References

5.12 References
• http://www.w3schools.com/html/
• http://validator.w3.org/
• http://www.w3.org/Style/LieBos2e/enter/

75

http://www.w3schools.com/html/
http://validator.w3.org/
http://www.w3.org/Style/LieBos2e/enter/

5.12 References HTML

76

CHAPTER 6

Cascading Style Sheets (CSS)

6.1 Introduction

All the tags we have considered so far have been used to define the structure of the
document. To change the visual appearance of any of those structures, we use CSS or
Cascading Style Sheets.

The idea underlying CSS is that we use the XHTML tags to define the structure of the
document, then we apply a style to define the visual appearance of each structure. This
approach keeps the structure of the document separate from the appearance.

6.2 Style definitions

All styles defined using CSS have the same general format:

selector {property: value;}

selector The selector defines the element that the style will be applied to. It is normally
an XHTML tag such as p or h1.

property The property is used to select the visual aspect of the element you want to
change. For example, you might want to change the color, the text-align or
the font-size.

value The property is changed to the value specified.

In the example below, the style is used to change the appearance of all first-level head-
ings (<h1> tags), since the selector is h1. The colour of the first-level headings is
changed, since the property to change is the color. Since the value we apply to

77

6.2 Style definitions CSS

the color property is green, the first-level headings in this document will be coloured
green.

h1 {color: green;}

6.2.1 Changing multiple properties for a selector

We can apply more than one change to a given selector. For example, the following
style definition will centre all the paragraphs in the document and make them coloured
red.

p {text-align: center;}
p {color: red;}

Although the code shown above is valid, it is usual to include the changes to a given
selector within the same curly braces as follows:

p {text-align: center; color: red;}

It is easier to read the styles if each property is listed on a separate line, so the style
shown above would normally be written as follows:

p
{
text-align: center;
color: red;
}

This is the preferred way to apply both of the changes to the paragraph text.

6.2.2 Defining a style that has multiple selectors

If we want to apply the same style to a number of different elements on the page, then
we could define a style for each of the selectors. For example, imagine that we want all
of the headings on a page to be blue and aligned to the left. We could use the following
styles:

h1 {color: blue; text-align: left;}
h2 {color: blue; text-align: left;}
h3 {color: blue; text-align: left;}
h4 {color: blue; text-align: left;}
h5 {color: blue; text-align: left;}
h6 {color: blue; text-align: left;}

78

CSS 6.2 Style definitions

Alternatively, we could use the following code:

h1, h2, h3, h4, h5, h6
{
color: blue;
text-align: left;
}

We are allowed to list multiple selectors (each separated with a comma) and apply the
same style to all of them at once. This is preferable to the first example because it
makes it obvious that all the selectors are supposed to use the same style.

6.2.3 The class selector

We can define a “class” selector that will be used to apply a style to all tags that belong
to that class. For example, we might be writing a web page where we want some of the
headings to be blue, and some headings to be red. We also want some paragraphs to
be blue and some to be red. We can easily achieve this using a class selector.

A class selector always starts with a full-stop. Following the full-stop, we choose a name
for our class, then we define the style that will be used by elements that belong to that
class. The format is as follows:

.className { property: value; }

In the XHTML source code, we specify that an element belongs to the class using the
syntax:

<tag class="classname"> ... </tag>

For example, the following styles are used to create two different classes, one for the
colour blue and one for the colour red.

.hot {color: red;}

.cold {color: blue;}

The XHTML source code that uses these classes might look something like the follow-
ing:

<h2 class="hot">The Sahara Desert</h2>
<p class="hot">
Temperatures in the Sahara regularly exceed
50 degrees centigrade
</p>

<h2 class="cold">Antarctica</h2>
<p class="cold">
Temperatures in Antarctica are extremely low
</p>

79

6.2 Style definitions CSS

The class selector is used when we want to apply the style to more than one tag, in
other words, we want to create a new group and apply the style to all the elements in
that group.

6.2.4 The id selector

We can define an “id” selector that will be used to apply a style to a single tag with the
specified id. For example, we might have a style change that we want to apply only
once. This could be done using an inline style (see 6.3.3), but using an id selector
allows us to define all the styles in the same place.

An id selector always starts with a hash sign (#). Following the hash, we choose a name
for the id, then we define the style that will be used by the element that has the id in
question. The format is as follows:

#idName { property: value; }

In the XHTML source code, we specify that an element belongs to the class using the
syntax:

<tag id="idName"> ... </tag>

For example, the following style colours the text yellow and aligns it to the right side of
the page.

#mainHeading {color: yellow; text-align: right;}

The XHTML source code that uses this style might look something like the following:

<h1 id="mainHeading">Bananas</h1>
<p>A banana is a fruit that has a yellow skin.
Monkeys are often portrayed eating bananas.</p>

6.2.5 Other selectors

A number of other selectors are also supported. These are used to apply styles when
the user interacts with the element.

:active

The :active pseudo-class is used to apply a style when an element is active. This
occurs when the user clicks the mouse on the element. It is used in the following way:

tag:active
{

... style is defined here
}

80

CSS 6.2 Style definitions

For example:

h1:active
{

background-color: blue;
}

:hover

The :hover pseudo-class is used to apply a style when the user moves the mouse over
the element. This is frequently applied to the a tag to make links that change when the
user moves the mouse over them (e.g. in the case of buttons that act as links). It is used
in the following way:

tag:hover
{

... style is defined here
}

For example:

a { background-color: green; }
a:hover { background-color: lime; }

:link

The :link pseudo-class defines the style that is used by a hypertext reference before
the link has been followed (i.e. it defines the style of an unvisited link). It is used in the
following way:

a:link
{

... style is defined here
}

:visited

The :visited pseudo-class defines the style that is used by a hypertext reference after
the link has been followed (i.e. it defines the style of an visited link). It is used in the
following way:

a:visited
{

... style is defined here
}

81

6.3 Location of styles CSS

6.3 Location of styles

A style can be defined in three different locations. These are outlined in this section.

6.3.1 An external style sheet

An external style sheet is used when we want to apply the same styles to a number of
different web pages. This is useful when we want to maintain a consistent visual theme
throughout an entire website.

To use an external style sheet, we simply define all the styles in a separate file. In the
source code for our web page, we add a tag that tells the browser that we are using the
styles in the separate file.

For example, we could call the file that contains the styles mystyles.css. The styles
are written in plain text as follows:

h3 {color: blue; text-align: left;}
... other styles included

The document containing all the content (the XHTML web page) would refer to that style
sheet using the <link> tag as shown below:

<head>
<title>A page that includes a style sheet</title>
<link rel="stylesheet" href="mystyles.css"
type="text/css"></link>

</head>

Note that the <style> tag is not required in either file when this method is used.

6.3.2 An internal style sheet

If the styles will only apply to content appearing in a single web page, then an internal
style sheet should be used.

This approach uses a <style> tag within the <head> of an XHTML document. All the
styles that apply to that page should be contained within the style tag. For example:

<head>
<title>A page that includes a style sheet</title>
<style type="text/css">

... styles are defined here

82

mystyles.css

CSS 6.4 <div> and

</style>
</head>

This is the approach that would normally be taken when a single web page was devel-
oped.

6.3.3 An inline style

A style can also be applied to an individual tag. This can be useful when there is a
change that will be made to a single tag, although this approach should be used spar-
ingly. It is normally better to have all the style changes listed in an internal style sheet,
keeping the visual appearance defined in an area which is distinct from the content.

For example, the following code shows how a style can be applied to an individual
paragraph:

<p style="color: green;">This paragraph is green</p>

6.3.4 Applying styles in order

The system is called Cascading Style Sheets because styles defined in one place can
override the styles defined elsewhere according to a hierarchy. The styles “cascade”
over each other to form the final style sheet that will be used on a given page.

If no styles are defined, then the Browser default styles will be used. If styles are defined
in an external style sheet, then those styles will override the Browser styles. If styles are
defined in an internal style sheet, then they will override the Browser defaults and any
externally defined styles. If an inline style has been defined for an individual element,
then it will override all the other styles. The hierarchy is then listed as follows (with the
lowest priority style listed first).

1. Browser default
2. External style sheet
3. Internal style sheet
4. Inline style

6.4 <div> and

There are two additional tags that are used in conjunction with CSS. These are <div>
and . They have no inherent display properties. In other words, if you use a
<div> or tag to enclose your content and use the browser defaults, then it will
not affect the visual appearance at all.

However, these tags can be used to group elements or text in the content of the page.
A style can be applied to the tag to cause a desired visual effect. For example, if the

83

6.5 Properties CSS

following code was displayed on a web browser, then the <div> and tags would
have no effect on the appearance.

<div>
<p>This is a very short paragraph.</p>
<p>This is another short paragraph.</p>
</div>
<p>Both paragraphs above are contained within the same
div block, so a style could be applied to them and
would affect both paragraphs.</p>

However, if we created a style that applied to those tags, then it would cause the ap-
pearance to change. We will use the style sheet defined as follows:

.red { color: red; }

.important { font-weight: bold; }

We can use these styles to change the appearance of elements contained within the
<div> and tags as follows:

<div class="red">
<p>
This is a very short
paragraph.
</p>
<p>This is another short paragraph.</p>
</div>
<p>Both paragraphs above are contained within the same
div block, so a style could be applied to them and
would affect both paragraphs.</p>

Since the <div> tag contains both paragraphs, all the text in both paragraphs will be
coloured red. The text contained within the tag will be coloured red and will also
be bold.

The <div> tag is a block-level tag. It may contain other block-level tags, including other
<div> tags. The tag is an inline tag. It may contain other inline tags, but may
not contain other blocks.

6.5 Properties

The following tables list the different properties that can be used in Cascading Style
Sheets. Some properties have been omitted from the tables provided in this section.
For a full list, see one of the referenced web sites.

84

CSS 6.5 Properties

6.5.1 Font

Defines the style used to display the font. The name of the font, weight and style can be
set using these properties.

Property Description Value

font-family

Requires a prioritized list of fonts, sepa-
rated with commas. Font names that in-
clude white space must be quoted. E.g.
“Zapf Chancery”

family-name
generic-family

font-size Specifies the size of the font

xx-small
x-small
small
medium
large
x-large
xx-large
length

font-style Specifies the style of the font normal
italic

font-variant Either normal or in a small-caps font
normal
small-caps

font-weight Sets the weight of the font normal
bold

Font family-name

A font family is the name of a font such as “Times”, “Arial” etc. In CSS, these should be
enclosed in quote marks. A prioritized list of font family names would be a list from the
highest priority to the lowest priority. Each item in the list should be enclosed in quote
marks and separated by commas.

Font generic-family

A generic font family is provided as a default option if the preferred fonts cannot be used
for some reason (e.g. they are not installed on the system used to read the web page).
The generic font families are “serif”, “sans-serif”, “cursive”, “fantasy” and “monospace”.
The generic font families are listed below with some of the common font families that
belong to each category.

serif

• Times New Roman
• Garamond
• Palatino

85

6.5 Properties CSS

sans-serif

• Arial
• Helvetica
• Verdana
• Century Gothic

cursive

• Comic Sans MS
• ITC Zapf Chancery

fantasy

• Cottonwood

monospace

• Courier
• Courier New

Note: If a font style is applied as an inline style, then single quote marks should be used
to surround the font name, since double quotes will signify that the end of the style
attribute has been reached. For example:

body { font-family: "New Century Schoolbook", serif }

<body style="font-family: ’My own font’, fantasy">

Font Example

p
{

font-family: "Verdana", "Helvetica", sans-serif;
font-size: x-large;
font-weight: bold;
font-style: italic;

}

6.5.2 Background

Defines the background used for an element. The background can be a simple colour,
or could contain an image. The background properties related to images are omitted.

86

CSS 6.5 Properties

Property Description Value

background-color Sets the background colour of an el-
ement

color

6.5.3 Text

The text styles are used to define the way that text is displayed.

Property Description Value
color Sets the colour of the text color

text-align Aligns the text within an element

left
right
center
justify

text-indent Indents the first line of text in an element length

text-transform Transforms the text in an element

none
capitalize
uppercase
lowercase

6.5.4 Borders

Defines the borders that surround an element. Borders can be set individually for the
top, left, bottom and right sides of the element. Properties that apply a border around
all sides are also included for convenience.

Property Description Value

border-color Sets the colours of all four bor-
ders

color

border-style Sets the style used for all four
borders

none
dotted
dashed
solid
double
groove
ridge
inset
outset

border-width Sets the style used for all four
borders

thin
medium
thick
length

87

6.5 Properties CSS

Property Description Value
border-bottom-color Sets the colour of the bottom border as for border-color
border-bottom-style Sets the style of the bottom border as for border-style
border-bottom-width Sets the style of the bottom border as for border-width

border-left-color Sets the colour of the left border as for border-color
border-left-style Sets the style of the left border as for border-style
border-left-width Sets the style of the left border as for border-width

border-right-color Sets the colour of the right border as for border-color
border-right-style Sets the style of the right border as for border-style
border-right-width Sets the style of the right border as for border-width

border-top-color Sets the colour of the top border as for border-color
border-top-style Sets the style of the top border as for border-style
border-top-width Sets the style of the top border as for border-width

6.5.5 Table Borders

When using a table with HTML5, to define table borders you need to use CSS. This is
done using the border property which needs to be specified for the <table>, <tr> and
<td> elements. An example specifying a 1 pixel wide, solid black border is given below:

table, tr, td
{
border: 1px solid black;
}

6.5.6 Lengths

A length must always be a numeric value, followed by the unit of measurement. The
length can be specified in a number of different units as shown in the following table:

Unit Description
cm centimetre
mm millimetre

pt 1 pt is 1
72 inch. Often used to describe size of fonts.

px pixels

For example, a length could be 1.5cm or 32mm or 100px.

6.5.7 Colours

Colours may be represented using a colour name, a hex value, or an rgb value. Only
sixteen different colours can be used by name. For any other colours, a hex value or
rgb value should be used. Each of the colour formats are listed below:

88

CSS 6.5 Properties

Colour Name

• aqua
• black
• blue
• fuchsia
• gray
• green
• lime
• maroon
• navy
• olive
• purple
• red
• silver
• teal
• white
• yellow

Hex value

A colour may be specified using a hexadecimal form. This form consists of a hash
sign (#), followed by a 6 digit hexadecimal number. The first two digits of the number
represent the amount of red, the next two digits represent the amount of green, the last
two digits represent the amount of blue.

Hexadecimal numbers use the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, a, b, c, d, e, f. The
letters a–f represent the decimal values from 10 to 15 (so “ac” in hexadecimal is 10*16
+ 12 = 172). Since this form is the common way for colours to be represented in HTML,
there are full colour charts that show the colours corresponding to each hexadecimal
value. One such colour chart is located at:

http://www.w3schools.com/html/html_colors.asp

A few examples of hex values and the corresponding colours are listed below:

#000000 - black
#ffffff - white
#ff0000 - red
#00ff00 - lime
#0000ff - blue
#800080 - purple

RGB value

A colour may also be specified using an rgb value in decimal. In this format, the text
rgb() are used. Within the parentheses, three decimal values (within the range 0–
255) are used to indicate the amount of red, green and blue colour respectively. The
previous hexadecimal colours would be represented using an rgb value as follows:

89

http://www.w3schools.com/html/html_colors.asp

6.6 Advanced CSS (not examinable) CSS

rgb(0,0,0) - black
rgb(255,255,255) - white
rgb(255,0,0) - red
rgb(0,255,0) - lime
rgb(0,0,255) - blue
rgb(128,0,128) - purple

Example

The following example shows how different colour values are used in CSS.

body {color: black; background: white; }
h1 { color: #008080; }
h2 { color: rgb(128,128,0); }

6.6 Advanced CSS (not examinable)

The system used to position elements on the page is the most complicated part of CSS.
If you want to use these advanced features then you will have to experiment a lot. The
pages you create can look very nice, so the effort pays off in the long run, but it can
initially be quite confusing. Using these properties is not recommended unless you are
very confident with the properties described previously.

The box model used to position the different elements of the page is described below:

6.6.1 Box model

The box model defines the way that margins, padding and content are used for layout.
The following diagram explains how these are interpreted in this model.

90

CSS 6.6 Advanced CSS (not examinable)

The content area contains the text or other content of the element (including any further
elements contained by this one). The padding area is coloured the same as the back-
ground of the content. The border colour is set using the border properties. The margin
area is transparent, and is used to separate this element from other elements.

It is important to note that vertical margins will be collapsed where they overlap. In other
words, if the margins for two elements overlap vertically, only the larger margin will be
used.

6.6.2 Padding

Padding is inserted around the content to provide some additional space between the
content and the surrounding. It is coloured the same as the background of the content.
See section 6.6.1 for more information.

Property Description Value
padding Sets the top,left, bottom and right padding length

padding-bottom Sets the bottom padding of an element length

padding-left Sets the left padding of an element length

padding-right Sets the right padding of an element length

padding-top Sets the top padding of an element length

6.6.3 Margins

Margins are transparent. If a margin is set for an element, then the colour of those
margins is determined by the enclosing element (i.e. since the margins are transparent,
you can see through them to the element behind). Margins can be set to negative
values. See section 6.6.1 for more information.

Property Description Value

margin Sets the top, left, bottom and right margin
auto
length

margin-bottom Sets the bottom margin of an element
auto
length

margin-left Sets the left margin of an element
auto
length

margin-right Sets the right margin of an element
auto
length

margin-top Sets the top margin of an element
auto
length

91

6.7 References CSS

6.6.4 Positioning

These define how the entire element is treated on the page, in terms of visibility and
positioning.

Property Description Value

float
Specifies where the element will appear with re-
spect to the enclosing element

left
right
none

position Defines how the element is positioned

static
relative
absolute
fixed

display Sets how the element is displayed
block
inline
none

top
Sets the distance to the top of the element. Not
used if the position is static

length

left
Sets the distance to the left side of the element.
Not used if the position is static

length

bottom
Sets the distance to the bottom of the element. Not
used if the position is static

length

right
Sets the distance to the right side of the element.
Not used if the position is static

length

6.6.5 Dimension

These define the height and width of elements on the page.

Property Description Value

height Sets the height of an element
auto
length

max-height Sets the maximum height of an element
none
length

min-height Sets the minimum height of an element length

width Sets the width of an element
auto
length

max-width Sets the maximum width of an element
none
length

min-width Sets the minimum width of an element length

6.7 References
• http://www.w3schools.com/css/default.asp
• http://www.htmlhelp.com/reference/css/all-properties.html
• http://csszengarden.com/

92

http://www.w3schools.com/css/default.asp
http://www.htmlhelp.com/reference/css/all-properties.html
http://csszengarden.com/

CSS 6.7 References

• http://www.brainjar.com/

93

http://www.brainjar.com/

6.7 References CSS

94

CHAPTER 7

PowerPoint

7.1 Overview

PowerPoint is an application used to create presentations. These presentations are
arranged as a series of slides. Unlike a word processor, information added to a slide
does not “wrap” from one page to another, rather in PowerPoint, each slide is created
independently from the other slides.

Although PowerPoint is most often used to support a spoken presentation, it can equally
be used to create a presentation that runs independently at a kiosk or information centre.

7.2 Getting started

When you start PowerPoint, you will see a window similar to the one shown in the
following diagram. The main elements of the PowerPoint interface will be discussed in
this section.

95

7.2 Getting started POWERPOINT

Menus and Toolbars

Office 2007 and 2010 do not use menus in the same way as previous versions. The
main menus are now presented as a tabbed Toolbar. In other words, the items are no
longer chosen by picking from a list, but rather they are presented as a Toolbar (this
new toolbar is called a “ribbon” by Microsoft). For example, the Home menu results in
the Home tab being displayed:

while the View menu results in the View tab being displayed.

TIP: If you hover the mouse over any of the Toolbar buttons then a pop-up box will
appear explaining what the button does.

Presentation overview

On the left side of the window is an area that gives you an overview of your presentation.
It contains two different tabs, the Outline tab and the Slides tab. The Slides tab
contains thumbnails (small pictures) of all the slides that you have created for the current
presentation. You can use these thumbnails to navigate through your presentation (i.e.
to move to a particular slide).

96

POWERPOINT 7.2 Getting started

Notes Pane

Each slide in a PowerPoint presentation has an associated Notes area. These notes
are not displayed as part of the presentation, but you can print them out if you wish.
This is the ideal place to make your own personal notes about a presentation (perhaps
to remind yourself of what you wanted to say about the slide).

7.2.1 Views

Slides that form part of a PowerPoint presentation can be viewed in many different
ways. The normal view is used to develop the slides, the slide sorter view allows you to
rearrange slides easily, the notes view allows you to create notes for the slide, and the
slide show view is used to display the presentation in its final form.

The different views can be accessed using the View tab. The views are grouped
together in the area labelled Presentation Views .

The Normal view is used to develop the slides. It is the default view that you see when
you first start the PowerPoint application.

Slide Sorter view

Selecting View → Slide Sorter will show all the slides in the presentation. This allows
you the opportunity to change the order of the slides (by clicking and dragging to a new
position). It is worth noting that you can perform the same task in normal view by clicking
and dragging the slide in the Slides tab.

Use this view to determine whether your slides flow naturally and logically from one to
the next. You may notice that a slide needs to be broken up into a larger number of
slides (perhaps 2 or 3 slides) to improve the structure and clarity of the presentation.

Notes view

Choosing View → Notes Page will display the slide and any notes that are attached
to that slide. As mentioned earlier, the notes themselves do not appear as part of the
presentation, rather they can be used by the presenter when rehearsing the presen-
tation. The Notes Page view shows what the page would look like if the notes were
printed out.

Slide Show view

Choosing Slide Show → From Current Slide will start the presentation from the cur-
rent slide. If your presentation includes any advanced features such as slide transitions,

97

7.2 Getting started POWERPOINT

sound or animation, then you can verify that those features work correctly by using the
Slide Show view. To return to the normal view from From Current Slide press the�� ��Esc key.

Normal view Slide Sorter view

Notes view Slide Show view

7.2.2 Options

PowerPoint has a number of options that allow you to tailor the way various automatic
features operate. Don’t be afraid to experiment with these options (although it might
be worth writing down what you have changed in case you want to change it back).
PowerPoint (as with most Microsoft products) is designed to “help” you as much as
possible. As you type, spelling mistakes and formatting errors will be automatically
corrected. PowerPoint guesses what you are trying to do and changes the formatting
accordingly. For example, if you start a line with an asterisk like so:

* this is a sentence

then PowerPoint will automatically change the line into a bullet pointed list and the first
word of the sentence will be capitalized.

• This is a sentence

Although this is sometimes helpful, there are times that you want to display your infor-
mation in a specific way and you do not want any interference.

The File botton will bring up a window that contains a button called
�� ��Options . Clicking

this button allows you to configure the various options that control the level of automation
used by PowerPoint.

98

POWERPOINT 7.3 Adding content

7.3 Adding content

PowerPoint presentations consist of a title slide and one or more slides containing the
content.

7.3.1 Title slide

The title slide is normally the first slide of the presentation. The default layout for the title
slide is different than the other slides. When you start a new blank presentation, you
should see something similar to the following:

The title slide contains placeholders for the main title and a subtitle. To add titles, click
in the appropriate boxes and enter your text.

7.3.2 Adding a new slide

When you add a new slide to the presentation, it is inserted after the slide that is cur-
rently selected. To insert a new slide to your presentation, you can click on a slide (or
between two slides) in the Slides tab in the presentation overview area and hit the�� ��Enter key. In either case, a new slide will be inserted into the presentation and you
can start to add content to that slide. The new slide will contain placeholders for the
slide title and the slide content area. Simply click in the appropriate boxes and enter
your text.

99

7.3 Adding content POWERPOINT

7.3.3 Bullet Points

PowerPoint is designed to present text as bullet points. These bullet points are organ-
ised in a hierarchy. The top-level points are large, bold, and appear on the left side. As
the points move lower in the hierarchy, the text appears smaller and is indented further
to the right.

Click on the button to increase the level of indentation (lower in the hierarchy) or the

button to decrease the level of indentation (higher in the hierarchy).

Both buttons are located on the Paragraph section of the Home Toolbar.

7.3.4 Headers and Footers

A header or a footer can be added to the printed pages when you print the slides as
handouts (or as notes). However, the slides themselves may only have a footer when
they are displayed on the screen.

The header/footer may contain the date (either updated automatically to the date you
last modified the slide, or a fixed date of your choice), the slide number, or any fixed text
that you specify (such as the name of your department/company).

A different footer can be applied to different slides, although it is more common to have
a consistent footer on all the slides. Note that the title page can have a different footer.

You can add information to the header or footer of a slide by choosing the Insert tab
→ Header & Footer .

100

POWERPOINT 7.3 Adding content

7.3.5 Drawing tools

The drawing tools provided with PowerPoint are very powerful and easy to use. If you
intend to use diagrams, flow charts or pictures on your slides, then you need to learn
how to use the drawing tools.

Grids

PowerPoint uses the idea of a drawing grid that helps you to align drawing objects more
easily. Imagine that the screen is covered by an invisible grid, and when you create or
move a drawing object, the edges of the object will always be aligned to one of the grid
lines (i.e. the object will “jump” in size or location from one grid line to the next). You are
able to set the size of the grid to a value that is suitable for the drawing that you plan to
create (a value between 0.05cm and 1.0 cm is fairly typical).

From the Home tab, click on the
�� ��Arrange icon and choose Align → Grid Settings

Working with shapes

PowerPoint has many pre-defined shapes that you can choose from. Once you select
the shape you want to draw, then clicking and dragging the mouse will draw the chosen
shape on the slide. After the shape is drawn, you can alter various properties such as
the outline and fill.

Shapes can be chosen from the Insert tab, by clicking on the
�� ��Shapes button. To

change the properties of the object, select the object (by clicking on it) and choose the
Drawing Tools – Format tab. Alternatively, double-clicking the shape will automatically

select the Drawing Tools – Format tab.

The “Shape Style” section of the tab allows you precise control over the appearance of
the selected object.

101

7.3 Adding content POWERPOINT

TIP Using the Connector shape creates a “sticky” connection between
two objects. If one of the objects is moved to a new position then the

end of the connector will remain attached. This is a very useful feature when
creating flow charts and diagrams that use lines to connect various parts.

