
TURING AWARD LECTURE 

Reflections on Trusting Trust 
To what extent should one trust a statement that a program is free of Trojan 
horses? Perhaps it is more important to trust the people who wrote the 
software. 

KEN THOMPSON 

INTRODUCTION 
I thank the ACM for this award. I can' t  help but feel 
that I am receiving this honor for t iming and serendip- 
ity as much as technical  merit. UNIX 1 swept into popu- 
larity with an industry-wide change from central main- 
frames to autonomous minis. I suspect that Daniel Bob- 
row [1] would be here instead of me if he could not 
afford a PDP-10 and had had to "settle" for a PDP-11. 
Moreover, the current  state of UNIX is the result of the 
labors of a large number  of people. 

There is an old adage, "Dance with the one that 
brought you," which means that I should talk about 
UNIX. I have not worked on mainstream UNIX in many 
years, yet I continue to get undeserved credit  for the 
work of others. Therefore, I am not going to talk about 
UNIX, but I want  to thank everyone who has contrib- 
uted. 

That brings me to Dennis Ritchie. Our  collaboration 
has been a thing of beauty. In the ten years that we 
have worked together, I can recall only one case of 
miscoordination of work. On that occasion, I discovered 
that we both had wri t ten the same 20-line assembly 
language program. I compared the sources and was as- 
tounded to find that they matched character-for-char- 
acter. The result of our work together has been far 
greater than the work that we each contributed. 

I am a programmer.  On my 1040 form, that is what  I 
put down as my occupation. As a programmer,  I wri te  

1 UNIX is a trademark of AT&T Bell Laboratories. 
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programs. I would like to present to you the cutest 
program I ever wrote. I will do this in three stages and 
try to bring it together at the end. 

STAGE I 
In college, before video games, we would amuse our- 
selves by posing programming exercises. One of the 
favorites was to write the shortest self-reproducing pro- 
gram. Since this is an exercise divorced from reality, 
the usual vehicle was FORTRAN. Actually,  FORTRAN 
was the language of choice for the same reason that 
three-legged races are popular. 

More precisely stated, the problem is to wri te  a 
source program that, when compiled and executed, will  
produce as output an exact copy of its source. If you 
have never done this, I urge you to try it on your own. 
The discovery of how to do it is a revelat ion that far 
surpasses any benefit obtained by being told how to do 
it. The part about "shortest" was just an incentive to 
demonstrate skill and determine a winner.  

Figure 1 shows a self-reproducing program in the C 3 
programming language. (The purist  will  note that the 
program is not precisely a self-reproducing program, 
but will produce a self-reproducing program.) This en- 
try is much too large to win a prize, but it demonstrates 
the technique and has two important  properties that I 
need to complete my story: 1) This program can be 
easily wri t ten by another program. 2) This program can 
contain an arbi trary amount  of excess baggage that will 
be reproduced along with the main algorithm. In the 
example, even the comment  is reproduced. 
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(213 lines deleted) 
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• The string s is a 
• representation of the body 
• of this program from '0 '  
• to the end. 
, /  

main( ) 
{ 

int i; 

printf("char\ts[ ] =  {kn"); 
for(i=0; s[ i ] ;  i++)  

printf("~t%d, \n" ,  s[ i ]); 
printf("%s", s); 

I 
Here are some simple transliterations to al low 

a non-C programmer to read this code. 
= assignment 
= =  equal to .EQ. 
!= not equal to .NE. 
+ +  increment 
' x '  single character constant 
"xxx" multiple character string 
%d format to convert to decimal 
%s format to convert to string 
kt tab character 
kn newline character 

F I G U R E  1. 

STAGE II 
The C compiler  is wri t ten in C. What I am about to 
describe is one of many "chicken and egg" problems 
that arise when compilers are wri t ten in their  own lan- 
guage. In this case, I will use a specific example from 
the C compiler. 

C allows a string construct to specify an init ialized 
character  array. The individual  characters in the string 
can be escaped to represent  unprintable  characters• For 
example,  

"Hello wor ld \n"  
represents a string with the character  "\n," representing 
the new line character. 

Figure 2.1 is an idealization of the code in the C 
compiler that interprets the character  escape sequence. 
This is an amazing piece of code. It "knows" in a com- 
pletely portable way what  character  code is compiled 
for a new line in any character  set. The act of knowing 

then allows it to recompile itself, thus perpetuat ing the 
knowledge. 

Suppose we wish to alter the C compiler  to include 
the sequence "\v" to represent the vertical tab charac- 
ter. The extension to Figure 2.1 is obvious and is pre- 
sented in Figure 2.2. We then recompile the C com- 
piler, but we get a diagnostic. Obviously, since the bi- 
nary version of the compiler does not know about "\v," 
the source is not legal C. We must "train" the compiler. 
After it "knows" what  "\v" means, then our new 
change will become legal C. We look up on an ASCII 
chart that a vertical tab is decimal 11. We alter our 
source to look like Figure 2.3. Now the old compiler  
accepts the new source. We install the resulting binary 
as the new official C compiler  and now we can write 
the portable version the way we had it in Figure 2.2. 

This is a deep concept. It is as close to a "learning" 
program as I have seen. You simply tell it once, then 
you can use this self-referencing definition. 

STAGE III 
Again, in the C compiler, Figure 3.1 represents the high 
level control of the C compiler  where  the routine "com- 

c = next( ); 
if(c != ' \ V )  

return(c); 
c = next( ); 
if(c = =  ' \ V )  

re turn( ' \ \ ' ) ;  
if(c = =  'n ' )  

return('kn '); 

F I G U R E  2 .2 .  

c = next( ); 
if(c ~= ' \ v )  

return(c); 
c = next( ); 
if(c = =  ' \ V )  

return( 'kV);  
if(c = =  'n')  

re tum( 'kn ' ) ;  
if(c = =  'v ' )  

re turn( ' \v ' ) ;  

F I G U R E  2.1 .  

c = next( ); 
if(c != ' \ V )  

return(c); 
c = next( ); 
if(c = =  ' \ v )  

re turn( ' \ \ ' ) ;  
if(c = =  'n ' )  

return( ' \  n ' ) ;  
if(c = =  ' v ' )  

return(11 ); 

F I G U R E  2.3 .  
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pile" is called to compile the next line of source. Figure 
3.2 shows a simple modification to the compiler  that 
will del iberately miscompile source whenever  a partic- 
ular pat tern is matched. If this were not deliberate,  it 
would be called a compiler  "bug." Since it is deliberate,  
it should be called a "Trojan horse." 

The actual bug I planted in the compiler  would 
match code in the UNIX "login" command. The re- 
placement  code would miscompile the login command 
so that it would accept ei ther the intended encrypted 
password or a part icular  known password. Thus if this 
code were installed in binary and the binary were used 
to compile the login command,  I could log into that 
system as any user. 

Such blatant code would not go undetected for long. 
Even the most casual perusal  of the source of the C 
compiler would raise suspicions. 

The final step is represented in Figure 3.3. This sim- 
ply adds a second Trojan horse to the one that a lready 
exists. The second pattern is a imed at the C compiler. 
The replacement  code is a Stage I self-reproducing pro- 
gram that inserts both Trojan horses into the compiler. 
This requires a learning phase as in the Stage II exam- 
ple. First we compile the modified source with the nor- 
mal C compiler to produce a bugged binary. We install 
this binary as the official C. We can now remove the 
bugs from the source of the compiler  and the new bi- 
nary will reinsert the bugs whenever  it is compiled. Of 
course, the login command will remain bugged with no 
trace in source anywhere.  

compile(s) 
char ,s; 
I 

F IGURE 3.1. 

compile(s) 
char ,s; 
I 

if(match(s, "pattern")) { 
compUe("bug"); 
return; 

J 
F IGURE 3.2. 

compile(s) 
char ,s; 

if(match(s, "pattern1 ")) { 
compile ('bug1 "); 
return; 

I 
if(match(s, =pattern 2")) I 

compile ('bug 2"); 
return; 

J 
F IGURE 3.3. 

MORAL 
The moral is obvious. You can' t  trust code that you did 
not totally create yourself. (Especially code from com- 
panies that employ people like me.) No amount  of 
source-level verification or scrut iny will  protect you 
from using untrusted code. In demonstrat ing the possi- 
bility of this kind of attack, I picked on the C compiler. 
I could have picked on any program-handling program 
such as an assembler, a loader, or even hardware mi- 
crocode. As the level of program gets lower, these bugs 
will be harder  and harder  to detect. A well- instal led 
microcode bug will be almost impossible to detect. 

After trying to convince you that I cannot be trusted, 
I wish to moralize. I would like to criticize the press in 
its handling of the "hackers," the 414 gang, the Dalton 
gang, etc. The acts performed by these kids are vandal-  
ism at best and probably trespass and theft at worst. It 
is only the inadequacy of the cr iminal  code that saves 
the hackers from very serious prosecution. The compa- 
nies that are vulnerable to this activity, (and most large 
companies are very vulnerable) are pressing hard to 
update the cr iminal  code. Unauthorized access to com- 
puter  systems is a lready a serious crime in a few states 
and is current ly  being addressed in many more state 
legislatures as well  as Congress. 

There is an explosive situation brewing. On the one 
hand, the press, television, and movies make heros of 
vandals by calling them whiz kids. On the other hand, 
the acts performed by these kids will soon be punisha- 
ble by years in prison. 

I have watched kids testifying before Congress. It is 
clear that they are completely unaware  of the serious- 
ness of theft acts. There is obviously a cultural  gap. The 
act of breaking into a computer  system has to have the  
same social stigma as breaking into a neighbor 's  house. 
It should not mat ter  that the neighbor 's  door is un- 
locked. The press must learn that misguided use of a 
computer  is no more amazing than drunk driving of an 
automobile. 

Acknowledgment. I first read of the possibility of such 
a Trojan horse in an Air  Force cri t ique [4] of the secu- 
rity of an early implementat ion of Multics. I cannot find 
a more specific reference to this document.  I would 
appreciate it if anyone who can supply this reference 
would let me know. 
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Purify:
Fast Detection of Memory Leaks and Access Errors

Reed Hastings and Bob Joyce
Pure Sofware Inc.

Abstract

This paper describes Purifyru, a software testing and quality assurance Ool that detects

memory leaks and access erors. Purify inserts additional checking instructions directly
into the object code produced by existing compilers. These instructions check every
memory read and write performed by the program-under-test and detect several types of

access errors, such as reading uninitialized memory or witing to freed memory. Purify
inserts checking logic into all of the code in a program, including third-party and vendor

object-code libraries, and verifies system call interfaces. In addition, Purify tracks memory

usage and identifies individual memory leals using a novel adaptation of garbage

collection techniques. Purify produces standard executable files compatible with existing
debuggers, and currently runs on Sun Microsystems' SPARC family of workstations.
Purify's neafly-comprehensive memory access checking slows the target program down
typically by less than a facor of three and has resulted in significantly more reliable

software for several development goups.

L. Introduction

A single memory access error, such as reading from uninitialized memory or writing to freed memory can cause a

progam to act unpredicAbly or even crash. Yet, it is nearly impossible to eliminate all such errors from a non-trivial

progam For one thing, these erors may produce observable effects infrequently and intermittently. Even when

p-gru.r are tested intensively for extended periods, errors can and do escape detection. The unique combination of

litco*stanos required for an error to occur and for its symptoms lo becomc visible may be virtually impossible to

create in the development or test environment. As a result, proglammers spend much time looking for these errors,

but end-users may experience tlem first. [Miller90] empirically shows the continuing prevalence of access errors in

many widely-used Unix Programs.

Even when a memory access error triggers an observable symptom, the error can take days to nack down and

eliminate. This is due to the frequently delayed and coincidental connection between the cause, typically a memory

comrption, and the symptom, typically a crash upon the eventual reading of invalid data.

Mennry leaks, rhat is, memory allocated but no longer accessible to the program, slow program execution by

increasing paging, and can cause progams to run out of memory. Memory leaks are more difficult to detect than

illegal memory accesses. Memory leaks occur because a block of memory was not freed, and hence are errors of

omission, rather than commission. In addition, memory leaks rarely produce directly observable elrors, but instead

cumulatively degrade overall performance.
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Once found, memory leaks remain challenging to fix. If memory is freed prematurely, memory access errors can
result. Since access errors can introduce intermittent problems, memory leak fixes may require lengthy testing. Often,
complicated memory ownership prolocols are required !o administer dynamic memory. Incorrectly coded boundary
cases can lurk in otherwise stable code for years.

Both memory leaks and access errors are ffisy !o introduce into a program but hard to eliminate. Without facilities for
detecting memory access errors, it is risky for programmers to attempt to reclaim leaked memory aggressively
because that may introduce freed-memory access enors with unpredictable results. Conversely, without feedback on
memory leaks, programmers may waste memory by minimizing f ree calls in order to avoid freed-memory access
errors. A facility that reported on both a program's memory access errors and its memory leaks could greatly benefit
developers by improving the robustness and performance of their prognms.

This paper presents Puri$,, a tool that developers and testers are using to find memory leaks and access errors. If a
program reads or writes freed memory reads or writes beyond an array boundary, or reads from uninitialized
memory Purify detects the error at the point of occurrence. In addition, upon demand, Purify employs a garbage
deteclor to find and identify existing memory leaks.

2. Memory Access Errors

Some memory access elrors are detectable statically (e.g. assigning a pointer into a short); others are detectable only
at run-time (e.g. writing past the end of a dynamic array); and others are detectable only by a programmer (e.g.
storing a person's age in the memory intended to hold his heighQ. Compilers and tools such as lint find statically-
detectable errors. Purify finds run-time-detectable errors.

Errors detectable only at run-time are challenging to eliminate from a progmm. Consider ttre following example
Purify session, running an application that is using the Xll Window System Release 4 (XllR4) Intrinsics Toolkit
(Xt). The application is called my_prog, and has been prepared by Purify.

tutorial* myjrog -display exodus: 0
Pur i fy :  Dynamic  Er ror  Check ing  Enab led .  Vers ion  I .3 .2 .
(C)  1990,  1991 Pure  Sof tware ,  fnc .  Paten ts  Pend inq .

..  .program runs, untiJ. the user cJ.oses a vindow whiTe one of j ts dja-
T o g s  i s  s t i J 1  u p , .  .

Purify: Array Bounds Violat ion:
Writ ing 88 bytes past the end of an array at 0x4a7c88 ( in heap)
Error occurred whi-Ie in:

bcopy  (bcopy .o ;  pc  -  0x5d0c)

_XtDoPhase2Dest roy  (Dest roy .o , .  I ine  259)
XtDispatchEvent (Event.o; pc = 0x33bfd8)
XtAppMain loop (Event .o ;  pc  :  0x33c48c)
XtMain loop (Event .o ;  pc  -  0x33c454)
m a i - n  ( 1 c i . o , '  1 1 n e  4 4 5 )

The ar ray  is  160 by tes  long,  and was a l loca ted  by  ma11oc ca l l_ed f rom:
X t M a I l o c  ( A I l o c . o ;  p c  :  0 x 3 2 b 7 l - c )
XtRea l - loc  (A1 loc .o ;  pc  =  0x32b754)
XtDestroywidget (Destroy. o; J- ine 2921
cl-ose_window (i-nput .  o, '  l ine 642 )
maybe_c lose_window (u t i l .  o , '  l i ne  2003)

XtCa l lCa l lbacks  (Ca l lback .o ;  l ine  294)
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The Purify eror message says that bcopy, called from _xtDoPhase2Destroy, is overwriting an array end, and
ttrat ttre target array was allocated by xtoestroywidget,lne292.

void XtDestroyWidget (widget)
Widget widget;

{

292 app->destroy_l ist  :  (DestroyRec*)XtReal loc(
293 (char*) app->destroy_I ist ,
294 (unsigned) sizeof (DestroyRec) *app->destroy_1ist_size) ;

; '

From this one can see that the target array is a destroy list, an internal data structure used as a queue of pending
destroys by the two-phase Intrinsics destroy protocol. In order !o undentand why the end of the array is geuing
overwritten, one must study the caller of bcop% _xtDoPhase2Destroy.

void _XtDoPhase2Destroy (appr dispatch_level)
XtAppcontext appt
int dispatch_level,'

2 5 3  i n t i = 0 ;
254 DestroyRec* dr :  apP->destroy_1ist ;
255 while (i < app-)destroy_count) {
256 if (dr->dispatch_1eve1 >= dispatch_Ievel) {
2 5 7  W i d g e t w : d r - ) w i d g e t ;
258 i f  (--app->destroy_count)
259 bcopy(  (char* )  (d r+ l )  '  ( char* )d r '
250 apP->destroy_count*sizeof (DestroyRec) )  , '
267  x tPhase2Dest roy(w) ;
262 l  e lse  {
263 i++ , '

d r * * ;
)

l
)

Aided by the certain knowledge that a potentially fatal bug lurks here, one can see that the bcopy on line 259 is
intended to delete an item in the destroy list by copying the succeeding items down over the deleted one.
Unfortunately, this code only works if the DestroyRec being deleted is the first one on the list, The problem is that the
app->destroy_count on line 260 should be app->destroy_count. - i. As it is, whatever memory is
beyond the desroy list will get copied over itself, shifted 8 bytes (the sizc of one DestroyRec) down. The
resemblance to reasonable data would likely confuse the programmer debugging the evennral core dump.

lvlany people find it hard to believe that such an obvious and potentially fatal bug could have been previously
undetected in code as mature and widely used as the XllR4 Xt Intrinsics. Certainly the code was extensively tested,
but it ook a particular set of circumstances (a recursive desroy) to exercise this bug, that might not have come up in
the test suite. Even if the bug did come up in the test process, the memory comrpted may not have been important
enough to cause an easily visible symptom.

Consider the testing scenario in more detail. Assume optimistically that the test team has the resources to ensure that
every basic block is exercised by the test suite, and thus a recursive destroy is added to the test suite to exercise line
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263 above. The memory overwriting will then occur in the testing, but it'may or may not be detected. Unless the
memory corrupted is vital, and causes a visible symptom such as a crash, the tester will incorrectly conclude that thc
code is performing as desired. In contrast, if the tester had used Puriff during the testing, the error would have been
detected at the point of occwrence, and the tester would not have had to depend on further events to trigger a visible
symptom.

Thus Purify does not in any way remove the need for testing, but it does make the effort put into testing more
effective, by minimizing the unpredictability of whether or not an exercised bug creates a visible symp@m.

The effects of a library vendor missing a single memory comrption error like this Xt bug are quite serious:
applications using the Intrinsics will occasionally trash part of their memory, and some percentage of the time this
memory will be important enough to cause the application to later crash for seemingly mysterious reasons. Without a
tool like Purify to watch over a library's use and possible misuse of dynamic memory, the application developer never
knows if his application's crashes are his own code's fault or the fault of some infrequently exercised library code.
This vulnerability and uncertainty is part of the reason that many developers still insist on "rolling their own', when it
comes O utility routines.

3. Detecting Memory Access Errors

To achieve nearly-comprehensive detection of memory access errors, Purify "Eaps" every memory access a prognm
makes, other than those for instruction fetch, and maintains and checks a state code for each byte of memory.
Accesses inconsistent with the crurent state cause a diagnostic message o be printed, and the function CATCH_I\,IE
is called, on which the programmer can set a breakpoint.

Modifying the operating system to run a software trap upon every memory access would be prohibitively expensive,
because of the context switch overhead. Instead, Purify inserts a function call instruction dlecdy into a program's
object code, before every load or store. The functions called, in conjunction with ma1loc and f ree, maintain a bit
table that holds a two-bit state code for each byte in the heap, stack, data, and bss sections (the daa and bss sections
contain statically-allocated daa). The three possible states and their transitions are shown in Figure l.