Each object (including any text boxes on the slide) floats in a different layer (imagine
that each object is drawn onto a separate pane of glass and all of the panes are stacked
up into a big pile). We can alter the order of these layers which in turn defines which
objects appear in front of other objects.

To change the ordering of objects, choose Drawing Tools – Format then select the
appropriate button from the “Arrange” section of the tab.

Objects can also be rotated or flipped (like a mirror image) using options from the menus
described above. If you select a number of shapes, you have the option to Group the

objects together (so that they are treated as a single object thereafter), or to Align the
objects.

If you want to add text to a shape, simply start typing when that shape is selected. You
can change the properties of the text by selecting it and using the normal menus to alter
the appearance of the font.

If you want to alter the way the text is anchored to the shape, then use the
Format Shape dialog box and select Text Box from the list of options.

102

POWERPOINT 7.3 Adding content

7.3.6 Pictures

Pictures can easily be added to PowerPoint presentations using either the clipboard, or
by accessing the picture directly from disk.

Adding pictures using the clipboard

The most common way to add pictures to your PowerPoint presentations is using the
clipboard. If you are viewing the image using your web browser, you can right-click the
image and choose Copy Image or Copy (depending on your browser). If you are

using another application to view the image, then you can probably choose Edit →
Copy . Once the image is copied to the clipboard, select the PowerPoint slide you want

and paste the image from the clipboard.

To paste a picture from the clipboard, choose the Home tab, then
�� ��Paste from the

“Clipboard” section of the tab.

Adding pictures that are stored on disk

Alternatively, you can insert a picture directly from your disk (useful for adding photos)
onto a slide.

Click on the Insert tab, then choose
�� ��Picture from the Images section of the tab.

Simple editing of pictures

You can make simple changes to pictures from within PowerPoint. For more complex
changes, you would need to use a specialist photo editing product. However, Power-
Point is capable of adjusting the brightness and contrast, and can be used to crop the
image.

Selecting a picture will reveal the Picture Tools–Format tab, which contains all the
tools used to alter the picture. The “adjust” section allows you to alter the brightness,
contrast or colour of the image.

The “size” section allows you to alter the size, and to crop the image.

103

7.3 Adding content POWERPOINT

Compressing images

Images take up a lot of memory on your disk. A PowerPoint presentation without any
images would typically take a small amount of memory, perhaps 100KB. This is certainly
small enough to be stored or emailed easily.

A presentation that contained a number of pictures could easily take more than 10MB of
space (more than 100 times as much as the presentation without images). Such a large
presentation is difficult to transfer via email and may be difficult to maintain on portable
media if many such presentations are created.

PowerPoint includes a feature that allows you to compress the images belonging to your
presentation in order to reduce the overall size of your file. Compressing all the images
in a PowerPoint presentation can reduce the size to a quarter of the original size. This
is only really necessary for presentations that use a large number of images (or that use
very high quality images).

Use the
�� ��Compress Pictures button in the “Adjust” section of the

Picture Tools–Format tab.

Ordering the layers

Since a picture is treated as a special kind of object, many of the standard tools used for
drawing can also be applied to pictures. The layer of a picture can be shifted towards
the front or back, the picture can be rotated, aligned and distributed, just as we can do
with drawing objects.

For example, you can create a black outline around the picture by choosing to alter the
outline property.

You can also make a picture into a background image by making it the back layer. This
is an easy way to introduce background images into selected slides (although if you
want the same background on all your slides then you should define a new slide design
using a Slide Master as discussed in section 7.4.6).

The “Arrange” section of the Picture Tools–Format tab allows you to change the order,
alignment, distribution and rotation of your pictures.

The “Picture Styles” section allows you to apply a number of effects to the image, in-
cluding changing the border and shape of the image.

104

POWERPOINT 7.4 Making beautiful slides

7.4 Making beautiful slides

In the previous section we looked at how to create and view simple presentations. In
this section, we will look at ways to make the presentation more attractive.

7.4.1 Formatting text

The tools for formatting text in PowerPoint are similar to those used in word processing
applications. You can apply multiple changes to the text one attribute at a time by click-
ing on the appropriate formatting icon in the toolbar, or you can change many attributes
at the same time using the font formatting dialog box (e.g. you could make the text
appear in Arial font typeface with 24 point size, bold, italic and underlined).

Choose the Home tab and click on the icon that displays the font dialog box in the
“Font” section of the tab.

7.4.2 Background and Font colour

It is easy to add a background colour to your slides.

Choose the Design tab, and click on the icon that displays the “Format Background”
dialog box. Choose the colour for a simple fill.

105

7.4 Making beautiful slides POWERPOINT

Rather than choosing a plain colour for the background, a subtle gradient of colour is
often more appealing.

From the “Format Background” dialog box, choose the “Gradient fill” or “Picture or tex-
ture fill” option to define the appearance of more complex backgrounds.

If you change the background to a dark colour, then you will have to change the font
from the default black colour to something lighter. Use the normal font formatting tools
to change the font colour to something that is clearly visible on the background.

7.4.3 Design Theme

A design theme affects the appearance of your entire presentation. It normally specifies
a particular background, the position and appearance of the titles, and the position
and appearance of the main content text. PowerPoint comes with a range of built-in
templates that you can use. These are called “Themes”.

TIP To create a professional looking presentation, you should try to de-
velop your own theme (as discussed in section 7.4.6). The themes

that are built-in to PowerPoint are frequently used by presenters, so audiences
are sometimes bored by a style that they have seen so often.

To apply a theme to your presentation, locate the thumbnails that give you a preview of
what the theme will look like when it is applied to your presentation.

Choose the Design tab and use the “Themes” section to pick a theme.

You can apply the design by clicking on one of the thumbnails. If you don’t like the de-
sign, simply choose another. Note that the design will affect the font size, so sentences
that look good on one design might not look good on another.

106

POWERPOINT 7.4 Making beautiful slides

Examples of Design Templates

7.4.4 Colour scheme

The colour scheme defines the default colours that are used for the slides in your pre-
sentation. If you select a design template, then the colour scheme will be chosen as
part of that design template, but you are free to choose a different set of colours if you
wish. The colour scheme will affect the following elements of each slide:

• Background
• Text and lines
• Shadows
• Title text
• Fill
• Accent
• Accent and hyperlink
• Accent and followed hyperlink

Choose the Design tab and use the
�� ��Colors button in the “Themes” section to pick a

colour scheme to be used for your theme.

Note that you can specify a different colour scheme for the notes page, the handout
page and the slides page within the same presentation. See “Modifying the color
scheme” in the Microsoft Office PowerPoint Help for more information.

7.4.5 Design layout

A design layout specifies the position of different elements of content within a single
slide. You can use a design layout to create slides that have multiple different forms of
content (such as charts, pictures, text and diagrams) arranged according to the specified
layout. For example, you can use a design layout to have two columns of text, or to have
text on the left side and pictures on the right side. This is a quick way to arrange the
content on a slide.

Choose the Home tab and select the
�� ��Layout button from the “Slides” section.

107

7.4 Making beautiful slides POWERPOINT

A number of different layouts will be available for you to select from. The thumbnails
displayed will give an indication of what different layouts will look like. You can apply the
layout by clicking on one of the thumbnails.

Examples of Design Layouts

Different design templates have different amounts of space to use for content (for exam-
ple, a design template with a very large heading might have less vertical space, whereas
a design template with a very large graphic on the left side might have less horizontal
space). If you apply a different design template to a slide that has a specified layout,
you may have to return to that slide and reset the layout to ensure that the content is
displayed correctly.

To reset the layout, right-click on the slide and choose Reset Slide .

7.4.6 Using Masters

Masters are used to create a new slide design that can be used as a template for all the
slides in a given presentation. In order to create a consistent, professional presentation
that has a unique, personalized appearance, you should define your own Slide Master.

To edit the Slide Master, choose the View tab, then choose the
�� ��Slide Master button

from the “Presentation Views” section.

The slide master will be displayed in the main workspace area.

108

POWERPOINT 7.5 Interactivity — animation and multimedia

A Slide Master

You can alter the appearance of this Slide Master using any of the standard formatting
tools. The size and location of the text boxes, the font style, and the colour can all be
altered. The changes you make to this slide master will define the appearance of any
new slide that is added to this presentation.

You may also want to define a different template for the title slide, especially if you
are giving a series of presentations and you want the appearance of the titles to be
consistent in all of them.

When you are finished editing the Masters, you should return to the default view.

Click the
�� ��Close Master View button in the Slide Master tab, or choose the View tab

and click the
�� ��Normal button.

7.5 Interactivity — animation and multimedia

A number of more advanced features are provided with PowerPoint and it is these tools
that are used to make the most compelling presentations.

7.5.1 Slide transitions

A slide transition is an animation that occurs when you move from one slide to the next
in a presentation. You can apply different slide transitions to different slides if you wish,
or use the same transition for all the slides in the presentation. You can change the
speed of the transition and you can add a sound that will be played at the same time as
the transition. Finally, you can specify whether the slide will automatically advance to
the next one after a certain number of seconds has passed, or whether the slide must
be manually advanced.

Choose the Transition tab and select the type of transition from the “Transition to this
slide” section.

109

7.5 Interactivity — animation and multimedia POWERPOINT

7.5.2 Linking to external resources

You can create a link from a PowerPoint slide to any document that you have on your
disk, or to any web page. To add a link, click in a text box on your slide and choose
Insert → Hyperlink (or simply right-click in a text box and choose Hyperlink). A

dialog box will appear allowing you to select the destination of the link and enter a name
for the link.

The Hyperlink dialog box

The name that will appear on the page should be entered in the field entitled “Text to
display:” at the top of the dialog box. If you are linking to a document stored on your
computer, then use the main area of the dialog box to locate that document. If you are
linking to a web site, then copy the address of the web site and paste it into the field
entitled “Address” at the bottom of the dialog box. When you are satisfied that the correct
information has been entered, click

�� ��OK to create the hyperlink on the page. You can

test the hyperlink by selecting Slide Show → From Current Slide and clicking on the
link.

Sound

Sound can be added to your presentation using Insert → Video or Audio from
the Media section. If you choose to add sound from a CD, then you must have the CD
inserted into the drive each time you deliver the presentation.

TIP If you want to use sounds from your CD, then you can use software
to extract the music file to your local hard drive and use that file when

you insert the sound into your presentation. Inserting from the file in this way
means that the presentation will still work without your CD.

When you insert a sound into your presentation, you will be asked if you want to start
the sound automatically (i.e. the sound starts when the slide first appears), or if you
want to click to start the sound.

Either way, you will see a small icon of a speaker (or a CD if you have inserted sound
from a CD) appear on your presentation when the sound is inserted. This icon repre-

110

POWERPOINT 7.5 Interactivity — animation and multimedia

sents the sound that has been added. Don’t worry about the icon looking untidy, you
can hide the actual icon when you deliver the presentation.

The speaker icon used to represent a sound file

Movies

Movies are complicated because there are so many different kinds of format (the most
common are .mpeg, .mov, .avi and .wmv). In addition to the file format, there are a large
number of different codecs used to encode the information so that it takes less disk
space. A movie that plays on one computer may not play on another if the same codecs
are not installed. If you intend to use movies in your PowerPoint presentations then it is
essential that you try them out on the machine you will use to deliver the presentation.

Movies are inserted in a similar way to sounds. Select Insert → Video →
Video from File , and locate the movie file on your hard disk. As with sound, you will be

asked if you want to start the movie automatically (i.e. the movie starts when the slide
first appears), or if you want to click to start the movie.

If you select a movie file that has been added to a slide, then two additional tabs called
“Format” and “Playback” will appear. The Playback tab contains the options to play
the movie full screen, loop until the user stops the movie and to rewind the movie after
it has finished playing.

7.5.3 Custom animation

Custom animation allows you to control the animation for each element of your presen-
tation. You can apply custom animation to an individual object or a group of objects.
You can animate a single letter, a word, a sentence or an entire paragraph of text.

You can set the triggering conditions for the animation (i.e. when the animation will
start). The speed and timing of the animation can be altered, as well as the number
of times the animation sequence is repeated. Each animation type has a number of
different options that adjusts the way that animation will be displayed.

111

7.5 Interactivity — animation and multimedia POWERPOINT

Custom Animation pane Entrance Animation options

To add a custom animation for an object, first select the object, then choose Add Effect
from the Animation tab. You will need to select the type of animation from the following
list:

Entrance The animation occurs as the object appears for the first time
Exit The animation occurs when the object is removed from the slide
Emphasis The animation is used to emphasise the object while it is visible
Motion Path The animation is used to move the object from one location to another

Once you have selected the animation you want, you can modify it further in the An-
imation pane. To display the Animation pane at the right side of the page, click on
Animation Pane in the Advanced Animation section on the Animation tab. You will see

a small number that appears next to the object in normal view (this will not be displayed
during the slide show) which is linked to the item in the Animation pane with the same
number.

112

POWERPOINT 7.5 Interactivity — animation and multimedia

A slide containing three different animations

Timing

Timing is one of the most important parts of the animation process. You can create com-
plex animations by stringing together a number of simple parts. The timing options allow
you to connect animations together with ease. The starting condition for the animation
should be one of the following:

On Click The animation starts when the user clicks a button
With Previous The animation starts at the same time as the previous animation (or

when the slide first appears if the animation is the first one on the list)
After Previous The animation starts when the previous animation has finished

You can also insert a delay into the timing of the animation by right-clicking the animation
in the Animation pane and choosing Timing . Creating effective animation sequences
can be time consuming, but ultimately rewarding if you have the time to spend.

Options

Each animation has a number of options that affects the way the animation looks. For
example, the spin animation can be set to rotate any number of degrees, either clock-
wise or anti-clockwise and can be set to slowly speed up and/or slow down at the start
and/or end of the spin. These animation options are accessed by right-clicking on the
animation in the Animation pane and choosing Effect Options

7.5.4 Package for CD

If you have any linked files (such as movies or sounds) in your presentation then it is
critical that you package the presentation for transportation.

Click on the
�� ��File tab → Save & Send → Package Presentation for CD .

Linked files are not embedded in your presentation, instead PowerPoint stores a link to
the location of the files on your hard drive. When you copy the presentation to a different

113

7.6 Presentation POWERPOINT

machine (or onto a flash drive), PowerPoint will not automatically update the links, so
it will still try to refer to the file on the computer you used to develop the presentation.
This means that linked files will not be available during the actual presentation.

To avoid this problem, you can use the option to package the presentation for CD. Al-
though this sounds like you have to store the presentation on a CD, you can actually
store the packaged presentation in a folder on your hard drive. The folder will contain
the PowerPoint presentation, software that allows you to view the presentation on a
computer that doesn’t have PowerPoint installed (just in case), and all the files that you
linked from the presentation. It is safe to copy this folder to a new location and all the
linked files will work correctly.

TIP Always use Package for CD before you move a presentation to a dif-
ferent computer. Always try out your presentation on the destination

computer to make sure the fonts, sounds, movies and animation all work as
expected before you start to deliver the presentation to an audience.

7.6 Presentation

Once you have completed building the presentation, you need to deliver it. This section
discusses some of the ways that PowerPoint can be used during the actually delivery.

7.6.1 Rehearsing a presentation

When you have completed the design of your presentation, you may want to rehearse
the delivery.

Choose the Slide Show tab, then Rehearse Timings from the “set Up” section.

Your PowerPoint slide show will begin, and you will see a small timer in the top left
corner of the screen. As you rehearse your presentation, the timer will record the time
when you advance to the next slide. You can pause this timer if you need to take a
break. When you have finished the presentation, you can use the Slide Sorter view to
see how long you spend on each slide.

You can use the timings generated at this time to automate the playback speed of the
slides. If you choose Slide Show → Set Up Show , then you have the option to
“Advance Slides” based on the times recorded during rehearsal. If you choose this
option then the slides will advance automatically without manual intervention (this is
particularly useful if you are setting up a presentation to run at an Information Kiosk).

114

POWERPOINT 7.6 Presentation

Setting up the final presentation for delivery

7.6.2 Navigating during a presentation

Once the slide show has started, the slides will either automatically advance or they will
have to be manually advanced, depending on your settings (transitions, animations and
timings).

You can move through the slides manually in one of the following ways:

• click the left mouse button to advance to the next slide
• press the

�� ��Space key to advance to the next slide
• press the left or right arrow keys to move to the previous or next slide respectively
• press the number of the slide you want to move to, then press the

�� ��Enter key (for

example,
�� ��1 -

�� ��Enter will move directly to the first slide in the presentation).

When the presentation begins, the pointer will be invisible. If you move the mouse, then
the pointer will appear and you will see some faint buttons appear in the bottom-left
corner of the slide. You can click on the left and right icons to navigate to the previous
and next slide respectively.

Navigation icons used during a presentation

7.6.3 Annotating a presentation

When you are teaching, there are times when you want to highlight elements of a slide,
or write on the slide in some fashion. To do this, right click the mouse button and a
menu will appear. You can use this menu to choose Pointer Options → either Arrow

or Pen or Highlighter . You can also select a colour by right-clicking again and choose

Pointer Options → Ink Color and select the colour you want.

Once you have selected a pointer option and a colour, you can scribble on the page
using the mouse. When you finish the presentation, you can choose to keep the anno-
tations if you wish.

115

7.7 Design and presentation advice POWERPOINT

Before annotations After annotations

7.7 Design and presentation advice

You can use PowerPoint for different purposes, and the recommendations that apply
in one context may not necessarily apply in another. The most important thing is to
find a style that works for you (given the time that you have available to spend on the
preparation).

7.7.1 Printing the presentation

There are three main ways that presentations are printed. You can choose to print the
slides, the notes page, or print the slides as a handout. The option to select which
way to print the presentation is chosen from the Print Dialog box (i.e. choose File →
Print as normal and select Handout, Notes or Slides from the dropdown box under the

heading “Print what”).

Normally you would choose to print multiple slides on a single A4 sheet if you were
using the slides as a handout (perhaps 4 slides per A4 page). The paper should be
oriented in Landscape mode for this purpose.

If you choose to print out the Notes page, then it will appear with a single slide per page
with any notes located in the space beneath the slide.

If you choose to print out the presentation as a Handout, then you can select the number
of slides that appear on a single page. In the example below, we have chosen 3 slides
per page.

1
/1

1
/2

0
0
7

C
O

M
P

S
C

I
1
1
1

/1
1
1
G

 -
C

o
m

p
u

te
r

G
ra

p
h
ic

s
1

/1
1
/2

0
0
7

C
O

M
P

S
C

I
1
1
1

/1
1
1
G

 -
C

o
m

p
u

te
r

G
ra

p
h
ic

s
1

C
o

m
p

u
te

r
G

ra
p

h
ic

s

C
O

M
P

S
C

I
1

1
1

 /
 1

1
1

G
M

a
s
te

ri
n

g
 C

y
b

e
rs

p
a
c
e
:

A
n

 i
n

tr
o

d
u

c
ti

o
n

 t
o

 p
ra

c
ti

c
a
l
c
o

m
p

u
ti

n
g

1
/1

1
/2

0
0
7

C
O

M
P

S
C

I
1
1
1

/1
1
1
G

 -
C

o
m

p
u

te
r

G
ra

p
h
ic

s
2

In
tr

o
d

u
c

ti
o

n

W
h

a
t

is
 C

o
m

p
u

te
r

G
ra

p
h

ic
s
?

•
D

e
fi
n

it
io

n

•
D

e
v
e

lo
p

m
e

n
t

C
re

a
ti

n
g

 a
n

 i
m

a
g

e
•

T
e

c
h

n
iq

u
e

s

A
p

p
li
c
a
ti

o
n

s
•

U
s
e

s

•
S

o
c
ia

l
Im

p
lic

a
ti
o

n
s

1
/1

1
/2

0
0
7

C
O

M
P

S
C

I
1
1
1

/1
1
1
G

 -
C

o
m

p
u

te
r

G
ra

p
h
ic

s
3

W
h

a
t

is
 C

o
m

p
u

te
r

G
ra

p
h

ic
s

?

A
 s

u
b

fi
e
ld

 o
f

C
o

m
p

u
te

r
S

c
ie

n
c
e

•
C

re
a

ti
n

g
 a

n
d

 m
a

n
ip

u
la

ti
n

g
 d

ig
it
a

l
im

a
g

e
s

M
a
jo

r
s
u

b
fi

e
ld

s
•

R
e

p
re

s
e

n
ti
n

g
 a

n
d

 m
a

n
ip

u
la

ti
n

g
 s

u
rf

a
c
e

s

•
R

e
p

re
s
e

n
ti
n

g
 a

n
d

 m
a

n
ip

u
la

ti
n

g
 l
ig

h
t

•
R

e
p
re

s
e

n
ti
n

g
 a

n
d

 m
a

n
ip

u
la

ti
n

g
 m

o
ti
o
n

C
o

m
p

u
te

r
G

ra
p

h
ic

s
D

e
s
c
ri

p
ti

o
n

Im
a
g

e

h
tt

p
:/

/e
n

.w
ik

ip
e

d
ia

.o
rg

/w
ik

i/
C

o
m

p
u

te
r_

g
ra

p
h

ic
s

1
/1

1
/2

0
0
7

C
O

M
P

S
C

I
1
1
1

/1
1
1
G

 -
C

o
m

p
u

te
r

G
ra

p
h
ic

s
4

D
e

v
e

lo
p

m
e
n

t
o

f
C

o
m

p
u

te
r

G
ra

p
h

ic
s

T
w

o
-d

im
e
n

s
io

n
a
l
re

n
d

e
ri

n
g

•
D

ra
w

in
g
 a

lg
o
ri
th

m
s

•
C

u
rv

e
s
,
2

D
 o

b
je

c
ts

•
V

e
c
to

r
g
ra

p
h
ic

s

•
T

y
p
o
g
ra

p
h
y

T
h

re
e
-d

im
e
n

s
io

n
a
l
re

n
d

e
ri

n
g

•
S

u
rf

a
c
e

s
,
lig

h
ti
n

g
,
tr

a
n

s
fo

rm
a

ti
o

n
s

•
M

o
d

e
lli

n
g

 3
D

 o
b

je
c
ts

h
tt

p
:/

/e
n

.w
ik

ip
e

d
ia

.o
rg

/w
ik

i/
2

D
_

c
o

m
p

u
te

r_
g

ra
p

h
ic

s

h
tt

p
:/

/e
n

.w
ik

ip
e

d
ia

.o
rg

/w
ik

i/
3

D
_

c
o

m
p

u
te

r_
g

ra
p

h
ic

s

1

1/11/2007 COMPSCI 111/111G - Computer Graphics1/11/2007 COMPSCI 111/111G - Computer Graphics 1

Computer Graphics

COMPSCI 111 / 111G
Mastering Cyberspace:
An introduction to practical computing

Adminstration

-Test results are out

-Fees need to be paid

-Lost property

Assessment

-This will be assessed

Guest Lecturer

-Welcome to Burkhard

1

1/11/2007 COMPSCI 111/111G - Computer Graphics1/11/2007 COMPSCI 111/111G - Computer Graphics 1

Computer Graphics

COMPSCI 111 / 111G
Mastering Cyberspace:
An introduction to practical computing

1/11/2007 COMPSCI 111/111G - Computer Graphics 2

Introduction

What is Computer Graphics?
• Definition

• Development

Creating an image
• Techniques

Applications
• Uses

• Social Implications

1/11/2007 COMPSCI 111/111G - Computer Graphics 3

What is Computer Graphics?

A subfield of Computer Science
• Creating and manipulating digital images

Major subfields
• Representing and manipulating surfaces

• Representing and manipulating light

• Representing and manipulating motion

Computer GraphicsDescription Image

http://en.wikipedia.org/wiki/Computer_graphics

Slides (4 per page) Notes (1 per page) Handouts (3 per page)

116

POWERPOINT 7.8 Advice on slide design

If your slides contain colourful backgrounds then they might be difficult to read when
printed. There is an option in the print dialog box to print slides as ”‘Pure Black and
White”’. If you choose this option then the coloured background will be omitted and the
text will be printed in black ink to make it easier to read.

1

1/11/2007 COMPSCI 111/111G - Computer Graphics1/11/2007 COMPSCI 111/111G - Computer Graphics 1

Computer Graphics

COMPSCI 111 / 111G
Mastering Cyberspace:
An introduction to practical computing

1/11/2007 COMPSCI 111/111G - Computer Graphics 2

Introduction

What is Computer Graphics?
• Definition

• Development

Creating an image
• Techniques

Applications
• Uses

• Social Implications

1/11/2007 COMPSCI 111/111G - Computer Graphics 3

What is Computer Graphics?

A subfield of Computer Science
• Creating and manipulating digital images

Major subfields
• Representing and manipulating surfaces

• Representing and manipulating light

• Representing and manipulating motion

Computer GraphicsDescription Image

http://en.wikipedia.org/wiki/Computer_graphics

1

1/11/2007 COMPSCI 111/111G - Computer Graphics1/11/2007 COMPSCI 111/111G - Computer Graphics 1

Computer Graphics

COMPSCI 111 / 111G
Mastering Cyberspace:
An introduction to practical computing

1/11/2007 COMPSCI 111/111G - Computer Graphics 2

Introduction

What is Computer Graphics?
• Definition

• Development

Creating an image
• Techniques

Applications
• Uses

• Social Implications

1/11/2007 COMPSCI 111/111G - Computer Graphics 3

What is Computer Graphics?

A subfield of Computer Science
• Creating and manipulating digital images

Major subfields
• Representing and manipulating surfaces

• Representing and manipulating light

• Representing and manipulating motion

Computer GraphicsDescription Image

http://en.wikipedia.org/wiki/Computer_graphics

Handouts in “Colour” (default) Handouts in “Pure Black and White”

7.8 Advice on slide design

7.8.1 Your slides support you, not replace you!

The most important thing to remember is that the PowerPoint presentation should sup-
port what you say, not replace you entirely. If all the information is on the slides, then
you are redundant. It is difficult to read and listen at the same time, so keep the slides
simple. The major advantage that PowerPoint brings to a presentation is visual impact,
so use it to connect with the audience.

7.8.2 Aim for consistency

The background, colours and fonts should all be consistent throughout your presenta-
tion. Style differences between slides are distracting and unprofessional.

7.8.3 Keep it simple

Your slide should contain no superfluous material. Keep only what is essential. The less
clutter, the more powerful your message will be.