FIGURE 1. Memory State Thansition Diagram

Unallocated
(unwritable and unreadable)

Allocated but uninitialized
(writable but unreadable)

Allocated and initialized
(writable and readable)

initialize
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A write to memory that contains any bytes that are currently in an unwritable state causes a diagnostic message to be
printed; a similar message is printed if the program-under-test reads bytes marked unreadable. Writing uninitialized
memory causes the memory's state to become initialized When malloc allocates memory, the memory's state is
changed from unallocated to allocated-but-uninitialized. Calling free causes ttre affected memory to enter the
unallocated state.

To carch array bounds violations, Purify allocates a small "red-zone" at 0re beginning and end of each block returned
by maIloc. The bytes in the red-zone are recorded as unallocated (unwritable and unreadable). If a program
accesses these bytes, Purify signals an array bounds error.[l]

To carch reads of uninitialized automatic variables, upon every function entry Purify sets the state of the stack frame
bytes to the allocated-but-uninitialized state. In addition, each frame is separated with a red-zone to catch overwriting
stack frame errors.

To catch aray bounds violations in statically allocated arrays, Purify separates each static datum with a red-zone.
Unfortunately some C code depends upon the contiguity of data statically defined ogether, and indexes directly from
one static array into the middle of another. While this may seem a questionable practice, machine-generated code
such as yacc parsers do make this assumption. Thus separating statically allocated arrays with red-zones has to be
user supprcssible, and Purify automatically suppresses it for yacc parsers.

To minimize the chance that accesses to freed memory will go undetect€d because the affected memory is quickly
reallocated, Purify does not reallocate memory until it has "aged", and is thus less likely to still be incorrectly pointed
into. The aging is user specifiable and measured in the number of calls to f ree.

In order to identify otherwise anonymous heap chunks, the call chain at the time malloc is called is recorded in the
bytes that make up the chunk's red-zone. The depth of functions recorded is user speciflable.

Since there are three states, two bits are required to record the state of each byte. Thus there is a 25Vo memory
overhead during development for state storage. In essence, Purify implements a byte-level tagged architecture in
software, where the tags reprcsent the memory state.

The adrantage of maintaining byteJevel state codes is that C and C+r progmms can exhibit off-by-one byte-level
errorst'r that would go undetected if a word-level state code approach was used. In fact, there is a continuum of
choices here. Purify will catch+he read of an uninitialized byte (representing a boolean flag in a struct, say), but will
not necessarily catch an uninitialized bit field read. In the extreme case, Puriry could maintain a two-bit state code for
each bit of memory, giving a2A0Vo overhead. In the autlors' judgement, going from word tagging (6.25Vo overhead)
to byte tagging (25Vo overtrcad) is quite worthwhile because of ttre additional error detection this change permits, but
going to bit tagging (200Vo overhead) is not worthwhile.

An alternative scheme for state storage, that would completely forego byte and two-byte access checking, would be !o
store ttre state information directly in the data by using one "unusual" bit pattern !o represent the unallocated state,
and another to represent the allocated-but-uninitialized state. All other bit patterns would represent real data in the
allocated and initialized stat€. This is the implementation strategy that Saber [Kaufer88], C-atalytix [Feuer85] and
various similar malloc-debug packages use. Byte and two-byte checking cannot be performed with this technique
because tlere are no 8- or 16-bit paaems unusual enough to prevent false positives from occurring frequently.

l. Since arrays in C & C++ arc little more than a convenient syntax for pointer arithmaic, it is not possible to perform complete array bounds
checking.  Inpanicular ,erronof theform'x = rnal loc(100), .  x t5000l  = 1;"wi l lnotalwaysbecaughtbecausethJaddrcssx+50O0
could point into another piece of valid merno,ry. Purify allows the user to adjust the size of the red-zone ro suir his paniorlar space vr. thoroughness
requirernents.

2. Such as those caused by incorrect handling of a string's null terminaring byte.
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4. Object Code Insertion

Purify uses object code insertion to augment a program with checking logrc.

Object code insertion can be performed either before linking or after linking. pi*i"t3l is one program that does object
code insertion after linking. Purify does it before linking, which is slightly easier, at least on Sun sys0ems, since the
code has not yet been relocated. Purify reads object files generated by existing compilers, adds error checking
instructions without disturbing the symbol table or progEm logic, and feeds the output o existing linkers
Consequently, existing debuggers continue to work with Prnified code.

FIGURE 2. ExampleMake

Compiling Purifying Linking

t..--*@--- t.o

Class.C -*@F-* Class.o

libc.a

Another way to augment the program-under-test with ttre necessary checking logic would be to enhance the compiler
to emit the required sequences, or to employ a portable pre-compiler. This would mean, however, thai the
programmer would have to recompile his files in order to use Purify, and that there would be no error checking in any
libraries for which he did not have source code available.

Thus an advantage of object code insertion vs. a compiler or pre-compiler approach is setup performance. Since the
re-translation from C or C++ to assembler is avoided, object code insertion can be much faster then recompilation.
Our un-nrned implementation of object code insertion is more than 50 times faster (on a SPARC) than compiiation.

Another advantage of object code insertion is convenience. The source for a large prognm lives in many directories,
and the object code is already aggregated by the linker. To use object code insertion only the link target in the primary
Makefile must change, instead of the ".c.o" compilation rules in every Makefile in the application.

Another advantage of object code insertion is multiJanguage support; many languages are quite similar at the object-
code level. C and C++, for example, differ only in the encoding of the C++ names into "mangled name,s". Thus with
the minor addirion of a demangler !o assist in the printing of symbol names, objecrcode insertion programs such as
Purify work with C+r as well as they work wiilr C. We are currently exploring an ADA version.

A final advantage of object code insertion is completeness: c/l of the code, including third-party and vendor libraries,
is checked. Even hand-optimized assembly code is checked. This completeness me:ms bugs in application code (such
as calling strcpy with too short a destination array) that manifest themselves.in vendor or *rird-party libraries are
detected. Also, serious bugs in third-party libraries (ike writing into freed memory) can be detected, and the purify
messages can form the basis for highly-specific bug reports. Moreover, the detection or absence of such potentially
fatal errors in a particular third-prty library during the library's evaluation phase can increase ttre developeri
knowledge of the quality of the code that will be included in his application.

3. Pixie is a program that MIPS Comprten Systems distributes to insert profiling code directly in an executable MIpS program.
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The disadvantage of object code insertion is that it is largely instruction-set dependent, and somewhat operating

system dependent-rouitrty tit" the back end of a compiler. This makes porting Purify to new architectures a

substantial task.

5. Memory Leaks

Memory leaks are even harder than memory access errors tro detecl The dfficulty in detecting access errors is that the

direct symptoms of such a bug may appear only sporadically--$ut amemory leak typically doesn't even have a direct

.y*pro*. rne cumulative etrtts or tn"rory leaks is that data locality is lost which increases the size of the working

set and leads to more memory pagtng. In the worst case, the program can consume the entire virtual memory of the

host system.

The indirect symptom of a memory leak is that a process' address space grows during an activity where one would

have expected it to remain constanl Thus the typical test methodology for finding memory leaks is to repeat an

action, sucn as opening and closing a document, many times and to conclude that there are no leaks if the address

space growth levels oul

However, there are two problems wirh this methodology. The fust problem is that it does not rule out that there

simpty was enough unallo,cated heap memory in the existing ad&ess space to accommodate the leaks. In other words

me adaress space does not grow, but ttrere does exist a leak. The assumption that testers have is that if the leak was

significant enough to care ibout, it would have consumed all of the unallocated heap memory within the chosen

number of repetitions and forced an expansion of the process's address space'

The second problem with this repetition methodology is that it is quite time consuming to build test suites that

repetitively eiercise every feature, and automatically watch for improper address space growth. In fact, it is generally

so time consuming that it is not done at all.

Suppose, however, rhat a developer is sufficiently motivated to build a leak-detecting test suite, and finds tlnt the

address spirce grows unacceptablt, due to one or more leaks. The developer still must spend a considerable amount of

time to rrack down ttre probiems. rypi""tty, he would either (1) shrink the test suite bit by bit until the address space

growth is no longer observed, or (2j modify malloc and f ree to record tleir arguments and perform an analysis of

what was maf loc'd but not-freed. The first technique is fairly brute-force, and can take many iterations to ffick

down a single leak.

The second technique seems powerful but in practice has problems. In any given repetition loop, such as opening and

closing a document, there may be malloc chunks that are matloc'd but legitimately not freed until the next

iteratiJn. Thus just because a chunk was maf loc'd but not freed during an iteration does not mean the chunk

represents a leak. It may represent a carry-over from a previous iteration. An improved technique [Banach82] is to

record the malloc -i rt"" calls for an entire progpm run, and look for chunks malloc'd but not freed' The

problem with this is the existence of permanently-allocated data, such as a symbol table, that is designed to be

ieclaimed only when the process terminates. Such permanently-allocated data incorrectly show up as leaks, i.e.

malloc'd but not freed, with this technique (2) and its variants'

Memory leaks are so hard to detect and track down that they are often simply tolerated. In short-lived programs such

us.o*iil"o this is not serious, but in long-running programs it is a major problem. Consider how many hours have

probably been spent eliminating leaks in the X11R4 server for Sun workstations. All that effort, yet dozens of leaks

still exist-small, but leaks that accumulate into big effects. Here is one example session with the XllR4 server

program, prepared by purify, and running under tle dbx debugger. It shows Purify catching the X server leaking one
't 
Uiof a megabyte from a single place, and the 10 minute sequence of events required to fix the leak.
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This example shows fwo leaks that have appeared so far in the current run of the X server. The first is the dominantleak, so let us walk through how to go from this information to find"ing the bug. The fust leak has occurred 43026times so far' and each time leaked 12 bytes. The first leak was proffi-no, the responsibility of xartoc, so we lookat line 279 of miRegioncreate. It creates a region .t ort*" and simply returns it. So we n,,o ,o the caller ofmiRegionCreate: miBSExposeCopy, line 345g:
tempRgn : (* pcc->pScreen_)RegionCreate) (NULL, 1);

A scan of the function confirms that tempRgn is never freed. A one line fix suffices.[4]

tutorial-% dbx Xsun
(dbx) run

Pur i fy :  Dynamic  Er ror  check ing  Enabr -ed .  vers i_on r .3 .2 .
( C )  1 9 9 0 ,  1 9 9 1  p u r e  S o f t w a r e ,  I n c .  p a t e n t s  p e n d i n g .

" 'x server runs' we write more of this paper, then we i .nterrupt theseryer with control-C, and ca-l-I  the Jeak f inding routine, . .

(dbx) cal l  puri fy_newleaks o
P u r i f y :  s e a r c h i n g  f o r  n e w  m e m o r y  l e a k s . . .

F o u n d  4 3 0 3 7  l e a k s .

: l : r : ^ : : "  
s l6 is2  reaked byres ,  wh i .ch  is  35 .er  o f  rhe  1437704 byres  in

12 (43026 t imes) .  Las t  memory  l_eak  a t  Ox35a058
516312 to ta l  by tes  1os t ,  a l loca ted  by  mal loc ,  ca l led  f rom:

X a . j - 1 o c  ( u t i 1 s . o ;  l i n e  5 1 5 )
miReq ionCreate  (mi reg ion .  o , .  l i ne  27  9)
mi -BSExposeCopy (mibs tore .o , .  l i ne  3459)
miHand leExposures  (mj_expose.o , .  l i ne  209)
mfbCopyArea (mfbb i tb l t .o ;  L ine  283)
miBSCopyArea (mibstore. o,.  L j .ne 13 91)
miSpr i teCopyArea (mispr i te .o ;  l ine  999)
ProcCopyArea (d ispat .ch .o ;  l ine  1563)
Dispatch  (d ispatch .  o , .  l i ne  256)
m a i n  ( m a i n . o , .  l _ i n e  2 4 g )
s t a r t  ( c r t o . o ;  p c  :  0 x 2 0 6 4 )

4 0  ( 1 1  t i m e s ) .  L a s t  m e m o r y  l e a k  a t  0 x 3 6 e e 9 g
440 to ta l  by tes  los t ,  a l loca ted  by  mal loc ,  ca l led  f rom:
X a 1 l o c  ( u t i l s . o ;  ] i n e  5 L 5 )
miRectAL loc  (mi reg ion .o ;  l ine  361)
miReg ionOp (mi reg ion .  o , .  l i ne  660)
mi ln te rsec t  ( rn i reg ion .o ;  l ine  975)
miBSExposeCopy (mibs tore .o , .  l i ne  3460)
miHandleExposures (miexpose. o,.  l  j_ne 209)
mfbCopyArea (nfbbitblt .o,.  l ine 2g3)
ProcCopyArea (d ispatch .o , .  I ine  1563)
Dispatch  (d ispatch .o , .  l i ne  256)
main  (ma in .  o , .  l i ne  248)
s t a r t  ( c r t o . o ;  p c  :  0 x 2 0 6 4 )
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6. Detecting MemorY Leaks

Memory leaks are allocated memory no longer in use. They should have been freed, but were not. In languages sirch

as lisp and Smalltalk garbage collectors find and reclaim such memory so that it does not become a leak.

There are two parts to a garbage colleclor: a garbage detector and a garbage reclaimer. To achieve some of the

benefis of garbage collection (lack of memory leaks) without the associated run-time costs or risks, Purify makes an

important ana novet change of focus. Instead of p.roviding an aulomatic garbage collector, Purify provides a callable

garbage dztector that idintifies memory leaks.tsl The garbage deteclor is a subroutine library that helps the

f.ogrun,,rn"t find and eliminate memory leaks during development. By using garbage detection to track down leaks,

O"u-"top"rr can benefit from garbage collection technology without suffering the normally associated delivery

runtime costs.

Although the purpose is different, purify uses an algorithm similar to the conventional mark and sweep. In the mark

phase, ilyify-recursively follows potential pointers from the data and stack segments into the heap and marks all

blocks referenced in the standard"conservative" and "pessimistic" [6] manner. In the sweep phase, Purify steps

through the heap, and reports allocated blocks that no longer seem to be referenced by the program'

Identifying leaked blocks only by address would not help programmers track down the source of the leak; it would

onty conn m that leaks existed. Therefore, Purify modifies malloc to label each allocated block with the return

addiesses of the functions then on the call stack. These addresses, when translated into function names and line

numbers via the symbol table, identify rhglode path rhat allocated the leaked memory and often make it fairly easy

for the programmer to eliminate the error.l'I

By moving the garbage collector technology from run-time to development, we are able to avoid t}le serious

.onr"qu"n-"s of the fundamental problem with garbage collectors for C & C++, namely that there is always

amOiguity in what is and what is not garbage. Orn garbage detector separates the heap chunks into three classes:

1. chunks rlat are almost certainly garbage (no potential pointers into them), and

2. chunks that are potentially garbage (no potential pointers to the beginnings of the them), and

3. chunks that are probably not garbage (potential pointers do exist to the beginnings them).

4. We don't mean o pick on XllR4 code; it's just widely-used, neady-connnercial-quality coda This leak, by the way, is also in Xl lR5'

J. John Dawes, of Stanford Univenity, co-invented this teclmology'

6. See rhe following long footnote for an explanation of these terms'
'/. 

Obviously, bener than fixing memory leaks would be avoiding rhern. Garbage collecton [Moon84] have been wrinen for C and C++' Like other

grrbage collecto.r, rhey attem"pt to pto"ia" automatic and_reliable storage mansSement at some runtime cost. Generally they follory -".+ 9d
i*""f,agoririrms, and use oe'srr.t,'rna"trine registen, and dara ,"gn"ni"r root pointen into the heap. Since an inreger in c is indistinguishable

form'a $inrer, every plausiblepointer, me.nini"rery 32brt word orr most current machines, has to be considered a pocsible root pointer' It.is

'rumed thar rhe p.og.--". ir'nJ 'hi'ai"g- -! p"inln frsn the collector by suctr things as.byte-swapping a pointer temporarily, orleaving the

rxrly rcference to'an ou;ea in a callback dtrt "tt ,irtia" process. 'Hiding" a pointer would ca'ride the collector to reclaim something that was not

ya garbage.

tirnce pointers cannot be distinguished from other types in C and C++, an integer with an unfortunate random value can "seem" to point to a chunk

rhrr orirerwise mighr b. garbage, causing that chunik-to not be collected. This is why thes€ collectors arc often called "consewative". Such collec-

r.rn arc called *pe-sslmisic- if'rney perrit " pointer into the middle of a nal loc'dchunk to anchor that chunk. The necessity of a collector being

rrruervative and pessimistic leads to over-matking and under-collecting'
'lhc 

fundamental flaw rhis introduces is that the larger a mernory chmk becomes lhe nPre imPortant il b !ha! it b.e collected if it is garbage'

fr+:<,ruse ir,s a significant resource, and rhe less likzlyl b ilut it aitually witl be collected, because it is more likely to be accidentally anchored by

rx rnrcger valuel This phenomenon is not limired o large single chunks; a doubly-linked list with many entries is vulnerable to the same error'

!*irtc still, the error *n U" r.unrient and unpredictable.-Using a conservative garbage collector in the presence of lalge or interconnected chunks

;nry work most of the rime, -J,rr"n grow ithout bound in a panicular run, because of an rmfornrnate random value sqnewhere else in the pro-

inin thar 
..seems" to point into a churft that iE actually ga6age. In b,road terms, garbage collecton for c & c++ have excellent average case char-

itr"rirrics (high degree of de-allocaricn "o.r""mor), bw fital wont case characteristics (large chunks build up, reornively anchor enough

rrremory to crash the program).
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Each chunk is identified by its allocating call chain, and the developer uses his judgement on what and how to
additionally free. If during the process of 6xing the memory leaks tlre developer incorrectly frees a chunk
prematurely, Purify's error detection will detect tle evenhral freed-memory access as soon as it occurs. Note that
category three (3) above is all of the "live" allocated heap chunks, and can be used as profiling daa 16 help
understand where the heap space in a program is being used.

7. Previous Work

The difficulties of managing memory in C are well-tnown, and several anempts at addressing these issues have been
made. Nevertheless, few C and C++ tools have succeeded in providing comprehensive solutions and none to our
knowledge has addressed both memory leaks and memory access errors.

7.1 MaIIoc Debug

Malloc-debug packages are the most prevalent tool for finding memory access errors. These packages implement the
malloc interface, but also provide several levels of additional error checking and memory marking. They can be
useful for detecting a write past the end of a heap array, and require only a relink to use. Unfortunately malloc-debug
packages do not detect errors at the point they occur; they only detect errors at the next malroc verif v call. Since
malloc-verif y has to scan the entire heap, it is expensive to call frequently. Further, thase pickages Jo not detect
reading past the end of a heap array, accessing freed memory, or reading uninitialized memory.

Malloc debug packages do not provide any memory leak information.

7.2 Mprof

Mprof [Zorn88) provides information on a C pro$am's dynamic memory usage to help programmers reduce memory
leaks. Mprof does not provide any memory acce,ss checking.

Mprof is a two-phase tool requiring developers to exit the program under development before they can view the
information Mprof provides. Developers can only obtain global statistics from Mprof; they cannot profile memory
usage and leaks between arbitrary points of pro$am execution, as they can with Purify. Mprof implemens a"memory leak table" that identifies memory allocated but never freed. Unfornrnately, this strategy coniounds true
memory leaks with memory allocated but not cleaned up during the exit process. Consider a symbol table that maps
strings into symbols, in which the symbols are used as tokens and are never freed. When a prognm is about to e^it,
any time spent freeing memory is wasted, since the exit call will reclaim the process's entire memory. Thus, most
Unix programs conectly call exit with large amounts of memory still in use. This memory does not constitute a leak,
yet Mprof lists it as such. These false positives reduce Mprof 's diagnostic value.

7.3 Saber-C and Saber-C++

Saber [Kaufer88] detects many run-time memory access errors in interpreted C and C++ source code. However,
loading source code is time-consuming, and interpreting source code takes more than an order-of-magnitude longer
than executing object code. Typically, programmers load only a few files in source form and load the rest in object
form. As a result, many memory :rccess errors remain undetected. Even if developers source load their entire
application into Saber, it can not detect improper memory accesses from system libraries. For example, Saber does
not detect the common case of calling sprintf with too short a destination string, even when called from
interpreted code. Saber's interpreter also misses byte-level memory access errors, such as reading an uninitialized
byte, due to the implementation of its state storage, discussed in section 3.

saber does not provide memory leak information or memory usage statistics.
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8. Measurements

The overhead that Purify introduces into a program is dependent on the density of memory accesses in that program.
In tle worst case, where ttre program does nothing but copy memory in a tight loop,luJ Purify's run-time overhead is a
factor of 5.5 over the optimized C code. This compares with a factor of 3.2 slowdown for the same prog:rm compiled
for debugging, and a factor of 300 slowdown for the same progmm running under a C interpreter.

Below we present data on Purify's overhead when used with two programs: the GNU compiler gcc, and the Xl1R4
demo program maze that animates the solving of amaze. The maze prognm was modifled to remove its sleep
calls. gcc is actually a small driver program, and cc1 is the program that does the bulk of the work. It is cc1 that
was tested, although for simplicity we will refer to it below uls gcc. The data was collected on a Sun SPARCstation
SLC running SLTNOS 4.1.1, and all times are real times.

Run time[9] (seconds)
optimized / Purified & optimized

a.our sizettol (kb)

tdax heap sizetlll (kb)

Build time (seconds)
link/Purify & link

Y v v

2618r

815 / 1570

maze average multiple

rr7 /r78 2.3

674 /93r r.7

1486 /1775 5401ffi8 r.2

7  t 7 5 5 /24 4.9

The run-time overhead is mostly in the checking functions that. execute before every memory access. The increased
a.out size is due to the function call instructions inserted before every load and slore. The heap size overhead is due to
the red-zones kept around every heap chunk. The default red-zone policy, used in the test cases; gives each chunk a
16 byte initial red-zone and a 28 byte trailing ted,-znne. The build time overhead is half due to the Purifying prccess,
and half due to the increased demands on the linker for resolving all of the references to the checking functions.

9. Summary

Pwify provides nearly-comprehensive memory access checking and memory leak detecrion. It fits cleanly into the
Unix file-processing paradigm and only requires adding a single word to the link-line of a makefile to use on an
existing application. Importantly, Purify yields executables that are fast enough to use during the entire development
and test process. For example, this paper was written using Frame while running under a Purified R4 X server,
Purified window manager, and Purified xterms, all on Sun's bottom-of-the-line SPARCstation equipped with 12 Mb
of memory. Purify's relatively low overhead, ease of setup, and thoroughness of error detection permits more robust.
software !o be developed faster, yet it entails no overhead in code delivered to crrstromers.

Purify can help bridge ttre gap between a program plagued by intermittent errors and that same program working
robustly and continuously over long periods of time. Of course, Purify is not a panacea, and it does not result in bug-
lrce code. Nevertheless, used in conjunction with good test suites Purify can result in significantly more correct and

ll. Specifically, the program allocates one megabyte, initializes it to zero, and then performs 50 iteratiqrs of shifring the megabyte down one byte,
by copyng byte by byte.

9- With gcc rhis is the time for cc1 to cornpile and optimize the XllR4 client xterm's file charproc.c. This fi.le was picked at random to be the
tcrt case. With ma ze the times shown are the rimes to perform 20 iterations of solving the maze wirh the s leep calls belween iterations rernoved.

I (). Measured with the s i ze command.

l l .  Measu redw i t hsb rk (0 )  -  cend .
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rcliable programs, and increase the developer's knowledge and confidence in the code. Such prcgress createsprograms that are less susceptible !o catastrophic failure from small changes-making maintenance less risky, andtesting less costly' Results from users of Purify working on large commercial progr*r-haue been very encouraging.

one of the great pleasures of c & c++ programming is being able to get tle most out of the underlying hardware.walking the tighrope of pointer arithmetic, for example, is uefo exciting but the downside is that most falls are fatal.Purify is the safety net that c and c++ always needed-it'i there during development, but does not impair tleultimate performance.
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1. BACKGROUND 
A decade ago in the early 1990s, Digital was building its new high 
performance Alpha processor. As Alpha was Digital’s first 64-bit 
processor, the compilation systems, binary formats, linkers, and 
operating system were being redesigned. A wide variety of tools 
such as optimization tools, architectural simulation tools, and 
profiling tools were needed. Most existing tools did not share any 
common infrastructure; building each tool from scratch was a time 
consuming and cumbersome process.  Around the same time, 
binary tools were slowly emerging [3][6][12]. Binary tools 
offered clear advantages: they were independent of the compiler 
and the source language; they did not require recompilation and 
provided an opportunity for taking advantage of the processor 
characteristics. 

Digital’s Western Research Lab had been active in link time 
optimizations for many years.  We were building an optimization 
system, OM, to perform aggressive optimizations at link-time. 
Unlike previous binary systems, OM disassembled the binary to 
build a symbolic intermediate representation that removed all hard 
coded addresses.  The representation was rich enough to perform 
interprocedural flow analysis and whole program optimizations 
[11].  The initial prototype of OM was built on the MIPS based 
DECStations but was quickly moved to Alpha when it became 
available. OM performed a set of classical optimizations, code 
locality optimizations, and 64-bit optimizations [10].  OM became 
a product on the Alpha and an integrated part of the Digital 
compiler system. It played a key role in improving performance 
for benchmarks like SPEC and TPC-C. 

Although OM had been designed for optimizations, it contained a 
rich binary modification infrastructure that could support a wide 
range of transformations. Due to our colleagues from varying 
backgrounds ranging from processor design to software, our 
attention shifted to other tools besides optimization.  We quickly 
recognized that cache simulators used by hardware designers and 
basic block counting tools used by software developers had large 

parts in common: both instrumented the binary at selected points. 
This observation led to the creation of ATOM; ATOM provided 
the common infrastructure needed by all tools while allowing tool 
designers to easily specify tool-specific parts through a set of 
simple APIs.   

2. DEVELOPMENT OF ATOM 
ATOM was implemented by extending OM. A set of interfaces 
were added to query and modify OM’s intermediate 
representation.  OM provided the mechanism to read the binary 
and write the final binary from the modified intermediate 
representation. ATOM allowed the user specified routines for 
analyzing the collected data to run in the same address space 
without disturbing the application.  ATOM, thus, used fast 
procedure calls for communication rather than inter process 
communication or by storing data on disk.  

We were overwhelmed by the response ATOM received.  ATOM 
quickly became a popular infrastructure for building customized 
tools. Its simplicity and ease of use helped in its adoption. One 
did not have to be a strong software developer to build tools; 
many key tools could be built with few lines of code in a few 
hours [2].  ATOM was particularly popular with Digital’s 
processor designers; most simulations for new processor designs 
were done using ATOM.   Simulations that took several days to 
run on instruction-level simulators could now be done in a few 
hours using ATOM (ATOM could intercept instructions of 
interest while allowing the rest of the program to run at original 
speed). Architects could quickly evaluate dozens of alternatives, 
rather than relying on intuitions and small address traces. As we 
had hoped, ATOM was being used in many different ways by 
people who knew little about binary modification.  Tools like 
execution profilers, memory profilers, leak detection tools, and 
compiler auditing tools also started to appear on the Alpha.  

3. EXTERNAL USAGE 
As more people heard about ATOM, we started receiving requests 
for ATOM from academia. Since ATOM was not a product, there 
were concerns about its stability and the support cost it might 
entail. However, we decided to make an early version of ATOM 
available to universities for research and teaching. The large 
number of publications at conferences speaks of how widely 
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ATOM was used for research in universities.  ATOM enabled 
small research teams to produce results that were only possible for 
a handful of large institutions. Releasing ATOM to academia was 
one of the best decisions we made. 

As ATOM’s adoption grew, we worked with the Digital product 
groups to remove the remaining irritants in its usage. For example, 
ATOM did not work on the final executable; it required all the 
object files that were linked together to produce the final 
executable.  (ATOM needed relocation information to build an 
accurate intermediate representation; the relocations were only 
present in object files and were removed from the final 
executable.) The production linker was extended to add compact 
relocations to all Alpha binaries. The clever encoding of 
relocations had minimal impact on the size of the executables. 
This important step brought binary tools into the mainstream 
Alpha compiler system.  ATOM became a fully supported product 
on the Alpha platform. 

The fast emerging market of personal computers had caught 
everyone’s attention. The presence of large number of software 
applications and software developers on the PC platform 
presented a promising business opportunity. If an infrastructure 
like ATOM existed on the PC, a wide variety of tools could be 
easily built.  After long tedious periods of working with business 
people, TracePoint was spun-off from Digital as a start-up with 
venture funding to produce tools for the PC market.  ATOM and 
OM were moved to the Intel x86 architecture under the Win32 
operating system. TracePoint [1] produced products like HiProf, a 
hierarchical profiler, and Visual Coverage, a test coverage tool.  
(HiProf won the PC magazine editor choice award for the best 
profiler.)  

4. RELATED SYSTEMS 
A number of systems providing ATOM like functionality were 
developed on various platforms such as EEL [4] on the SPARC 
architecture, Etch [7] and Vulcan [9] on the x86 architecture, and 
BIT [5] for Java byte code.  Vulcan has extended the core ideas of 
ATOM in important ways. Vulcan can perform static and dynamic 
binary code modification on heterogeneous systems in distributed 
environments.  It is actively being developed at Microsoft 
Research and can currently work on systems built with x86, IA64, 
and MSIL binaries. Vulcan has recently been used for binary 
matching [13] and test prioritization [8].  It is gratifying to see 
Vulcan as active in Microsoft as ATOM was in Digital. 

5. CONCLUSION 
The impact of ATOM over the last decade reinforces the 
importance of infrastructures for rapid research and development.  
As we had to support a large community, a substantial part of our 
time went into building and enhancing ATOM.  However, we 
gained valuable insights into building infrastructures through that 
experience. Although our only regret is that we did not get enough 
time to use ATOM for all the things we originally planned, a lot 
more got accomplished as many more people were able to use it in 
different ways.  On hindsight, we made the right trade-off. 
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Abstract
Robust and powerful software instrumentation tools are essential
for program analysis tasks such as profiling, performance evalu-
ation, and bug detection. To meet this need, we have developed
a new instrumentation system called Pin. Our goals are to pro-
vide easy-to-use, portable, transparent, and efficient instrumenta-
tion. Instrumentation tools (called Pintools) are written in C/C++
using Pin’s rich API. Pin follows the model of ATOM, allowing the
tool writer to analyze an application at the instruction level with-
out the need for detailed knowledge of the underlying instruction
set. The API is designed to be architecture independent whenever
possible, making Pintools source compatible across different archi-
tectures. However, a Pintool can access architecture-specific details
when necessary. Instrumentation with Pin is mostly transparent as
the application and Pintool observe the application’s original, unin-
strumented behavior. Pin uses dynamic compilation to instrument
executables while they are running. For efficiency, Pin uses sev-
eral techniques, including inlining, register re-allocation, liveness
analysis, and instruction scheduling to optimize instrumentation.
This fully automated approach delivers significantly better instru-
mentation performance than similar tools. For example, Pin is 3.3x
faster than Valgrind and 2x faster than DynamoRIO for basic-block
counting. To illustrate Pin’s versatility, we describe two Pintools
in daily use to analyze production software. Pin is publicly avail-
able for Linux platforms on four architectures: IA32 (32-bit x86),
EM64T (64-bit x86), Itanium R©, and ARM. In the ten months since
Pin 2 was released in July 2004, there have been over 3000 down-
loads from its website.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging-code inspections and walk-throughs,
debugging aids, tracing; D.3.4 [Programming Languages]: Processors-
compilers, incremental compilers

General Terms Languages, Performance, Experimentation

Keywords Instrumentation, program analysis tools, dynamic com-
pilation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’05 June 12–15, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-056-6/05/0006...$5.00.

1. Introduction
As software complexity increases, instrumentation—a technique
for inserting extra code into an application to observe its behavior—
is becoming more important. Instrumentation can be performed at
various stages: in the source code, at compile time, post link time,
or at run time. Pin is a software system that performs run-time
binary instrumentation of Linux applications.

The goal of Pin is to provide an instrumentation platform for
building a wide variety of program analysis tools for multiple archi-
tectures. As a result, the design emphasizes ease-of-use, portabil-
ity, transparency, efficiency, and robustness. This paper describes
the design of Pin and shows how it provides these features.

Pin’s instrumentation is easy to use. Its user model is similar
to the popular ATOM [30] API, which allows a tool to insert calls
to instrumentation at arbitrary locations in the executable. Users
do not need to manually inline instructions or save and restore
state. Pin provides a rich API that abstracts away the underlying
instruction set idiosyncrasies, making it possible to write portable
instrumentation tools. The Pin distribution includes many sample
architecture-independent Pintools including profilers, cache simu-
lators, trace analyzers, and memory bug checkers. The API also
allows access to architecture-specific information.

Pin provides efficient instrumentation by using a just-in-time
(JIT) compiler to insert and optimize code. In addition to some
standard techniques for dynamic instrumentation systems includ-
ing code caching and trace linking, Pin implements register re-
allocation, inlining, liveness analysis, and instruction scheduling to
optimize jitted code. This fully automated approach distinguishes
Pin from most other instrumentation tools which require the user’s
assistance to boost performance. For example, Valgrind [22] re-
lies on the tool writer to insert special operations in their in-
termediate representation in order to perform inlining; similarly
DynamoRIO [6] requires the tool writer to manually inline and
save/restore application registers.

Another feature that makes Pin efficient is process attaching
and detaching. Like a debugger, Pin can attach to a process, in-
strument it, collect profiles, and eventually detach. The application
only incurs instrumentation overhead during the period that Pin is
attached. The ability to attach and detach is a necessity for the in-
strumentation of large, long-running applications.

Pin’s JIT-based instrumentation defers code discovery until run
time, allowing Pin to be more robust than systems that use static
instrumentation or code patching. Pin can seamlessly handle mixed
code and data, variable-length instructions, statically unknown in-
direct jump targets, dynamically loaded libraries, and dynamically
generated code.

Pin preserves the original application behavior by providing in-
strumentation transparency. The application observes the same ad-
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dresses (both instruction and data) and same values (both register
and memory) as it would in an uninstrumented execution. Trans-
parency makes the information collected by instrumentation more
relevant and is also necessary for correctness. For example, some
applications unintentionally access data beyond the top of stack, so
Pin and the instrumentation do not modify the application stack.

Pin’s first generation, Pin 0, supports Itanium R©. The recently-
released second generation, Pin 2, extends the support to four1

architectures: IA32 (32-bit x86) [14], EM64T (64-bit x86) [15],
Itanium R© [13], and ARM [16]. Pin 2 for Itanium R©is still under
development.

Pin has been gaining popularity both inside and outside of Intel,
with more than 3000 downloads since Pin 2 was first released
in July 2004. This paper presents an in-depth description of Pin,
and is organized as follows. We first give an overview of Pin’s
instrumentation capability in Section 2. We follow by discussing
design and implementation issues in Section 3. We then evaluate in
Section 4 the performance of Pin’s instrumentation and compare it
against other tools. In Section 5, we discuss two sample Pintools
used in practice. Finally, we relate Pin to other work in Section 6
and conclude in Section 7.

2. Instrumentation with Pin
The Pin API makes it possible to observe all the architectural
state of a process, such as the contents of registers, memory, and
control flow. It uses a model similar to ATOM [30], where the user
adds procedures (as known as analysis routines in ATOM’s notion)
to the application process, and writes instrumentation routines to
determine where to place calls to analysis routines. The arguments
to analysis routines can be architectural state or constants. Pin
also provides a limited ability to alter the program behavior by
allowing an analysis routine to overwrite application registers and
application memory.

Instrumentation is performed by a just-in-time (JIT) compiler.
The input to this compiler is not bytecode, however, but a native ex-
ecutable. Pin intercepts the execution of the first instruction of the
executable and generates (“compiles”) new code for the straight-
line code sequence starting at this instruction. It then transfers con-
trol to the generated sequence. The generated code sequence is al-
most identical to the original one, but Pin ensures that it regains
control when a branch exits the sequence. After regaining control,
Pin generates more code for the branch target and continues execu-
tion. Every time the JIT fetches some code, the Pintool has the op-
portunity to instrument it before it is translated for execution. The
translated code and its instrumentation is saved in a code cache for
future execution of the same sequence of instructions to improve
performance.

In Figure 1, we list the code that a user would write to
create a Pintool that prints a trace of address and size for ev-
ery memory write in a program. The main procedure initializes
Pin, registers the procedure called Instruction, and tells Pin
to start execution of the program. The JIT calls Instruction
when inserting new instructions into the code cache, passing
it a handle to the decoded instruction. If the instruction writes
memory, the Pintool inserts a call to RecordMemWrite before
the instruction (specified by the argument IPOINT BEFORE to
INS InsertPredicatedCall), passing the instruction pointer
(specified by IARG INST PTR), effective address for the mem-
ory operation (specified by IARG MEMORYWRITE EA), and number
of bytes written (specified by IARG MEMORYWRITE SIZE). Using

1 Although EM64T is a 64-bit extension of IA32, we classify it as a separate
architecture because of its many new features such as 64-bit addressing, a
flat address space, twice the number of registers, and new software conven-
tions [15].

FILE * trace;

// Print a memory write record
VOID RecordMemWrite(VOID * ip, VOID * addr, UINT32 size) {

fprintf(trace,"%p: W %p %d\n", ip, addr, size);
}

// Called for every instruction
VOID Instruction(INS ins, VOID *v) {

// instruments writes using a predicated call,
// i.e. the call happens iff the store is
// actually executed
if (INS_IsMemoryWrite(ins))

INS_InsertPredicatedCall(
ins, IPOINT_BEFORE, AFUNPTR(RecordMemWrite),
IARG_INST_PTR, IARG_MEMORYWRITE_EA,
IARG_MEMORYWRITE_SIZE, IARG_END);

}

int main(int argc, char *argv[]) {
PIN_Init(argc, argv);
trace = fopen("atrace.out", "w");
INS_AddInstrumentFunction(Instruction, 0);
PIN_StartProgram(); // Never returns
return 0;

}

Figure 1. A Pintool for tracing memory writes.

INS InsertPredicatedCall ensures that RecordMemWrite is
invoked only if the memory instruction is predicated true.

Note that the same source code works on all architectures. The
user does not need to know about the bundling of instructions on
Itanium, the various addressing modes on each architecture, the
different forms of predication supported by Itanium and ARM, x86
string instructions that can write a variable-size memory area, or
x86 instructions like push that can implicitly write memory.

Pin provides a comprehensive API for inspection and instru-
mentation. In this particular example, instrumentation is done one
instruction at a time. It is also possible to inspect whole traces,
procedures, and images when doing instrumentation. The Pin user
manual [12] provides a complete description of the API.

Pin’s call-based model is simpler than other tools where the user
can insert instrumentation by adding and deleting statements in an
intermediate language. However, it is equally powerful in its ability
to observe architectural state and it frees the user from the need to
understand the idiosyncrasies of an instruction set or learn an in-
termediate language. The inserted code may overwrite scratch reg-
isters or condition codes; Pin efficiently saves and restores state
around calls so these side effects do not alter the original applica-
tion behavior. The Pin model makes it possible to write efficient
and architecture-independent instrumentation tools, regardless of
whether the instruction set is RISC, CISC, or VLIW. A combi-
nation of inlining, register re-allocation, and other optimizations
makes Pin’s procedure call-based model as efficient as lower-level
instrumentation models.

3. Design and Implementation
In this section, we begin with a system overview of Pin. We then
discuss how Pin initially gains control of the application, followed
by a detailed description of how Pin dynamically compiles the
application. Finally, we discuss the organization of Pin source code.