7.8.4 Limit bullet points and text

The slides should support and enhance your message, not replace you. Prepare a
written document that contains your message as a handout and don’t use PowerPoint
slides as a handout replacement.

117

7.8 Advice on slide design POWERPOINT

7.8.5 Limit animation

Some animation can be good, but keep it simple and quick. Use sparingly. Never use
slide transitions! Never!

7.8.6 Limit sound and keep it professional

Sound can be a very powerful medium to carry a message, but use it sparingly. Never
use the stock sounds that come with PowerPoint. If you are using music or sound then
obtain high-quality sound from a CD source.

7.8.7 Use high-quality visuals

Use stock photography or other high quality images. Avoid clip-art. It cheapens the
presentation and makes it look amateurish.

7.8.8 Design your own templates

Don’t use the standard Microsoft Templates. They get used too often and have little
impact today. Develop your own personalised template.

7.8.9 Make good use of colour

Colour evokes emotion, so choose colours carefully for the feel of the presentation.
Never use coloured text for decoration. Use coloured text sparingly and only to empha-
sise a single word or phrase.

Use warm colours for the foreground (since warm colours tend to stand out) and cool
colours for the background (since cool colours tend to recede). Try to maximise the
contrast between the foreground and background colours. Limit the number of colours
used in a presentation, and use them consistently.

Dark backgrounds with light or white text work best in a dark room. In rooms that are
well lit, a white background with dark text is easier to read.

7.8.10 Don’t do too much in a single slide

Make sure you have only one main idea per slide. If there is too much for one slide, then
split the slide up.

7.8.11 Choose fonts well

Limit the number of fonts that you use in a presentation. No more than two fonts per
presentation (e.g. Arial and Arial Bold). Choose a font that is simple and easy to read.

118

POWERPOINT 7.9 References and further reading

Avoid complicated fonts. Sans-serif fonts are easier to read than serif fonts on screens,
so use sans-serif fonts by preference.

7.8.12 Tell a story

A good presentation should engage the audience in a story, not just list a set of facts.
The PowerPoint presentation should support and enhance the story that you are telling,
not reduce the presentation to a boring list of bullet points. Think of each slide as
a short newspaper story. Instead of a heading containing nouns at the top, write a
headline that catches your attention. For example, instead of “Problems”, write “Poor
use of PowerPoint confuses students”. Instead of “Advice” write “5 mistakes to avoid”.

7.9 References and further reading
• PowerPoint overview

– http://en.wikipedia.org/wiki/Powerpoint
• Online Training

– http://office.microsoft.com/en-us/training/default.aspx
– Microsoft Office Help

• Presentation Zen
– http://www.presentationzen.com/
– http://www.garrreynolds.com/Presentation/pdf/presentation_
tips.pdf

• Rethinking the Design of Presentation Slides
– http://www.writing.eng.vt.edu/slides.html

• Stop your presentation before it kills again!
– http://headrush.typepad.com/creating_passionate_users/
2005/06/kill_your_prese.html

• “PowerPoint is Evil” — Edward Tufte
– http://www.wired.com/wired/archive/11.09/ppt2.html

119

http://en.wikipedia.org/wiki/Powerpoint
http://office.microsoft.com/en-us/training/default.aspx
http://www.presentationzen.com/
http://www.garrreynolds.com/Presentation/pdf/presentation_tips.pdf
http://www.garrreynolds.com/Presentation/pdf/presentation_tips.pdf
http://www.writing.eng.vt.edu/slides.html
http://headrush.typepad.com/creating_passionate_users/2005/06/kill_your_prese.html
http://headrush.typepad.com/creating_passionate_users/2005/06/kill_your_prese.html
http://www.wired.com/wired/archive/11.09/ppt2.html

7.9 References and further reading POWERPOINT

120

CHAPTER 8

Spreadsheets

8.1 Visicalc

The concept of a spreadsheet was developed from the technique known as “running the
numbers” as used at the Harvard Business School. Dan Bricklin developed the idea of
using a computer by watching his lecturer use a table to record the results of financial
calculations. If a mistake occurred somewhere in the process, the lecturer had to rub
out any subsequent results, correct the error and recalculate all the entries again. Dan
Bricklin got the idea that a computer could be used to automate this process and the
results of any calculations could be displayed visually in a table. Together with Bob
Frankston, a capable programmer, they created a program which they called Visicalc
(standing for visible calculator).

121

8.2 Introduction SPREADSHEETS

The first copy was sold in October 1979, and it was only available for the Apple II. This
application was so useful that people in middle management throughout the U.S.A. felt
they had to have it. These people had comfortable jobs with disposable income, so they
could afford the expense of a personal computer. Visicalc was so useful that people
were willing to buy an Apple II computer just to run that one program. Apple’s sales
increased massively, driving the personal computer industry into the public eye, and
making Apple’s founders, Steve Jobs and Steve Wozniak, into household names.

Later, the rights to Visicalc were bought by Lotus, who produced Lotus 1-2-3 for the
IBM PC, based on the Apple product. Other spreadsheets like Wings, ClarisWorks,
OpenOffice Calc and Gnumeric followed. Today, the dominant spreadsheet is Microsoft
Excel. It is widely used in both commercial and home environments. However, some
of the statistical functions in Excel do not work correctly, so for serious academic re-
search a dedicated statistics package or an alternative spreadsheet such as Gnumeric
is recommended.

8.2 Introduction

A spreadsheet is an application that allows a user to enter data into a table. Once the
data is entered, calculations can be performed using formulae, the data can be manipu-
lated by various functions and the data can be formatted for presentation. Spreadsheets
are commonly used by people working with tables of data.

122

SPREADSHEETS 8.2 Introduction

8.2.1 Menus and Toolbars

Different versions of Excel will have slightly different user interfaces (especially between
the Office 2003 and Office 2007 versions), but the underlying principles remain the
same. When we start a new Excel document, we are presented with a blank spread-
sheet.

At the top of the window we can see a number of Menus and Toolbars. We use these to
perform actions that apply to our documents. There are major differences between the
way Office 2003 and Office 2007 use Menus and Toolbars.

Office 2003

The menus work the same as with most other applications. When we click on a menu,
a drop-down list appears that presents us with a series of options relevant to the topic
of the menu. For example, a typical File menu appears as:

Office 2007 & Office 2010

The idea behind the menus has changed from previous versions. The main menus are
now presented as a tabbed Toolbar. In other words, the items are no longer chosen by
picking from a list, but rather they are presented as a Toolbar (this new toolbar is called
a ”‘ribbon”’ by Microsoft). For example, the Home menu results in the Home tab being
displayed:

123

8.3 Adding data SPREADSHEETS

while the View menu results in the View tab being displayed.

If we hover the mouse over any of the Toolbar buttons then a pop-up box will appear
explaining what the button does. In this course, we will be using Office 2010.

8.3 Adding data

Each position in the spreadsheet is known as a cell. Each cell can contain text, numbers,
or a formula. The cell can also be formatted for a nicer appearance (borders, shading,
colour etc.), but changing the appearance does not change the data stored in the cell.

• Each column is identified by a letter (i.e. A, B, C. . . .).

• Each row is identified by a number (i.e. 1, 2, 3, . . .).

• The currently selected cell is known as the active cell, and it will be highlighted.

• The name box shows the name of the active cell. An individual cell in the spread-
sheet is referenced using the combination of column letter followed by row number
(e.g. A3, B7, D8). These references are needed in order to use formulae, which
is where the real power of a spreadsheet lies.

• The formula bar will display the current contents of the active cell.

8.3.1 Entering data

To enter information into any of the cells, simply click on the cell to make it the active
cell (i.e. select the cell by clicking on it). Once the cell is active, any text that is entered
will appear in the formula bar at the top of the spreadsheet. The data is not added to
the spreadsheet until the

�� ��Enter key is pressed, or until the
�� ��Enter icon is clicked. If we

124

SPREADSHEETS 8.3 Adding data

change our mind about entering data and wish to abort, we can click on the
�� ��Cancel

icon and the data will not be added to the spreadsheet.

8.3.2 Selecting a range of cells

We can select a range of cells by clicking the mouse and dragging it across the spread-
sheet. As you drag the mouse, we will see a number of cells are highlighted. In the
following diagram, the active cell is B3, and the range of cells from B3 to D7 is selected.

8.3.3 Selecting an entire row or column

To select an entire row, click on the number for that row. To select multiple rows, click
on the number and drag the mouse across the rows we wish to select.

To select an entire column, click on the letter for that column. To select multiple columns,
click on the letter and drag the mouse across the columns we wish to select.

Selecting a row Selecting a column

125

8.3 Adding data SPREADSHEETS

To select the entire spreadsheet, click on the square between the row and column head-
ers in the top left corner of the spreadsheet.

8.3.4 Copying and pasting

We can cut, copy and paste cells using the clipboard. In order to copy some spread-
sheet cells, we should first highlight the cells we wish to copy.

Original spreadsheet Highlight cells

Use the
�� ��Copy icon from the Clipboard section of the Home tab, or use the keyboard

shortcut
�� ��Ctrl +

�� ��C to copy the selected cells. A dashed line will appear around the
cells that have been copied to the clipboard. To paste the selected cells, click on the
cell that we want to be in the top left corner of the destination cells, then choose to
paste using the

�� ��Paste icon from the Clipboard section of the Home tab, or use the

keyboard shortcut
�� ��Ctrl +

�� ��V .

Destination cell Completed paste

If we want to move the cells from one location to another, then we should use the
�� ��Cut

icon from the Clipboard section of the Home tab, or use the keyboard shortcut
�� ��Ctrl

+
�� ��X . Use a similar process to the one described for copying.

126

SPREADSHEETS 8.3 Adding data

8.3.5 Filling data

Excel has a useful feature called fill. Instead of typing data into a series of cells, we can
select the first cell and tell the spreadsheet to automatically fill the other cells with the
contents of the first one. To fill a simple value, use the

�� ��Fill icon from the Editing section

of the Home tab, or use one of the following keyboard shortcuts:

• Fill down —
�� ��Ctrl +

�� ��D

• Fill right —
�� ��Ctrl +

�� ��R

• Fill up —
�� ��Ctrl +

�� ��U

• Fill left —
�� ��Ctrl +

�� ��L

Original cell Selected cells Fill down

Alternatively, we can use the fill handle. If we click on the fill handle and drag the mouse
to highlight a series of cells, the spreadsheet will automatically fill those cells with the
contents of the first cell.

The fill handle can be used to automatically fill in data according to a predefined list. If
the first item is recognised as part of the list, then Excel can automatically fill in the cells
by cycling through the list. The predefined lists include days of the week and months.

127

8.3 Adding data SPREADSHEETS

Original cell Fill right with fill handle

We can customize the lists that Excel can recognise, so that it can automatically fill in
a commonly used sets of data. To customize the list, use the

�� ��File tab and click on�� ��Options . Click on
�� ��Advanced on the left side, scroll down to the General section and

click on the
�� ��Edit Custom Lists button. The following dialog box will appear:

We can add our own custom list. In the dialog box shown above, the custom list {Apples,
Oranges, Bananas} has been added.

8.3.6 Insert/delete rows and columns

As we are entering data into the spreadsheet, it is not uncommon to realise that we
need an additional row or column. We can easily insert a new row or column so that we
can add data in the correct place.

For example, in the following spreadsheet, we have entered the name and age of a
number of people (perhaps members of a club). The names are currently listed in
alphabetical order. If we have new data for another person (e.g. Emma, age 30) that we
want to add into the middle of the existing data, then we need to insert a new row.

128

SPREADSHEETS 8.4 Formula

To insert a new row, select the row that we want to move down. The new row will appear
at this location and the remaining rows will be shifted down to make room.

Original data Selecting the row where data is inserted

Once the row is selected, choose to
�� ��Insert from the Cells section of the Home tab,

or
�� ��Insert → Insert Sheet Rows .

Inserting a row Entering the new data

Once a new row has been inserted into the spreadsheet, we can enter the data into the
space available.

8.4 Formula

The real power of a spreadsheet is the ability to calculate the value to be used in one
cell based on the values contained in other cells. To calculate a value, we need to use
a formula. All formulae must start with the = sign.

We can use a formula to perform a calculation in the same way that we would use a
calculator (e.g. to calculate to result of (3 + 4). This formula would be entered into a
cell as =3+4. The result of the calculation (7), would be displayed on the page in the
cell that contained the formula. Note that the cell contains the formula, but it displays
the result of the formula.

Cell B2 contains the formula =3+4, but the value displayed is the result 7

8.4.1 Relative references

Formulae may contain references to the contents of other cells. For example, in the
following spreadsheet, we calculate the sum of two values by referring to the cells that

129

8.4 Formula SPREADSHEETS

contain the data.

Employee hours worked Calculating the total hours

Cell D3 contains the formula =B3 + C3. The formula effectively says ”‘take the value
stored in cell B3 and add it to the value stored in C3, and the result of that calculation
will be displayed in this cell”’.

It would be possible to type similar formulae into cells D4, D5 and D6 as follows:

• D4 contains formula =B4 + C4

• D5 contains formula =B5 + C5

• D6 contains formula =B6 + C6

However, this process would quickly become tedious, especially if we had many rows of
data. Thankfully, we can use fill to fill the formula into the adjacent cells.

The references used in the formula are automatically changed when we fill.

Whenever we copy (or fill) a cell containing a formula to a different location, the formula
is automatically changed to refer to different cells. These kind of cell references are
known as relative references because the cells that are referred to in the formula are
relative to the location of the formula in the spreadsheet. For example the cell we are
referring to may be 2 columns to the left, and 1 row above the current cell. Wherever
the formula is moved to, it would refer to the cell which is 2 columns left of the current
cell and 1 row above it.

The cell references are relative to the location of the formula

In the example above, the formula in cell D3 is =B3 + C3. Because these are relative
references, the spreadsheet interprets the formula as ”‘add the contents of the cell 2 to

130

SPREADSHEETS 8.4 Formula

the left of this one to the cell 1 to the left of this one”’. When the formula is moved to cell
D6 the formula still says ”‘add the contents of the cell 2 to the left of this one to the cell
1 to the left of this one”’, but because the new formula is in cell D6, the cells referred to
by the formula are =B6 + C6.

8.4.2 Absolute references

Sometimes we want to refer to the same cell, no matter where the formula that refers to
that cell is moved. For example, we might have a cell that contains the current hourly
pay rate which we will want to refer to when we are calculating the pay for a large number
of different employees.

The pay rate is always stored in cell B2

If we fill this formula to the cells below, then both the reference to the pay rate (B2)
and the reference to the total hours (D4) will be changed. This will give the incorrect
results. We note that we want to change the reference to the total hours when we move
the formula, but the reference to the pay rate should remain fixed. We need a way to
distinguish between these two different kinds of references.

A reference that should remain fixed is called an absolute reference. Excel uses the
dollar sign immediately before the row or column (or both) that should remain fixed. If
an absolute reference is used, and the formula is copied to a new location, then the
absolute reference will not be changed. It will still refer to the same cell, regardless of
where the formula is copied to.

The reference to the pay rate should be an absolute reference

131

8.4 Formula SPREADSHEETS

In the example shown above, the formula contains both relative and absolute refer-
ences. The formula can safely be filled to the selected cells below. The relative refer-
ences will be automatically changed, but the absolute references will remain the same.
The new formulae will be:

• E4 contains formula =D4 * B2

• E5 contains formula =D5 * B2

• E6 contains formula =D6 * B2

8.4.3 Good spreadsheet design

The most important design consideration about a spreadsheet is to make sure it calcu-
lates correct results. One of the most common mistakes that people make when they
design the spreadsheet is to put the same information in more than one place. This
initially works fine, but if the information is changed in only one place at a later stage,
then the spreadsheet will be inconsistent and it will calculate the wrong results.

For example, in the previously discussed spreadsheet, we could have hard-coded the
pay rate by putting the pay rate directly into the formula (e.g =D4 * 12.5). Although
this formula would have worked, if the pay rate is changed later by altering the contents
of cell B3, the spreadsheet would become inconsistent and the wrong results would be
calculated.

Using numbers instead of cell references in formulae can lead to inconsistencies.

Although it can be time consuming to enter all the formulae into the spreadsheet, we
can often reuse the same spreadsheet. For example, a spreadsheet used to calculate
student’s grades should be able to be reused each year. For this reason, we must try
to construct spreadsheets so that the work required to recalculate results based upon a
new set of data is kept to a minimum.

Example

The following spreadsheet might be used by a teacher to calculate the final grade for
a student. In this example spreadsheet, there are 2 different assignments. The first
assignment is marked out of 10. The second assignment is marked out of 7. The
teacher wants each assignment to contribute equally to the final mark.

132

SPREADSHEETS 8.4 Formula

First, we could convert each mark to a percentage, then we could take the average of
the two percentages.

We could calculate the final mark as follows:

• Convert the first mark to a percentage using (first mark / 10 * 100)

• Convert the second mark to a percentage using (second mark / 7 * 100)

• Calculate the average of the two percentages using (first percentage + second
percentage) / 2

The formulae used are as follows:

• D3 contains =B3 / 10 * 100

• E3 contains =C3 / 7 * 100

• F3 contains =(D3 + E3) / 2

Although these formulae work correctly now, it makes it difficult to reuse the spread-
sheet without a lot of work. If the teacher decided that they wanted to use the same
spreadsheet with assignments that were marked out of 20, then they would have to
rewrite all the formulae.

Instead, we could record what each assignment was marked out of (i.e. the maximum
mark that a student could obtain) and refer to the cells containing the information. This
means that we could reuse the spreadsheet simply by changing the contents of those
cells.

133

8.4 Formula SPREADSHEETS

The new formulae used are as follows:

• D4 contains =B4 / B3 * D3

• E4 contains =C4 / C3 * E3

When we are creating a spreadsheet, it is best to have each piece of information stored
only in one single cell. If that value is needed in another formula, then the formula should
refer to the cell where the information is stored, rather than enter the actual value in a
second place. It is much easier to keep the spreadsheet consistent and avoid mistakes
using this approach.

8.4.4 Defining names

We can define a name for a cell, then we can use that name instead of the cell refer-
ence in the formulae that we write. This can sometimes make our formulae easier to
understand.

Select the cell that we want to name and either click in the Name Box, or go to the
Formulas tab and click on the

�� ��Define Name icon, then type the name into the dialog
box that appears.

Once the cell is named, we can use the name in our formulae. For example, instead
of referring to cell B3 in the spreadsheet shown above, we can now refer to the cell
A1_max. The formula in cell D4 could either be written as:

• = B4 / B3 * D3 ;or

• = B6 / A1_max * D3

134

SPREADSHEETS 8.5 Functions

8.5 Functions

Most spreadsheets provide a large range of functions that help the user to create effec-
tive formulae. All functions use the same general structure.

FUNCTION-NAME(parameter1, parameter2, ..., parameterN)

Some of the simple functions that we might use often are AVERAGE, MAX, MIN and
SUM. These functions all operate on a range of cells. A range of cells is defined as a
rectangular block of cells within the spreadsheet. In order to specify a cell range, we
should give the top left cell, then a colon ’:’ and then the bottom right cell. In the example
below, a range of cells has been selected. These cells can be referred to using A1:B4.

The SUM function is described in Excel as follows:

This description tells us that the SUM function is given a series of values and it calcu-
lates the sum of those values. Note that the description says that the function “Adds all
the numbers in a range of cells”. That means we can either refer to each individual cell
in that range, or we can use the means of describing a range that we covered earlier.
The following example shows how we would use the SUM function.

The following spreadsheet is used to calculate the sum of the best 5 lab marks, chosen
from a set of 6 labs. To find the best 5 marks, we can simply add up the marks from all
6 labs and subtract the smallest one. We could use the following functions to write the
formula:

SUM Adds all the numbers in a range of cells
MIN Returns the smallest number in a set of values. Ignores logical values and text.

135

8.5 Functions SPREADSHEETS

Functions allow a user to create formulae that involve complex calculations, without
having to write all the calculations themselves. For example, to find the average mark
scored for Lab 01 in the screenshot above, we could use any of the following three
formulae:

• =(B2 + B3 + B4 + B5) / 4
• =SUM(B2:B5) / COUNT(B2:B5)
• =AVERAGE(B2:B5)

8.5.1 Inserting functions

The Formulas tab contains the tools used to insert various Excel formulae. The most
frequently used section of this tab is the Function Library section.

All functions in Excel can be found by clicking the
�� ��Insert Function icon. This will pro-

vide us with a dialog box containing all the functions. If we select a function, then we
will be shown a brief description of what it does.

The functions supported by Excel are divided into different categories to make them
easier to find. If we think there might be a function which does the job, have a look
through the most likely category. All of the other buttons on the Function Library section

136

SPREADSHEETS 8.5 Functions

of the Formulas tab are used to access one or more of the function categories. These
are:

Autosum The most common functions used to sum and count numbers (sum, average,
count, min and max)

Financial Functions used predominantly in accounting and economics

Logical Functions used to make logical decisions

Text Functions used to manipulate text

Date and Time Functions used to work with times and dates

Lookup and Reference Functions used to look up values in tables

Math and Trig Traditional functions related to mathematics and trigonometry

Statistical Statistics functions

Engineering Functions used in engineering and technology

Information Functions that allow us to find out information about the type of value in
a spreadsheet cell

8.5.2 Common mathematical and statistical functions

Statistical calculations are commonly required by the users of spreadsheet software,
so it is no surprise that a large range of formulae have been provided as functions.
The statistical category contains many of the common functions we will need (including
minimum, maximum, quartiles, averages, and standard deviations). The most common
functions that we use include:

• max, min, average, median, mode, sum

• stdev, quartile, correl, ttest, rsq

8.5.3 Counting functions

These functions are used to count cells. We must use different functions depending
upon what we need to count.

COUNT(Cell_range)

The COUNT function is used to count the number of cells within the range which contain
a numeric value.

COUNTIF(Cell_range, Criteria)

The COUNTIF function counts the number of cells in the range which match the criteria.
The criteria can be text, a number or a cell reference. There are other ways of specifying
a criteria, but we will consider only simple matches. In other words, the function will
count all the cells which contain the same information as that given in the criteria. To
count all the cells that contain the word “Waiter”, we could use:

=COUNTIF(D3:D15, "Waiter")

137

8.5 Functions SPREADSHEETS

If the text “Waiter” were located in another cell, say A2 for example, then we could use:

=COUNTIF(D3:D15, A2)

8.5.4 Conditional Functions

A conditional function is used when we want to put different values into a cell depending
upon a particular condition.

IF(logical_condition, value_if_true, value_if_false)

If the logical_condition is true, then the second argument (value_if_true) will be
displayed in the cell, otherwise the last argument (value_if_false) will be displayed
in the cell.

The logical condition should be some kind of logical test. At the simplest level, these
tests are:

equal to (=) For example: B3 = B4

greater than (>) For example: B3 > B4

less than (<) For example: B3 < B4

greater than or equal to (>=) For example: B3 >= B4

less than or equal to (<=) For example: B3 <= B4

not equal to (<>) For example: B3 <> B4

For example, in the following spreadsheet we use an IF function to deter-
mine if an employee is overworked or not. The formula in cell C2 is
=IF(B2>40, "Working too hard", "Working")

Note that we can use another function instead of a simple value where value_if_true
or value_if_false appears in the IF function. In the following example, we have used
the formula:

=IF(B2>40,
"Working too hard",
IF(B2<20, "Not working hard enough", "Working")

)

in cell C2.

138

SPREADSHEETS 8.5 Functions

Boolean operators

We can also use the standard boolean operators (AND, OR) to make a compound con-
dition.

AND(logical_1, logical_2, ...)

The AND function returns true if all the arguments are true.

OR(logical_1, logical_2, ...)

The OR function returns true if any of the arguments are true.

In the following example, we use the formula:

=IF(OR(B2<20, B2>40), "Unusual", "Normal")

in cell C2 to determine if the person is spending a normal amount
of time at work. We could alternatively write the formula as
=IF(AND(B2>=20, B2<=40), "Normal", "Unusual") and it would produce
the same result.

8.5.5 Information functions

One useful function that returns some information about a cell is ISBLANK(cell).
This function is used to tell if a given cell contains any information, or if it is blank. The
function will return a boolean value, that is, either true or false. For example:

=ISBLANK(A3)

will return true if cell A3 is empty. Since the function returns a boolean value, it can be
used in a conditional function. For example:

=IF(ISBLANK(A3), "Cell is empty", "Cell contains information")

139

8.5 Functions SPREADSHEETS

8.5.6 Lookup functions

These functions are designed to look up a value in a table and return a result from a
particular row or column within the table. These lookup functions are extremely useful.

VLOOKUP(lookup_value, table_array, column_index_number, range_lookup)

This function is designed to look up a value in a defined table, and return an element of
data from within the table. We will look at each of the arguments in turn.

lookup_value

The lookup_value is the value that the function tries to find in the table. It will look
in the left-most column. When the appropriate table entry is located, the function re-
turns a value from that row of the table. The value it returns is dependent on the
columnIndexNumber.

table_array

The table_array is the range of cells that defines the table that we use when we look
up values. The table should consist of at least two columns.

column_index_number

The column_index_number specifies the column number in the table from which the
data will be returned. For example, a column_index_number of 1 will return a value
from the left-most column of the table. A column_index_number of 2 will return the
data from the second column of the table. Increasing the column_index_number will
return the data from columns further to the right.

range_lookup

The range_lookup value is a boolean value. It must be either TRUE or FALSE. If the
range_lookup value is TRUE, then it means that the table represents a range of values.
The values that are listed in the left-most column of the table are treated as “boundary”
values that define the start of a range. For example, the following table is used to
describe age boundaries for movie tickets:

Age Category
0 Free
2 Child

12 Adult
65 Senior Citizen

We can use this table to look up any age because we interpret the age values listed in
the table as boundary values. If a person is at least 12 years old, and is not yet 65, then
they pay Adult prices at the movies. Any person under the age of 2 is allowed in free of
charge. A table that is to be interpreted this way (as representing a range of values) will
require the range_lookup value to be TRUE in any VLOOKUP function that is used with
the table.

If the range_lookup value is FALSE, then we expect the exact value we are looking up
to appear in the table. For example, a table that contains student ID numbers should
not be treated as a range of values, instead, we are looking for an exact match with the
ID number we are looking up. In this case, the range_lookup value should be set to
FALSE.

140

SPREADSHEETS 8.5 Functions

8.5.7 VLOOKUP Examples

The following example shows a spreadsheet that contains a VLOOKUP function. Consider
the formula contained in cell D10. The formula is used to look up the job of the employee
in order to find out the pay rate. Each of the arguments used in the VLOOKUP function
are described below:

• lookup_value: The value that we want to look up is the job of the employee.
That value is stored in cell B10. Since we want to fill this formula down and reuse
it for other employees, the cell reference should be relative (in other words, the
employee listed in row 11 would have their job listed in cell B11, so we want our
formula to refer to the information in column B and have the row automatically
adjusted as the formula is filled down).

• table_array: The table that contains the list of jobs and associated pay rates
starts in cell A2 and ends in cell B6. This defines the table that we will use when
we look up the pay rate for the job specified. Note that we do not include the
titles of each column. The first row listed in the table is the first row that we might
expect to find the information we are looking for. Since we always refer to the
same table, regardless of where the VLOOKUP formula is located, the references
used in the table_array should be absolute references.

• column_index_number: We always use the first column of the table to look up
the value (in this case the job). Once the job has been located, we want to know
the pay rate. In this example, the pay rate is located in the second column of the
table that we use to look up the value. Since the information we want is in the
second column, the column_index_number that we use is set to 2.

• range_lookup: We are looking up the exact word “Programmer” in the table.
The table does not represent a range of values, rather each row in the table is
independent from the others. In this case, since the table does not represent a
range, we use the value FALSE for the range_lookup.

In this second example, the spreadsheet shown below contains a VLOOKUP function
in cell C12. The VLOOKUP function is used to look up the Saffir-Simpson Hurricane
Category based on the wind speed recorded on a given date. Each of the arguments
used in the VLOOKUP function are described below:

• lookup_value: The value that we want to look up is the recorded wind speed (in
miles per hour) for a given date. That value is stored in cell B12. Since we want

141

8.5 Functions SPREADSHEETS

to fill this formula down and reuse it for other dates, the cell reference should be
relative.
• table_array: The table that contains the Saffir-Simpson Hurricane Scale starts

in cell A3 and ends in cell B8. This defines the table that we will use when we look
up the wind speed. Note that we do not include the titles of each column. The first
row listed in the table is the first row that we might expect to find the information
we are looking for. Since we always refer to the same table, regardless of where
the VLOOKUP formula is located, the references used in the table_array should
be absolute references.
• column_index_number: We always use the first column of the table to look up

the value (in this case the wind speed). Once the appropriate row has been
located, we want to know the corresponding Hurricane Category. In this example,
the wind speed is greater than the largest value listed, so we use the last row in
the table to look up the value. Since the information we want is in the second
column, the column_index_number that we use is set to 2.
• range_lookup: In the Saffir-Simpson Hurricane scale, the same hurricane cat-

egory is used to describe a hurricane that blows with a range of different wind-
speeds. For example, any hurricane that has a wind speed between 96 and 110
inclusive is a category 2 hurricane. Once the wind speed reaches 111 mph, the
hurricane is treated as belonging to the next highest category (category 3).
The table in this case is used to represent a range of different values, so we set
the range_lookup value to be TRUE. The numbers that appear in the left-hand
column of the table are the boundary values that define the different categories.
If the number that we are looking up is at least equal to the number in the current
row, but not as high as the number in the following row, then we know that it
belongs to the current category. Since the number we are looking up is 177 mph,
that is at least as high as 155, so it is considered to be in the highest category, so
the function returns hurricane category 5.

HLOOKUP(lookup_value, table_array, row_index_number, range_lookup)

142

SPREADSHEETS 8.6 Sorting, filtering and removing duplicates

This function is designed to look up a value in a defined table, and return an element
of data from within the table. The only difference between this lookup function and
VLOOKUP is that this function is used to look up values in a horizontal table, whereas
VLOOKUP is used for a vertical table.

For example, the following spreadsheet is used to figure out the price of movie tickets
depending on the day of the week. Because the days of the week are listed horizontally,
we use an HLOOKUP function.

The formula located in C6 is used to look up the day of the week. We will consider each
of the arguments used in the HLOOKUP function:

• lookup_value: The value that we want to look up is the day of the week. That
value is stored in cell B6.

• table_array: The table that contains the movie prices for each day starts in cell
B2 and ends in cell H3. Note that we do not include the titles of each row. Since
we always refer to the same table, regardless of where the HLOOKUP formula is
located, the references used in the table_array should be absolute references.

• row_index_number: We always use the first row of the table to look up the value
(in this case the day). Once the day has been located, we want to know the cost
of tickets on that day. In this example, the ticket price is located in the second row
of the table that we use to look up the value. Since the information we want is in
the second row, the row_index_number that we use is 2. Do not get confused
between the numbers used to represent each row in the entire spreadsheet and
the row_index_number used in an HLOOKUP formula. The row_index_value
is relative to the location of the table. In other words, the first row in the table is
considered to be row 1, the second is row 2 and so on, regardless of where the
table is located in the spreadsheet.

• range_lookup: We are looking up the exact word “Wed” in the table. The table
does not represent a range of values, rather each column in the table is indepen-
dent from the others. In this case, since the table does not represent a range, we
use the value FALSE for the range_lookup.

8.6 Sorting, filtering and removing duplicates

The data tab contains the tools that allow us to manipulate data by sorting, filtering and
removing duplicates.

143

8.6 Sorting, filtering and removing duplicates SPREADSHEETS

8.6.1 Sorting

Sorting data is a common operation when using spreadsheets. In order to sort data,
first select all the data which is to be sorted. We can either:

• From the Home tab, select the
�� ��Sort and Filter icon from the Editing section,

and choose Custom Sort from the drop-down list; or

• From the Data tab, select the
�� ��Sort icon from the Sort and Filter section

A dialog box will appear, allowing us to select which row or column should be used to
sort the rows (to sort from left to right, click on the options button in the sort dialog box).

We can add further levels to the sorting criteria in case the first element is equal. For
example, if we wanted to sort the following names into order, based on last name and
then first name, we first need to select the entire set of data.

We could specify two levels of sorting, first the last name will be used, then the first
name will be used. Note that the check box specifying “My data has headers” has
been selected because we selected all the rows of the table including the names of
the columns. The headers are shown in the column field of the sort dialog box (in

144

SPREADSHEETS 8.6 Sorting, filtering and removing duplicates

other words, it uses the names of our columns rather than just the letters column B and
column A).

The spreadsheet data will be sorted as follows:

Important warning: we need to make sure that we select all the data that we need to
sort. If we only select only some of the columns then the data might end up mismatched.

8.6.2 Filtering

Filtering the data allows us to decide which of the rows we want to display. This can
be a very useful feature. For example, given a list of people, we might only want to
display the females. To filter some data, first select the entire set of data, then click on
the

�� ��Filter icon in the Sort and Filter section of the Data tab.

The original data Selecting the data and choosing to filter

145

8.7 Freezing, locking and hiding cells SPREADSHEETS

Once the data is ready to be filtered, we can click on the small icon that appears at the
top of the columns that can be filtered. If we click on one of the filtering icons, a dialog
box will appear that displays all the different values that appear in that column. Using
this dialog box, we can select which values we want to display. Any row that contains
information that we are filtering will be hidden from view.

If we decide that we will only display those rows that contain an “F” in the column entitled
“Sex” then we effectively filter out all the males.

8.6.3 Remove duplicates

Occasionally, we may wish to remove duplicate entries in a spreadsheet. In this case,
simply select the data we wish to alter and click the

�� ��Remove Duplicates icon in the

Data Tools section of the Data tab.

8.7 Freezing, locking and hiding cells

8.7.1 Freezing cells

In large spreadsheets, it is often useful to have the row and/or column headings visible
when we scroll through the data. We can freeze cells to ensure that they remain in place
when the rest of the spreadsheet scrolls.

To freeze a row or column, go to the View tab, then click on the
�� ��Freeze Panes

icon and choose Freeze Top Row or Freeze First Column . If we want to freeze
both rows and columns, then select the cell immediately below and to the right of the

146

SPREADSHEETS 8.7 Freezing, locking and hiding cells

row and columns that we want to freeze, then use the
�� ��Freeze Panes icon to choose

Freeze Panes

Selecting
�� ��Freeze Panes will freeze both the top row and first column

As the first row and column are locked, they remain fixed in place as
the spreadsheet is scrolled. This spreadsheet has been scrolled so that
columns D, E, F . . . and rows 3, 4, 5, . . . are visible.

We can unfreeze the panes by selecting Unfreeze Panes from the
�� ��Freeze Panes

icon.

8.7.2 Splitting panes

As an alternative to freezing rows and columns, we can split the spreadsheet view into
multiple panes. If we hover the mouse over the small icons at the right of the horizontal
scroll bar, or the top of the vertical scroll bar, the mouse pointer will change into a split
icon.

Click and drag the icon to create a separate pane. We can scroll each pane indepen-
dently. This effectively gives us multiple views of the same document.

147

8.7 Freezing, locking and hiding cells SPREADSHEETS

A window that has been split into two different panes.

Note: We cannot use split panes and frozen cells at the same time.

8.7.3 Hide and display cells

We can hide rows and columns that contain our “working”, so that we only see the cells
containing the information that is important. To hide a row or column, select the rows or
columns that we want to hide.

Once the rows or columns are selected, go to the Home tab and in the Cells section,

choose
�� ��Format → Hide and Unhide → Hide Rows or Hide Columns .

148

SPREADSHEETS 8.8 Cell Formatting

To unhide the rows or columns, select the rows or columns either side of the
ones hidden, then choose

�� ��Format → Hide and Unhide → Unhide Rows or

Unhide Columns .

8.8 Cell Formatting

There are many tools available to change the appearance of the cells.

8.8.1 Font formatting

The tools for formatting text in Excel are similar to those used in word processing appli-
cations. We can apply multiple changes to the text one attribute at a time by clicking on
the appropriate formatting icon in the toolbar, or we can change many attributes at the
same time using the font formatting dialog box (e.g. we could make the text appear in
Arial font typeface with 24 point size, bold, italic and underlined).

Choose the Home tab and click on the icon that displays the font dialog box in the Font
section.

8.8.2 Alignment

The alignment section contains the tools to change the vertical and horizontal alignment
of the contents of a cell, the orientation, whether text in the cell is wrapped or not, and
the ability to merge cells.

149

8.8 Cell Formatting SPREADSHEETS

Wrap text in a cell

By default, text that is entered into a cell will extend into adjacent cells to the right. It
often looks nicer to wrap the text to the size of the cell. Select the cell containing the
text and click on the

�� ��Wrap Text icon in the Alignment section of the Home tab.

Before wrapping the text

After wrapping the text

Merge and split cells

Merging cells is used to combine multiple cells into one new cell. This is commonly
used for headings that run across multiple columns.

Before merging the cells

After merging the cells

8.8.3 Number formatting

Since the real power of spreadsheets is working with numbers, it is not surprising that
there are many formatting options that define how numbers are displayed.

150

SPREADSHEETS 8.8 Cell Formatting

The number section of the Home tab.

We can select the kind of number that is represented by clicking on the�� ��Number Format drop-down list. This allows us to specify that the number is actually a
percentage, currency, date, time, or should be displayed in scientific notation etc.

We can also adjust the number of decimal places used to display the number by clicking
on the

�� ��Increase Decimal or
�� ��Decrease Decimal buttons.

8.8.4 Cell Formatting

We can adjust the row height and column width by clicking on the
�� ��Format icon in the

Cells formatting section. We can also adjust the width of the columns and height of the
rows by moving the mouse onto the dividing line between two cells in the row or column
heading area.

Click and drag the mouse to change the size of the columns

The borders used around the cells can be altered by clicking on the
�� ��Borders icon in

the Font section of the Home tab.

The colour and texture (Shading) used to fill the cells can be altered by clicking on the�� ��Fill icon in the Font section of the Home tab.

All of the cell formatting details can be altered by accessing the Cell Formatting dialog
box, which we can find by clicking on the

�� ��Format icon in the Cells section of the

Home tab, and choosing Fomat Cells from the drop-down menu.

151

8.8 Cell Formatting SPREADSHEETS

8.8.5 Example

Formatting the cells correctly can make a dramatic difference to the appearance of the
spreadsheet.

The hours worked spreadsheet before formatting the cells

152

SPREADSHEETS 8.9 Charts

The hours worked spreadsheet after formatting

8.9 Charts

Use the Insert tab to create charts for our data.

To make a chart based upon the data in the spreadsheet, first we must select the data
(including the headings for each row or column).

Go to the Insert tab and choose the chart type that we want from the Chart section.

153

8.10 Annotating data using the drawing tools SPREADSHEETS

The appearance of the chart can be altered significantly by choosing different options
from the Chart Tools — Design , Chart Tools — Layout and Chart Tools — Format
tabs.

8.10 Annotating data using the drawing tools

The drawing tools provided with Excel are similar to those provided with other Office
products such as PowerPoint and Word. We can use these drawing tools to annotate
our data with diagrams.

8.10.1 Shapes

Office 2010 (including Excel) has many pre-defined shapes that we can choose from.
Once we select the shape that we want to draw, then clicking and dragging the mouse
will draw the chosen shape on the spreadsheet. After the shape is drawn, we can alter
various properties such as the outline and fill.

Shapes can be chosen from the Insert tab, by clicking on the
�� ��Shapes button in the

Illustrations section. To change the properties of the object, select the object (by clicking
on it) and choose the Drawing Tools – Format tab. Alternatively, double-clicking the

shape will automatically select the Drawing Tools – Format tab.

154

SPREADSHEETS 8.10 Annotating data using the drawing tools

The “Shape Style” section of the tab allows us precise control over the appearance of
the selected object.

Each object (including any text boxes) floats in a different layer (imagine that each object
is drawn onto a separate pane of glass and all of the panes are stacked up into a big
pile). We can alter the order of these layers which in turn defines which objects appear
in front of other objects.

To change the ordering of objects, choose Drawing Tools – Format then select the
appropriate button from the Arrange section.

Objects can also be rotated or flipped (like a mirror image) using options from the menus
described above. If we select a number of shapes, we have the option to

�� ��Group the

objects together (so that they are treated as a single object thereafter), or to
�� ��Align the

objects.

If we want to add text to a shape, simply start typing when that shape is selected. We
can change the properties of the text by selecting it and using the normal menus to alter
the appearance of the font.

If we want to alter the way the text is anchored to the shape, then use the
Format Shape dialog box and select Text Box from the list of options.

8.10.2 Grid

Excel allows us to align our drawing objects to the edges of the cells shown on the
screen (these cells are described as the grid with respect to the drawing tools). When
we create or move a drawing object, the edges of the object will always be aligned to
one of the grid lines (i.e. the object will “jump” in size or location from one grid line to the
next). If we want to align the drawing objects to the grid, then from the Drawing Tools

tab, click on the
�� ��Align icon in the Arrange section and choose Snap to Grid

Note that the Drawing Tools tab is only displayed when we have a drawing object
selected.

155

8.11 Adding comments to cells SPREADSHEETS

8.11 Adding comments to cells

We have the ability to add a comment to a cell. This is especially useful if multiple people
will be working on the same spreadsheet. With the cell selected, go to the Review tab

and choose
�� ��New Comment from the Comments section.

Once the comment is added, a small red triangle will appear in the top-right corner of
the cell. Whenever the mouse is moved over that cell, the comment will appear. This
feature is sometimes useful to separate the data from commentary about the data.

8.12 Multiple worksheets

A worksheet is like a single sheet of paper, consisting of all the rows and columns that
we have been looking at so far. Excel allows us to have multiple worksheets in the same
file. Excel calls the file consisting of all the worksheets a workbook.

We can switch between the different worksheets by clicking on the name of the work-
sheet in the tabs along the bottom of the window. If we want to rename the worksheet,
then we can right-click on the name of the tab. A pop-up menu will appear and we can
choose to Rename the worksheet.

156

SPREADSHEETS 8.13 Printing

8.13 Printing

When we want to print a spreadsheet, we must first select the cells that we wish to print.
We need to go to the Page Layout tab and select

�� ��Print Area → Set Print Area .
Once the print area is set, click on the icon to bring up the Page Setup dialog box.

157

8.13 Printing SPREADSHEETS

This dialog box allows us to scale the printing so that the printed area of the spreadsheet
will fit onto a single page, and it allows us to specify the margins, header and footer, and
whether the grid lines will be printed or not. We can centre the spreadsheet on the
paper and preview the output before we print it.

158

CHAPTER 9

Databases

9.1 Introduction

Long before computers existed, we have been creating “databases” and using them for
keeping important information. People maintain address books, dentists and doctors
maintain patient records, libraries have kept catalogues of their books and automobile
dealers keep track of who their customers are and when their cars are serviced.

A database is a collection of data about a particular subject. Information is stored so
it can be easily retrieved. With the advent of computers, storing and retrieving large
amounts of information has become easier. If you want to find a customer by surname,
it may not take too long to search through filing cabinets and pull out the correct record.
If instead you want to find all of the people who have purchased red cars since 1997
this would be a difficult manual task. But it is easy to do with an electronic database.

There are many ways to store information in a database. The relational database model
was introduced in the 1970’s by E. F. Codd. This model allows the user to see a concep-
tual (logical) view of the data and to ignore the way the data is physically stored on the
disk (known as the internal view). The relational model is the most common database
model used today.

9.1.1 Databases and Database Management Systems

A database is a collection of data, organised in a systematic way. The term database,
strictly speaking, refers only to the actual data itself.

A database management system is computer software that is used to access and ma-
nipulate the data contained in a database.

159

9.2 Elements of a database DATABASES

Although the term “database” should be used only to refer to the data itself and the
term “database management system” should be used to refer to the computer program
that manages the data, many people refer to the combination of both the data and the
software as a database.

9.2 Elements of a database

A relational database consists of a number of tables that are related to each other. Each
table contains data organised in rows and columns just like the data in a spreadsheet.

9.2.1 Table

A table is a collection of data organized into vertical columns and horizontal rows. For
example, an entire telephone book could be stored as a (very large) table.

9.2.2 Record

A record is one single row in the table. It typically contains the information about one
person, thing or place.

9.2.3 Fields

A field contains a single piece of information. It is the smallest part of information that
makes up a record. A single record consists of multiple fields.

160

DATABASES 9.2 Elements of a database

9.2.4 Relationships between tables

Both spreadsheets and databases use tables to store data. The main difference is that
databases consist of multiple tables that are linked together. For example, the following
diagram shows the design for a simple database.

This database consists of three different tables. The first table, called “Employees”
contains the personal details of the employees (i.e. their names, addresses, and phone
numbers). The second table contains an employee ID and the job title for that employee.
The first and second tables are linked together by the ID fields (i.e. an employee with
a given ID in the first table refers to the same employee as the ID in the second table).
The second and third tables are linked together by the job fields.

9.2.5 What can we do with a database?

Databases are collections of data about a particular subject. We can think of this as
an electronic filing cabinet. The user of the database is given a variety of facilities to
perform on the information contained in the database. They may:

• Find information in the database

• Add, delete and modify records in the database

• Sort and filter records

• Analyse data

161

9.3 Creating your own database DATABASES

• Generate reports

9.2.6 What are some advantages of databases?

Compactness We no longer need to have rooms full of filing cabinets. The electronic
version of this information can be stored on computer disks in a fraction of the
space.

Speed A computer can retrieve and update information faster than a human

Accuracy We can apply integrity checks to our electronic database to help insure we
are entering/storing accurate information.

Standards We can enforce standards in representing information

Security We can apply security restrictions to all or parts of the information contained
in the database.

9.3 Creating your own database

To create a new database, choose File tab → New . Before you can start working
on the database, you must decide where to save the database file. Use the area on the
right side of the window to specify a name and location for your database. When you
have chosen the name and location, click on the

�� ��Create button.

162

DATABASES 9.4 Tables

9.3.1 Working with database objects

Access databases consist of many different kinds of objects. The main types of objects
are listed below:

Object Purpose

Table Store data
Query Find and display data
Form Enter, view and update data
Report Print summaries of data

Each object that you create will appear in the navigation area to the left. If you select
one of the objects, you will see a view of that object in the workspace to the right. In the
diagram below, the workspace area is filled with a datasheet showing the contents of a
table.

9.4 Tables

Tables are used to store all of our data. Each column in the table represents a different
field. In other words, the columns define the kind of information that we want to store.

163

9.4 Tables DATABASES

By default, the view used to create a table is the datasheet view. Entering data using
this view is very similar to using an Excel spreadsheet. You can enter data the way you
would in a spreadsheet. To change the name of each field, right-click in the heading for
each column and choose to rename.

The datasheet view is good for entering data, but not the best view to use for designing
tables. To create the design of a table, click the

�� ��View button in the Home tab and

choose Design View . You will be asked to name the table so that it can be saved
before you continue.

9.4.1 Design view

9.4.2 Defining fields

At the top of the workspace is the area where you enter the field name, data type and
description. If you right-click in this space you can Insert Rows or Delete Rows . You

164

DATABASES 9.4 Tables

can add new fields by clicking in one of the cells in the table and entering the relevant
information.

Field names

Each field should have a name. Some names have special meaning to Access and
should be avoided (such as “name”, “date”, “off” and “on”). You will receive a warning if
you choose a name that is already reserved for use by Access. These field names will
be used when the tables and reports are printed, so use the capitalization and spelling
that you want to see in a final printed report.

Data types

Each field stores data of a specified type. Some types are very general and others are
very specific. The following table will help you choose the most appropriate type of data
for each field.

Data type Purpose

Text Small amounts of text (255 characters or less)
Memo Large amounts of text (more than 255 characters)
Number Numbers that are used in calculations
Date/Time Dates and times
Currency Numbers that represent currency
AutoNumber Unique sequential numbers (e.g. ID)
Yes/No Data that has only two alternatives (e.g. T/F)
OLE object Image, sound, graph or document
Hyperlink Link to a destination
Attachment One or more files

9.4.3 Field descriptions

Each field has a description associated with it. This description will not be printed, and
will not form part of any final report. However, it is useful to remind users of the database
about the kind of information that should be put into each field.

9.4.4 Field properties

The lower area of the workspace lists the properties for each field. If you click on each
property in turn the purpose of the property will be displayed in the information area to
the right of the property.

165

9.4 Tables DATABASES

Format

The format property can be used to change the way that information in the field is
displayed.

Symbol Purpose

@ Expects a text character (or space) in this position.
& Text character in this position is optional.
> Forces all characters to uppercase.
< Forces all characters to lowercase.

The following examples show how you could use the format property to display data in
a specific way. More information is available from Access online help.

Symbols Original data Displayed

(@@) @@@-@@@@ 094458783 (09) 445-8783
@@@@@@@@@@ 09-445-8783 09-445-8783

094458783 094458783

> Access ACCESS
access ACCESS

< Access access
ACCESS access

InputMask

The input mask property allows you to control what the user can enter into a field, and
to provide guidance to the user to make the data easier to enter. Essentially, an input

166

DATABASES 9.4 Tables

mask defines a “rule” that specifies what data is accepted in this field.

There are many different options for the input mask. See the online help for “InputMask
Property” for more information. Some of the options are shown in the following table.

Character Meaning

0 Digit [0–9] required.
9 Digit [0–9] or space allowed, but not required.
L Letter [A–Z] required.
? Letter [A–Z] allowed, but not required.
A Letter or digit required.
a Letter or digit allowed, but not required.
& Any character or space required.
C Any character or space allowed, but not required.

The following examples show how you could use the input mask property to only allow
specific data to be entered. More information is available from Access online help.

Input mask Sample data

(99) 000-0000 (09) 445-6298
() 445-6293

(99) 000-0000 ? 99999 () 387-2246
(09) 373-7599 x 85654
() 811-3352 x 326

>L<?????????? Andrew

Note: If you are limiting the input in this way, make sure that all the data that you
will want to input will be accepted. This is especially important with first names and
surnames.

Default value

If a default value is set, then it is automatically entered into the field when a new record
is created. The user can accept the default value or change it to a different value. If the
value is unlikely to change from the default value, then this saves time when you create
new records during data entry.

Validation rule

If you want to restrict the input values more than what is possible using the input mask,
then you can use a validation rule. This is an expression which checks to see if the input
is valid or not. If the input is not valid, then a message can be displayed to the user to
let them know what is wrong.

You can use any of the following comparison operators in the validation rule:

167

9.4 Tables DATABASES

Symbol Meaning

= Equal to
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

You can also use the following logical operators to join two rules together:

Symbol Meaning

OR Accept input if it fulfils either the first or the second rule
AND Accept input only if it fulfils both the first and second rule

For example:

Expressions

“F” OR “M”
>= 12

>= 18 AND <65

9.4.5 Primary keys

In each table, one of the fields should be defined as a “primary key”. This field is used
to uniquely identify a record in the table. It is also used to link data from different tables
together. The data in a primary key must be unique for each record. For example, an
IRD number, your driver licence number, a car number plate, a student ID, or a part
number in a catalogue are all examples of data that would be used as a primary key.

A primary key prevents duplicate entries from being entered in the table. A primary key
should never be changed once entered, and must not be empty (or NULL).

The primary key of a table will be indicated by a little picture of a key appearing next to
the field that is used as the primary key.

To set a field as the primary key, right click on the field and choose Primary Key .

9.4.6 Foreign key

A foreign key is a field in a table that relates to the primary key of another table. This
field must contain a value found in the primary key of the table to which it relates, or it
must be null.

168

DATABASES 9.4 Tables

9.4.7 Entering data

Once the table has been created, you can enter data into the table. The datasheet view
is most appropriate for data entry. To change to the datasheet view, select the Home

tab, click on the
�� ��View button and select Datasheet View .

9.4.8 Creating more than one table

To create additional tables, go to the Create tab and click on the
�� ��Table button. The

new table will appear in a separate tab within the workspace, and the name of the table
will be listed in the navigation area on the left side of the window.

9.4.9 Lookup fields

A lookup field allows you to connect the information in one table with the information in
another table.

For example, you might have all the personal information about employees in a table
that uses “Employee ID” as the primary key. In a separate table, you might store a list of
car-parking spaces and the employees that are allocated different spaces. The tables
might look like the following:

Employees

ID First name Middle name Last name Birth date

34244 James Eugene O’Neil 18/03/70
35229 Sarah Ann Harris 21/09/81
77212 Josey Prince Whitehouse 02/05/64

Carparking

Carpark code Employee ID

A11 34244
A12 34244
A13 34244
A15 35229

In this case, the employee with ID 34244 (i.e. James O’Neil) has been allocated 3 dif-
ferent carparking spaces.