3.1 System Overview

Figure 2 illustrates Pin’s software architecture. At the highest level,
Pin consists of a virtual machine (VM), a code cache, and an instru-
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Figure 2. Pin’s software architecture

mentation API invoked by Pintools. The VM consists of a just-in-
time compiler (JIT), an emulator, and a dispatcher. After Pin gains
control of the application, the VM coordinates its components to
execute the application. The JIT compiles and instruments applica-
tion code, which is then launched by the dispatcher. The compiled
code is stored in the code cache. Entering/leaving the VM from/to
the code cache involves saving and restoring the application register
state. The emulator interprets instructions that cannot be executed
directly. It is used for system calls which require special handling
from the VM. Since Pin sits above the operating system, it can only
capture user-level code.

As Figure 2 shows, there are three binary programs present
when an instrumented program is running: the application, Pin, and
the Pintool. Pin is the engine that jits and instruments the applica-
tion. The Pintool contains the instrumentation and analysis routines
and is linked with a library that allows it to communicate with Pin.
While they share the same address space, they do not share any li-
braries and so there are typically three copies of glibc. By making
all of the libraries private, we avoid unwanted interaction between
Pin, the Pintool, and the application. One example of a problematic
interaction is when the application executes a glibc function that
is not reentrant. If the application starts executing the function and
then tries to execute some code that triggers further compilation, it
will enter the JIT. If the JIT executes the same glibc function, it
will enter the same procedure a second time while the application
is still executing it, causing an error. Since we have separate copies
of glibc for each component, Pin and the application do not share
any data and cannot have a re-entrancy problem. The same prob-
lem can occur when we jit the analysis code in the Pintool that
calls glibc (jitting the analysis routine allows us to greatly reduce
the overhead of simple instrumentation on Itanium).

3.2 Injecting Pin

The injector loads Pin into the address space of an application. In-
jection uses the Unix Ptrace API to obtain control of an application
and capture the processor context. It loads the Pin binary into the
application address space and starts it running. After initializing
itself, Pin loads the Pintool into the address space and starts it run-
ning. The Pintool initializes itself and then requests that Pin start
the application. Pin creates the initial context and starts jitting the
application at the entry point (or at the current PC in the case of
attach). Using Ptrace as the mechanism for injection allows us to
attach to an already running process in the same way as a debug-
ger. It is also possible to detach from an instrumented process and
continue executing the original, uninstrumented code.

Other tools like DynamoRIO [6] rely on the LD PRELOAD en-
vironment variable to force the dynamic loader to load a shared li-
brary in the address space. Pin’s method has three advantages. First,
LD PRELOAD does not work with statically-linked binaries, which
many of our users require. Second, loading an extra shared library
will shift all of the application shared libraries and some dynami-
cally allocated memory to a higher address when compared to an
uninstrumented execution. We attempt to preserve the original be-
havior as much as possible. Third, the instrumentation tool cannot
gain control of the application until after the shared-library loader
has partially executed, while our method is able to instrument the
very first instruction in the program. This capability actually ex-
posed a bug in the Linux shared-library loader, resulting from a
reference to uninitialized data on the stack.

3.3 The JIT Compiler

3.3.1 Basics

Pin compiles from one ISA directly into the same ISA (e.g., IA32
to IA32, ARM to ARM) without going through an intermediate
format, and the compiled code is stored in a software-based code
cache. Only code residing in the code cache is executed—the origi-
nal code is never executed. An application is compiled one trace at
a time. A trace is a straight-line sequence of instructions which ter-
minates at one of the conditions: (i) an unconditional control trans-
fer (branch, call, or return), (ii) a pre-defined number of conditional
control transfers, or (iii) a pre-defined number of instructions have
been fetched in the trace. In addition to the last exit, a trace may
have multiple side-exits (the conditional control transfers). Each
exit initially branches to a stub, which re-directs the control to the
VM. The VM determines the target address (which is statically un-
known for indirect control transfers), generates a new trace for the
target if it has not been generated before, and resumes the execution
at the target trace.

In the rest of this section, we discuss the following features of
our JIT: trace linking, register re-reallocation, and instrumentation
optimization. Our current performance effort is focusing on IA32,
EM64T, and Itanium, which have all these features implemented.
While the ARM version of Pin is fully functional, some of the
optimizations are not yet implemented.

3.3.2 Trace Linking

To improve performance, Pin attempts to branch directly from a
trace exit to the target trace, bypassing the stub and VM. We
call this process trace linking. Linking a direct control transfer
is straightforward as it has a unique target. We simply patch the
branch at the end of one trace to jump to the target trace. However,
an indirect control transfer (a jump, call, or return) has multiple
possible targets and therefore needs some sort of target-prediction
mechanism.

Figure 3(a) illustrates our indirect linking approach as imple-
mented on the x86 architecture. Pin translates the indirect jump
into a move and a direct jump. The move puts the indirect target
address into register %edx (this register as well as the %ecx and
%esi shown in Figure 3(a) are obtained via register re-allocation,
as we will discuss in Section 3.3.3). The direct jump goes to the
first predicted target address 0x40001000 (which is mapped to
0x70001000 in the code cache for this example). We compare
%edx against 0x40001000 using the lea/jecxz idiom used in Dy-
namoRIO [6], which avoids modifying the conditional flags reg-
ister eflags. If the prediction is correct (i.e. %ecx=0), we will
branch to match1 to execute the remaining code of the predicted
target. If the prediction is wrong, we will try another predicted tar-
get 0x40002000 (mapped to 0x70002000 in the code cache). If the
target is not found on the chain, we will branch to LookupHtab 1,
which searches for the target in a hash table (whose base address is
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(a) Chaining of predicted indirect targets

jmp [%eax]

0x40000000

0x70000000

mov [%eax], %edx

jmp $0x70001000 VM

LookupHTab_1

mov %edx, %esi

and $0x3ff, %esi

cmp 0x30898200(, %esi,8), %edx 

jnz $VMEntry # miss

jmp 0x30898204(, %esi,8) #hit 

lea -0x40001000(%edx), %ecx

jecxz $match1

jmp $0x70002000

…

0x70001000

match1:

lea -0x40002000(%edx), %ecx

jecxz $match2

jmp $LookupHTab_1

…

0x70002000

match2:

(b) Using cloning to help predict return targets

call F()

ret

F():

call F()

pop %edx

jmp A’

F’():

lea –A(%edx), %ecx

jecxz $match1

jmp B’

…

A’:

pop %edx

jmp A’

F_A’():

pop %edx

jmp B’

F_B’():

ret translated without cloning ret translated with cloning

A: B:

lea –B(%edx), %ecx

jecxz $match2

jmp $LookupHtab_1
…

B’:

lea –A(%edx), %ecx

jecxz $match1

jmp $LookupHtab_1

…

A’:

lea –B(%edx), %ecx

jecxz $match2

jmp $LookupHtab_2

…

B’:

Figure 3. Compiling indirect jumps and returns

0x30898200 in this example). If the search succeeds, we will jump
to the translated address corresponding to the target. If the search
fails, we will transfer to the VM for indirect target resolution.

While our indirect linking mechanism is similar to the approach
taken in DynamoRIO [6], there are three important differences.
First, in DynamoRIO, the entire chain is generated at one time
and embedded at the translation of the indirect jump. Therefore
no new predicted target can be added onto the chain after it is
generated. In contrast, our approach incrementally builds the chain
while the program is running and thus we can insert newly seen
targets onto the chain in any order (e.g., Pin can put a new target
either at the front or the end of the chain). These new targets
can be found in the chain the next time that they occur, without
searching the hash table. The second difference is that DynamoRIO
uses a global hash table for all indirect jumps whereas Pin uses
a local hash table for each individual indirect jump. A study by
Kim and Smith [17] shows that the local hash table approach
typically offers higher performance. The third difference is that we
apply function cloning [10] to accelerate the most common form
of indirect control transfers: returns. If a function is called from
multiple sites, we clone multiple copies of the function, one for
each call site. Consequently, a return in each clone will have only
one predicted target on the chain in most cases, as illustrated by
the example in Figure 3(b). To implement cloning, we associate a
call stack with each trace (more precisely to the static context of

each trace, which we will discuss in Section 3.3.3). Each call stack
remembers the last four call sites and is compactly represented by
hashing the call-site addresses into a single 64-bit integer.

3.3.3 Register Re-allocation

During jitting, we frequently need extra registers. For example, the
code for resolving indirect branches in Figure 3(a) needs three free
registers. When instrumentation inserts a call into an application,
the JIT must ensure that the call does not overwrite any scratch reg-
isters that may be in use by the application. Rather than obtaining
extra registers in an ad-hoc way, Pin re-allocates registers used in
both the application and the Pintool, using linear-scan register allo-
cation [24]. Pin’s allocator is unique in that it does interprocedural
allocation, but must compile one trace at a time while incremen-
tally discovering the flow graph during execution. In contrast, static
compilers can compile one file at a time and bytecode JITs [5, 8]
can compile a whole method at one time. We describe two issues
that our trace-based register re-allocation scheme must address:
register liveness analysis and reconciliation of register bindings.

Register Liveness Analysis Precise liveness information of
registers at trace exits makes register allocation more effective since
dead registers can be reused by Pin without introducing spills.
Without a complete flow graph, we must incrementally compute
liveness. After a trace at address A is compiled, we record the
liveness at the beginning of the trace in a hash table using address
A as the key. If a trace exit has a statically-known target, we
attempt to retrieve the liveness information from the hash table so
we can compute more precise liveness for the current trace. This
simple method introduces negligible space and time overhead, yet
is effective in reducing register spills introduced by Pin’s register
allocation.

Reconciliation of Register Bindings Trace linking (see Sec-
tion 3.3.2) tries to make traces branch directly to each other. When
registers are reallocated, the JIT must ensure than the register bind-
ing at the trace exit of the source trace matches the bindings of the
entrance of the destination trace. A straightforward method is to re-
quire a standard binding of registers between traces. For example
Valgrind [22] requires that all virtual register values be flushed to
memory at the end of a basic block. This approach is simple but
inefficient. Figure 4(b) shows how Valgrind would re-allocate reg-
isters for the original code shown in Figure 4(a). Here, we assume
that virtual %ebx is bound to physical %esi in Trace 1 but to phys-
ical %edi in Trace 2. Virtual %eax and %ebx are saved at Trace
1’s exit because they have been modified in the trace, and they are
reloaded before their uses in Trace 2. EAX and EBX are the mem-
ory locations allocated by the JIT for holding the current values of
virtual %eax and %ebx, respectively.

In contrast, Pin keeps a virtual register in the same physical
register across traces whenever possible. At a trace exit e, if the
target t has not been compiled before, our JIT will compile a new
trace for t using the virtual-to-physical register binding at e, say
Be. Therefore, e can branch directly to t. Figure 4(c) shows how
Pin would re-allocate registers for the same original code, assuming
that target t has not been compiled before. Nevertheless, if target t
has been previously compiled with a register binding Bt �= Be,
then our JIT will generate compensation code [19] to reconcile the
register binding from Be to Bt instead of compiling a new trace for
Be. Figure 4(d) shows how Pin would re-allocate registers for the
same original code, this time assuming that the target t has been
previously compiled with a different binding in the virtual %ebx. In
practice, these bindings show differences in only one or two virtual
registers, and are therefore more efficient than Valgrind’s method.

A design choice we encountered was where to put the compen-
sation code. It could be placed before the branch, which is exactly
the situation shown in Figure 4(d) where the two mov instructions
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(a) Original code (b) Valgrind’s approach

mov $1, %eax

mov $2, %ebx

cmp %ecx, %edx

jz t

add $1, %eax

sub $2, %ebx

t:
t’:

mov $1, %eax

mov $2, %esi

cmp %ecx, %edx

mov %eax, EAX

mov %esi,  EBX

jz t’

mov EAX, %eax

mov EBX, %edi

add $1, %eax

sub $2, %edi

Trace 1

Trace 2

(c) Pin (no reconciliation needed)

mov $1, %eax

mov $2, %esi

cmp %ecx, %edx

jz t’

Trace 1

t’: add $1, %eax

sub $2, %esi

Trace 2 

Compile Trace 2 using the bindings:

%edx%edx

%ecx%ecx

%esi%ebx

%eax%eax

PhysicalVirtual

(d) Pin (minimal reconciliation needed)

mov $1, %eax

mov $2, %esi

cmp %ecx, %edx

mov %esi, EBX

mov EBX, %edi

jz t’

Trace 1 (being compiled)

t’: add $1, %eax

sub $2, %edi

Trace 2 (previously compiled) 

No need to recompile 
Trace 2, simply reconcile 
the bindings of virtual 
%ebx in Traces 1 and 2

Figure 4. Reconciliation of Register Bindings

that adjust the binding are placed before the jz. Or the compensa-
tion code could be placed after the branch (in that case, the two mov
instructions in Figure 4(d) would be placed in between the jz and
t′). We chose the ”before” approach because our experimental data
showed that it generally resulted in fewer unique bindings, there-
fore reducing the memory consumed by the compiler. Placing the
compensation code before the branch is equivalent to targeting the
register allocation to match the binding at the branch target.

To support reconciliation of register bindings, we need to re-
member the binding at a trace’s entry. This is done by associat-
ing each trace with a static context (sct), which contains a group
of static properties that hold at the trace’s entry. Register bind-
ing is one such property; another example property is the call
stack of the trace, which is used for function cloning (see Sec-
tion 3.3.2). So, precisely speaking, a trace is defined as a pair
< entryIaddr, entrySct >, where entryIaddr is the original
instruction address of the trace’s entry and entrySct is the static
context of the trace. Before the JIT compiles a new trace, it will first
search for a compatible trace in the code cache. Two traces are com-

patible if they have the same entryIaddr and their entrySct’s are
either identical or different in only their register bindings (in that
case we can reconcile from one register binding to the other, as we
have exemplified in Figure 4(d)). If a compatible trace is found, the
JIT will simply use it instead of generating a new trace.

3.3.4 Thread-local Register Spilling

Pin reserves an area in memory for spilling virtual registers (e.g.,
EAX and EBX shown in Figure 4(b) are two locations in this spilling
area). To support multithreading, this area has to be thread local.
When Pin starts an application thread, it allocates the spilling area
for this thread and steals a physical register (%ebx on x86, %r7 on
Itanium) to be the spill pointer, which points to the base of this
area. From that point on, any access to the spilling area can be
made through the spill pointer. When we switch threads, the spill
pointer will be set to the spilling area of the new thread. In addition,
we exploit an optimization opportunity coming from the absolute
addressing mode available on the x86 architecture. Pin starts an ap-
plication assuming that it is single threaded. Accesses to the spilling
area are made through absolute addressing and therefore Pin does
not need a physical register for the spill pointer. If Pin later discov-
ers that the application is in fact multithreaded, it will invalidate the
code cache and recompile the application using the spill pointer to
access the spilling area (Pin can detect multithreading because it
intercepts all thread-create system calls). Since single-threaded ap-
plications are more common than multithreaded ones, this hybrid
approach works well in practice.

3.3.5 Optimizing Instrumentation Performance

As we will show in Section 4, most of the slowdown from instru-
mentation is caused by executing the instrumentation code, rather
than the compilation time (which includes inserting the instrumen-
tation code). Therefore, it is beneficial to spend more compilation
time in optimizing calls to analysis routines. Of course, the run-
time overhead of executing analysis routines highly depends on
their invocation frequency and their complexity. If analysis rou-
tines are complex, there is not much optimization that our JIT can
do. However, there are many Pintools whose frequently-executed
analysis routines perform only simple tasks like counting and trac-
ing. Our JIT optimizes those cases by inlining the analysis rou-
tines, which reduces execution overhead as follows. Without inlin-
ing, we call a bridge routine that saves all caller-saved registers,
sets up analysis routine arguments, and finally calls the analysis
routine. Each analysis routine requires two calls and two returns
for each invocation. With inlining, we eliminate the bridge and thus
save those two calls and returns. Also, we no longer explicitly save
caller-saved registers. Instead, we rename the caller-saved registers
in the inlined body of the analysis routine and allow the register al-
locator to manage the spilling. Furthermore, inlining enables other
optimizations like constant folding of analysis routine arguments.

We perform an additional optimization for the x86 architecture.
Most analysis routines modify the conditional flags register eflags
(e.g., if an analysis routine increments a counter). Hence, we must
preserve the original eflags value as seen by the application.
However, accessing the eflags is fairly expensive because it must
be done by pushing it onto the stack2. Moreover, we must switch to
another stack before pushing/popping the eflags to avoid chang-
ing the application stack. Pin avoids saving/restoring eflags as
much as possible by using liveness analysis on the eflags. The
liveness analysis tracks the individual bits in the eflags written
and read by each x86 instruction. We frequently discover that the

2 On IA32, we can use lahf/sahf to access the eflags without involving
the stack. However, we decided not to use them since these two instructions
are not implemented on current EM64T processors.
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Architecture Number of Number of Lines
Source Files (including comments)

Generic 87 (48%) 53595 (47%)
x86 34 (19%) 22794 (20%)

(IA32+EM64T)
Itanium 34 (19%) 20474 (18%)
ARM 27 (14%) 17933 (15%)

TOTAL 182 (100%) 114796 (100%)

Table 1. Distribution of Pin source among different architectures
running Linux. Over 99% of code is written in C++ and the remain-
ing is in assembly.

eflags are dead at the point where an analysis routine call is in-
serted, and are able to eliminate saving and restoring of the eflags.

Finally, to achieve even better performance, the Pintool writer
can specify a hint (IPOINT ANYWHERE) telling Pin that a call to
an analysis routine can be inserted anywhere inside the scope of
instrumentation (e.g., a basic block or a trace). Then Pin can exploit
a number of optimization opportunities by scheduling the call. For
instance, Pin can insert the call immediately before an instruction
that overwrites a register (or eflags) and thereby the analysis
routine can use that register (or eflags) without first spilling it.

3.4 Organization of Pin Source Code

Since Pin is a multi-platform system, source code sharing is a
key to minimizing the development effort. Our first step was to
share the basic data structures and intermediate representations
with Ispike [20], a static binary optimizer we previously developed.
Then we organized Pin source into generic, architecture dependent,
or operating-system dependent modules. Some components like the
code cache are purely generic, while other components like the
register allocator contain both generic and architecture-dependent
parts. Table 1 shows the distribution of Pin source among different
architectures, in terms of number of source files and lines. We
combine IA32 and EM64T in Table 1 since they are similar enough
to share the same source files. The x86 numbers do not include
the decoder/encoder while the Itanium numbers do not include
the instruction scheduler. The reason is that we borrow these two
components from other Intel tools in library form and we do not
have their sources. The data reflects that we have done a reasonable
job in code sharing among architectures as about 50% of code is
generic.

4. Experimental Evaluation
In this section, we first report the performance of Pin without any
instrumentation on the four supported architectures. We then report
the performance of Pin with a standard instrumentation—basic-
block counting. Finally, we compare the performance of Pin with
two other tools: DynamoRIO and Valgrind, and show that Pin’s
instrumentation performance is superior across our benchmarks.

Our experimental setup is described in Table 2. For IA32, we
use dynamically-linked SPECint binaries compiled with gcc -O3.
We compiled eon with icc because the gcc -O3 version does not
work, even without applying Pin. We could not use the official
statically-linked, icc-generated binaries for all programs because
DynamoRIO cannot execute them. We ran the SPEC2000 suite [11]
using reference inputs on IA32, EM64T, and Itanium. On ARM,
we are only able to run the training inputs due to limited physical
memory (128MB), even when executing uninstrumented binaries.
Floating-point benchmarks are not used on ARM as it does not have
floating-point hardware.

Staticicc 8.0 for SPECfp

Intel ® compiler (icc
8.0), with 
interprocedural & 
profile-guided 
optimizations

Static

Static

Static

Shared

Binary

gcc 3.4.1, -O22.4.18
400 MHz XScale®

80200, 128 MB Memory
ARM

2.4.18
1.3GHz Itanium®2, 6MB 

L2 cache, 12GB Memory
Itanium®

2.4.21
3.4GHz Xeon™, 1MB L2 
cache, 4GB Memory

EM64T

gcc 3.3.2, -O3 for 
SPECint (except in 
eon where we use 
icc)

2.4.9
1.7GHz Xeon™, 256KB 
L2 cache, 2GB Memory

IA32

CompilerLinuxHardware

Table 2. Experimental setup.