Note that the Employee ID in the Carparking table should only contain values chosen
from within the Employees table. In other words, we don’t want to allocate a carparking
space to an employee that doesn’t exist.

To create a connection between these two tables that ensures we can only choose
legitimate values for the Employee ID field in the Carparking table, we need to set the
data type of that field to a Lookup Value. Select the datatype field of the Employee ID
field and choose Lookup Wizard . The wizard helps to select the data you want to use
for this field. You need to make the following choices:

169

9.5 Forms DATABASES

• Look up the values in a table. Click
�� ��Next .

• Select the Employees table. Click
�� ��Next .

• Select the ID field from the available fields area and click the
�� ��> button to move

the field into the selected fields area. Click
�� ��Next .

• Choose the order used to present the entries. Select the first field and choose
ID . Click

�� ��Next .

• Adjust the width of columns that will be shown. Click
�� ��Next

Once you have created a connection between these two tables, you will not be able
to enter any values into the Employee ID field in the Carparking table, rather, you will
be able to select the employee ID you want from a drop-down list obtained from the
Employees table.

9.4.10 Formatting datasheets

From the Home tab, click on the bottom right corner of the Text Formatting section to
display the Datasheet Formatting window. Using the options in this window, you can
change the appearance of the datasheet.

9.5 Forms

Forms are a way to create a special interface that can be used to create, view and
modify records of the database. Since you can decide which fields to display in a form,
it can be used to limit access to information. This can make it easier to use the database
since users aren’t overwhelmed with a lot of information that they don’t need to see.

There are a number of different methods that you can use to create a form.

9.5.1 Form tool

The form tool allows you to quickly create a form, but it is not the most versatile ap-
proach. Go to the Create tab and click on the

�� ��Form button. All of the fields will be

170

DATABASES 9.5 Forms

added to the form. You can remove fields that you don’t want displayed by selecting the
field and choosing delete. You can also rearrange the order of the fields by clicking and
dragging them to a new position.

9.5.2 Form wizard

The form wizard gives you a lot of control over the appearance of the form. It is a good
method to use when you are starting out with forms. To create a new form using the
wizard, go to the Create tab and select Form Wizard .

Add the fields that you want to use on the form in the order that you want them to appear.

Choose the layout that you want to use for the form.

171

9.5 Forms DATABASES

Finally, you will have to choose a name for your form, then it will be displayed as an
object in Access.

9.5.3 Navigating through forms

You can use the up and down arrow keys to move from one field to the next (or use the�� ��Tab key). The
�� ��Page Up and

�� ��Page Down keys move to the previous and next record
respectively. You can also click on the navigation tools that appear at the bottom of the
window to move between different records.

9.5.4 Changing the layout

To change the layout of a form, go to the Home tab, click the
�� ��View button and choose

Layout View . In this view, you can edit the position and appearance of each field on
the form.

The fields will be connected together when you start editing the layout. You can shift
the ordering of the fields, and you will be able to move the field to a completely new
cell in the layout grid. To extend the layout you can add cells using the

�� ��Insert Above ,�� ��Insert Below ,
�� ��Insert Left and

�� ��Insert Right buttons in the Rows & Columns section

on the Form Layout Tools tab.

172

DATABASES 9.6 Queries

9.6 Queries

A query is a way of requesting data from the database. Once the data has been re-
quested, the results are presented in a table which can be used just like any other table
in a database (i.e. you can format and even search the results of the query).

The easiest way to query the database is using the query wizard. Go to the Create

tab and click on the
�� ��Query Wizard . Choose to use the Simple Query Wizard.

You will be asked to select the fields that you want to use in the query. Select all the fields
that you want to display, and all the fields that are involved in your query. For example, if
you want to display the names and phone numbers of all the female employees, then the
fields you need to add to the query are: Given Names, Surname, Phone and Gender.

Once you have a table containing the fields you are interested in, you can choose to
filter the results.

9.6.1 Filtering results

To filter the records that are displayed, click on the name of a field. A dialog box will
appear containing all the different values that have been entered for that field in the
database. Only the records containing the values that you have checked will be dis-
played, the others will be hidden from view.

If we only wanted to display the records for females,we would make sure only the “F”
is checked in the filter for the Gender field. The results of applying this filter are shown
below.

173

9.7 Reports DATABASES

9.6.2 Query Design view

For more precise control over the records that are returned as a result of a query, we
can use the query design view to refine the query that we use. If you want to perform
more complex queries, you will have to use the Query Design View.

The design view allows you to specify which of the fields will be displayed, and which
ones are used in the query, but are hidden. You can also specify the criteria that are
used to select the records that you are interested in. In the following example, only the
records that have “F” in the Gender field will be displayed.

Although the Gender field is used in the query, the box indicating whether or not to show
the field has not been checked so the Gender field will not be displayed in the results of
the query. The results from this query are shown below.

The criteria used in this example is

• =“F”.

The format for specifying criteria is the same as for validation rules. See section 9.4.4
for more information.

9.7 Reports

A report is used to create output from a database that looks attractive and professional.
There are a variety of different ways that reports can be created.

174

DATABASES 9.7 Reports

9.7.1 Report tool

The report tool is the easiest way to generate reports. First, open the table that you
want to create a report from. This can be a table of data, or (more often) it is a table
containing the results of a query. To create the report, go to the Create tab and click

the
�� ��Report button. The contents of the table will be displayed in a report.

The appearance of the report can be changed by clicking the
�� ��Themes button on the

Report Layout Tools → Design tab.

9.7.2 Report wizard

The report wizard allows you more control over the fields that are used in the report
and how the report is arranged on the page. To create a report using the report wizard,
go to the Create tab and click the

�� ��Report Wizard button. Follow the dialog boxes to
generate a report.

Select the fields that you want to appear on the report.

175

9.7 Reports DATABASES

Add grouping levels if you want. If you add a grouping level, then the records will be
grouped according that field.

The order used to display the records is decided by the sort criteria. Select the fields
used to sort the records.

176

DATABASES 9.7 Reports

Choose the overall layout. Columnar is the most common layout used.

The final report is ready for printing. The print preview view shows what the report will
look like when it is printed.

177

9.8 Structured Query Language (SQL) DATABASES

9.7.3 Design View

For full control over the design of a report, you will need to use the Design View. If you
have created a report using the report wizard, then the design view will allow you to
make minor adjustments before printing.

9.8 Structured Query Language (SQL)

In order to query our databases we must use a computer language. The most widely
used computer language for querying databases is called Structured Query Language
or SQL. This language is small and simple, yet allows us to perform all of the necessary
operations to add, delete, update and modify tables in a database.

9.8.1 SELECT

The SELECT command is used to retrieve lists of records from a specified database
table. We can specify the fields that we wish to be returned. When we want to retrieve
multiple columns, we must specify each field name. A comma must be used to separate
field names. The columns will display in the order you select them.

The format for this is:

SELECT fieldname, fieldname, fieldname
FROM tablename;

178

DATABASES 9.8 Structured Query Language (SQL)

9.8.2 ORDER BY

The ORDER BY clause tells SQL you want the specified fields displayed in ascending
order (ordered from A–Z, 1–100). Notice that this command is exactly the same as
before, but with the ORDER BY clause added.

SELECT fieldname, fieldname
FROM tablename
ORDER BY fieldname;

9.8.3 WHERE

The WHERE clause is used to constrain the records from which fields will be selected.
The only records for which fields will be returned are the ones that fulfil the requirements
listed after the WHERE clause.

If you are referring to text values in the WHERE clause, then they must be surrounded by
single quotes. If you are referring to numeric values, then they should not be surrounded
by quotes.

SELECT fieldname, fieldname,.. fieldname
FROM tablename
WHERE fieldname logical operator value

179

9.8 Structured Query Language (SQL) DATABASES

180

CHAPTER 10

Python

10.1 Computer programming

A computer program is a sequence of instructions that tells the computer how to perform
a specific task. These instructions are written using a formal computer language. There
are many hundreds of different computer languages. The language that we will be
using is called Python. It is a high-level language, similar to most modern languages
that computer programmers use to develop the computer software we are familiar with.

Python is an interpreted language. In this kind of language, a computer program called
an interpreter is used to convert the instructions that we use (Python instructions) into
instructions that the CPU uses (machine code).

10.2 Using IDLE to program in Python

A program called IDLE has been developed to make it easier for people to use the
Python programming language on the Windows operating system. IDLE is a simple
Integrated Development Environment. That means it contains an editor that a program-
mer can use to write their programs. It also contains tools that allow the programmer to
test, debug and run their programs.

Since Python is an interpreted language, we have two different options when we want to
run a Python program. We can run the instructions as we type them, or we can type an
entire program out and run it all at once. Each option is described in more detail below.

181

10.2 Using IDLE to program in Python PYTHON

10.2.1 Using an interactive interpreter

The IDLE program includes an interactive interpreter. When we start IDLE, we see a
window that contains a prompt as shown in the screenshot below:

We are able to type Python instructions at the prompt and when we hit the
�� ��Enter key,

it will immediately execute the instruction and show us the results. In other words, the
language is being interpreted interactively (the commands are being interpreted as we
type them).

By tradition, the first program that we usually write when we learn a new computer
language is the “Hello World” program. This program simply prints out the text “Hello
World” to the screen. To write this program in Python, we use the instruction:

Python Source Code

1 print ("Hello World")

The interpreter will immediately follow the instruction and print the result as shown in
the screenshot below:

This is an excellent way to try out new instructions and to test single lines of code to
see what they do. However, for a program that consists of many instructions, it is best
to write the program in a separate file, save the file to disk and run the entire program
at once.

10.2.2 Writing a Python program

A Python program can be written in any text editor. Once the file is saved to disk, it is
possible to run the Python program by double-clicking on the file on the desktop, just

182

PYTHON 10.3 Statements

like a normal windows application. However, we will use the editor that comes with the
IDLE application to both write our Python programs and also to run them.

10.3 Statements

A single instruction in a programming language is called a statement. A program con-
sists of a sequence of statements that are executed in order, one after another. This
chapter will concentrate on the most common kinds of statements that are used in
Python.

10.4 Comments

A comment is used to include messages in the source code of a program that other
humans can read, but which the computer will ignore. For example, most programmers
write their name and the date at the start of the program so that other people know who
wrote the program and when it was written. These comments are completely ignored
by the computer.

To include a comment in a Python program, you should start the line with a hash sign
(#). Any text that appears after the hash sign will be ignored until the end of the line is
reached. An example of comments in a Python program is:

Python Source Code

1 #Author: Andrew Luxton-Reilly
2 #Date: 01/01/06
3 #Purpose: This is a short program used to calculate
4 # the average of a sequence of numbers

Every program that we write should include the name of the author as a comment at the
top of the file. The comment that should appear at beginning of our programs will not be
included in most of the examples listed in this chapter in order to save space. However,
when you write your own programs you should always include a comment that contains
your name at the top of the file.

10.5 A first program

It is traditional for programmers to write a “Hello World” program whenever they start
using a new computer language. We will continue this tradition when we learn Python.
The first Python program we should write is as follows:

Python Source Code

1 print ("Hello World")

Once we have entered this text, we should save the program on disk as HelloWorld.
py. The names of any file that contains a Python program should end with the file
extension .py.

183

HelloWorld.py
HelloWorld.py
.py

10.6 Printing PYTHON

Once the program is saved, we can run the program by choosing Run →
Run Module . The output that appears is:

Hello World

The following screenshot shows how this looks in the IDLE application. The source
code (containing the Python program) appears in its own window. The output of the
program will be shown in the main Python Shell window.

10.6 Printing

One of the most common statements in the Python language is the print statement.
This statement is used to print information to the screen. We can print numbers or text
using this statement. For example, the following Python program:

Python Source Code

1 print ("The current year is")
2 print (2006)

will produce the output:

The current year is
2006

If we want to print more than one thing on the same line, then we can separate the
things that we want printed with a comma. For example, the program:

Python Source Code

1 print ("The current year is", 2006)

will produce the output:

The current year is 2006

184

PYTHON 10.7 Strings

10.7 Strings

When we print out text, we are printing a sequence of characters. In computer pro-
gramming, we normally refer to a “sequence of characters” as a “string of characters”.
For this reason, programming languages today refer to a sequence of characters as a
“string”.

In Python, a string must be enclosed in quote marks. We can use either single quotes
or double quotes to enclose a string. For example, the program:

Python Source Code

1 print ("This is a string enclosed in double quotes.")
2 print (‘This is a string enclosed in single quotes.’)

will produce the output:

This is a string enclosed in double quotes.
This is a string enclosed in single quotes.

It is worth noting that a string is treated differently to a number. The string "234"
is treated as the character 2, followed by the character 3, followed by the character 4.
These characters are normally represented by ASCII or Unicode values, and are treated
by the computer the same as any other character typed in from the keyboard. In other
words, they are treated as plain text.

In this chapter, we will use double quotes to enclose all the strings we use.

10.8 Numbers

In most programming languages, numbers come in two different varieties. A number
can either be an integer, or it can be a floating-point number. The distinction is made
between integer and floating-point numbers because computer hardware is designed
to treat these kinds of numbers differently (i.e. one part of the CPU is used to perform
calculations between integer numbers and a different part of the CPU is used to perform
calculations between floating-point numbers).

An integer number is any number that does not have a decimal point. It can be positive,
negative or zero. For example, the following numbers are all integer numbers:

-1890, 0, 34, 89200193

A floating-point number is any number that does have a decimal point. It can be positive,
negative or zero. For example, the following numbers are all floating-point numbers:

-33.3333333333, -12.75, 0.0, 2.5, 7.0, 34.779, 0.0000000001

Note that a floating-point number is permitted to have a zero after the decimal point.

185

10.9 Mathematical operations PYTHON

10.8.1 Printing numbers

We can print these numbers out using a print statement. For example, the following
program:

Python Source Code

1 print (5)
2 print (7.5)
3 print (0.000001)

will produce the output:

5
7.5
0.000001

Note that numbers never have quote marks surrounding them. If they had quote marks,
then they would be treated as strings, not as numbers.

10.9 Mathematical operations

Python supports all the normal mathematical operations. The following table summa-
rizes the kinds of operations that apply to numbers, and the operators that are used in
Python to represent these operations.

Operation Symbol Example Result
Exponent ** 2 ** 3 8
Multiply * 3 * 4 12
Divide / 10 / 2 5.0
Add + 3 + 5 8
Subtract - 4 - 7 -3
Remainder % 15 % 6 3

These operations can be applied to either integers or floating-point numbers. However,
if both of the operands (the things that the operator applies to) are integers then the
result will also be an integer. If at least one of the operands is a floating-point number,
then the result will be a floating-point number. For example:

2 + 3 = 5
2 + 3.0 = 5.0
2.0 + 3 = 5.0
2.0 + 3.0 = 5.0

Note that in the case of division, the result is always a floating point number. For exam-
ple:

9 / 10 = 0.9
10 / 5 = 2.0
10 / 8 = 1.25

186

PYTHON 10.9 Mathematical operations

If we always want to keep only the integer part of a division (throwing away the fractional
part), then we can use the special integer division operator //. For example:

3 // 4 = 0
7 // 3 = 2

The remainder operation (%) will give the remainder after the first operand is divided by
the second. For example:

8 % 4 = 0
9 % 4 = 1
10 % 4 = 2
11 % 4 = 3
12 % 4 = 0

To visualise what is happening with the remainder operation, it might help to imagine
that we are distributing a number of things among a group of people. If we had 11 cars
and 4 people, then we can give each person 2 cars and we would be left with 3 cars.
The % operator gives us the number of cars left over, in other words, the remainder.

If the operation is inside quote marks, then it will be treated as a simple character that
forms part of a string. However, if Python encounters any of these mathematical oper-
ations outside a string, it will perform the calculation and use the result. For example,
running the program:

Python Source Code

1 print ("2 + 3 =", 2 + 3)
2 print ("2 * 3 =", 2 * 3)
3 print ("3 - 2 =", 3 - 2)
4 print ("3 / 2 =", 3 / 2)
5 print ("3 ** 2 =", 3 ** 2)
6 print ("3 % 2 =", 3 % 2)

will result in the output:

2 + 3 = 5
2 * 3 = 6
3 - 2 = 1
3 / 2 = 1.5
3 ** 2 = 9
3 % 2 = 1

10.9.1 Order of precedence

When we are faced with an expression that has a number of different operators, we
have to decide which operator we will apply first. We are taught in mathematics that we
should always apply brackets first, then exponents, then multiplication and division from
left to right, then addition and subtraction from left to right. The same order applies to
expressions in programming languages. For example, when faced with an expression
such as:

187

10.10 String operations PYTHON

(2 + 3) * 2 ** 2 / 2 - 1 + 2

we normally evaluate the brackets first:

5 * 2 ** 2 / 2 - 1 + 2

and then any exponents

5 * 4 / 2 - 1 + 2

and then multiplication and division from left to right. In this case the multiplication is
furthest to the left

20 / 2 - 1 + 2

and then the division is evaluated

10.0 - 1 + 2

followed by addition and subtraction from left to right. In this case the subtraction is
furthest to the left

9.0 + 2

and finally the addition

11.0

The Python programming language will follow the same rules. It is worth noting that the
remainder operation % has the same priority as multiplication and division. If you are
not sure when you are writing code, then it is always wise to use additional brackets to
make the order explicit.

10.10 String operations

Although we are used to applying mathematical operators to numbers, we do not usually
apply them to text. However, most programming languages allow you to apply operators
to strings as well as numbers, and the symbols used in mathematics are often used for
this purpose.

If we want to join two strings together, we can use the + operator. If we want to repeat
a string a number of times, we can use the * operator. The following table summarizes
these operations:

Operation Symbol Example Result
Concatenation + "hello" + "world" "helloworld"
Repetition * "hello" * 3 "hellohellohello"

For example, the following program:
Python Source Code

1 print ("echo" + " and " + "echo")
2 print ("echo" * 4)

will result in the output:

188

PYTHON 10.11 Variables

echo and echo
echoechoechoecho

Note that the repetition operator is applied before the concatenation (we do * before +).
The following program:

Python Source Code

1 print ("Mary had a " + "little lamb, " * 3)
2 print ("Mary had a " + "little lamb, ")
3 print ("Her fleece " + "was white as snow.")

will produce the output:

Mary had a little lamb, little lamb, little lamb,
Mary had a little lamb,
Her fleece was white as snow.

10.11 Variables

A variable in mathematics is a symbol that stands for a number. It acts as a placeholder
for that number and it means the same thing wherever it is encountered. It would be
impossible for the following to be true in mathematics:

x = 7
x = 3

However, in programming, the word variable has a completely different meaning. In
programming, a variable is a box that is used to store information. A given box can store
different information at different times, so the following could be true in Python:

x = 7 #store the value 7 in the box called x
x = 3 #store the value 3 in the box called x

Each variable needs a name so that we can tell them apart. In Python, there are rules
about what kind of names we are allowed to use.

• A variable name must start with a letter
• A variable name may only contain lower case letters, digits, or the underscore

character.

The convention in Python is that variable names start with a lower case let-
ter. Variable names can contain digits, just not as the first character of
the variable name. If the name is a combination of words, then each
word should be separated with an underscore character. Some examples are:
my_age, number_of_weasels, size_of_rectangle.

189

10.11 Variables PYTHON

10.11.1 Assigning a value to a variable

A variable is no use to us unless we know how to store information in the variable,
and how to get information back out of the variable. A special operator is used to
store information into a variable. The operator is called the assignment operator, and is
represented by the equals sign in Python (=). For example, the Python code:

Python Source Code

1 age = 34

will take the number 34 and it will store that number in a box called age.

Note that the equals sign does not mean the same as it does in mathematics. We are
not saying that these two things are equal, rather we are saying “Take the value on the
right hand side of the equals sign and store that value in the variable named on the left
hand side of the equals sign”.

10.11.2 Using the value stored in a variable

In order to get information out of the box, we simply use the name of the variable and
Python will look inside the box with that name and use the contents. For example, the
Python program:

Python Source Code

1 age = 34
2 print (age)

will result in the output:

34

10.11.3 Assignment happens last

When we use the assignment operator, it is applied after all the other operators that
appear in that line of code. In other words, we do any calculation that appears to the
right of the = operator before the assignment takes place. For example, the following
program:

Python Source Code

1 height = 34
2 width = 10
3 area = height * width

will result in the value 340 being stored in the variable called area. That is because the
multiplication (height * width) is done before the assignment operation(=).

The following program is used to keep a running total of a series of numbers:

190

PYTHON 10.12 Reading input from the user

Python Source Code

1 sum = 0
2 sum = sum + 27
3 sum = sum + 4
4 sum = sum + 10
5 print (sum)

We will look at this program in detail below:

line 1 The value 0 will be stored in a variable called sum
line 2 We start by evaluating the expression sum + 27. The value stored in sum (which

is 0) is added to 27, so the result is the value 27. This result is stored into the
variable called sum.

line 3 We start by evaluating the expression sum + 4. The value stored in sum (which
is now 27) is added to 4, so the result is the value 31. This result is stored into
the variable called sum.

line 4 We start by evaluating the expression sum + 10. The value stored in sum (which
is now 31) is added to 10, so the result is the value 41. This result is stored into
the variable called sum.

line 5 The value stored in sum is printed out. This value is currently 41.

The output from this program will be:

41

10.12 Reading input from the user

To read input from the user, we use the input(prompt) function. Note that this function
will print out the prompt to the screen, and then wait for the user to enter some data.
When the user presses the

�� ��Enter key, then the program will read the information that
they have entered and continue to execute the statements in the program.

When we use the input() function, we need to store the information that the user
enters in a variable, otherwise the information would be lost and we would not be able
to use it later in the program. The following program shows how you would normally use
the function to read from the user:

Python Source Code

1 name = input("Enter your name: ")
2 print ("Hello", name)

If we want to read an integer from the user, we enclose the input() function in the
int() function that converts the input into an integer. The typical use of this would
be: int(input(prompt)). For example:

Python Source Code

1 age = int(input("Enter your age: "))
2 print ("Next year, you will be", age + 1)

191

10.13 Making Decisions: if, elif, and else statements PYTHON

If we want to read a floating point number (i.e. a number containing a decimal point)
from the user, we enclose the input() function in the float() function that
converts the input into a floating point number. The typical use of this would be:
float(input(prompt)). For example, if we wanted to write a program that con-
verts a value from miles to kilometres, we could use the formula:

kilometres = 1.609344×miles

The Python program should do the following:

• Ask the user to enter a number of miles
• Convert the number of miles to a number of kilometres
• Print the output to the screen

Since we would want to read in the number of miles with decimal points, we would use
the following code:

Python Source Code

1 #Author: Andrew Luxton-Reilly
2 #Date: 6/05/06
3 #Purpose: Convert miles to kilometres
4

5 miles = float(input("Please enter the number of miles: "))
6 kilometres = 1.609344 * miles
7 print (miles, "miles is", kilometres, "kilometres")

The output from this program would be:

Please enter the number of miles: 40.5
40.5 miles is 65.178432 kilometres

10.13 Making Decisions: if, elif, and else statements

An if statement is used to allow our programs to make decisions. This is very similar
to the IF functions that are used in spreadsheet formulae. We use an if statement to
test a specified condition to see if that condition is true or false. If the condition is true
then we execute one set of statements; otherwise these statements are not executed.

The format for the if statement is more complex than any of the statements we have
looked at so far. The general format is as follows:

if <condition>:
statements to execute if condition is true

There are some important notes to remember about the format of an if statement:

• The <condition> must be a boolean expression (i.e. an expression that evalu-
ates to true or false).

• There is a colon (:) after the condition.
• The statements to execute if condition is true are a block of state-

ments that are executed if the condition evaluates to true. They must be indented.

192

PYTHON 10.13 Making Decisions: if, elif, and else statements

• The blocks of statements must be indented to the same level (i.e. the same num-
ber of spaces must precede all statements in the block). Do not use a mixture of�� ��Tab and

�� ��Space to indent. Either use all spaces, or use all tabs.

The following program illustrates how an if statement can be used:
Python Source Code

1 #Author: Damir Azhar
2 #Date: 23/11/15
3 #Purpose: To decide if a person is able to vote or not
4

5 age = int(input("Please enter your age: "))
6 if age < 18:
7 print ("You are too young to vote")
8 if age >= 18:
9 print ("You can legally vote")

When the user enters the number 16 at the prompt, the output from this program is:

Please enter your age: 16
You are too young to vote

When the user enters the number 23 at the prompt, the output from this program is:

Please enter your age: 23
You can legally vote

10.13.1 If. . .Else Statement

In the previous example we saw how two if statements can be used to decide between
two scenarios: the user is younger than 18 (and is too young to vote), or the user is
18 or older (and is eligible to vote). We can also see that these two scenarios are all
encompassing; every possible age is taken into account.

Instead of using two if statements we can use an if. . .else statement as follows:
Python Source Code

1 #Author: Damir Azhar
2 #Date: 23/11/15
3 #Purpose: To decide if a person is able to vote or not
4

5 age = int(input("Please enter your age: "))
6 if age < 18:
7 print ("You are too young to vote")
8 else:
9 print ("You can legally vote")

193

10.13 Making Decisions: if, elif, and else statements PYTHON

The statements associated with the else are executed if the condition is false. For
this reason the else does not need a condition. Note that a colon (:) follows the else
keyword, and that the statements associated with the else are indented.

In summary:

if <condition>:
statements to execute if condition is true

else:
statements to execute if the condition is false

10.13.2 If. . .Elif. . .Else Statement

When we have to decide between more than two scenarios, we need to use an
if. . .elif. . .else statement.

The keyword elif stands for else if and works in a similar fashion to an if state-
ment; it has a condition that needs to evaluate to true for its associated statements to be
executed. Note that a colon (:) follows the condition, and that the statements associated
with the elif are indented.

Have a look at the following program that evaluates a person’s BMI (body mass index).
Three scenarios are considered:

1. A person with a BMI of under 18 is considered to be underweight.
2. A person with a BMI of over 25 is considered to be overweight.
3. A person with a BMI between 18 and 25 is considered to have a healthy weight.

Python Source Code

1 #Author: Damir Azhar
2 #Date: 23/11/15
3 #Purpose: To evaluate a person’s BMI
4

5 bmi = int(input("Please enter your BMI: "))
6 if bmi < 18:
7 print("You may be underweight")
8 elif bmi > 25:
9 print("You may be overweight")

10 else:
11 print("Your weight is healthy")

194

PYTHON 10.13 Making Decisions: if, elif, and else statements

Multiple elif statements can be used together to decide between several scenarios.
The general format is as follows:

if <condition 1>:
statements to execute if condition 1 is true

elif <condition 2>:
statements to execute if condition 2 is true

.

.
elif <condition n>:

statements to execute if condition n is true
else:

statements to execute if previous n conditions
are false

10.13.3 Comparison operators

The comparison operators are used to compare two different things. They result in a
boolean value, so they can be used anywhere that a boolean expression (such as a
boolean condition) is required. The following table shows the comparison operators and
their meanings.

Operation Symbol Example
Less than < age < 18
Less than or equal to <= age <= 18
Greater than > age > 18
Greater than or equal to >= age >= 18
Equal to == age == 18
Not equal to != age != 18

Note that the equality test (the “equal to” operator) uses two equals signs (==) to distin-
guish it from the assignment operator which uses a single equals sign (=).

10.13.4 Logical operators

The logical operators are used to combine boolean expressions. They normally create
a more complex condition from simpler conditions. The following table specifies the
logical operators:

Operation Symbol Example
Logical AND and (age > 12) and (age < 20)
Logical OR or (age < 5) or (age > 18)
Logical NOT not not (myAge == yourAge)

These operators are used in a similar way to the logical operators we encountered in
spreadsheet formulae.

195

10.13 Making Decisions: if, elif, and else statements PYTHON

and

The logical AND operator is used to join two boolean expressions together to form a
new, more complex boolean expression. The new boolean expression is true only when
both of the parts are true. It is false if at least one of the parts are false. For example,
the expression:

(number > 1) and (number < 10)

is only true when both (number > 1) is true and (number < 10) is true. This occurs
only if number is between 2 and 9 inclusive.

or

The logical OR operator is used to join two boolean expressions together to form a new,
more complex boolean expression. The new boolean expression is true when at least
one of the parts is true. It is false only when both parts are false. For example, the
expression:

(number < 1) or (number > 10)

is true either if (number < 1) is true, or if (number > 10) is true. This occurs when
number is not between 1 and 10 inclusive.

not

The logical NOT operator is used to reverse the truth value of an existing boolean ex-
pression. The new expression is true only if the original expression was false. For
example, the expression:

not ((number < 1) or (number > 10))

is true only when the expression (number < 1) or (number > 10) is false. That
occurs when number is between 1 and 10 inclusive.

10.13.5 Example

The following program is used to make some decisions about a person based on their
age.

Python Source Code

1 #Author: Andrew Luxton-Reilly
2 #Date: 6/05/06
3 #Purpose: To decide if a person is a teenager or not
4

5 age = int(input("Please enter your age: "))
6 if (age >= 13) and (age <= 19):
7 print ("You are a teenager")
8 print ("That means you are between 13 and 19")
9 else:

10 print ("You are not a teenager")

196

PYTHON 10.14 While loops

11 print ("That is OK. I am not either")
12 print ("Goodbye")

The following output would be produced if the user entered their age as 19:

Please enter your age: 19
You are a teenager
That means you are between 13 and 19
Goodbye

If the user entered their age as 27, the output would be:

Please enter your age: 27
You are not a teenager
That is OK. I am not either
Goodbye

10.14 While loops

A while loop is a programming construct used to repeatedly execute a number of state-
ments. We use a while loop to test a given condition, and if the condition is true, then
we execute a set of statements (much like an if statement). However, in a while loop,
once we have finished executing the statements, we check the condition again. If the
condition is still true, then we execute the statements again. This process continues
until the condition is false.

The following flow diagram illustrates how a while loop works in a program.

197

10.14 While loops PYTHON

The formal syntax for a while loop is as follows:

while <condition>:
statements to execute when the condition is true

There are some important notes to remember about a while loop:

• The <condition> must be a boolean expression.
• There is a colon (:) after the condition.
• The statements to execute when the condition is true are a block of

statements. These statements are executed if the condition is true.
• All the statements in the block must be uniformly indented (i.e. they should all be

indented using the same number of spaces)
• After the statements in the block have finished executing, the condition is checked

again and if it is still true then the statements in the block will be executed again.
This process continues until the condition is false.

For example, the following program:
Python Source Code

1 start = 7
2 end = 12
3 counter = start
4

5 while counter <= end:

198

PYTHON 10.14 While loops

6 print (counter)
7 counter = counter + 1

will produce the output:

7
8
9
10
11
12

10.14.1 Example

Imagine that we want a program to print out the 7 times table. We could write the
program using a series of print statements as follows:

Python Source Code

1 print ("7 * 1 = 7")
2 print ("7 * 2 = 14")
3 print ("7 * 3 = 21")
4 print ("7 * 4 = 28")
5 print ("7 * 5 = 35")
6 print ("7 * 6 = 42")
7 print ("7 * 7 = 49")
8 print ("7 * 8 = 56")
9 print ("7 * 9 = 63")

10 print ("7 * 10 = 70")

However, if we write the program this way, we have to do all the calculations ourselves.
It would be very time consuming to change the program to print out the 8 times table.
A better version would use a variable to store the information about the times tables we
are calculating. We could write the program as follows:

Python Source Code

1 number = 7
2 print (number, "* 1 =", number * 1)
3 print (number, "* 2 =", number * 2)
4 print (number, "* 3 =", number * 3)
5 print (number, "* 4 =", number * 4)
6 print (number, "* 5 =", number * 5)
7 print (number, "* 6 =", number * 6)
8 print (number, "* 7 =", number * 7)
9 print (number, "* 8 =", number * 8)

10 print (number, "* 9 =", number * 9)
11 print (number, "* 10 =", number * 10)

199

10.15 Turtle Graphics PYTHON

Although this is certainly better than the previous version, we can recognize that we are
repeating very similar statements in this case. We can use a loop to make the code
much more efficient. Furthermore, using a loop will make it easier to extend the times
table beyond 10 if we wish. We could write a better version of this program as follows:

Python Source Code

1 number = 7
2 start = 1
3 end = 10
4

5 count = start
6 while (count <= end):
7 print (number, "*", count, "=", number * count)
8 count = count + 1

This program allows us to easily change the times table that will be printed by changing
the value used for the number, the start or the end values. The loop will print the times
table for the number given, starting with the start number and finishing with the end
number.

10.15 Turtle Graphics

The term turtle graphics describes the process of creating line graphics using a cursor
(the “turtle”), along with commands for movement and drawing. Turtle graphics started
as an extension to the Logo programming language created by Seymour Papert and
Wally Feurzeig in 1967. Logo was designed to be an educational programming lan-
guage, so it had a simple syntax that children were supposed to be able to master
rapidly. Turtle graphics was a popular tool for teaching programming as it allowed the
user to:

• see how their program behaved directly on screen,
• compare this behaviour to what they had intended, and
• identify where any problems occured and correct them.

In the following section we will look at using turtle graphics with the Python programming
language.

10.15.1 Importing Python Modules

Before we look at turtle graphics, we need to be able to import Python modules. Like
many programming languages, Python distinguishes between two forms of commands:

1. Ones built into the core language that are always available like print() and
input().

2. Ones defined in modules (libraries) that you need to load before you use.

A programmer can define their own modules or use existing ones that are available to all
Python users. The turtle module is an example of the second type. You need to load
the turtle module before you can use turtle graphics. You can load any module into

200

PYTHON 10.15 Turtle Graphics

the IDLE environment using the import command. The following line of code would be
used to import the turtle module:

Python Source Code

1 import turtle

When developing a program that requires commands found in modules, importing these
modules is usually a good first step.

Once you have imported a module, you can use the commands defined in it. To do this
the following syntax is used:

nameOfModule.nameOfCommand()

You will see several examples in the next section where we look at basic turtle com-
mands.

10.15.2 Basic Turtle Commands

With turtle graphics, you can think of the turtle (i.e. the cursor) as a pen. By default
the tip of the pen is down so when the turtle moves a line is drawn. If the tip is up, the
turtle can be moved without drawing a line. The following two commands let you specify
whether you want the tip to be up or down:

turtle.penup()

• Lifts the pen so that turtle movement does not draw a line.

turtle.pendown()

• Lowers the pen so that turtle movement does draw a line.

The next set of commands are used to move the turtle by a specified amount:

turtle.forward(n)

• Moves the turtle forward in the direction it is facing by n steps.
• For example turtle.forward(50) moves the turtle forward by 50 steps.

turtle.backward(n)

• Moves the turtle backward from its facing direction by n steps.
• For example turtle.backward(50) moves the turtle backward by 50 steps.

201

10.15 Turtle Graphics PYTHON

The next two commands are used to turn the turtle by a specified angle. Note that the
turtle rotates using its tip as a pivot.

turtle.left(n)

• Turns the turtle n degrees counter-clockwise.
• For example:
turtle.forward(25)
turtle.left(45)
turtle.forward(25)

1. Moves the turtle forward 25 steps,
2. Turns the turtle 45 degrees counter-clockwise, and then
3. Moves the turtle 25 steps in the new direction it is facing.

turtle.right(n)

• Turns the turtle n degrees clockwise.
• For example:
turtle.forward(25)
turtle.right(45)
turtle.forward(25)

1. Moves the turtle forward 25 steps,
2. Turns the turtle 45 degrees clockwise, and then
3. Moves the turtle 25 steps in the new direction it is facing.

202

PYTHON 10.15 Turtle Graphics

10.15.3 Example - Drawing A Square

In this example we will look at using turtle graphics to draw a square. A square is a
polygon with four sides, where the sides are of equal length, and the angle between
sides is 90 degrees. The following Python code will draw a square with sides that are
200 steps in length:

Python Source Code

1 import turtle
2 turtle.forward(200)
3 turtle.left(90)
4 turtle.forward(200)
5 turtle.left(90)
6 turtle.forward(200)
7 turtle.left(90)
8 turtle.forward(200)
9 turtle.left(90)

The resulting square is shown below. Note the position and orientation of the turtle at
the end of the drawing process.

10.15.4 Example - Using A While Loop For Drawing

The exact same square can be drawn with a while loop instead. In the previous example,
each side of the square was drawn using the following two lines of code:

turtle.forward(200)
turtle.left(90)

In order to draw the square we would place these two lines of code within a while loop
as shown on the next page:

203

10.15 Turtle Graphics PYTHON

Python Source Code

1 import turtle
2

3 count = 0
4 while count < 4:
5 turtle.forward(200)
6 turtle.left(90)
7 count = count + 1

204

CHAPTER 11

LATEX

11.1 Introduction

LATEX is a document preparation system. It is not a word processor, it does not check
spelling, and it is not a WYSIWYG program. LATEX is designed for typesetting. It allows
a user to specify the way a document will look when it is printed, based on the structure
of that document. In short, LATEX is used to format a text document.

LATEX is a program that is available for most common platforms (e.g. Macintosh OS,
Windows, Linux). It takes an input file that consists of plain ASCII text (much like an
HTML source file) and produces output that is in a format such as device independent
(dvi), postscript (ps), or portable document format (pdf). This output will be displayed
exactly as it will appear when printed.

Figure 11.1: Running LATEX

205

11.2 Overview of the language elements LATEX

Note: The input file (the LATEX source file) should use a filename that ends with the file
extension .tex to identify it as a LATEX file.

11.1.1 Why would we use LATEX?

The LATEX program was originally developed to help mathematicians typeset their doc-
uments. It is still the best product today to create professional documents that use
mathematical equations. It is also used in many academic institutions to typeset theses
and other large documents.

Some of the commonly cited advantages of LATEX are:

• The finished documents look as if they were professionally printed.
• LATEX supports typesetting mathematical equations in a very convenient way.
• Long documents can be easily managed
• The table of contents, indexes, glossaries and bibliographies can be generated

easily.
• LATEX is free and runs on a wide range of platforms.

In short, if you are creating a very long document (such as a thesis or a book), or if you
really care about the way your documents look, then LATEX is highly recommended. If
you are only writing short documents, and you don’t care about the way they look when
printed, then a simple word processor such as Microsoft Word will probably fulfil your
needs.

11.2 Overview of the language elements

It is intended that an author write the text for their document first, then prepare the
document for printing by considering layout and formatting. Any text editor can be used
to write the document. Once the text is ready, LATEX is used to typeset the document.
Special commands are used to define the layout of the text. These are embedded in
the text in a similar way to the tags used by HTML.

11.2.1 Comments

A comment is used in LATEX for the same purpose as in XHTML or Python. A comment
provides information for human beings who are reading the source code. The computer
completely ignores all comments.

The symbol for a comment in LATEX is the percentage sign (%). All text that appears to the
right of a percentage sign is ignored, until the end of the line is reached. For example,
the following code is valid in LATEX , but will not result in any output, since all the text is
composed of comments.

LATEXSource Code

1 %Author: Andrew Luxton-Reilly
2 %Date: 09/05/2006

206

.tex

LATEX 11.2 Overview of the language elements

3 %A simple introduction to LaTeX, written for
4 %COMPSCI 111 students.

11.2.2 Whitespace

“Whitespace” characters such as
�� ��Space or

�� ��Tab leave a blank space in the document.
LATEX will contract several consecutive spaces in the document to a single space. It will
also ignore “whitespace” at the start of a line, and a single line break (i.e. generated by
pressing the

�� ��Enter key once) is treated as a single “space”.

For example, the following code:
LATEXSource Code

1 All of these
2 words
3 will appear in
4 a single sentence.

will produce the output:

All of these words will appear in a single
sentence.

11.2.3 Commands

Commands in LATEX all start with a backslash character (\), followed by a name that
consists only of letters. They use the form:

\commandname

For example, the command:
LATEXSource Code

1 \newpage

will end the current page, and any following text will appear on a new page.

Some LATEX commands use the form:

\commandname{argument}

These commands apply to the argument enclosed in the curly braces {} that immedi-
ately follow the name of the command. For example, the command:

LATEXSource Code

1 \section{Computer Science}

207

11.2 Overview of the language elements LATEX

will create a new section entitled “Computer Science”.

Still other LATEX commands use the form:

\commandname[options]{argument}

Commands of this sort require an argument to be enclosed in curly braces, but they
also have various options that may affect the way the command is applied. The options
are enclosed in square brackets [], and are included between the command name and
any curly braces that might follow. For example, the command:

LATEXSource Code

1 \section[Computer Science]{Introduction to the Science
2 of Computing}

will create a new section entitled “Introduction to the Science of Computing”, however,
in the table of contents, this section will be referred to as “Computer Science”.

Note the following:

• Commands in LATEX are case sensitive. The command \Large is different than
the command \large.
• If a command uses options, then it is not compulsory to include them.

11.2.4 Environments

Formatting in a LATEX document is controlled by both commands, and environments. A
command is normally used to apply a simple change. Commands are often applied
within a paragraph of text. When we change the environment, we always start a new
paragraph. As such, environments are normally applied to larger groups of text (such
as paragraphs, pages, or entire documents).

The format to change the environment is as follows:

\begin{environment name}
Text enclosed by the environment goes here
\end{environment name}

For example, to centre some text on the page, we could use the center environment
as follows:

LATEXSource Code

1 \begin{center}
2 This text is centred.
3 \end{center}

The source code above would produce the following output:

This text is centred.

Note the spelling of the word center uses American spelling.

208

LATEX 11.2 Overview of the language elements

11.2.5 Special characters

There are 10 keyboard characters that have a special meaning in LATEX . You cannot
simply type them directly into a LATEX document. Instead, you must use special com-
mands to get them to appear on the page.

Description Character
Special command to make
them appear on the page

Backslash \ \backslash
Dollar sign $ \$
Percent sign % \%
Caret ˆ \ˆ
Ampersand & \&
Underscore _ _
Tilde ˜ \˜
Hash # \#
Open curly brace { $\{$
Close curly brace } $\}$

11.2.6 Paragraphs and line breaks

Paragraphs are separated by leaving a blank line in the input. Remember that a single
line break (caused by pressing the

�� ��Enter key once) will be ignored by LATEX , but

pressing the
�� ��Enter key twice will leave a blank line which will be interpreted as starting

a new paragraph. For example, the following LATEX code:

LATEXSource Code

1 Each paragraph should contain only one single idea.
2 If you find that a single paragraph contains more
3 than one idea, then you should split that paragraph.
4 If you find that two different paragraphs are about
5 the same idea, then those paragraphs should be joined
6 together.
7

8 The normal way to signify the start of a new paragraph
9 is to indent the first line of the paragraph.

would be displayed as:

209

11.3 Document class LATEX

Each paragraph should contain only one sin-
gle idea. If you find that a single paragraph con-
tains more than one idea, then you should split
that paragraph. If you find that two different para-
graphs are about the same idea, then those para-
graphs should be joined together.

The normal way to signify the start of a new
paragraph is to indent the first line of the para-
graph.

A line break can be inserted into the output using the command \\. There are occasions
where this is useful. For example, the code:

LATEXSource Code

1 \begin{center}
2 The long night passes,\\
3 the hairy caterpillar lies\\
4 in the new-born day\\
5 \end{center}

would be displayed as:

The long night passes,
the hairy caterpillar lies

in the new-born day

11.3 Document class

The structure of a LATEX document is always the same. First, we need to specify the kind
of document we are creating. Then we use \begin{document} and \end{document}
to surround the entire document that we want to typeset.

A simple LATEX file would look like:

\documentclass[options]{documenttype}

\begin{document}

. . . document to be formatted goes here

\end{document}

210

LATEX 11.3 Document class

11.3.1 Classes of document

You can use LATEX to create a number of different kinds of document. You can think of
the document classes as being like templates. They define the overall appearance and
style of your document.

The format for this command is:

\documentclass[options]{documenttype}

There are four different default document types that come with LATEX . Although it is
possible to define your own document type, it is a difficult process that is unnecessary
for most people. It is worth noting that many institutions have created document classes
that define the standard formatting for documents published at that institution (e.g. many
universities have created a document class for publishing theses). The four standard
document styles are described below:

article Designed for shorter documents, essays, and articles for publication. The
article document class does not have chapters, and the title appears at the top of
the first page, rather than having a title page of its own.

report A report is used for longer documents. Reports can have different chapters
and the title appears on a page by itself.

book Books are formatted in a similar way to reports, except that it is assumed that a
book will be printed on both sides of the paper, so the layout and margins are
adjusted accordingly.

letter This document class is designed for producing personal letters.

The options that can be used are as follows:

10pt, 11 pt, 12 pt Used to define the normal size for text that appears in the book.
All other fonts used for headings, footnotes etc. will be scaled accordingly. If no
option is specified, then 10pt will be used.

a4paper, letterpaper Defines the size of the page. The default is letterpaper.

draft Creates a draft version. LATEX will indicate problems with the layout (that it can
identify) by placing a small square in the right-hand margin.

onecolumn, twocolumn Specifies whether to use page layout that consists of one or
two columns.

oneside, twoside Used only for book and report types. Formats the document for
one-sided, or two-sided printing. By default, article and report are formatted
for one-sided printing, but book is formatted for two-sided printing.

titlepage, notitlepage Specifies whether to start a new page after displaying the
title. By default, report and book will start a new page, but article will not.

For example, this chapter that you are reading now is formatted using LATEX and uses
the document class declaration

LATEXSource Code

1 \documentclass[a4paper,twosided]{book}

211

11.4 Titles LATEX

11.3.2 Preamble

The area of a LATEX source file between the \documentclass declaration and the
\begin{document} command is called the “preamble”. This area is used to put any
commands that will alter the way the document is typeset. Later we will look at the
kinds of things that could appear in the preamble, but at the moment, that space should
remain empty.

11.3.3 A simple LATEX document

The following example shows a very simple LATEX document. The following code:
LATEXSource Code

1 \documentclass{article}
2

3 %This area is the preamble. We do not need
4 %any commands here
5

6 \begin{document}
7 A simple document.
8 \end{document}

would produce an entire page containing only the text:

A simple document.

11.4 Titles

The first thing that you would normally put inside the document environment is the title
of your document. This would be followed by the author’s name and the date. Although
these things are not required, they are usually included. The following table summarizes
the commands used to create the title page for our document.

Command Purpose
\title{title name} Defines the title
\author{author name} Defines the author
\date{date} Defines the date (optional)
\maketitle Displays the information

If the date is omitted, then the current date will be used on the title page. This can be
useful to keep track of the document version if it is regularly being revised.

The \maketitle command is important. It must be used after the title, author and date
have been defined, and it is used to format and display the information. For example,
the following code:

212

LATEX 11.5 Structuring a document

LATEXSource Code

1 \documentclass{report}
2

3 \begin{document}
4 \title{A simple example}
5 \author{Andrew Luxton-Reilly}
6 \date{10th May, 2006}
7 \maketitle
8

9 This document contains a simple example
10 \end{document}

would result in the following title page:

11.5 Structuring a document

One of the advantages of LATEX is that it encourages you to concentrate on the structure
of the document. You can divide your document up into different chapters, sections and
subsections using special commands. These commands are described in this section.

213

11.5 Structuring a document LATEX

11.5.1 Parts

If you want to split your document up into parts, without interfering with the chapter or
section numbering, then you can use the \part command. The formal syntax for this
is:

\part{part name}

The name of the part will be used in the table of contents, and will also be used on a
page that separates the different parts of your document. The \part command is not
often used, except in very large books.

11.5.2 Chapters

The \chapter command can only be used if your document class is report or book.
An article cannot be divided up into different chapters. The syntax for this command
is:

\chapter{chapter name}

The name of the chapter will be used in the table of contents. The chapter command
will start a new chapter which will start at the top of a new page. The name of the
chapter will be formatted and displayed in a large font size at the top of the page, and
all section numbering will be reset.

11.5.3 Sections and subsections

A number of section commands are available. These can be used in the article,
report or book classes. The sections are numbered and the name of the section will
be displayed in a large bold font. The following commands can be used:

\section{section name}

\subsection{subsection name}

214

LATEX 11.5 Structuring a document

\subsubsection{subsubsection name}

Note that the subsubsection name will not be numbered by default, nor will it appear
in the table of contents.

For example, the following page has been divided up using sections and subsections:

LATEXSource Code

1 \documentclass{article}
2

3 \begin{document}
4

5 \title{A Short History of the Internet}
6 \author{Andrew Luxton-Reilly}
7 \maketitle
8

9 \section{Introduction}
10 This is the introduction. It is short.
11

12 \section{History of the Internet}
13 The history of the internet is interesting.
14

15 \subsection{Telephone systems}
16 We start by looking at the telephone system
17

18 \subsection{DARPA}
19 The first computer network was developed at DARPA
20

21 \end{document}

When the page is displayed, it will look like the following:

215

11.6 Table of contents LATEX

11.6 Table of contents

A table of contents can be inserted using the command tableofcontents. By default,
parts, chapters, sections and subsections will be included in the table of contents. The
page numbers used in the table of contents will be automatically generated. It is worth
noting that you have to run the input file through LATEX twice in a row in order to get the
table of contents to work properly (the first time does all the layout of the pages, then
the second time inserts the correct page numbers into the table of contents).

For example, the table of contents produced by the following document:

LATEXSource Code

1 \documentclass[a4paper]{article}
2

3 \begin{document}
4

5 \title{A Short History of the Internet}
6 \author{Andrew Luxton-Reilly}
7 \maketitle
8 \tableofcontents
9

10 \section{Introduction}
11 This is the introduction. It is short.
12

13 \section{History of the Internet}
14 The history of the internet is interesting.
15

16 \subsection{Telephone systems}
17 We start by looking at the telephone system
18

19 \subsection{DARPA}
20 The first computer network was developed at DARPA
21

22 \end{document}

would look like the following:

216

LATEX 11.7 Footnotes

11.7 Footnotes

Footnotes can easily be inserted using LATEX. The command to insert a footnote is:

\footnote{footnote text}

The footnote will always appear at the bottom of the current page. For example, the
code:

LATEXSource Code

1 Footnotes\footnote{This is a small footnote.} can
2 easily be added to your text.\footnote{Don’t use
3 footnotes too frequently though. They can distract
4 people from your text.}

will be displayed as:

Footnotesa can easily be added to your text.b

aThis is a small footnote.
bDon’t use footnotes too frequently though. They can dis-

tract people from your text.

217

11.8 Symbols used in text LATEX

11.8 Symbols used in text

When you enter plain text, there are frequently symbols that you want to use, but you
find that they are not available in plain ASCII text. These symbols can be included in
the final output if you know how to represent them using LATEX.

11.8.1 Quote marks

�� ��" The quote marks that are normally typed from the keyboard (") are called unidirec-
tional quotes. They are not used in LATEX. Instead, we create the more professional
looking directional quotes. For single quote marks, we use the single quote (‘) and
apostrophe(’). For double quote marks, we use the same characters, but use two char-
acters instead of just one. For example, the following code:

LATEXSource Code

1 She said, ‘‘That’s very interesting’’.

would be displayed as:

She said, “That’s very interesting”.

In some of the editors used to write LATEX code (such as TeXnicCenter), the options can
be set to automatically replace the " with either ‘‘ or ’’ depending on whether a letter
or a space appears before you press the

�� ��” key. In other words, it will insert the LATEX
codes for the appropriate quote marks when you type the key for ".

11.8.2 Special symbols

A range of different commands are used to represent accents, ligatures and other sym-
bols common in written English. The most commonly used symbols are summarised in
the following table.