4.1 Pin Performance without Instrumentation

Figure 5 shows the performance of applying Pin to the bench-
marks on the four architectures, without any instrumentation. Since
Pin 2/Itanium is still under development, we instead use Pin 0 for
Itanium experiments. The y-axis is the time normalized to the na-
tive run time (i.e. 100%). The slowdown of Pin 2 on IA32 and
EM64T is similar. In both cases, the average run-time overhead is
around 60% for integer and within 5% for floating point. The higher
overhead on the integer side is due to many more indirect branches
and returns. The slowdown of Pin 0 on Itanium follows the same
trend but is generally larger than on IA32 and EM64T, especially
for floating-point benchmarks. This is probably because Itanium is
an in-order architecture, so its performance depends more on the
quality of the jitted code. In contrast, IA32 and EM64T are out-
of-order architectures that can tolerate the overhead introduced in
the jitted code. Pin’s performance on ARM is worse than the other
three architectures because indirect linking (see Section 3.3.2) is
not yet implemented and there are fewer computational resources
(ILP and memory) available.

One downside of dynamic compilation is that the compilation
time is directly reflected in the application’s run time. To under-
stand the performance impact of dynamic compilation, we divide
the total run time into the components shown in Figures 5(a), (b),
and (d) (Pin 0 source code is not instrumented and hence does not
have the breakdown). Code Cache denotes the time executing the
jitted code stored in the code cache. Ideally, we would like this
component to approach 100%. We divide the JIT time into three
categories: JIT-Decode, JIT-Regalloc, and JIT-Other. JIT-Decode is
the time spent decoding and encoding instructions, which is a non-
trivial task on the x86 architecture. JIT-Regalloc is the time spent in
register re-allocation. JIT-Other denotes the remaining time spent
in the JIT. The last component is VM, which includes all other time
spent in the virtual machine, including instruction emulation and
resolving mispredicted indirect control transfers.

As Figures 5 (a) and (b) show, the JIT and VM components on
IA32 and EM64T are mostly small except in gcc and perlbmk.
These two benchmarks have the largest instruction footprint in
SPEC2000 and their execution times are relatively short. Conse-
quently, there is insufficient code reuse for Pin to amortize its com-
pilation cost. In particular, Pin pays a high cost in re-allocating reg-
isters compared to most other tools that do not re-allocate registers.
Nevertheless, the advantages provided by register re-allocation out-
weigh its compilation overhead (e.g., register re-allocation makes
it easy to provide Pin and Pintools more virtual registers than the
number of physical registers supported by the hardware). In prac-
tice, the performance overhead is a serious concern only for long-
running applications. In that case, we would have sufficient code
reuse to amortize the cost of register re-allocation. Figure 5(d)
shows a different trend for ARM, where the VM component is
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(b) Pin 2/EM64T
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(c) Pin 0/Itanium (d) Pin 2/ARM
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Figure 5. Performance of Pin (without any instrumentation) on four architectures. The y-axis is the time normalized to the native run time
(i.e. 100%). INT-AriMean and FP-AriMean on the x-axis are the arithmetic means of the integer and floating-point benchmarks, respectively.
The legends are explained in Section 4.1.

large but all JIT components are small. This is because register re-
allocation and indirect linking are not yet implemented on ARM.
As a result, all indirect control transfers are resolved by the VM.

4.2 Pin Performance with Instrumentation

We now study the performance of Pin with basic-block counting,
which outputs the execution count of every basic block in the ap-
plication. We chose to measure this tool’s performance because
basic-block counting is commonly used and can be extended to
many other tools such as Opcodemix, which we will discuss in
Section 5.1. Also, this tool is simple enough that its performance

largely depends on how well the JIT integrates it into the applica-
tion. On the other hand, performance of a complex tool like de-
tailed cache simulation mostly depends on the tool’s algorithm. In
that case, our JIT has less of an impact on performance.

Figure 6 shows the performance of basic-block counting using
Pin on the IA32 architecture. Each benchmark is tested using four
different optimization levels. Without any optimization, the over-
head is fairly large (as much as 20x slowdown in crafty). Adding
inlining helps significantly; the average slowdown improves from
10.4x to 7.8x for integer and from 3.9x to 3.5x for floating point.
The biggest performance boost comes from the eflags liveness
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Figure 6. Performance of Pin with basic-block counting instrumentation on the IA32 architecture.

analysis, reducing the average slowdown to 2.8x for integer and
1.5x for floating point. Scheduling of instrumentation code further
reduces the slowdown to 2.5x for integer and 1.4x for floating point.

4.3 Performance Comparison with Valgrind and
DynamoRIO

We now compare the performance of Pin against Valgrind and Dy-
namoRIO. Valgrind is a popular instrumentation tool on Linux and
is the only binary-level JIT other than Pin that re-allocates regis-
ters. DynamoRIO is generally regarded as the performance leader
in binary-level dynamic optimization. We used the latest release of
each tool for this experiment: Valgrind 2.2.0 [22] and DynamoRIO
0.9.3 [6]. We ran two sets of experiments: one without instrumenta-
tion and one with basic-block counting instrumentation. We imple-
mented basic-block counting by modifying a tool in the Valgrind
package named lackey and a tool in the DynamoRIO package
named countcalls. We show only the integer results in Figure 7
as integer codes are more problematic than floating-point codes in
terms of the slowdown caused by instrumentation.

Figure 7(a) shows that without instrumentation both Pin and
DynamoRIO significantly outperform Valgrind. DynamoRIO is
faster than Pin on gcc, perlbmk and vortex, mainly because Pin
spends more jitting time in these three benchmarks (refer back to
Figure 5(a) for the breakdown) than DynamoRIO, which does not
re-allocate registers. Pin is faster than DynamoRIO on a few bench-
marks such as crafty and gap possibly because of the advantages
that Pin has in indirect linking (i.e. incremental linking, cloning,
and local hash tables). Overall, DynamoRIO is 12% faster than
Pin without instrumentation. Given that DynamoRIO was primar-
ily designed for optimization, the fact that Pin can come this close
is quite acceptable.

When we consider the performance with instrumentation shown
in Figure 7(b), Pin outperforms both DynamoRIO and Valgrind
by a significant margin: on average, Valgrind slows the applica-
tion down by 8.3 times, DynamoRIO by 5.1 times, and Pin by 2.5
times. Valgrind inserts a call before every basic block’s entry but
it does not automatically inline the call. For DynamoRIO, we use
its low-level API to update the counter inline. Nevertheless, Dy-
namoRIO still has to save and restore the eflags explicitly around
each counter update. In contrast, Pin automatically inlines the call
and performs liveness analysis to eliminate unnecessary eflags
save/restore. This clearly demonstrates a main advantage of Pin: it
provides efficient instrumentation without shifting the burden to the
Pintool writer.
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Figure 7. Performance comparison among Valgrind, DynamoRIO,
and Pin. Eon is excluded because DynamoRIO does not work on
the icc-generated binary of this benchmark. Omitting eon causes
the two arithmetic means of Pin/IA32 slightly different than the
ones shown in Figures 5(a) and 6.
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5. Two Sample PinTools
To illustrate how Pin is used in practice, we discuss two Pintools
that have been used by various groups inside Intel. The first tool,
Opcodemix, studies the frequency of different instruction types in a
program. It is used to compare codes generated by different compil-
ers. The second tool, PinPoints, automatically selects representa-
tive points in the execution of a program and is used to accelerate
processor simulation.

5.1 Opcodemix

Opcodemix, whose source code is included in the Pin 2 distribu-
tion [12], is a simple Pintool that can determine the dynamic mix
of opcodes for a particular execution of a program. The statistics
can be broken down on a per basic-block, per routine, or per image
basis. Conceptually this tool is implemented as a basic-block pro-
filer. We insert a counter at the beginning of each basic block in a
trace. Upon program termination we walk through all the counters.
From the associated basic-block’s starting address, we can deter-
mine the function it belongs to and the instruction mix in that basic
block. While the output of Opcodemix is ISA dependent (different
ISAs have different opcodes), the implementation is generic—the
same source code for Opcodemix is used on the four architectures.

Though simple, Opcodemix has been quite useful both for ar-
chitectural and compiler comparison studies. As an example, the
following analysis revealed a compiler performance problem. We
collected Opcodemix statistics for the SPEC2000 images produced
by two compilers, which we refer to as compilers A and B, for the
EM64T architecture. For the benchmark crafty, we found that
the image produced by compiler A executed 2% more dynamic in-
structions than the image produced by compiler B. To understand
the cause of the extra instructions, we looked at the instruction dis-
tribution of frequently-executed routines. The data for the routine
PopCnt() is shown in Table 3, where opcodes with significantly
different frequencies in the two compilers are marked with “←”.
Examining the PopCnt() codes from the two compilers revealed
that the deltas in JE and JNZ were due to different code-layout deci-
sions, and the delta in MOVL was due to different register selections.
The most surprising finding was the extra PUSHQ and POPQ gener-
ated by compiler A. Figure 8 shows the PopCnt() code generated
by compiler A. After communicating with compiler A’s writers, we
learned that the push and pop are used for stack alignment but are
in fact unnecessary in this case. As a result, this performance prob-
lem is now fixed in the latest version of compiler A.

In addition to SPEC, we use Opcodemix to analyze the Oracle
database performance. Typically, more than 10 “Oracle” processes
run on the system, but we want to ignore the database startup
and only observe a single process performing a transaction. We
first run Oracle natively (i.e. without Pin) to startup the database.
Next we attach Pin to a single database server process and have
it perform a transaction while collecting a profile. Pin’s dynamic
just-in-time instrumentation allows us to avoid instrumenting the
entire 60 MB Oracle binary, and the attach feature allows us to
avoid instrumenting the database startup and the other processes.

5.2 PinPoints

The purpose of the PinPoints [23] toolkit is to automate the oth-
erwise tedious process of finding regions of programs to simulate,
validating that the regions are representative, and generating traces
for those regions. There are two major challenges in simulating
large commercial programs. First, these programs have long run
times, and detailed simulation of their entire execution is too time
consuming to be practical. Second, these programs often have large
resource requirements, operating system and device-driver depen-
dencies, and elaborate license-checking mechanisms, making it dif-
ficult to execute them on simulators. We address the first chal-

------------------------------------------------
Instruction Type C o u n t

Compiler A Compiler B Delta
------------------------------------------------
*total 712M 618M -94M
XORL 94M 94M 0M
TESTQ 94M 94M 0M
RET 94M 94M 0M
PUSHQ 94M 0M -94M <-
POPQ 94M 0M -94M <-
JE 94M 0M -94M <-
LEAQ 37M 37M 0M
JNZ 37M 131M 94M <-
ANDQ 37M 37M 0M
ADDL 37M 37M 0M
MOVL 0M 94M 94M <-

Table 3. Dynamic instruction distribution in PopCnt() of crafty
benchmark.

42f538 <PopCnt>:
42f538: push %rsi # unnecessary
42f539: xor %eax,%eax
42f53b: test %rdi,%rdi
42f53e: je 42f54c
42f540: add $0x1,%eax
42f543: lea 0xffffffffffffffff(%rdi),%rdx
42f547: and %rdx,%rdi
42f54a: jne 42f540
42f54c: pop %rcx # unnecessary
42f54d: retq

Figure 8. PopCnt() code generated by compiler A.

lenge using SimPoint [28]—a methodology that uses phase anal-
ysis for finding representative regions for simulation. For the sec-
ond challenge, we use Pin to collect SimPoint profiles (which we
call PinPoints) and instruction traces, eliminating the need to ex-
ecute the program on a simulator. The ease of running applica-
tions with Pintools is a key advantage of the PinPoints toolkit.
PinPoints has been used to collect instruction traces for a wide
variety of programs; Table 4 lists some of the Itanium applications
(SPEC and commercial), including both single-threaded and multi-
threaded applications. As the table shows, some of the commercial
applications are an order of magnitude larger and longer-running
than SPEC, and fully simulating them would take years. Simulating
only the selected PinPoints reduces the simulation time from years
to days. We also validate that the regions chosen represent whole-
program behavior (e.g., the cycles-per-instruction predicted by Pin-
Points is typically within 10% of the actual value [23]). Because of
its high prediction accuracy, fast simulation time, and ease-of-use,
PinPoints is now used to predict performance of large applications
on future Intel processors.

6. Related Work
There is a large body of related work in the areas of instrumentation
and dynamic compilation. To limit our scope of discussion, we con-
centrate on binary instrumentation in this section. At the highest
level, instrumentation consists of static and dynamic approaches.

Static binary instrumentation was pioneered by ATOM [30],
followed by others such as EEL [18], Etch [25], and Morph [31].
Static instrumentation has many limitations compared to dynamic
instrumentation. The most serious one is that it is possible to mix
code and data in an executable and a static tool may not have
enough information to distinguish the two. Dynamic tools can rely
on execution to discover all the code at run time. Other difficult
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Program Description Code Dynamic
Size Count

(MB) (billions)
SPECINT SPEC CPU2000 integer 1.9 521
2000 suite [11] (avg.)
SPECFP SPEC CPU2000 floating 2.4 724
2000 -point suite [11] (avg.)
SPECOMP SPEC benchmarks 8.4 4800
2001 for evaluating

multithreaded
OpenMP applications [26]

Amber A suite of bio-molecular 6.2 3994
simulation from UCSF [1]

Fluent Computational Fluid 19.6 25406
Dynamics code from
Fluent Inc [2]

LsDyna A general-purpose transient 61.9 4932
dynamic finite element analy-
sis program from Livermore
Software Technology [3]

RenderMan A photo-realistic rendering 8.5 797
application from Pixar [4]

Table 4. Applications analyzed with PinPoints. Column 3 shows
the code section size of the application binary and shared libraries
reported by the size command. Column 4 lists the dynamic in-
struction count for the longest-running application input.

problems for static systems are indirect branches, shared libraries,
and dynamically-generated code.

There are two approaches to dynamic instrumentation: probe-
based and jit-based. The probe-based approach works by dynam-
ically replacing instructions in the original program with trampo-
lines that branch to the instrumentation code. Example probe-based
systems include Dyninst [7], Vulcan [29], and DTrace [9]. The
drawbacks of probe-based systems are that (i) instrumentation is
not transparent because original instructions in memory are over-
written by trampolines, (ii) on architectures where instruction sizes
vary (i.e. x86), we cannot replace an instruction by a trampoline
that occupies more bytes than the instruction itself because it will
overwrite the following instruction, and (iii) trampolines are im-
plemented by one or more levels of branches, which can incur
a significant performance overhead. These drawbacks make fine-
grained instrumentation challenging on probe-based systems. In
contrast, the jit-based approach is more suitable for fine-grained in-
strumentation as it works by dynamically compiling the binary and
can insert instrumentation code (or calls to it) anywhere in the bi-
nary. Examples include Valgrind [22], Strata [27], DynamoRIO [6],
Diota [21], and Pin itself. Among these systems, Pin is unique in the
way that it supports high-level, easy-to-use instrumentation, which
at the same time is portable across four architectures and is efficient
due to optimizations applied by our JIT.

7. Conclusions
We have presented Pin, a system that provides easy-to-use, portable,
transparent, efficient, and robust instrumentation. It supports the
IA32, EM64T, Itanium R©, and ARM architectures running Linux.
We show that by abstracting away architecture-specific details,
many Pintools can work across the four architectures with little
porting effort. We also show that the Pin’s high-level, call-based
instrumentation API does not compromise performance. Auto-
matic optimizations done by our JIT compiler make Pin’s instru-
mentation even more efficient than other tools that use low-level
APIs. We also demonstrate the versatility of Pin with two Pin-
tools, Opcodemix and PinPoints. Future work includes develop-
ing novel Pintools, enriching and refining the instrumentation API
as more tools are developed, and porting Pin to other operating sys-
tems. Pin is freely available at http://rogue.colorado.edu/Pin.
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Abstract
Dynamic binary instrumentation (DBI) frameworks make it easy
to build dynamic binary analysis (DBA) tools such as checkers
and profilers. Much of the focus on DBI frameworks has been on
performance; little attention has been paid to their capabilities. As a
result, we believe the potential of DBI has not been fully exploited.

In this paper we describe Valgrind, a DBI framework designed
for building heavyweight DBA tools. We focus on its unique sup-
port for shadow values—a powerful but previously little-studied
and difficult-to-implement DBA technique, which requires a tool
to shadow every register and memory value with another value that
describes it. This support accounts for several crucial design fea-
tures that distinguish Valgrind from other DBI frameworks. Be-
cause of these features, lightweight tools built with Valgrind run
comparatively slowly, but Valgrind can be used to build more in-
teresting, heavyweight tools that are difficult or impossible to build
with other DBI frameworks such as Pin and DynamoRIO.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—debugging aids, monitors; D.3.4
[Programming Languages]: Processors—incremental compilers

General Terms Design, Performance, Experimentation

Keywords Valgrind, Memcheck, dynamic binary instrumentation,
dynamic binary analysis, shadow values

1. Introduction
Valgrind is a dynamic binary instrumentation (DBI) framework
that occupies a unique part of the DBI framework design space.
This paper describes how it works, and how it differs from other
frameworks.

1.1 Dynamic Binary Analysis and Instrumentation
Many programmers use program analysis tools, such as error
checkers and profilers, to improve the quality of their software.
Dynamic binary analysis (DBA) tools are one such class of tools;
they analyse programs at run-time at the level of machine code.

DBA tools are often implemented using dynamic binary instru-
mentation (DBI), whereby the analysis code is added to the original
code of the client program at run-time. This is convenient for users,
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as no preparation (such as recompiling or relinking) is needed.
Also, it gives 100% instrumentation coverage of user-mode code,
without requiring source code. Several generic DBI frameworks ex-
ist, such as Pin [11], DynamoRIO [3], and Valgrind [18, 15]. They
provide a base system that can instrument and run code, plus an
environment for writing tools that plug into the base system.

The performance of DBI frameworks has been studied closely [1,
2, 9]. Less attention has been paid to their instrumentation capabil-
ities, and the tools built with them. This is a shame, as it is the tools
that make DBI frameworks useful, and complex tools are more in-
teresting than simple tools. As a result, we believe the potential of
DBI has not been fully exploited.

1.2 Shadow Value Tools and Heavyweight DBA
One interesting group of DBA tools are those that use shadow
values. These tools shadow, purely in software, every register and
memory value with another value that says something about it. We
call these shadow value tools. Consider the following motivating
list of shadow value tools; the descriptions are brief but demonstrate
that shadow values (a) can be used in a wide variety of ways, and
(b) are powerful and interesting.

Memcheck [25] uses shadow values to track which bit values
are undefined (i.e. uninitialised, or derived from undefined values)
and can thus detect dangerous uses of undefined values. It is used
by thousands of C and C++ programmers, and is probably the most
widely-used DBA tool in existence.1

TaintCheck [20] tracks which byte values are tainted (i.e. from
an untrusted source, or derived from tainted values) and can
thus detect dangerous uses of tainted values. TaintTrace [6] and
LIFT [23] are similar tools.

McCamant and Ernst’s secret-tracking tool [13] tracks which
bit values are secret (e.g. passwords), and determines how much
information about secret inputs is revealed by public outputs.

Hobbes [4] tracks each value’s type (determined from opera-
tions performed on the value) and can thus detect subsequent oper-
ations inappropriate for a value of that type.

DynCompB [7] similarly determines abstract types of byte val-
ues, for program comprehension and invariant detection purposes.

Annelid [16] tracks which word values are array pointers, and
from this can detect bounds errors.

Redux [17] creates a dynamic dataflow graph, a visualisation of
a program’s entire computation; from the graph one can see all the
prior operations that contributed to the each value’s creation.