218

LATEX 11.8 Symbols used in text

Description Example LATEX command
Acute (fada) é \’{e}
Grave è \‘{e}
Circumflex ê \ˆ{e}
Umlaut ë \"{e}
Tilde ñ \˜{n}
Macron ō \={o}
Bar-under o

¯
\b{o}

Dot-over (séıṁıú) ṁ \.{m}
Dot-under s. \d{s}
Breve ŭ \u{u}
Háček (caron) č \v{c}
Long umlaut ő \H{o}
Cedilla ç \c{c}
O-E ligature œ, Œ \oe, \OE
A-E ligature æ, Æ \ae, \AE
A-ring å, Å \aa, \AA
O-slash ø, Ø \o, \O

11.8.3 Dashes

A single dash is used to represent a hyphen. For example, the code:
LATEXSource Code

1 merry-go-round

will appear as:

merry-go-round

However, in some circumstances (such as when we are discussing a range of pages),
we want the dash to be longer (called an en dash in typesetting). In this case, we use
two dashes in the LATEX code. For example, the code:

LATEXSource Code

1 pages 34--45

will appear as:

pages 34–45

Finally, there are times that we want to use an extra long dash (called an em dash). In
this case, we use three subsequent dashes in the LATEX code. For example, the code:

LATEXSource Code

1 We can use an em dash like parentheses---that is,
2 to enclose a phrase---or they can be used to separate

219

11.8 Symbols used in text LATEX

3 the end of a sentence from the main text.

will appear as:

We can use an em dash like parentheses—
that is, to enclose a phrase—or they can be used
to separate the end of a sentence from the main
text.

11.8.4 Ellipsis

Ellipsis is the omission of a word or phrase from some quoted text. It is usually rep-
resented using three dots. We cannot simply put three full stops in a row, since the
spacing generated for three full stops will be incorrect. We use the LATEX command
\ldots to insert ellipsis into our text. For example, the code:

LATEXSource Code

1 A well-known speech begins with the phrase ‘‘Four
2 score and seven years ago \ldots’’.

will be displayed as:

A well-known speech begins with the phrase
“Four score and seven years ago . . . ”.

11.8.5 Spaces

Spaces between words can be stretched or compressed to ensure that the finished text
looks good on the page. When LATEX is deciding where to put the end of a line, it tries
to split the lines at a space. If it cannot find a suitable space, then it will automatically
hyphenate a word to fit the text.

Unbreakable spaces

There are some places where it is inappropriate to split a line. For example, we would
not normally want to split a person’s initials from their surname (i.e. in the case of
E. E. Smith, we would not want to split the line with the initials at the end of one line and
the surname on the next line).

To ensure that LATEX does not split the line at the specified point, we can use the tilde
character (˜) instead of a space. This will tell LATEX to use a normal width space, but
the line is not permitted to be broken at that point. We would normally write this as
E.˜E.˜Smith.

220

LATEX 11.9 Text styles

Normal width spaces after a full stop

When text is typeset, it is conventional to leave a larger gap between different sentences
than between words. If we were typing with a typewriter, then we would normally leave
two spaces after typing a full stop at the end of a sentence. LATEX will automatically leave
a larger gap after a full stop, so we do not have to manually tell it to do so.

However, this can cause problems when we use a full stop in abbreviations, since LATEX
thinks we have reached the end of a line. For example, the use of the full stop in the
following text results in incorrect spacing:

E.g. when we use the full stop after a title
such as Mr. Jones, then LATEX thinks we are end-
ing a sentence. It will leave a space the same size
after a title as it does after a sentence, i.e. the space
will be incorrect.

We can correct this problem by using a tilde (˜) as discussed previous. This will also
tell LATEX not to break the line at that point. If we are happy for the line to be broken, but
we want a normal sized space, then we can use a backslash followed by a space (\).
This will tell LATEX to leave a normal sized space and allow the line to be broken at that
point. The following text has been generated using the backslash and space command
to ensure the spaces are the correct size. Compare this version with the previous one
and look closely at the different amounts of space that occur after the full stop.

E.g. when we use the full stop after a title
such as Mr. Jones, then LATEX thinks we are ending
a sentence. It will leave a space the same size after
a title as it does after a sentence, i.e. the space will
be incorrect.

The LATEX source code for the text above would be:
LATEXSource Code

1 E.g.\ when we use the full stop after a title
2 such as Mr.\ Jones, then \lx thinks we are
3 ending a sentence. It will leave a space the
4 same size after a title as it does after a
5 sentence, i.e.\ the space will be incorrect.

11.9 Text styles

There are a range of commands that can be used to change the style of the font that
is used. Note that it is usually better to allow LATEX to decide what font style to apply

221

11.9 Text styles LATEX

based on the structure of the document, but there are times that it is useful to manually
change the font style.

11.9.1 Emphasis

One of the most common ways that we want to change the style of text is to emphasise
a word or phrase. The command to do this is:

\emph{argument}

For example, the source code:

LATEXSource Code

1 Text should only be emphasised \emph{rarely}.

will appear as:

Text should only be emphasised rarely.

11.9.2 Font styles

The appearance of the font can be changed using a range of different commands. They
are included here, but their use is not recommended in a normal document.

Command Meaning Example
\textbf{argument} Bold A short example
\textit{argument} Italic A short example
\textsl{argument} Slanted A short example
\textsf{argument} Sans-serif A short example
\textrm{argument} Serif A short example
\texttt{argument} Monospace A short example
\textsc{argument} Small Capitals A short EXAMPLE

11.9.3 Font size

The size of the font can be set to a range of different sizes. It is not normally necessary
to manually set the size of fonts, but the commands to set the font size are included in
the table below:

222

LATEX 11.10 Alignment environments

Command Example
\tiny A small example

\scriptsize A small example

\footnotesize A small example

\small A small example
\normalsize A small example
\large A small example
\Large A small example
\LARGE A small example
\huge A small example
\Huge A small example

These commands will change the font used for any text that appears from that point
forward. For example, if you set the text to be \huge, then all text that appears after the
command will be huge. To limit the scope of the command, you can use curly braces.
However, the curly braces are used in a different way than we have seen before. The
curly braces enclose all the text that we want to change, and the command to change
the size occurs inside the curly braces. The format for this is:

{size command text that you want to define the size of}

For example, the following code:
LATEXSource Code

1 This text ranges in size from {\tiny very, very}
2 {\footnotesize small} to {\Large very, very}
3 {\Huge large.}

will be displayed as:

This text ranges in size from very, very small to

very, very large.

11.10 Alignment environments

We can align text to the left or right margin, centre the text, or justify the text. To change
the alignment, we use one of the environments described in this section.

11.10.1 Left aligned text

The flushleft environment will align all the text in the paragraph to the left side. For
example, the code:

223

11.10 Alignment environments LATEX

LATEXSource Code

1 \begin{flushleft}
2 The flushleft environment will cause the text to be
3 aligned to the left side of the page.
4

5 Short sentences that end with a line break\\
6 will also be aligned\\
7 to the left.\\
8 \end{flushleft}

will be displayed as:

The flushleft environment will cause the text to be
aligned to the left side of the page.
Short sentences that end with a line break
will also be aligned
to the left.

11.10.2 Right aligned text

The flushright environment will align all the text in the paragraph to the right side.
For example, the code:

LATEXSource Code

1 \begin{flushright}
2 The flushright environment will cause the text to be
3 aligned to the right side of the page.
4

5 Short sentences that end with a line break\\
6 will also be aligned\\
7 to the right.\\
8 \end{flushright}

will be displayed as:

The flushright environment will cause the text to
be aligned to the right side of the page.

Short sentences that end with a line break
will also be aligned

to the right.

224

LATEX 11.11 List environments

11.10.3 Centred text

The center environment will align all the text in the paragraph to the centre. For exam-
ple, the code:

LATEXSource Code

1 \begin{center}
2 The center environment will cause the text to be
3 aligned to the centre of the page.
4

5 Short sentences that end with a line break\\
6 will also be aligned\\
7 to the centre.\\
8 \end{center}

will be displayed as:

The center environment will cause the text to be
aligned to the centre of the page.

Short sentences that end with a line break
will also be aligned

to the centre.

11.11 List environments

Three different list environments are supported by LATEX. These are similar to those that
are used in XHTML, namely, an unordered list, an ordered list and a description list.
Each of these list environments are described in turn in this section.

11.11.1 Unordered lists

The itemize environment is used to create a list that consists of bullet points. The
format for the list is as follows:

\begin{itemize}
\item text that makes up a bullet point
\end{itemize}

For example, the following LATEX code:
LATEXSource Code

1 There are three kinds of lists that are supported.
2 They are:
3 \begin{itemize}
4 \item Itemize
5 \item Enumerate

225

11.11 List environments LATEX

6 \item Description
7 \end{itemize}

will be displayed as:

There are three kinds of lists that are sup-
ported. They are:
• Itemize
• Enumerate
• Description

11.11.2 Ordered lists

The enumerate environment is used to create a list that consists of numbered entries.
The format for the list is as follows:

\begin{enumerate}
\item text that makes up an item in the list
\end{enumerate}

For example, the following LATEX code:
LATEXSource Code

1 There are three kinds of lists that are supported.
2 They are:
3 \begin{enumerate}
4 \item Itemize
5 \item Enumerate
6 \item Description
7 \end{enumerate}

will be displayed as:

There are three kinds of lists that are sup-
ported. They are:

1. Itemize
2. Enumerate
3. Description

11.11.3 Description lists

The description environment is used to create a list that is used to define (or provide
a description of) entries. The format for the list is as follows:

226

LATEX 11.12 Quote and quotation environments

\begin{description}
\item[term] description of the term
\end{description}

For example, the following LATEX code:
LATEXSource Code

1 There are three kinds of lists that are supported.
2 They are:
3 \begin{description}
4 \item[Itemize] lists that use bullet points
5 \item[Enumerate] lists that are enumerated
6 \item[Description] lists that describe terms
7 \end{description}

will be displayed as:

There are three kinds of lists that are sup-
ported. They are:
Itemize lists that use bullet points
Enumerate lists that are enumerated
Description lists that describe terms

11.12 Quote and quotation environments

Two kinds of environments are used with quotations. They are similar in that they both
indent the margins of the quote and separate it from the main body.

11.12.1 Quote

The quote environment causes the right and left margins to be indented. Leaving a
blank line in a quote environment will create a new paragraph. The text at the start of
a paragraph will not be indented. This environment is designed for short quotes (hence
the lack of indentation at the start of the first line).

For example, the code:
LATEXSource Code

1 The following quote is one of my favourites from
2 Groucho Marx:
3 \begin{quote}
4 Those are my principles, if you don’t like them,
5 I have others!
6 \end{quote}

227

11.12 Quote and quotation environments LATEX

will be displayed as:

The following quote is one of my favourites
from Groucho Marx:

Those are my principles, if you don’t
like them, I have others!

11.12.2 Quotation

The quotation environment is very similar to the quote environment. It causes the
right and left margins to be indented. Leaving a blank line in a quotation environment
will create a new paragraph. The main difference between quote and quotation is that
the first line of the paragraph is indented in a quotation environment. This environment
is designed for longer quotes, especially those that have multiple paragraphs.

For example, the code:

LATEXSource Code

1 The author Neal Stephenson wrote a very interesting
2 history of operating systems. Here is a small
3 extract:
4 \begin{quotation}
5 The analogy between cars and operating systems is
6 not half bad, and so let me run with it for a moment,
7 as a way of giving an executive summary of our
8 situation today.
9

10 Imagine a crossroads where four competing auto
11 dealerships are situated. One of them (Microsoft)
12 is much, much bigger \ldots
13

14 There was a competing bicycle dealership next door
15 (Apple) that one day began selling motorized
16 vehicles---expensive but attractively styled cars
17 with their innards hermetically sealed, so that
18 how they worked was something of a mystery.
19 \end{quotation}

will be displayed as:

228

LATEX 11.13 Verbatim environment

The author Neal Stephenson wrote a very in-
teresting history of operating systems. Here is a
small extract:

The analogy between cars and op-
erating systems is not half bad, and so
let me run with it for a moment, as a
way of giving an executive summary
of our situation today.

Imagine a crossroads where four
competing auto dealerships are sit-
uated. One of them (Microsoft) is
much, much bigger . . .

There was a competing bicycle
dealership next door (Apple) that
one day began selling motorized
vehicles—expensive but attractively
styled cars with their innards hermeti-
cally sealed, so that how they worked
was something of a mystery.

11.13 Verbatim environment

Occasionally, we need to print out some text without it being typeset at all. We want the
text to appear exactly as we type it. This often occurs when we are writing documents
about spreadsheet formulae, XHTML, programming code, or even LATEX itself. In these
situations, we use an environment called verbatim.

In the verbatim environment, every space will be printed exactly as it appears in the
source code. Every character will be included exactly as it appears in the source, so
we can type special characters or LATEX commands and they will be reproduced in the
output.

For example, the following code:
LATEXSource Code

1 This is not verbatim text.
2 \begin{verbatim}
3 This is some verbatim text.
4

5 Normally, using \\ will create a line
6 break, but not inside
7 a verbatim environment.
8 \end{verbatim}

will be displayed as:

229

11.14 Mathematics mode LATEX

This is not verbatim text.
This is some verbatim text.

Normally, using \\ will create a line
break, but not inside
a verbatim environment.

Note that verbatim text is always displayed using a monospaced font such as “courier”.

11.14 Mathematics mode

Since LATEX was designed to typeset mathematical formulae, it is worth discussing how
this is done. First, we need to put LATEX into “math mode”. This is a state where many of
the normal text commands do not work, instead, we can use mathematics commands.

11.14.1 Inline mathematics

If we want to use mathematics in the middle of a paragraph, then we use the dollar sign
$ to start and stop mathematics mode. For example, the text:

LATEXSource Code

1 The formula $y = mx + c$ defines a straight line.

will appear as:

The formula y = mx + c defines a straight
line.

11.14.2 Display mathematics

If we want to separate the mathematical formulae from the text so that they appear on a
line by themselves, we can use the displaymath environment. For example, the text:

LATEXSource Code

1 The formula:
2 \begin{displaymath}
3 y = mx + c
4 \end{displaymath}
5 can be used to describe a straight line.

will be displayed as:

230

LATEX 11.15 Mathematics

The formula:

y = mx+ c

can be used to describe a straight line.

11.14.3 Equation environment

If we want to number our equations so that we can refer to them later, then we use the
equation environment. For example, the text:

LATEXSource Code

1 The formula for a straight line is given by:
2 \begin{equation}
3 y = mx + c
4 \end{equation}
5 The formula for a quadratic is given by:
6 \begin{equation}
7 y = axˆ2 + bx + c
8 \end{equation}

will be displayed as:

The formula for a straight line is given by:

y = mx+ c (11.1)

The formula for a quadratic is given by:

y = ax2 +bx+ c (11.2)

Notice how the formulae are numbered automatically according to the chapter in which
they belong.

11.15 Mathematics

When we are typesetting mathematical formulae using LATEX, we use the curly braces to
group together parts of the equation that we want to apply the same command to. For
example, the command ˆ is used to make the following text superscript (e.g. a number
raised to the power of another number), so if we wanted to represent 2x+y, then we
would use $2ˆ{x + y}$.

231

11.15 Mathematics LATEX

11.15.1 Greek letters

To represent lowercase Greek letters we use the commands \alpha, \beta,
\gamma,. . . .

To represent uppercase Greek letters we use the commands \Alpha, \Beta,
\Gamma,. . . .

11.15.2 Exponents and subscripts

An exponent is specified with the caret character (ˆ). A subscript is specified by the
underscore character (_). For example, the text:

LATEXSource Code

1 a_i \\
2 $xˆ2$ \\
3 ${a_i}ˆ{i + j}$

will be displayed as:

ai
x2

ai
i+ j

11.15.3 Square roots

A square root is added with the command \sqrt. An nth root is created using
\sqrt[n]. For example, the text:

LATEXSource Code

1 $\sqrt{xˆ2 + yˆ2}$ and $\sqrt[3]{x}$

will be displayed as:

√
x2 + y2 and 3

√
x

11.15.4 Fractions

A fraction is created using the command \frac{numerator}{denominator}. For ex-
ample, the text:

LATEXSource Code

1 $1\frac{1}{2}$ and $\frac{xˆ2}{xˆ2 + yˆ2}$

232

LATEX 11.16 Adding functionality with packages

will be displayed as:

1 1
2 and x2

x2+y2

11.15.5 Other common operators

The integral operator is created with the command \int, and the sum operator is cre-
ated with the command \sum. For example, the text:

LATEXSource Code

1 \begin{displaymath}
2 \sum_{i=1}ˆn
3 \end{displaymath}
4 and
5 \begin{displaymath}
6 \int_{0}ˆ{\frac{\pi}{2}}
7 \end{displaymath}

will be displayed as:

n

∑
i=1

and ∫ π

2

0

11.16 Adding functionality with packages

LATEX is designed to be easily extended. It is possible to define new commands and new
environments reasonably easily. Although it is not difficult to do so, we will not discuss
the creation of new commands and environments here.

However, we can add functionality by making use of the commands that other people
have defined. These are distributed in files called “packages”. There are thousands
of different packages available on the Internet, but they need to be downloaded and
installed before they can be used. Most installations of LATEX already have most of the
common packages installed so that they can be used immediately.

In order to use a package, we simply add the command:

\usepackage{package name}

233

11.17 References LATEX

at the top of the file (after the \documentclass declaration), in the preamble.

11.16.1 Graphicx package

The graphicx package allows us to import and use images in our documents. First, we
need to add the command in the preamble that allows us to use the package as shown
below:

LATEXSource Code

1 \documentclass[a4paper]{article}
2 \usepackage{graphicx}
3

4 \begin{document}
5 ...

Once we have specified to use the package, we can use the includegraphics com-
mand. This command is used to insert a picture at the location that the command
appears. The format for this command is:

\includegraphics[options]{file name}

The options allow us to specify a height or width of the image. The image will be scaled
so that it fits in the specified size. For example:

LATEXSource Code

1 \includegraphics[height=10cm]{Photo}

Note that by default, the only file format for images that can be read by LATEX is encap-
sulated postscript (). Most modern image processing software can save images in this
format.

11.17 References

A number of resources have been used in the creation of this document.

• Essential LATEX, Jon Warbrick, 2002
• Essential Mathematical LATEX, D. Carlisle and R. Kaye, 1998
• The (Not So) Short Introduction to LATEX 2ε, Tobias Oetiker, 2003
• http://www.tug.org/interest.html
• http://www.latex-project.org/
• http://www.ctan.org

The tables showing the use of mathematical symbols at the end of this document have
been reproduced from “Essential Mathematical LATEX”, by Carlisle and Kaye.

234

http://www.tug.org/interest.html
http://www.latex-project.org/
http://www.ctan.org

LATEX 11.17 References

α \alpha θ \theta o o τ \tau
β \beta ϑ \vartheta π \pi υ \upsilon
γ \gamma γ \gamma ϖ \varpi φ \phi
δ \delta κ \kappa ρ \rho ϕ \varphi
ε \epsilon λ \lambda ρ \varrho χ \chi
ε \varepsilon µ \mu σ \sigma ψ \psi
ζ \zeta ν \nu ς \varsigma ω \omega
η \eta ξ \xi

Γ \Gamma Λ \Lambda Σ \Sigma Ψ \Psi
∆ \Delta Ξ \Xi ϒ \Upsilon Ω \Omega
Θ \Theta Π \Pi Φ \Phi

Table 11.1: Greek Letters

± \pm ∩ \cap � \diamond ⊕ \oplus
∓ \mp ∪ \cup 4 \bigtriangleup 	 \ominus
× \times] \uplus 5 \bigtriangledown ⊗ \otimes
÷ \div u \sqcap / \triangleleft � \oslash
∗ \ast t \sqcup . \triangleright � \odot
? \star ∨ \vee © \bigcirc \amalg
◦ \circ ∧ \wedge † \dagger o \wr
• \bullet \ \setminus ‡ \ddagger · \cdot
+ + − -

Table 11.2: Binary Operation Symbols

≤ \leq ≥ \geq ≡ \equiv |= \models
≺ \prec � \succ ∼ \sim ⊥ \perp
� \preceq � \succeq ' \simeq | \mid
� \ll � \gg � \asymp ‖ \parallel
⊂ \subset ⊃ \supset ≈ \approx ./ \bowtie
⊆ \subseteq ⊇ \supseteq ∼= \cong ∝ \propto
6= \neq ^ \smile ` \vdash a \dashv
v \sqsubseteq w \sqsupseteq

.
= \doteq _ \frown

∈ \in 3 \ni = = > >
< < : :

Table 11.3: Relation Symbols

, , ; ; : \colon . \ldotp · \cdotp

Table 11.4: Punctuation Symbols

235

11.17 References LATEX

← \leftarrow ←− \longleftarrow ↑ \uparrow
⇐ \Leftarrow ⇐= \Longleftarrow ⇑ \Uparrow
→ \rightarrow −→ \longrightarrow ↓ \downarrow
⇒ \Rightarrow =⇒ \Longrightarrow ⇓ \Downarrow
↔ \leftrightarrow ←→ \longleftrightarrow l \updownarrow
⇔ \Leftrightarrow ⇐⇒ \Longleftrightarrow m \Updownarrow
7→ \mapsto 7−→ \longmapsto ↗ \nearrow
←↩ \hookleftarrow ↪→ \hookrightarrow ↘ \searrow
↼ \leftharpoonup ⇀ \rightharpoonup ↙ \swarrow
↽ \leftharpoondown ⇁ \rightharpoondown ↖ \nwarrow

Table 11.5: Arrow Symbols

. . . \ldots · · · \cdots
... \vdots

. . . \ddots
ℵ \aleph ′ \prime ∀ \forall ∞ \infty
h̄ \hbar /0 \emptyset ∃ \exists ♠ \spadesuit
ı \imath ∇ \nabla ¬ \neg ♥ \heartsuit

\jmath
√

\surd [\flat ♦ \diamondsuit
` \ell > \top \ \natural ♣ \clubsuit
℘ \wp ⊥ \bot] \sharp ∂ \partial
ℜ \Re ‖ \| \ \backslash 4 \triangle
ℑ \Im 6 \angle . . | |

Table 11.6: Miscellaneous Symbols

∑ \sum
⋂

\bigcap
⊙

\bigodot
∏ \prod

⋃
\bigcup

⊗
\bigotimes

\coprod
⊔

\bigsqcup
⊕

\bigoplus∫
\int

∨
\bigvee

⊎
\biguplus∮

\oint
∧

\bigwedge

Table 11.7: Variable-sized Symbols

\arccos \cos \csc \exp \ker \limsup \min \sinh
\arcsin \cosh \deg \gcd \lg \ln \Pr \sup
\arctan \cot \det \hom \lim \log \sec \tan
\arg \coth \dim \inf \liminf \max \sin \tanh

Table 11.8: Log-like Symbols

(()) ↑ \uparrow ⇑ \Uparrow
[[]] ↓ \downarrow ⇓ \Downarrow
{ \{ } \} l \updownarrow m \Updownarrow
b \lfloor c \rfloor d \lceil e \rceil
〈 \langle 〉 \rangle / / \ \backslash
| | ‖ \|

Table 11.9: Delimiters

236

LATEX 11.17 References

 \rmoustache
 \lmoustache

 \rgroup
 \lgroup \arrowvert

ww \Arrowvert
 \bracevert

Table 11.10: Large Delimiters

â \hat{a} á \acute{a} ā \bar{a} ȧ \dot{a} ă \breve{a}
ǎ \check{a} à \grave{a} ~a \vec{a} ä \ddot{a} ã \tilde{a}

Table 11.11: Math mode accents

ãbc \widetilde{abc} âbc \widehat{abc}
←−abc \overleftarrow{abc}

−→abc \overrightarrow{abc}
abc \overline{abc} abc \underline{abc}︷︸︸︷
abc \overbrace{abc} abc︸︷︷︸ \underbrace{abc}
√

abc \sqrt{abc} n
√

abc \sqrt[n]{abc}
f ′ f’ abc

xyz \frac{abc}{xyz}

Table 11.12: Some other constructions

237

11.17 References LATEX

238

CHAPTER 12

Development of the personal computer

12.1 Early history

The development of the computer has a long history, starting with the first machines
that helped humans do arithmetic. Some of the most important contributions towards
the development of electronic computers are listed here.

12.1.1 Abacus (1000–500BC)

The abacus was the first aid to calculation, possibly invented in Babylonia (now Iraq).
The improved speed of calculation ensured the success of the abacus, which is still
used today in some countries.

For more information, see:

• http://en.wikipedia.org/wiki/Abacus

239

http://en.wikipedia.org/wiki/Abacus

12.1 Early history HISTORY

12.1.2 Arabic numerals

Arabic numerals were introduced to Europe (800-1000 AD). The Arabic system included
a number for zero, and greatly simplified calculations. It is the decimal system we still
use today.

For more information, see:

• http://en.wikipedia.org/wiki/Arabic_Numerals

12.1.3 Wilhelm Schickard (1592–1635)

Wilhelm Schickard built the first known automatic calculator in 1623. It was known at
the time as a mechanical calculating clock. It could add and subtract numbers up to six
digits. It never made it past the prototype stage.

For more information, see:

• http://en.wikipedia.org/wiki/Wilhelm_Schickard

12.1.4 Blaise Pascal (1623–1662)

Blaise Pascal was the son of a tax collector. He spent many hours involved in mathe-
matical operations, which inspired him to build a mechanical calculator in 1642. Over
the next 10 years, Pascal built over 50 calculating machines and sold over a dozen.
These had the capacity for eight digits, and could do both addition and subtraction. It
was gear driven, and had a tendency to jam.

240

http://en.wikipedia.org/wiki/Arabic_Numerals
http://en.wikipedia.org/wiki/Wilhelm_Schickard

HISTORY 12.1 Early history

For more information, see:

• http://en.wikipedia.org/wiki/Pascal%27s_calculator

12.1.5 Gottfried Wilhelm von Leibniz (1646 - 1716)

Leibniz followed Pascal and built a digital calculating machine. It was gear and lever
driven, and could do multiplication, division, addition, subtraction, and even calculate
square roots using a series of additions. This device was called the “Stepped reckoner”.
It was however, somewhat unreliable.

For more information, see:

• http://en.wikipedia.org/wiki/Stepped_Reckoner

12.1.6 Joseph Jacquard (1752 - 1834)

Jacquard built an automatic weaving loom, which used punch cards to control the se-
lection of threads for weaving into complex patterns. Although it did not do any actual
computation, it is considered to be an important step in the development of the comput-
ing machine because the punch cards controlled the operations that were done. This is
an important concept that led to the design of the Babbage difference engine.

241

http://en.wikipedia.org/wiki/Pascal%27s_calculator
http://en.wikipedia.org/wiki/Stepped_Reckoner

12.1 Early history HISTORY

For more information, see:

• http://en.wikipedia.org/wiki/Jacquard_loom

12.1.7 Charles Babbage (1791 - 1871)

Charles Babbage, a mathematics professor of Cambridge, inspired by the Jacquard
Loom, designed an automatic calculating machine called a “difference engine”. In 1822
he had a working model, which was to be fully automated, and steam powered. He lost
interest in 1833 and began designing another more general machine called an Analytic
Engine. It was never completed, partially due to a lack of engineering precision.