In these tools each shadow value records a simple approxi-
mation of each value’s history—e.g. one shadow bit per bit, one

1 Purify [8] is a memory-checking tool similar to Memcheck. However,
Purify is not a shadow value tool as it does not does not track definedness
of values through registers. As a result, it detects undefined value errors less
accurately than Memcheck.



shadow byte per byte, or one shadow word per word—which the
tool uses in a useful way; in four of the above seven cases, the tool
detects operations on values that indicate a likely program defect.

Shadow value tools are a perfect example of what we call
“heavyweight” DBA tools. They involve large amounts of analysis
data that is accessed and updated in irregular patterns. They instru-
ment many operations (instructions and system calls) in a variety
of ways—for example, loads, adds, shifts, integer and FP opera-
tions, and allocations and deallocations are all handled differently.
For heavyweight tools, the structure and maintenance of the tool’s
analysis data is comparably complex to that of the client program’s
original data. In other words, a heavyweight tool’s execution is as
complex as the client program’s. In comparison, more lightweight
tools such as trace collectors and profilers add a lot of highly uni-
form analysis code that updates analysis data in much simpler ways
(e.g. appending events to a trace, or incrementing counters).

Shadow value tools are powerful, but difficult to implement.
Most existing ones have slow-down factors of 10x–100x or even
more, which is high but bearable if they are sufficiently useful.
Some are faster, but applicable in more limited circumstances, as
we will see.

1.3 Contributions
This paper makes the following contributions.

• Characterises shadow value tools. Tools using shadow values
are not new, but the similarities they share have received little
attention. This introduction has identified these similarities, and
Section 2 formalises them by specifying the requirements of
shadow value tools in detail.

• Shows how to support shadow values in a DBI framework.
Section 3 describes how Valgrind works, emphasising its fea-
tures that support robust heavyweight tools, such as its code
representation, its first-class shadow registers, its events sys-
tem, and its handling of threaded programs. This section does
not delve deeply into well-studied topics, such as code cache
management and trace formation, that do not relate to shadow
values and instrumentation capabilities. Section 4 then shows
how Valgrind supports each of the shadow value requirements
from Section 2.2

• Shows that DBI frameworks are not all alike. Section 5 eval-
uates Valgrind’s ease-of-tool-writing, robustness, instrumenta-
tion capabilities and performance. It involves some detailed
comparisons between Valgrind and Pin, and between Mem-
check and various other shadow value tools. Section 6 dis-
cusses additional related work. These two sections, along with
some details from earlier parts of the paper—especially Sec-
tion 3.5’s novel identification of two basic code represen-
tations (disassemble-and-resynthesise vs. copy-and-annotate)
for DBI—show that different DBI frameworks have different
strengths and weaknesses. In particular, lightweight tools built
with Valgrind run comparatively slowly, but Valgrind can be
used to build more interesting, robust, heavyweight tools that
are difficult or impossible to build with other DBI frameworks
such as Pin and DynamoRIO.

These contributions show that there is great potential for new DBA
tools that help programmers improve their programs, and that Val-

2 Two prior publications [18, 15] described earlier versions of Valgrind.
However, they discussed shadow values in much less detail, and most of
Valgrind’s internals have changed since they were published: the old x86-
specific JIT compiler has been replaced, its basic structure and start-up
sequence has changed, its handling of threads, system calls, signals, and
self-modifying code has improved, and function wrapping has been added.

grind provides a good platform for building these tools. At the pa-
per’s end, Section 7 describes future work and concludes.

2. Shadow Value Requirements
This section describes what a tool must do to support shadow
values. We start here because (a) it shows that these requirements
are generic and not tied to Valgrind, and (b) knowledge of shadow
values is crucial to understanding how Valgrind differs from other
DBI frameworks. Not until Sections 3 and 4 will we describe
Valgrind and show how it supports these requirements. Then in
Sections 5 and 6 we will explain in detail how Valgrind’s support
for these requirements is unique among DBI frameworks.

There are three characteristics of program execution that are
relevant to shadow value tools: (a) programs maintain state, S, a
finite set of locations that can hold values (e.g. registers and the
user-mode address space), (b) programs execute operations that
read and write S, and (c) programs execute operations (allocations
and deallocations) that make memory locations active or inactive.
We group the nine shadow value requirements accordingly.

Shadow State. A shadow value tool maintains a shadow state, S′,
which contains a shadow value for every value in S.

• R1: Provide shadow registers. A shadow value tool must ma-
nipulate shadow register values (integer, FP and SIMD) from
S′ just like normal register values, in which case it must mul-
tiplex two sets of register values—original and shadow—onto
the machine’s register file, without perturbing execution.

• R2: Provide shadow memory. S′ must hold shadow values for
all memory locations in S. To do this a shadow value tool
must partition the address space between the original memory
state and the shadow memory state. It also must access shadow
memory safely in the presence of multiple threads.

Read and write operations. A shadow value tool must instrument
some or all operations that read/write S with shadow operations
that read/write S′.

• R3: Instrument read/write instructions. Most instructions ac-
cess registers and many access memory. A shadow value tool
must instrument some or all of them appropriately, and so must
know which locations are accessed by every one of the many
(hundreds of) distinct instructions, preferably in a way that is
portable across different instruction sets.

• R4: Instrument read/write system calls. All system calls ac-
cess registers and/or memory: they read their arguments from
registers and/or the stack, and they write their return value to
a register or memory location. Many system calls also access
user-mode memory via pointer arguments. A shadow value tool
must instrument some or all of these accesses appropriately, and
so must know which locations are accessed by every one of the
many (hundreds of) different system calls.

Allocation and deallocation operations. A shadow value tool
may instrument some or all allocation and deallocation operations
with shadow operations that update S′ appropriately.

• R5: Instrument start-up allocations. At program start-up, all
the registers are “allocated”, as are statically allocated memory
locations. A shadow value tool must create suitable shadow
values for these locations. It must also create suitable shadow
values for memory locations not allocated at this time (in case
they are later accessed erroneously before being allocated).

• R6: Instrument system call (de)allocations. Some system calls
allocate memory (e.g. brk, mmap), and some deallocate memory



(e.g. munmap), and again some shadow value tools must instru-
ment these operations. Also, mremap can cause memory values
to be copied, in which case the corresponding shadow memory
values may have to be copied as well.

• R7: Instrument stack (de)allocations. Stack pointer updates
also allocate and deallocate memory, and some shadow value
tools must instrument these operations. This can be expen-
sive because stack pointer updates are so frequent. Also, some
programs switch between multiple stacks. Some shadow value
tools need to distinguish these from large stack allocations or
deallocations, which can be difficult at the binary level.

• R8: Instrument heap (de)allocations. Most programs use a
heap allocator from a library that hands out heap blocks from
larger chunks allocated with a system call (brk and/or mmap).
Each heap block typically has book-keeping data attached
(e.g. the block size) which the client program should not ac-
cess (reading it may be safe, but overwriting it may crash the
allocator). Thus there is a notion of library-level addressability
which overlays the kernel-level addressability.
Therefore, a shadow value tool may need to also track heap
allocations and deallocations, and consider the book-keeping
data as not active. It should also treat the heap operations as
atomic, ignoring the underlying kernel-level allocations of large
chunks, instead waiting until the allocated bytes are handed to
the client by the allocator before considering them to be active.
Also, realloc needs to be handled the same way as mremap.

Transparent execution, but with extra output. We assume that
shadow value tools do not affect the client’s behaviour other than
producing auxiliary output. This leads to our final requirement.

• R9: Extra output. A shadow value tool must use a side-channel
for its output, such as a little-used file descriptor (e.g. stderr)
or a file. No other functional perturbation should occur.

Summary. These nine requirements are difficult to implement
correctly. Clearly, tools that do these tasks purely in software will
be slow if not implemented carefully.

One thing to note about these requirements: shadow value tools
are among the most heavyweight of DBA tools, and most DBA
tools involve a subset of these requirements (for example, almost
every DBA tool involves R9). Therefore, a DBI framework that
supports shadow values well will also support most conceivable
DBA tools.

Now that we know what shadow value tools do, we can describe
Valgrind, paying particular attention to its support for the nine
shadow value requirements. In Sections 5 and 6, we will see that
other DBI frameworks do not support shadow values as well as
Valgrind does.

3. How Valgrind Works
Valgrind is a DBI framework designed for building heavyweight
DBA tools. It was first released in 2002. The Valgrind distribution
[28] contains four tools, the most popular of which is Memcheck.
Valgrind has also been used to build several experimental tools. It is
available under the GNU General Public License (GPL), and runs
on x86/Linux, AMD64/Linux, and PPC{32,64}/{Linux,AIX}.

3.1 Basic Architecture
Valgrind tools are created as plug-ins, written in C, to Valgrind’s
core. The basic view is: Valgrind core + tool plug-in = Valgrind
tool. A tool plug-in’s main task is to instrument code fragments that
the core passes to it. Writing a new tool plug-in (and thus a new
Valgrind tool) is much easier than writing a new DBA tool from

scratch. Valgrind’s core does most of the work, and also provides
services to make common tool tasks such as recording errors easier.

3.2 Execution Overview
Valgrind uses dynamic binary re-compilation, similar to many other
DBI frameworks. A Valgrind tool is invoked by adding valgrind
--tool=<toolname> (plus any Valgrind or tool options) before a
command. The named tool starts up, loads the client program into
the same process, and then (re)compiles the client’s machine code,
one small code block at a time, in a just-in-time, execution-driven
fashion. The core disassembles the code block into an intermediate
representation (IR) which is instrumented with analysis code by
the tool plug-in, and then converted by the core back into machine
code. The resulting translation is stored in a code cache to be
rerun as necessary. Valgrind’s core spends most of its time making,
finding, and running translations. None of the client’s original code
is run.

Code handled correctly includes: normal executable code, dy-
namically linked libraries, shared libraries, and dynamically gener-
ated code. Only self-modifying code can cause problems (see Sec-
tion 3.16). The only code not under a tool’s control is that within
system calls, but system call side-effects can be indirectly observed,
as Section 3.12 will show.

Many complications arise from squeezing two programs—the
client and the tool—into a single process. They must share many
resources such as registers and memory. Also, Valgrind must be
careful not to relinquish its control over the client in the presence
of system calls, signals and threads, as we will see.

3.3 Starting Up
The goal of start-up is to load Valgrind’s core, the tool, and the
client into a single process, sharing the same address space.

Each tool is a statically-linked executable that contains the tool
code plus the core code. Having one copy of the core for every
tool wastes a little disk space (the core is about 2.5MB), but makes
things simple. The executable is linked to load at a non-standard
address that is usually free at program start-up (on x86/Linux
it is 0x38000000). If this address is not free—an exceptionally
rare case, in our experience—Valgrind can be recompiled to use
a different address.

The valgrind executable invoked by the user is a small wrap-
per program that scans its command-line for a --tool option, and
then loads the selected tool’s static executable using execve.

Valgrind’s core first initialises some sub-systems, such as the
the address space manager and its own internal memory allocator.
It then loads the client executable (text and data), which can be an
ELF executable or a script (in which case the script interpreter is
loaded). It then sets up the client’s stack and data segment.

The core then tells the tool to initialise itself. The command-line
is parsed and core and tool options are dealt with. Finally, more
core sub-systems are initialised: the translation table, the signal-
handling machinery, the thread scheduler, and debug information
for the client is loaded. At this point, the Valgrind tool is in com-
plete control and everything is in place to begin translating and ex-
ecuting the client from its first instruction.

This is the third structure and start-up approach that has been
used for Valgrind, and is by far the most reliable. The first one [18]
used the dynamic linker’s LD_PRELOAD mechanism to inject Val-
grind’s core and the tool (both built as shared objects) into the
client. This did not work with statically compiled executables, al-
lowed some client code to run natively before Valgrind gained con-
trol, and was not widely portable. The second one [15] was sim-
ilar to the current approach, but required the use of large empty
memory mappings to force components into the right place, which
turned out to be somewhat unreliable.



Most DBI frameworks use injection-style methods rather than
having their own program loader. As well as avoiding the problems
encountered by the prior two approaches, our third approach has
two other advantages. First, it gives Valgrind great control over
memory layout. Second, it it avoids dependencies on other tools
such as the dynamic linker, which we have found to be an excellent
strategy for improving robustness.3

3.4 Guest and Host Registers
Valgrind itself runs on the machine’s real or host CPU, and (con-
ceptually) runs the client program on a simulated or guest CPU.
We refer to registers in the host CPU as host registers and those of
the simulated CPU as guest registers. Due to the dynamic binary
recompilation process, a guest register’s value may reside in one of
the host’s registers, or it may be spilled to memory for a variety of
reasons. Shadow registers are shadows of guest registers.

Valgrind provides a block of memory per client thread called
the ThreadState. Each one contains space for all the thread’s guest
and shadow registers and is used to hold them at various times,
in particular between each code block. Storing guest registers in
memory between code blocks sounds like a bad idea at first, be-
cause it means that they must be moved between memory and the
host registers frequently, but it is reasonable for heavyweight tools
with high host register pressure for which the benefits of a more
optimistic strategy are greatly diminished.

3.5 Representation of code: D&R vs. C&A
There are two fundamental ways for a DBI framework to represent
code and allow instrumentation.

Valgrind uses disassemble-and-resynthesise (D&R): machine
code is converted to an IR in which each instruction becomes
one or more IR operations. This IR is instrumented (by adding
more IR) and then converted back to machine code. All of the
original code’s effects on guest state (e.g. condition code setting)
must be explicitly represented in the IR because the original client
instructions are discarded and the final code is generated purely
from the IR. Valgrind’s use of D&R is the single feature that most
distinguishes it from other DBI frameworks.

Other DBI frameworks use copy-and-annotate (C&A): incom-
ing instructions are copied through verbatim except for necessary
control flow changes. Each instruction is annotated with a descrip-
tion of its effects, via data structures (e.g. DynamoRIO) or an
instruction-querying API (e.g. Pin). Tools use the annotations to
guide their instrumentation. The added analysis code must must be
interleaved with the original code without perturbing its effects.

Hybrid approaches are possible. For example, earlier versions
of Valgrind used D&R for integer instructions and C&A for FP and
SIMD instructions (this was more by accident than design). Vari-
ations are also possible; for example, DynamoRIO allows instruc-
tion bytes to be modified in-place before being copied through.

Each approach has its pros and cons, depending on the instru-
mentation requirements. D&R may require more up-front design
and implementation effort, because a D&R representation is ar-
guably more complex. Also, generating good code at the end re-
quires more development effort—Valgrind’s JIT uses a lot of con-
ventional compiler technology. In contrast, for C&A, good client
code stays good with less effort. A D&R JIT compiler will proba-
bly also translate code more slowly.

D&R may not suitable for some tools that require low-level in-
formation. For example, the exact opcode used by each instruc-

3 For example, Valgrind no longer uses the standard C library, but has a
small version of its own. This has avoided any potential complications
caused by having two copies of the C library in the address space—one
for the client, and and for Valgrind and the tool. It also made the AIX port
much easier, because AIX’s C library is substantially different to Linux’s.

tion may be lost. IR annotations can help, however—for example,
Valgrind has “marker” statements that indicate the boundaries, ad-
dresses and lengths of original instructions. C&A can suffer the
same problem if the annotations are not comprehensive.

D&R’s strengths emerge when complex analysis code must be
added. First, D&R’s use of the same IR for both client and analysis
code guarantees that analysis code is as expressive and powerful
as client code. Making all side-effects explicit (e.g. condition code
computations) can make instrumentation easier.

The performance dynamics also change. The JIT compiler can
optimise analysis code and client code equally well, and naturally
tightly interleaves the two. In contrast, C&A must provide a sep-
arate way to describe analysis code (so C&A requires some kind
of IR after all). This code must then be fitted around the original
instructions, which requires effort (either by the framework or the
tool-writer) to do safely and with good performance. For example,
Pin analysis code is written as C functions (i.e. the analysis code
IR is C), which are compiled with an external C compiler, and Pin
then inlines them if possible, or inserts calls to them.

Finally, D&R is more verifiable—any error converting machine
code to IR is likely to cause visibly wrong behaviour, whereas a
C&A annotation error will result in incorrect analysis of a correctly
behaving client.4 D&R also permits binary translation from one
platform to another (although Valgrind does not do this). D&R also
allows the original code’s behaviour to be arbitrarily changed.

In summary, D&R requires more effort up-front and is overkill
for lightweight instrumentation. However, it naturally supports
heavyweight instrumentation such as that required by shadow value
tools, and so is a natural fit for Valgrind.

3.6 Valgrind’s IR
Prior to version 3.0.0 (August 2005), Valgrind had an x86-specific,
part D&R, part C&A, assembly-code-like IR in which the units
of translation were basic blocks. Since then Valgrind has had an
architecture-neutral, D&R, single-static-assignment (SSA) IR that
is more similar to what might be used in a compiler. IR blocks are
superblocks: single-entry, multiple-exit stretches of code.

Each IR block contains a list of statements, which are opera-
tions with side-effects, such as register writes, memory stores, and
assignments to temporaries. Statements contain expressions, which
represent pure (no side effects) values such as constants, register
reads, memory loads, and arithmetic operations. For example, a
store statement contains one expression for the store address and
another for the store value. Expressions can be arbitrarily compli-
cated trees (tree IR), but they can also be flattened by introducing
statements that write intermediate values to temporaries (flat IR).

The IR has some RISC-like features: it is load/store, each primi-
tive operation only does one thing (many CISC instructions are bro-
ken up into multiple operations), and when flattened, all operations
operate only on temporaries and literals. Nonetheless, supporting
all the standard integer, FP and SIMD operations of different sizes
requires more than 200 primitive arithmetic/logical operations.

The IR is architecture-independent. Valgrind handles unusual
architecture-specific instructions, such as cpuid on x86, with a
call to a C function that emulates the instruction. These calls have
annotations that say which guest registers and memory locations
they access, so that a tool can see some of their effects while
avoiding the need for Valgrind to represent the instruction explicitly
in the IR. This is another case (like the “marker” statements) where
Valgrind uses IR annotations to facilitate instrumentation (but it is
not C&A, because the instruction is emulated, not copied through).

4 This is not just a theoretical concern. Valgrind’s old IR used C&A for
SIMD instructions; some SIMD loads were mis-annotated as stores, and
some SIMD stores as loads, for more than a year before being noticed.



0x24F275: movl -16180(%ebx,%eax,4),%eax
1: ------ IMark(0x24F275, 7) ------
2: t0 = Add32(Add32(GET:I32(12),# get %ebx and

Shl32(GET:I32(0),0x2:I8)), # %eax, and
0xFFFFC0CC:I32) # compute addr

3: PUT(0) = LDle:I32(t0) # put %eax

0x24F27C: addl %ebx,%eax
4: ------ IMark(0x24F27C, 2) ------
5: PUT(60) = 0x24F27C:I32 # put %eip
6: t3 = GET:I32(0) # get %eax
7: t2 = GET:I32(12) # get %ebx
8: t1 = Add32(t3,t2) # addl
9: PUT(32) = 0x3:I32 # put eflags val1
10: PUT(36) = t3 # put eflags val2
11: PUT(40) = t2 # put eflags val3
12: PUT(44) = 0x0:I32 # put eflags val4
13: PUT(0) = t1 # put %eax

0x24F27E: jmp*l %eax
14: ------ IMark(0x24F27E, 2) ------
15: PUT(60) = 0x24F27E:I32 # put %eip
16: t4 = GET:I32(0) # get %eax
17: goto {Boring} t4

Figure 1. Disassembly: machine code → tree IR

3.7 Translating a Single Code Block
Valgrind translates code blocks on demand. To create a translation
of a code block, Valgrind follows instructions until one of the
following conditions is met: (a) an instruction limit is reached
(about 50, depending on the architecture), (b) a conditional branch
is hit, (c) a branch to an unknown target is hit, or (d) more than three
unconditional branches to known targets have been hit. This policy
is less sophisticated than those used by frameworks like Pin and
DynamoRIO; in particular, Valgrind does not recompile hot code.