242

http://en.wikipedia.org/wiki/Jacquard_loom

HISTORY 12.1 Early history

For more information, see:

• http://en.wikipedia.org/wiki/Charles_Babbage

12.1.8 Ada Augusta Lovelace (1816 - 1852)

Ada Augusta, Countess of Lovelace and daughter of Lord Byron is generally considered
to be the first computer programmer. She corrected some of Babbage’s errors and
added her own ideas about the calculating machine. She is credited as developing the
programming loop. However, there is some debate about the degree of her contribution
as she occupies a rather sensitive place as the first significant female figure in the
history of computing.

For more information, see:

243

http://en.wikipedia.org/wiki/Charles_Babbage

12.2 The electronic computer HISTORY

• http://en.wikipedia.org/wiki/Augusta_Ada_Lovelace

12.2 The electronic computer

The most important advances towards the electronic computer occurred during World
War II. Although significant advances were made in America, Britain and Germany, only
those made in the US continued to substantially influence computer development after
the war.

12.2.1 Dr. Herman Hollerith (1860 - 1929)

Hollerith recognised a problem in the US Census Office where he worked. The 1880
US Census took 7 years to tabulate, and the population was steadily increasing. It was
estimated that the 1890 Census would not be tabulated before starting on the 1900
census. He developed an electro-mechanical punch card tabulator, which automatically
totalled the cards.

The 1890 Census was tabulated in 3 years, and Hollerith formed the Tabulating Machine
Company. Thomas Watson joined the company in 1914, and with Watson as president,
it was renamed International Business Machines (IBM) in 1924.

For more information, see:

• http://en.wikipedia.org/wiki/IBM

12.2.2 Atanasoff-Berry Computer (ABC)

John Vincent Atanasoff and Clifford E. Berry developed a special purpose computer
that was designed to solve linear equations. The project to build the machine started
in 1937 and it was successfully demonstrated before the project was officially cancelled
in 1942. It was considered to be the first electronic computer, and it used the binary
number system. It was, however, not programmable as later computers were.

For more information, see:

244

http://en.wikipedia.org/wiki/Augusta_Ada_Lovelace
http://en.wikipedia.org/wiki/IBM

HISTORY 12.2 The electronic computer

• http://en.wikipedia.org/wiki/Atanasoff-Berry_Computer

12.2.3 Z3

Konrad Zuse, a German engineer built a machine known as the Z3 in 1941. It was the
first general purpose computer. It used binary mathematics and was fully capable of
performing any computation possible. It was programmed using paper tape, but used
mechanical relays, so it was not fully electronic. It was destroyed by an allied bombing
raid on Berlin in 1944. Due to his nationality and association with the Nazi war machine,
Zuse has not been given the recognition that he deserved as the creator of the first truly
general purpose computing machine.

For more information, see:

• http://en.wikipedia.org/wiki/Konrad_Zuse

12.2.4 Colossus Mark I

The Colossus Mark I was designed by Tommy Flowers as part of the British war effort.
The Colossus was an electronic computer designed to help break the German Enigma
codes. It was operational at Bletchley Park in 1944.

After the war, Winston Churchill ordered the Colossus computers to be dismantled. The
blueprints were burned and all information about the machines was classified as a state
secret. It was not until the Official Secrets Act ended in 1976 that information about
Bletchley Park and the Colossus machines became publicly available. Therefore, the
design of the Colossus machines had little direct impact on the development of the
modern computing machine.

12.2.5 Harvard Mark I

Prof. Howard Aiken sought backing from Watson in 1939, and with IBM support, the
Harvard Mark I was produced in 1944. It was the first large scale digital computer
produced in America. It used relays (electromagnetic switches) instead of gears, which
was a large step forward. It took approximately 3 seconds to multiply two numbers
together. Although it was programmable, it was limited by the lack of support for a
conditional branch statement (i.e. it did not have the capacity to perform IF statements).

245

http://en.wikipedia.org/wiki/Atanasoff-Berry_Computer
http://en.wikipedia.org/wiki/Konrad_Zuse

12.2 The electronic computer HISTORY

For more information, see:

• http://en.wikipedia.org/wiki/Harvard_Mark_I

12.2.6 ENIAC

John Mauchly viewed a demonstration of the ABC computer in 1941 and later began
development (with John Eckert) of the ENIAC (Electronic Numerical Integrator and Com-
puter), which was completed in 1946 under Army sponsorship. The ENIAC used vac-
uum tubes which were 1000 times faster than relays. It was 100 feet long, 10 feet high,
and 3 feet wide, but could do a multiplication in 3 milliseconds. This was the first fully
electronic computer that had a complete set of instructions, and could perform any com-
putation. Some programs required the machine to be rewired. They later created the
UNIVAC I.

246

http://en.wikipedia.org/wiki/Harvard_Mark_I

HISTORY 12.3 Commercialisation

For more information, see:

• http://en.wikipedia.org/wiki/ENIAC

12.2.7 John von Neumann (1903 - 1957)

John von Neumann who worked with both Eckert and Mauchly formed the Institute for
Advanced Studies (IAS). He developed a general purpose computing machine, the IAS
Computer (1945), which was capable of being programmed. Von Neumann is credited
with the design of a computer system where the program was stored in main memory,
the same place as the data. This design, known as the von Neumann architecture is
the basis for the computers that we use today.

For more information, see:

• http://en.wikipedia.org/wiki/Von_Neumann

12.3 Commercialisation

In 1952, IBM released its first commercial electronic computer. Computers continued to
play an important part in military and academic institutions, but over the next 20 years,
computers began to be used in business. The telephone companies were one of the first
industries to embrace computer technology, using computers to route communications
signals.

As technology developed, the size of computer decreased. The first generation of com-
puters used vacuum tubes (1951 - 1958) which were large and unreliable.

The invention of the transistor in 1947 by Bell Telephone Lab resulted in the old glass
vacuum tubes (3 - 5cm long) being replaced with a small, cheap and reliable electronic

247

http://en.wikipedia.org/wiki/ENIAC
http://en.wikipedia.org/wiki/Von_Neumann

12.4 The personal computer industry HISTORY

component (approx. 0.5 cm long), and defined the second generation of computers
(1959 - 1964).

Later, the invention of the Integrated Circuit in 1959 by Texas Instruments/Fairchild
Semiconductors started the third generation of computers (1965 - 1971). These sili-
con chips stored over 1000 transistors on a single piece of silicon. Finally, the fourth
generation of computers began around 1971 with the use of large scale integrated cir-
cuits (LSI) and very large scale integrated circuits (VLSI). It was shortly afterwards that
the personal computer industry began.

12.4 The personal computer industry

The personal computer industry is unique in the business world in many ways. It grew
incredibly quickly from its beginning in 1975 to a billion dollar industry within 5 years.
The industry was created and controlled by kids who had no formal business training.
It is an industry where products must be recreated every 18 months, and competition is
intense. It is an industry in which anyone can become a millionaire.

12.4.1 Mainframes

Computers were once large complex machines that were only affordable to large busi-
nesses. Large companies built the computers, sold them directly to the customer (busi-
ness or government), serviced them for a monthly fee, and wrote the software which
they licensed to the customer for another monthly fee. The computer maker made as
much money from the post-sales servicing as they did from selling it in the first place.

There was only a small market for these machines, primarily in research institutions,
government departments or very big businesses. An ordinary person had to get per-
mission to even get close to them, and had to pay for the time spent using them. Many
of these computers were controlled by IBM.

12.4.2 Xerox

In 1969, Xerox opened the Palo Alto Research Center (PARC). During the early 70’s,
Xerox decided not to enter the computing market. At this time they were already being
investigated for monopolistic business practices. By 1977, half of Xerox’s revenue was
spent on defence in court. However, Xerox PARC’s research contributed significantly

248

HISTORY 12.5 The first personal computer—Altair 8800

to many of the advances in computer technology, including Ethernet, WYSIWYG, the
development of the GUI (as we know it), the invention of Laser Printers and the devel-
opment of Smalltalk (the first functional language).

12.4.3 Intel

The first integrated circuit was announced by Fairchild Semiconductors in 1959. Nine
years later, in 1968, Robert Noyce and Gorden Moore left Fairchild Semiconductors and
formed Intel Corporation. Their microprocessors became more and more powerful, and
in 1974 they created the Intel 8080 chip. This microprocessor had all the components
needed for an entire computer. These chips were available to anyone, and the time was
right for people to build their own machines.

12.5 The first personal computer—Altair 8800

Ed Roberts was interested in computers, but could not afford to own one. Like many
other enthusiasts, he wanted to build his own computer with the new affordable micro-
processors from Intel. He ran a small calculator company called MITS, but nobody was
buying his calculators, and MITS was going bankrupt. Ed hoped to save MITS by mar-
keting a kitset computer, and the bank reluctantly agreed to loan him the $65,000 he
needed. He was considered an optimist for expecting to sell 800 in a year. The first Altair
kitset appeared on the cover of Popular Electronics in January 1975. Within a month he
was receiving 250 orders a day. The personal computer industry was born. Ed Roberts
assembled 40,000 Altairs before he sold the business in 1978 when it became just too
competitive.

12.5.1 Microsoft

Paul Allen and Bill Gates had been friends since high school, and had already had
experience writing software for mainframe computers. The picture on the Popular Elec-
tronics cover excited Allen and Gates who realised that there would be a market for
software, and a lot of money could be made. Fearing they were already too late, they
wrote a version of BASIC which would work on the 8080 chip. Ed Roberts was shown a

249

12.5 The first personal computer—Altair 8800 HISTORY

demo after which he agreed to package the BASIC language with the Altair. Gates quit
Harvard University and together with Allen formed Micro-Soft (later renamed Microsoft).

Paul Allen (left) and Bill Gates (right)

12.5.2 Homebrew Computer Club

The Altair took about 40 hours to put together, and even then it didn’t always work. If
it did work, you ended up with a box with a row of switches and a set of lights. There
was no keyboard, no screen, and no storage device for information. It was difficult to
use, so people formed clubs where they could discuss problems, and show off new
developments. The Homebrew Computer Club was one such club in which everyone
shared their solutions and helped each other to learn. It was here that Steve Wozniak
and Steve Jobs first met.

250

HISTORY 12.6 Apple

12.6 Apple

Steve Wozniak was a hardware genius who began building his own computer at the
Homebrew Computer Club. His technical ability attracted Steve Jobs who lacked the
expertise of Wozniak, but had vision, drive and charisma.

Wozniak’s first computer was called the Apple I, and consisted of a single circuit board
without even a case. Steve Jobs managed to sell 50 Apple I’s which convinced him
that there was a market for a personal computer. His dream was to make computing
available to everyone, at an affordable price. Some venture capital made the dream
a possibility. Steve Wozniak designed the hardware, and Steve Jobs did the rest, de-
manding the Apple II looked like a piece of consumer electronics.

The Apple II was completed in 1977 and launched in 1978 at the West Coast Computer
Faire. Two years later when Apple became a public company, both Steve Jobs and
Steve Wozniak became millionaires.

12.6.1 VisiCalc

Apple computers initially had trouble finding a market. Businesses used mainframes,
and nobody had a use for a computer at home, so sales of the Apple II were limited to
enthusiasts, that is, until VISICALC.

Dan Bricklin and Bob Frankston invented what they called a visible calculator. It was
a program which helped in financial planning. A table was created where the value in
each cell in the table was related to the others. This meant that changing the value in
one cell altered the value in the other cells accordingly. Today we call such programs
spreadsheets.

After a slow start, businessmen everywhere became excited about the spreadsheets,
and they all had to have it. VISICALC was only available on the Apple, and it was so
useful that it justified buying an Apple computer. Sales soared.

251

12.7 IBM PC HISTORY

12.7 IBM PC

By 1980, the personal computer market was worth over 1 billion dollars. IBM wanted to
enter the market, but the company was designed to build very large scale computers,
not small ones. The internal structuring of the company meant that it would take too
long to develop a product, and it could not compete with smaller companies such as
Apple.

Bill Lowe proposed a daring plan. To save time, they would not build a computer from
scratch, but instead would buy existing components from other companies and assem-
ble them. This concept of “open architecture” was alien to IBM, and difficult to sell to the
corporate executives, but with the backing of the Chairman, Bill Lowe’s team developed
an IBM PC within a year. The IBM XT was released in 1983 and sold for $3,000.

IBM realised that competitors could copy the same architecture, but knew that they
would always be able to buy in bulk, and thought that the bulk discount would ensure
that they could always produce the machines for a lower price than competitors. The
only remaining step to secure entry to the PC market was software development. A
computer needs an operating system and a language used to write programs before it
can be really useful, and IBM had neither.

12.7.1 CPM

Gary Kildall was a PhD graduate who programmed mainframes. During the early 70’s
he wrote an operating system for himself, and found that others were interested in pur-
chasing it, so he formed a company called Digital Research. As personal computers
were developed, Gary produced a version of his operating system known as CPM for
them. By 1980, he had already sold 600,000 copies, so he was the obvious choice for
IBM. However, he was arrogant, and refused to sign a contract with IBM because of a
non-disclosure clause. IBM looked for alternatives.

252

HISTORY 12.7 IBM PC

12.7.2 Microsoft DOS

At the time IBM needed software, Microsoft was already the biggest supplier of com-
pilers (programs that allow you translate from a high level programming language to a
machine language that the CPU understands), but they had never written an operating
system. IBM was willing to buy languages from Microsoft, but not without an operating
system to run them on.

Fearing that they would lose the contract, Bill Gates promised to produce an operating
system for IBM, but did not have time to write one himself. The solution was provided
by Tim Patterson, a programmer who wrote an operating system based on CPM. He
called it QDOS, and sold it to Seattle Computer Products. Bill Gates bought the licence
for QDOS from SCP for $50,000. Two days later they handed it over to IBM under the
name MS-DOS.

Microsoft was paid a fixed fee (about $80,000) with no royalties for both MS-DOS and
BASIC. In itself, this deal wasn’t worth much, but the key to Microsoft’s success was
that IBM had no control over the licensing of the software to other people. Microsoft
expected other people to build machines compatible with the IBM PC to whom they
could license their software. And that is exactly what happened.

12.7.3 Clones

The chips used in IBM’s open architecture were made by Intel. These chips were sold to
anyone who was interested, and many people were. In 1982, one year after the IBM PC
was shipped, a group of engineers got together and formed a company called Compaq
in order to create a computer compatible with the IBM PC. They bought the same chips
from Intel, and by reverse engineering, produced a computer which behaved the same
as an IBM PC, but was a little cheaper.

In the first year of business, Compaq sales reached $111 million. Soon, there were
many companies repeating the process and producing their own clones, always a little
cheaper than IBM. Driving the sales of both the IBM PC and all the clones was another
spreadsheet. Based on VISICALC, Lotus 1-2-3 provided a spreadsheet for the IBM PC.
Within a year, Lotus was worth $150 million, and you no longer needed to buy an Apple
II.

12.7.4 Compaq 386

Once IBM had entered the personal computer industry, it threatened to dominate the
entire market. The early success of Apple computers was beginning to fade in the mid
80’s and IBM held 50% of the market. People were concerned that IBM would swal-
low the personal computer market and maintain a complete monopoly over computer
technology.

The turning point for IBM came in September 1986 when Compaq released a new IBM
compatible computer based on the new Intel 80386 chip. This computer was released
before IBM had released its own version based on the same chip. Compaq showed the
world that IBM could be beaten, and others could compete against “Big Blue”.

253

12.8 Apple Macintosh HISTORY

The prices of the clones kept falling, and IBM could not keep pace. By the early 90’s,
IBM was losing enormous amounts of money (5-6 million dollars a day), and it retreated
from the PC industry, defeated by its own open architecture design.

12.8 Apple Macintosh

In 1968 Doug Engelbart of the Stanford Research Institute publicly demonstrated a
word processor which used windows to display the text. Xerox PARC developed this
idea further by creating a graphical user interface for the computers they were using
for research. These computers featured windows, pulldown menus, a mouse and a
corresponding pointer for operating the system.

In 1979 Steve Jobs was given a tour of PARC, and it was this graphical interface which
caught his attention. He had the vision to see that an easy to use interface (like the one
in PARC) would open up computing to the masses, and allow everyone to share the
computing experience.

Steve Jobs set about creating a computer that anyone could use. It began as the Lisa,
and was later redesigned and renamed the Macintosh. It was released in January 1984.
Over time, driven by Lotus 1-2-3 and backed by its good name, IBM began to overtake
sales of the Apple II. The Macintosh had to be good, and it needed software. It needed
something that IBM PC’s couldn’t do, and a man named John Warnock provided the
solution.

12.8.1 Adobe

John Warnock had developed a new technology, which allowed laser printers to print
exactly what was displayed on the screen. He left Xerox PARC and founded Adobe
systems to develop the concept of WYSIWYG (what you see is what you get). Steve
Jobs recognised the value of his work, and Apple invested in 20 percent of Adobe.

The quality of laser printed images, combined with Macintosh’s ease of use created
a brand new industry, desk-top publishing. The Macintosh had found its place in the

254

HISTORY 12.9 Microsoft Windows

market. Apple was still in trouble however, but Steve Jobs would not admit it. He
disagreed with the management of Apple, and in 1985 sold all his shares in Apple and
left in disgust.

12.9 Microsoft Windows

Impressed by the GUI concept of the Macintosh, Microsoft began to build its own ver-
sion, called Windows. The first couple of versions weren’t very good, but then in 1990,
Windows 3.0 was launched, and it was good enough to compete with the Macintosh.

People could now do the same things on a Macintosh that they did on an IBM compati-
ble, but for a lower cost, since the IBM clones were much cheaper than the Macintosh.
Apple computers became a fading influence in the PC industry. In August 1995 Mi-
crosoft released Windows 95 with a GUI that was extremely similar to the Macintosh,
and Apple was consigned to a niche in the market.

Although Windows 95 was unstable and enormously difficult to install, it looked good
and made the IBM Compatible PC easy to use for the first time.

12.10 Conclusion

The computer industry is driven by technology that gets more powerful, yet cheaper
every day. In order for a computer to survive this terrible competition, it must have
both hardware and software. The software available for a machine has an overriding
influence upon the consumer. The IBM compatible computer has become so popular
because of a self-reinforcing cycle in the marketplace. People write software for the
most popular machine because they can sell more programs. The more software that
is available, the more popular the machine will become. Good products are ignored or
overshadowed by marketing, and market forces. Steve Jobs had a vision of every home
owning a computer. Bill Gates had a vision that they would all run Microsoft software.
Both visions have come true.

12.11 References
• Accidental Empires. Robert Cringely
• A Short History of the Computer, Jeremy Meyers

255

	Learning Outcomes
	Digital information
	Analogue vs. Digital Systems
	Analogue Systems
	Digits
	Digital Systems

	Encoding Information Digitally
	Encoding Images
	Encoding Sounds

	Binary Numbers
	Storing Decimal Numbers in a Machine
	Bits
	Converting Binary to Decimal Numbers
	Bytes

	Recommended Reading
	Self-Test Questions

	Computer Systems
	Introduction
	Processing hardware
	Inside a CPU — Advanced, not examinable

	Storage components
	Primary memory
	Mass storage (Secondary storage)

	Input components
	Output components

	Online Publishing
	Introduction
	The World-Wide Web as a media source
	Blog
	Wiki
	Recommended Reading

	Wiki
	Introduction - What is a wiki?
	The stage one wiki
	Teaching and learning
	Expectations

	Using MediaWiki
	Logging in
	Tabs
	Article tab
	Discussion tab
	Edit tab
	Editing conflicts
	History tab
	Move tab
	Watch tab

	Markup
	Headings
	New lines
	Lists
	Indentation
	Pre-formatted text
	Horizontal lines
	Adding the author's name
	Links
	Character formatting

	Creating a new page
	Following a link
	Creating a new link

	References

	HTML
	Versions of HTML and XHTML
	Document Type Definition
	Encoding standards

	Hypertext Markup Language (HTML)
	Tags
	Nested tags
	Attributes of tags

	Essential HTML tags
	<html>
	<head>
	<title>
	<body>
	A simple example

	Block-level tags
	<h1> to <h6>
	<p>
	<hr>
	<pre>
	Tables
	Lists

	Inline tags
	

	
	<a>

	Uniform Resource Locator
	Protocol
	Host Name
	Path
	Resource Name
	Examples

	Comments
	HTML5 Semantic Elements
	Videos in HTML
	Validating your pages
	Quick Reference List
	References

	CSS
	Introduction
	Style definitions
	Changing multiple properties for a selector
	Defining a style that has multiple selectors
	The class selector
	The id selector
	Other selectors

	Location of styles
	An external style sheet
	An internal style sheet
	An inline style
	Applying styles in order

	<div> and
	Properties
	Font
	Background
	Text
	Borders
	Table Borders
	Lengths
	Colours

	Advanced CSS (not examinable)
	Box model
	Padding
	Margins
	Positioning
	Dimension

	References

	PowerPoint
	Overview
	Getting started
	Views
	Options

	Adding content
	Title slide
	Adding a new slide
	Bullet Points
	Headers and Footers
	Drawing tools
	Pictures

	Making beautiful slides
	Formatting text
	Background and Font colour
	Design Theme
	Colour scheme
	Design layout
	Using Masters

	Interactivity — animation and multimedia
	Slide transitions
	Linking to external resources
	Custom animation
	Package for CD

	Presentation
	Rehearsing a presentation
	Navigating during a presentation
	Annotating a presentation

	Design and presentation advice
	Printing the presentation

	Advice on slide design
	Your slides support you, not replace you!
	Aim for consistency
	Keep it simple
	Limit bullet points and text
	Limit animation
	Limit sound and keep it professional
	Use high-quality visuals
	Design your own templates
	Make good use of colour
	Don't do too much in a single slide
	Choose fonts well
	Tell a story

	References and further reading

	Spreadsheets
	Visicalc
	Introduction
	Menus and Toolbars

	Adding data
	Entering data
	Selecting a range of cells
	Selecting an entire row or column
	Copying and pasting
	Filling data
	Insert/delete rows and columns

	Formula
	Relative references
	Absolute references
	Good spreadsheet design
	Defining names

	Functions
	Inserting functions
	Common mathematical and statistical functions
	Counting functions
	Conditional Functions
	Information functions
	Lookup functions
	VLOOKUP Examples

	Sorting, filtering and removing duplicates
	Sorting
	Filtering
	Remove duplicates

	Freezing, locking and hiding cells
	Freezing cells
	Splitting panes
	Hide and display cells

	Cell Formatting
	Font formatting
	Alignment
	Number formatting
	Cell Formatting
	Example

	Charts
	Annotating data using the drawing tools
	Shapes
	Grid

	Adding comments to cells
	Multiple worksheets
	Printing

	Databases
	Introduction
	Databases and Database Management Systems

	Elements of a database
	Table
	Record
	Fields
	Relationships between tables
	What can we do with a database?
	What are some advantages of databases?

	Creating your own database
	Working with database objects

	Tables
	Design view
	Defining fields
	Field descriptions
	Field properties
	Primary keys
	Foreign key
	Entering data
	Creating more than one table
	Lookup fields
	Formatting datasheets

	Forms
	Form tool
	Form wizard
	Navigating through forms
	Changing the layout

	Queries
	Filtering results
	Query Design view

	Reports
	Report tool
	Report wizard
	Design View

	Structured Query Language (SQL)
	SELECT
	ORDER BY
	WHERE

	Python
	Computer programming
	Using IDLE to program in Python
	Using an interactive interpreter
	Writing a Python program

	Statements
	Comments
	A first program
	Printing
	Strings
	Numbers
	Printing numbers

	Mathematical operations
	Order of precedence

	String operations
	Variables
	Assigning a value to a variable
	Using the value stored in a variable
	Assignment happens last

	Reading input from the user
	Making Decisions: if, elif, and else statements
	If…Else Statement
	If…Elif…Else Statement
	Comparison operators
	Logical operators
	Example

	While loops
	Example

	Turtle Graphics
	Importing Python Modules
	Basic Turtle Commands
	Example - Drawing A Square
	Example - Using A While Loop For Drawing

	LaTeX
	Introduction
	Why would we use LaTeX?

	Overview of the language elements
	Comments
	Whitespace
	Commands
	Environments
	Special characters
	Paragraphs and line breaks

	Document class
	Classes of document
	Preamble
	A simple LaTeX document

	Titles
	Structuring a document
	Parts
	Chapters
	Sections and subsections

	Table of contents
	Footnotes
	Symbols used in text
	Quote marks
	Special symbols
	Dashes
	Ellipsis
	Spaces

	Text styles
	Emphasis
	Font styles
	Font size

	Alignment environments
	Left aligned text
	Right aligned text
	Centred text

	List environments
	Unordered lists
	Ordered lists
	Description lists

	Quote and quotation environments
	Quote
	Quotation

	Verbatim environment
	Mathematics mode
	Inline mathematics
	Display mathematics
	Equation environment

	Mathematics
	Greek letters
	Exponents and subscripts
	Square roots
	Fractions
	Other common operators

	Adding functionality with packages
	Graphicx package

	References

	History
	Early history
	Abacus (1000–500BC)
	Arabic numerals
	Wilhelm Schickard (1592–1635)
	Blaise Pascal (1623–1662)
	Gottfried Wilhelm von Leibniz (1646 - 1716)
	Joseph Jacquard (1752 - 1834)
	Charles Babbage (1791 - 1871)
	Ada Augusta Lovelace (1816 - 1852)

	The electronic computer
	Dr. Herman Hollerith (1860 - 1929)
	Atanasoff-Berry Computer (ABC)
	Z3
	Colossus Mark I
	Harvard Mark I
	ENIAC
	John von Neumann (1903 - 1957)

	Commercialisation
	The personal computer industry
	Mainframes
	Xerox
	Intel

	The first personal computer—Altair 8800
	Microsoft
	Homebrew Computer Club

	Apple
	VisiCalc

	IBM PC
	CPM
	Microsoft DOS
	Clones
	Compaq 386

	Apple Macintosh
	Adobe

	Microsoft Windows
	Conclusion
	References