There are eight translation phases. This high number is a con-
sequence of Valgrind using D&R. They are described by the fol-
lowing paragraphs. All phases are performed by the core, except
instrumentation, which is performed by the tool. Phases marked
with a ‘*’ are architecture-specific.

Phase 1. Disassembly*: machine code → tree IR. The disas-
sembler converts machine code into (unoptimised) tree IR. Each
instruction is disassembled independently into one or more state-
ments. These statements fully update the affected guest registers in
memory: guest registers are pulled from the ThreadState into tem-
poraries, operated on, and then written back.

Figure 1 gives an example for x86 machine code. Three x86
instructions are disassembled into 17 tree IR statements.

• Statements 1, 4 and 14 are IMarks: no-ops that indicate where
an instruction started, its address and length in bytes. These are
used by profiling tools that need to see instruction boundaries.

• Statement 2 assigns an expression tree to a temporary t0; it
shows how a CISC instruction can become multiple operations
in the IR. GET:I32 fetches a 32-bit integer guest register from
the ThreadState; the offsets 12 and 0 are for guest registers %ebx
and %eax. Add32 is a 32-bit add, Shl32 is a 32-bit left-shift.
Statement 16 is a simpler assignment.

• Statement 3 writes a guest register (%eax) value back to its
slot in the ThreadState (the LDle is a little-endian load). State-
ments 5 and 15 update the guest program counter (%eip) in the
ThreadState.

• Statements 9–12 write four values to the ThreadState. Many
x86 instructions affect the condition codes (%eflags), and Val-
grind computes them from these four values when they are
used. Often %eflags is clobbered without being used, so most
of these PUTs can be optimised away later. DBI frameworks
that use C&A do not synthesise the condition codes like this,
but instead obtain them “for free” as a side-effect of running
the code. But when heavyweight analysis code is added they
must be saved and restored frequently, which involves expen-
sive instructions on x86. In contrast, Valgrind’s approach is
more costly to begin with, but does not degrade badly in such
cases. Also, knowing precisely the operation and operands most
recently used to set the condition codes is helpful for some
tools. For example, Memcheck’s definedness tracking of condi-
tion codes was less accurate with with Valgrind’s old IR, which
used C&A for %eflags.

• Statement 17 is an unconditional jump to the address in t4.

Phase 2. Optimisation 1: tree IR → flat IR. The first optimisa-
tion phase flattens the IR and does several optimisations: redundant
get and put elimination (to remove unnecessary copying of guest
registers to/from the ThreadState), copy and constant propagation,
constant folding, dead code removal, common sub-expression elim-
ination, and even simple loop unrolling for intra-block loops. It is
also possible to pass in callback functions that can partially eval-
uate certain platform-specific C helper calls. On x86 and AMD64
this is used to optimise the %eflags handling.

This phase updates the IR shown in Figure 1 in several ways.

• The complex expression tree in statement 2 is flattened into five
assignments to temporaries: two using GET, two using Add32,
one using Shl32.

• Statement 3 is changed from a PUT to an assignment to a
temporary; this is possible because the PUT is made redundant
by the PUT in statement 13.

• Statement 5 is removed. This is possible because statement
15 writes a new value for %eip and there are no intervening
statements that could cause a memory exception (if there were,
it could not be removed because a guest signal handler that
inspects the %eip value in the ThreadState could be invoked).

• Statements 6, 7 and 16 are removed, because they are made
redundant by the GET statements introduced by the flattening of
statement 2.

Phase 3. Instrumentation: flat IR → flat IR. The code block is
then passed to the tool, which can transform it arbitrarily. It is im-
portant that the IR is flattened at this point as it makes instrumen-
tation easier, particularly for shadow value tools.

Figure 2 shows IR for the movl instruction from Figure 1 af-
ter it has been instrumented by Memcheck. Memcheck’s shadow
values track the definedness of values; its instrumentation has been
described previously [25] and the details are beyond the scope of
this paper. However, we make the following observations.

• Of the 18 statements, 11 were added by Memcheck—the added
analysis code is larger and more complex than the original code.

• Shadow registers are stored in the ThreadState just like guest
registers. For example, guest register %eax is stored at offset 0
in the ThreadState, and its shadow is stored at offset 320.

• Every operation involving guest values is preceded by a corre-
sponding operation on shadow values.

• In some cases the shadow operation is a single statement,
e.g. statements 2, 4 and 6. Even without understanding how
Memcheck works it is easy to see what they are doing. For ex-



* 1: ------ IMark(0x24F275, 7) ------
2: t11 = GET:I32(320) # get sh(%eax)

* 3: t8 = GET:I32(0) # *get %eax
4: t14 = Shl32(t11,0x2:I8) # shadow shll

* 5: t7 = Shl32(t8,0x2:I8) # *shll
6: t18 = GET:I32(332) # get sh(%ebx)

* 7: t9 = GET:I32(12) # *get %ebx
8: t19 = Or32(t18,t14) # shadow addl 1/3
9: t20 = Neg32(t19) # shadow addl 2/3
10: t21 = Or32(t19,t20) # shadow addl 3/3
*11: t6 = Add32(t9,t7) # *addl
12: t24 = Neg32(t21) # shadow addl 1/2
13: t25 = Or32(t21,t24) # shadow addl 2/2
*14: t5 = Add32(t6,0xFFFFC0CC:I32) # *addl
15: t27 = CmpNEZ32(t25) # shadow loadl 1/3
16: DIRTY t27 RdFX-gst(16,4) RdFX-gst(60,4)

::: helperc_value_check4_fail{0x380035f4}()
# shadow loadl 2/3

17: t29 = DIRTY 1:I1 RdFX-gst(16,4) RdFX-gst(60,4)
::: helperc_LOADV32le{0x38006504}(t5)

# shadow loadl 3/3
*18: t10 = LDle:I32(t5) # *loadl

Figure 2. Instrumented flat IR. The statements that were present
before instrumentation took place are prefixed with a ‘*’.

ample, when the original code GETs %eax from the ThreadState
into a temporary, the analysis code GETs the shadow of %eax
from the ThreadState into another temporary.

• In some cases the shadow operation is larger than the original
operation, as seen in statements 8–10 and 12–13. The shadow
load operation in statements 15–17 is larger still. Statement
15 tests the definedness of the pointer value by comparing its
shadow value to zero, and statement 16 is a conditional call
(conditional on the value in t27) to an error-reporting function
that is only called if the test fails, i.e. if the load uses an
address value that is not fully defined. (The DIRTY and RdFX
annotations indicate that some guest registers are read from
the ThreadState by the function, and so these values must be
up-to-date. 0x380035f4 is the address of the called function.)
Statement 17 calls another C function, helperc_LOADV32le,
which does a shadow load to complement the original load
in statement 18. The shadow load is implemented using a C
function because it is too complex to be written inline [19].

Phase 4. Optimisation 2: flat IR→ flat IR. A second, simpler op-
timisation pass performs constant folding and dead code removal.
Figure 2 is a case in point—it actually shows the instrumented code
after this second optimisation phase is run (which reduced it from
48 statements to 18). This optimisation makes life easier for tools
by allowing them to be somewhat simple-minded, knowing that the
code will be subsequently improved.

Phase 5. Tree building: flat IR → tree IR. The tree builder con-
verts flat IR back to tree IR in preparation for instruction selection.
Expressions assigned to temporaries which are used only once are
usually substituted into the temporary’s use point, and the assign-
ment is deleted. The resulting code may perform loads in a different
order to the original code, but loads are never moved past stores.

Phase 6. Instruction selection*: tree IR → instruction list. The
instruction selector converts the tree IR into a list of instructions
which use virtual registers (except for those instructions that are
hard-wired to use particular registers; these are common on x86
and AMD64). The instruction selector uses a simple, greedy, top-
down tree-matching algorithm.

-- t21 = Or32(t19,Neg32(t19))
movl %%vr19,%%vr41 movl %edx,%edi
negl %%vr41 negl %edi
movl %%vr19,%%vr40
orl %%vr41,%%vr40 orl %edi,%edx
movl %%vr40,%%vr21

Figure 3. Register allocation, before and after. Virtual registers are
named %%vrNN.

Phase 7. Register allocation: instruction list → instruction list.
The linear-scan register allocator [26] replaces virtual registers with
host registers, inserting spills as necessary. One general-purpose
host register is always reserved to point to the ThreadState.

Although the instructions are platform-specific, the register al-
locator is platform-independent; it uses some callback functions to
find out which registers are read and written by each instruction.

Figure 3 shows an example of register allocation. The statement
at the top is created by the tree builder from statements 9 and 10
in Figure 2. The figure shows that the register allocator can remove
many register-to-register moves, which makes life easier for the
instruction selector.

Phase 8. Assembly*: instruction list → machine code. The final
assembly phase simply encodes the selected instructions appropri-
ately and writes them to a block of memory.

3.8 Storing Translations
Valgrind’s code storage system is simple and warrants only a brief
description. Translations are stored in the translation table, a fixed-
size, linear-probe hash table. The translation table is large (about
400,000 entries) so it rarely gets full. If the table gets more than
80% full, translations are evicted in chunks, 1/8th of the table at
a time, using a FIFO (first-in, first-out) policy—this was chosen
over the more obvious LRU (least recently used) policy because it
is simpler and it still does a fairly good job. Translations are also
evicted when code in shared objects is unloaded (by munmap), or
made obsolete by self-modifying code (see Section 3.16).

3.9 Executing Translations
Once a translation is made it can be executed. What happens be-
tween code blocks? Control flows from one translation to the next
via one of two routes: the dispatcher (fast), or the scheduler (slow).

At a translation’s end, control falls back to the dispatcher, a
hand-crafted assembly code loop. At this point all guest registers
are in the ThreadState. Only two host registers are live: one holds
the guest program counter, and the other holds a value that is only
used for unusual events, explained shortly, when control must fall
back into the scheduler. The dispatcher looks for the appropriate
translation in a small direct-mapped cache which holds addresses
of recently-used translations. If that look-up succeeds (the hit-rate
is around 98%), the translation is executed immediately. This fast
case takes only fourteen instructions on x86.

When the fast look-up fails, control falls back to the scheduler,
which is written in C. It searches the full translation table. If a
translation is not found, a new translation is made. In either case,
the direct-mapped cache is updated to store the translation address
for the code block. The dispatcher is re-entered, and the fast direct-
mapped look-up will this time definitely succeed.

There are certain unusual events upon which control falls back
to the scheduler. For example, the core periodically checks whether
a thread switch is due (see Section 3.14) or whether there are any
outstanding signals to be handled (see Section 3.15). To support
this, the dispatcher causes control to fall out to the scheduler every
few thousand translation executions. Control is similarly returned



to the scheduler when system calls (see Section 3.10) and client
requests (see Section 3.11) occur.

Valgrind does not perform chaining (also known as linking)—a
technique that patches branch instructions in order to link trans-
lations directly, which avoids many visits to the dispatcher. Ear-
lier versions did, but it has not yet been implemented in the new
JIT compiler. The lack of chaining hurts Valgrind’s speed less than
for other DBI frameworks; we believe this is because Valgrind’s
dispatcher is fast,5 and Valgrind chases across many unconditional
branches.

3.10 System Calls
Valgrind cannot trace into the kernel. When a system call happens,
control falls back into the scheduler, which: (a) saves the tool’s
stack pointer; (b) copies the guest registers into the host registers,
except the program counter; (c) calls the system call; (d) copies the
guest registers back out to memory, except the program counter; (e)
restores the tool’s stack pointer. Note that the system call is run on
the client’s stack, as it should be (the host stack pointer normally
points to the tool’s stack).

System calls involving partitioned resources such as memory
(e.g. mmap) and file descriptors (e.g. open) are pre-checked to
ensure they do not cause conflicts with the tool. For example, if the
client tries to mmap memory currently used by the tool, Valgrind
will make it fail without even consulting the kernel.

3.11 Client Requests
Valgrind’s core has a simple trap-door mechanism that allows a
client program to pass messages and queries, called client requests,
to the core or a tool plug-in. Client requests are embedded in client
programs using pre-defined macros from a header file provided
by Valgrind. The mechanism is described in previous publications
about Valgrind [18, 15] and so we omit the details here. We will see
in Sections 3.12 and 3.16 examples of the use of client requests.

3.12 The Events System
Valgrind’s IR is expressive, but fails to describe to tools certain
changes to guest register and memory state done by clients. It also
does not convey any details of memory allocations and dealloca-
tions. Valgrind provides an events system to describe such changes.

Let us first consider the accesses done by system calls. All sys-
tem calls access registers: they read their arguments from registers
and/or memory, and they write their return value to a register. Many
system calls also access user-mode memory via pointer arguments,
e.g. settimeofday is passed pointers to two structs which it reads
from, and gettimeofday fills in two structs with data. Knowing
which registers and memory locations are accessed by every sys-
tem call is difficult because there are many system calls (around 300
for Linux), some of which have tens or hundreds of sub-cases, and
there are many differences across platforms. Several things must
be known for each system call: how many arguments it takes, each
argument’s size, which ones are pointers (and which of those can
be NULL), which ones indicate buffer lengths, which ones are null-
terminated strings, which ones are not read in certain cases (e.g. the
third argument of open is only read if the second argument has cer-
tain values), and the sizes of various types (e.g. struct timeval
used by gettimeofday and settimeofday).

Valgrind does not encode this information about system calls
in its IR, because there are too many system calls and too much
variation across platforms to do so cleanly. Instead it provides the
events system to inform tools about register and memory accesses

5 In comparison, chaining improved Strata’s basic slow-down factor from
22.1x to 4.1x, because dispatching takes about 250 cycles [24]. Valgrind’s
slow-down even without chaining is 4.3x.

that are not directly visible from the IR. For each event, a tool
can register a callback function to be called each time the event
occurs. The events list is given in Table 1. A tool can use the
pre_* events to know when system calls are about to read registers
and memory locations, and the post_* events to know when to
update the shadow state after system calls have written new values.
The register events pass to their callbacks the size of the accessed
register and its offset in the ThreadState; the memory events pass
in the address and size of the accessed memory region.

How are these six events triggered? Valgrind provides a wrapper
for every system call, which invokes these callbacks as needed.
Every system call has different arguments and thus a different
wrapper. Because there are so many cases, Valgrind’s wrappers are
almost 15,000 lines of tedious C code (in Valgrind 3.2.1), partly
generic, partly platform-specific, aggregated over several years of
development. In comparison, Memcheck is 10,509 lines of code.
The wrappers save a great deal of work for tools that need to know
about system call accesses, and also make the system call handling
platform-independent for tools. No other DBI framework has such
system call wrappers.

This mechanism is crucial for many shadow value tools. For ex-
ample, Memcheck critically relies on it for its bit-precise defined-
ness tracking. Indeed, several bugs in Valgrind’s wrappers were
found because they caused Memcheck to give false positives or
false negatives.

A similar case involves stack allocations and deallocations. A
tool could detect them just by detecting changes to the stack pointer
from the IR. However, because it is a common requirement, Val-
grind provides events (new_mem_stack and die_mem_stack) for
these cases. The core instruments the code with calls to the event
callbacks on the tool’s behalf. This makes things easier for tools. It
also provides a canned solution to a tricky part of the problem—
as Section 2 noted, it is hard to distinguish large stack alloca-
tions and deallocations from stack-switches, but doing so is vital
for some shadow value tools. Valgrind (and hence tools using the
stack events) uses a heuristic: if the stack pointer changes by more
than 2MB, a stack switch has occurred. The 2MB value is change-
able with a command line option. Sometimes this heuristic is too
crude, so Valgrind also provides three client requests which let the
client register, de-register and resize stacks with Valgrind. So even
in tricky cases, with a small amount of help from the programmer
all stack switches can be detected.

The remaining events in Table 1 inform tools about allocations
done at program start-up and via system calls.

3.13 Function Replacement and Function Wrapping
Valgrind supports function replacement, i.e. it allows a tool to
replace any function in a program with an alternative function.
A replacement function can also call the function it has replaced.
This allows function wrapping, which is particularly useful for
inspecting the arguments and return value of a function.

3.14 Threads
Threads pose a particular challenge for shadow value tools. The
reason is that loads and stores become non-atomic: each load/store
translates into the original load/store plus a shadow load/store. On a
uni-processor machine, a thread switch might occur between these
two operations. On a multi-processor machine, concurrent memory
accesses to the same memory location may complete in a different
order to their corresponding shadow memory accesses. It is unclear
how to best deal with this, as a fine-grained locking approach would
likely be slow.

To sidestep this problem, Valgrind serialises thread execution
with a thread locking mechanism. Only the thread holding the lock
can run, and threads drop the lock before they call a blocking



Req. Valgrind events Called from Memcheck callbacks
R4 pre_reg_read, post_reg_write Every system call wrapper check_reg_is_defined, make_reg_defined

pre_mem_read{,_asciiz} Many system call wrappers check_mem_is_defined{,_asciiz}
pre_mem_write, post_mem_write Many system call wrappers check_mem_is_addressable, make_mem_defined

R5 new_mem_startup Valgrind’s code loader make_mem_defined
R6 new_mem_mmap, die_mem_munmap mmap wrapper, munmap wrapper make_mem_defined, make_mem_noaccess

new_mem_brk, die_mem_brk brk wrapper make_mem_undefined, make_mem_noaccess
copy_mem_mremap mremap wrapper copy_range

R7 new_mem_stack, die_mem_stack Instrumentation of SP changes make_mem_undefined, make_mem_noaccess

Table 1. Valgrind events, their trigger locations, and Memcheck’s callbacks for handling them.

system call,6 or after they have been running for a while (100,000
code blocks). The lock is implemented using a pipe which holds a
single character; each thread tries to read the pipe, only one thread
will be successful, and the others will block until the running thread
relinquishes the lock by putting a character back in the pipe. Thus
the kernel still chooses which thread is to run next, but Valgrind
dictates when thread-switches occur and prevents more than one
thread from running at a time.

This is the third thread serialisation mechanism that has been
used in Valgrind, and is by far the most robust. The first one [18, 15]
involved Valgrind providing a serialised version of the libpthread
library. This only worked with programs using pthreads. It also
caused many problems because on Linux systems, glibc and the
pthreads library are tightly bound and interact in various ways “un-
der the covers” that are difficult to replicate.7 The second one was
more like the current one, but was more complex, requiring extra
kernel threads to cope with blocking I/O.

This serialisation is a unique Valgrind feature not shared by
other DBI frameworks. It has both pros and cons: it means that Val-
grind tools using shadow memory can ignore the atomicity issue.
However, as multi-processor machines become more popular, the
resulting performance shortcomings for multi-threaded programs
will worsen. How to best overcome this problem remains an open
research question.

3.15 Signals
Unix signal handling presents a problem for all DBI frameworks—
when an application sets a signal handler, it is giving the kernel
a callback (code) address in the application’s space which will be
used to deliver the signal. This would allow the client’s original
handler code to be executed natively. Even worse, if the handler did
not return but instead did a longjmp, the tool would permanently
lose control. Therefore, Valgrind intercepts all system calls that
register signal handlers. It also catches all signals and delivers them
appropriately to the client. This standard technique is tedious but
unavoidable. Also, Valgrind takes advantage of it to ensure that
asynchronous signals are delivered only between code blocks, and
can thus never separate loads/stores from shadow loads/stores.

3.16 Self-modifying Code
Self-modifying code is always a challenge for DBI frameworks.
On architectures such as PowerPC it is easy to detect because an
explicit “flush” instruction must be used when code is modified,
but the x86 and AMD64 architectures do not have this feature.

Therefore, Valgrind has a mechanism to handle self-modifying
code. A code block using this mechanism records a hash of the
original code it was derived from. Each time the block executes,

6 Thus kernel code can run in parallel with user code. This is allowable
because the kernel code does not affect shadow memory.
7 This is another example where avoiding dependencies on other software
improved robustness.

the hash is recomputed and checked, and if it does not match, the
block is discarded and the code retranslated.

This has a high run-time cost. Therefore, by default Valgrind
only uses this mechanism for code that is on the stack. This is
enough to handle the trampolines that some compilers (e.g. GCC)
put on the stack when running nested functions, which we have
found to be the main cause of self-modifying code.8 This minimises
the cost, as only code on the stack is slowed down. The mechanism
can also be turned off altogether or turned on for every block.

Valgrind also provides another mechanism for handling self-
modifying code—a client request which tells it to discard any
translations of instructions in a certain address range. It is most
useful for dynamic code generators such as JIT compilers.

4. Valgrind’s Shadow Value Support
This section describes how the features described in the previous
section support all nine shadow value requirements. Because these
requirements are a superset of most DBA tools’ requirements,
Valgrind supports most conceivable DBA tools.

R1: Provide shadow registers. Valgrind has three noteworthy
features that make shadow registers easy to use. First, shadow
registers are first-class entities: (a) space is provided for them in
the ThreadState, (b) they can be accessed just as easily as guest
registers, (c) they can be manipulated and operated on in the same
ways. This makes complex shadow operations code natural and
easy to write, even those involving FP and SIMD registers.

Second, the IR provides an unlimited supply of temporaries in
which guest registers, shadow registers, and intermediate values
can be manipulated. This is invaluable for ease-of-use because
shadow operations can introduce many extra intermediate values.

Third, the IR’s RISC-ness exposes all implicit intermediate
values, such as those computed by complex addressing modes,
which can make instrumentation easier, particularly on a CISC
architecture like x86.

Fourth, all code is treated equally. Shadow operations bene-
fit fully from Valgrind’s post-instrumentation IR optimiser and in-
struction selector. This makes them easy to write, because one can
rely on obvious redundancies being optimised away. This is a con-
sequence of using D&R.

This third feature is also crucial for performance, because it
means that client code and analysis code can be interleaved arbi-
trarily by the back-end. For example, Valgrind’s register allocator
works with guest and shadow registers equally to minimise spilling.
Also, no special tricks are required to prevent analysis code from
perturbing condition codes, because they are already computed ex-
plicitly rather than as a side-effect of client code.

R2: Provide shadow memory. Valgrind provides no overt sup-
port for shadow memory, such as built-in data structures, because

8 Ada programs use them particularly often, and Valgrind was more or less
unusable with Ada programs until this was implemented.



shadow memory varies enough from tool to tool [19] that it is dif-
ficult to factor out any common supporting operations. However,
Valgrind does provide two crucial features to avoid problems with
the non-atomicity of loads/stores and shadow loads/stores: its seri-
alisation of threads, and its guaranteed delivery of asynchronous
signals only between code blocks. Together they allow shadow
value tools to run any multi-threaded program correctly and effi-
ciently on uni-processors, and correctly on multi-processors, with-
out any need for shadow memory locking.

R3: Instrument read/write instructions. Valgrind supports this
requirement—all reads and writes of registers and memory are vis-
ible in the IR and instrumentable. The IR’s load/store nature makes
instrumentation of memory accesses particularly easy. Also, the
splitting of complex CISC instructions into multiple distinct opera-
tions helps some tools, e.g. by exposing intermediate values such as
addresses computed with complex addressing modes, and making
condition code computations explicit. Again, this is a consequence
of using D&R.

As for the added analysis code: the ability to write it as inline IR
helps with efficiency and ensures that analysis code is as expressive
(e.g. can use FP and SIMD operations) as client code; the ability to
write it in separate C functions also allows more complex analysis
code to be written easily.

R4–R7. These requirements (instrument read/write system calls,
instrument start-up allocations, instrument system call (de)allocations,
and instrument stack (de)allocations) are all supported by Val-
grind’s events system. The left-most column of Table 1 shows
which events are used for each requirement.

R8: Instrument heap (de)allocations. Valgrind does not track
heap allocations and deallocations with its events system. (It could,
this is due to historical reasons.) Instead, tools that need to track
these events can use function wrappers or function replacements
for the relevant functions (e.g. malloc, free).

R9: Extra Output. Valgrind allows a shadow value tool to print
error messages during execution and at termination using its I/O
routines, which send output to a file descriptor (stderr by default),
file, or socket, as specified by a command line option. Tools can
also write additional data to files. Valgrind provides other useful
output-related services: error recording, the ability to suppress (ig-
nore) uninteresting/unfixable errors via suppressions listed in files,
stack tracing, and debug information reading.

5. Evaluation
We now quantify how easy it is to write Valgrind tools, discuss their
robustness and capabilities, and measure their performance.

5.1 Tool-writing Ease
We can use code sizes to roughly measure the amount of effort that
went into Valgrind’s core and various tools. In Valgrind 3.2.1, the
core contains 170,280 lines of C and 3,207 lines of assembly code
(including comments and blank lines). In comparison, Memcheck
contains 10,509 lines of C, Cachegrind (a cache profiler) is 2,431
lines of C, Massif (a heap profiler) is 1,764, and Nulgrind (the
“null” tool that adds no analysis code) is 39. Even though lines of
code is not a good measure of coding effort, the benefit of using
Valgrind is clear, compared to writing a new tool from scratch.
Having said that, heavyweight tools like Memcheck are still not
trivial to write, and require a reasonable amount of code.

Valgrind’s use of D&R can make simple tools more difficult
to write than in C&A frameworks. For example, a tool that traces
memory accesses would be about 30 lines of code in Pin, and about

100 in Valgrind. However, in our experience, for the most interest-
ing tools most of the development effort goes not into extracting ba-
sic data (such as run-time addresses and values), but into analysing
and presenting that data in useful ways to the user—it makes lit-
tle difference whether it takes 30 lines or 100 lines of code to ex-
tract a memory access trace if a tool contains 2,000 lines devoted
to analysing it.

In contrast, for heavyweight tools D&R makes instrumentation
easier for tools like Memcheck because of the reasons explained in
Sections 3.5 and 4.

5.2 Tool Robustness
By “robustness”, we mean how many different programs a tool can
correctly run. For tools built with DBI frameworks, this covers both
the framework and the tool—it is possible to build a non-robust tool
on top of a robust framework.

Robustness is not easy to quantify. We provide anecdotal ev-
idence for the robustness of Valgrind and Memcheck: their large
number of users; and the range of programs with which they have
been successfully used; the range of platforms they support; and
some design decisions we have made to improve robustness.

Valgrind has become a standard C and C++ development tool
on Linux. Memcheck is the most popular Valgrind tool, accounting
for about 80% of all Valgrind tool use [27]. The Valgrind website
[28] averages more than 1,000 unique visitors per day. Valgrind
tools are used by the developers of many large projects, such as
Firefox, OpenOffice, KDE, GNOME, Qt, libstdc++, MySQL, Perl,
Python, PHP, Samba, RenderMan, and Unreal Tournament.9 They
have successfully been used on a wide range of different software
types, implemented using many different languages and compilers,
on programs containing up to 25 million lines of code. They also
successfully handle multi-threaded programs.

Valgrind and Memcheck run on multiple platforms, 32-bit and
64-bit: x86/Linux, AMD64/Linux, and PPC{32,64}/{Linux,AIX}.
There are also experimental ports to x86/MacOS X, x86/FreeBSD,
and x86/Solaris. We believe Valgrind is suitable for porting to any
typical RISC or CISC architecture, such as ARM or SPARC. VLIW
architectures such as IA64 would be possible but Valgrind’s use
of D&R would make reasonable performance harder to attain, as
VLIW code generation is more difficult. We also believe it can be
ported to any Unix-style OS; a port to Windows may be possible
but would be much more challenging. Porting to a new architecture
requires writing new code for the JIT compiler, such as an instruc-
tion encoder and decoder, and code to describe the new machine
state (i.e. register layout). Porting to a new OS requires some new
code for handling details such as signals and address space manage-
ment. Porting to a new architecture and/or OS requires some new
system call wrappers to be written. Memcheck (and other shadow
value tools) usually do not need to be changed if Valgrind is ported
to new platforms.

The robustness of Valgrind and Memcheck has slowly improved
over time. Earlier sections of this paper showed that several Val-
grind sub-systems have been re-implemented once or twice in an
effort to make them more robust. Also, we have gradually removed
all dependencies on external libraries, even the C library. Indeed,
since mid-2005 Valgrind has been able to run itself, which is no
mean feat considering how many strange things it does.

9 The SPEC benchmarks are sometimes used as a measure of robustness.
They are actually not particularly difficult to run—they stress a DBA tool’s
code generation well, but they are all single-threaded, compute-bound, not
particularly large, do not use many system calls, and do not do tricky things
with memory layout or signals. The “large projects” listed above stress a
DBA tool much more than the SPEC benchmarks.



5.3 Tool Instrumentation Capabilities
In this section, we compare Valgrind’s support for all nine shadow
value requirements against Pin [11], because Pin is the best known
of the currently available DBI frameworks, and the one that has
the most support for shadow values (after Valgrind). The following
comparison is based on discussions with two Pin developers [10].

Pin supports R5 (instrument start-up allocations), R8 (instru-
ment heap (de)allocations) and R9 (extra output) directly. It does
not support R6 (instrument system call (de)allocations) and R7 (in-
strument stack (de)allocations) directly, but provides features that
allow a Pin tool to manually support them fairly easily.

For R1 (provide shadow registers) Pin provides “virtual regis-
ters” which are register-allocated along with guest registers and
saved in memory when a thread is not running. Shadow registers
could be stored in them. However, virtual registers are not fully
first-class citizens. For example, there are no 128-bit virtual regis-
ters, so 128-bit SIMD registers cannot be fully shadowed, which
would prevent some tools (e.g. Memcheck) from working fully.

Pin provides no built-in support for R2 (provide shadow mem-
ory), so tools must cope with the non-atomicity of loads/stores and
shadow loads/stores themselves.10 For example, the Pin tool called
pinSEL [14], which uses shadow memory but not full shadow val-
ues, sets and checks an extra interference bit on every shadow load.
This lets it handle any thread switches or asynchronous signals that
occur between a load/store and a shadow load/store (both of which
can occur even on uni-processors under Pin). Multi-threaded pro-
grams running on multi-processors are even trickier, and pinSEL
does not handle them. In comparison, Valgrind’s thread serialisa-
tion and asynchronous signal treatment frees shadow value tools
from having to deal with this issue.

For R3 (instrument read/write instructions) Pin allows all regis-
ter and memory accesses to be seen. However, analysis code in Pin
is written as C functions, which can be inlined if they contain no
control flow. This means that SIMD instructions are again a prob-
lem; if a tool needs to use SIMD instructions in its analysis code
(as Memcheck does), these would have to be written in Pin using
(platform-specific) inline assembly code. This is caused by Pin us-
ing C&A and its method for writing analysis code (C code) having
less expressivity than client code (machine code).

R4 (instrument read/write system calls) is another stumbling
block; it can be done manually within a tool via Pin’s system call
instrumentation, but would require a large effort—each shadow
value tool would essentially need to reimplement Valgrind’s system
call wrappers.

5.4 Tool Performance
We performed experiments on 25 of the 26 SPEC CPU2000 bench-
marks (we could not run galgel as gfortran failed to compile it).
We ran them with the “reference” inputs in 32-bit mode on a 2.4
GHz Intel Core 2 Duo with 1GB RAM and a 4MB L2 cache run-
ning SUSE Linux 10.2, kernel 2.6.18.2. We compared several tools
built with Valgrind 3.2.1: (a) Nulgrind, the “no instrumentation”
tool; (b) ICntI, an instruction counter which uses inline code to in-
crement a counter for every instruction executed; (c) ICntC, like
ICntI but uses a C function call to increment the counter; and (d)
Memcheck (with leak-checking off, because it runs at program ter-
mination and so would cloud the comparison). Table 2 shows the
slow-down factors of these tools.

Lightweight tools. The mean slow-down of 4.3x for the no-
instrumentation case (Nulgrind) is high compared to other frame-
works. This is consistent with other researchers’ findings—a pre-

10 It does have thread-locking primitives, but they would be too coarse-
grained to be practical for use with shadow memory.

Program Nat. (s) Nulg. ICntI ICntC Memc.
bzip2 192.7 3.5 7.2 10.5 16.1
crafty 92.4 6.9 12.3 22.5 36.0
eon 408.5 7.5 11.8 21.0 51.4
gap 131.3 4.0 9.1 13.5 25.5
gcc 90.0 5.3 9.0 14.1 39.0
gzip 212.1 3.2 5.9 9.0 14.7
mcf 87.0 2.0 3.5 5.4 7.0
parser 218.9 3.6 7.0 10.4 17.8
perlbmk 179.6 4.8 9.6 14.6 27.1
twolf 262.5 3.1 6.5 10.7 16.0
vortex 86.7 6.5 11.4 17.8 38.7
vpr 149.4 4.1 7.7 11.3 16.4
ammp 345.2 3.4 6.5 9.1 32.7
applu 583.0 5.2 14.1 28.1 19.7
apsi 469.0 3.4 8.2 12.5 16.4
art 100.4 4.7 9.4 13.7 24.0
equake 118.2 3.8 8.4 12.4 17.1
facerec 280.9 4.7 8.2 12.2 17.4
fma3d 284.7 4.1 9.4 16.2 26.0
lucas 183.5 3.7 7.1 10.8 24.8
mesa 148.9 5.9 10.3 15.9 57.9
mgrid 809.1 3.5 9.8 14.4 16.9
sixtrack 355.7 5.6 13.4 18.3 20.2
swim 388.2 3.2 11.9 15.3 10.7
wupwise 192.1 7.4 11.8 17.3 26.7
geo. mean 4.3 8.8 13.5 22.1

Table 2. Performance of four Valgrind tools on SPEC CPU2000.
Column 1 gives the program name; integer programs are listed be-
fore floating-point programs. Column 2 gives the native execution
time in seconds. Columns 3–6 give the slow-down factors for each
tool. The final row shows each column’s geometric mean.

vious comparison [11] showed that Valgrind is 4.0x slower than
Pin and 4.4x slower than DynamoRIO on the SPEC CPU2000 inte-
ger benchmarks in the no-instrumentation case, and 3.3x and 2.0x
slower for a lightweight basic block counting tool.11

Re-implementing chaining in Valgrind would improve these
cases somewhat. However, these lightweight tools are exactly the
kinds of tools that Valgrind is not targeted at, and Valgrind will
never be as fast as Pin or DynamoRIO for these cases. For example,
consider Valgrind’s use of a D&R representation. For a simple tool
like a basic block counter, D&R makes no sense. Rather, the use of
D&R is targeted towards heavyweight tools. For this reason, we do
not repeat such comparisons with lightweight tools.

The difference between ICntI and ICntC shows the advantage
of inline code over C calls. ICntI could be further improved by
batching counter increments together.

Heavyweight tools built with Valgrind. Memcheck’s mean slow-
down factor is 22.2x. Other shadow value tools built with Valgrind
have similar or worse slow-downs. TaintCheck ran 37x slower on
an invocation of bzip2 [20], but had better performance on an I/O-
bound invocation of the Apache web server. Annelid ran a subset of
the SPEC CPU2000 benchmarks (“train” inputs) 35.2x slower than
native [16]. McCamant and Ernst’s secret tracker has slow-downs
“similar to Memcheck... 10–100x for CPU-bound programs” [13].
Redux did much more expensive analysis and was not practical for
anything more than toy programs [17]. Slow-down figures are not
available for DynCompB [7].

11 But the measured Valgrind tool used a C function to increment the
counter; the use of inline code would have narrowed the gap.



None of these tools are as optimised as Memcheck, particularly
their handling of shadow memory; more aggressive implementa-
tions would have slow-downs closer to Memcheck’s.

Other heavyweight tools. Hobbes’ slow-down factors for SPEC
CPU2000 integer programs were in the range 30–187x. However,
Hobbes used a built-from-scratch binary interpreter rather than a
JIT compiler, so this is a poor comparison point.

TaintTrace [6] is built with DynamoRIO, implements shadow
registers within the tool itself, and has an mean slow-down factor of
5.5x for a subset of the SPEC CPU2000 benchmarks. LIFT [23] is
built with StarDBT, a dynamic binary translation/instrumentation
framework developed by Intel. It has a mean slow-down fac-
tor of 3.5x for a similar subset of the SPEC CPU2000 integer
benchmarks. These two tools are much faster than Memcheck
and TaintCheck. This is partly because they are doing a simpler
analysis—they track one taintedness bit per byte, whereas Mem-
check tracks one definedness bit per bit and does various other
kinds of checking, and TaintCheck records four bytes per byte in
order to record origins of tainted values.

More importantly, they are faster because they are less robust
and have more limited instrumentation capabilities, in several ways.

• TaintTrace reserves the entire upper half of the address space
for shadow memory, which makes shadow memory accesses
trivial and inlinable, but: (a) it wastes 7/8 of that space (7/16 of
the total address space) because each shadow byte holds only a
single taintedness bit, and (b) reserving large areas of address
space works most of the time on Linux, but is untenable on
many other OSes—e.g. Mac OS X, AIX, and many embedded
OSes put a lot of code and data in the top half of the address
space [19]. In comparison, Memcheck instead uses a shadow
memory layout that is slower—largely because it requires calls
to C functions for shadow loads and stores—but more flexible
and thus more robust, and shadow memory operations account
for close to half of Memcheck’s overhead [19].

• LIFT translates 32-bit x86 code to run on x86-64 machines.
x86-64 machines have eight extra integer registers which are
not used by x86 programs which make shadow registers very
easy to implement. The translation also avoids the problems of
fitting shadow memory into the 32-bit address space, as LIFT
has a 64-bit address space to work in. In one way, this is the
ideal approach—having twice the registers and (more than)
twice as much memory is perfect for shadow values. However,
it is only narrowly applicable.
If LIFT was implemented without binary translation the extra
register pressure would not be great—its shadow values are
compact (one bit per byte) and so eight shadow registers can
be squeezed into a single host register—and so the slow-down
might be moderate, particularly on a platform with lots of reg-
isters such as PowerPC. But for Memcheck, TaintCheck, or any
other tool that has larger shadow register values, the slow-down
would be greater.

• Neither TaintTrace nor LIFT handle programs that use FP or
SIMD code [5, 22]. We have found that handling these cases
by adding them later is more difficult than it might seem. The
hybrid IR used by Valgrind (mentioned in Sections 3.5 and 3.6)
had FP/SIMD handling added (via C&A) only once the integer
D&R part was working. This meant that the Valgrind and Mem-
check’s performance on FP/SIMD code was much worse than
on integer code because the x86 FP/SIMD state had to be fre-
quently saved and restored (even though we optimised away re-
dundant ones whenever possible). Also, the instrumentation ca-
pabilities were worse for FP/SIMD code, and Memcheck han-
dled such code less accurately [25]. The rotating x87 FP regis-

ter stack is particularly difficult to handle well with C&A code
representation.

• Neither TaintTrace nor LIFT handle multi-threaded programs.

TaintTrace and LIFT show that shadow value tools can be im-
plemented in frameworks other than Valgrind, and have better per-
formance than Memcheck, if they use techniques that are applica-
ble to a narrower range of programs. We believe that the robust-
ness and instrumentation capabilities of TaintTrace and LIFT could
be improved somewhat, and that such changes would reduce their
performance. But in general, we believe that making these tools
as robust and accurate as Memcheck would be very difficult given
that they are built with DBI frameworks that do not support all nine
shadow value requirements.

Nonetheless, research prototypes with a narrower focus can
identify new techniques that are applicable in real-world tools. For
example, LIFT uses clever techniques to avoid performing some
shadow operations; these might be adaptable for use in Memcheck.

Although there is some scope for improving Memcheck’s per-
formance (by adding chaining to Valgrind’s core and using LIFT’s
techniques for skipping shadow operations), given its other charac-
teristics, we believe that its performance is reasonable considering
how much analysis it does [25, 19]. Memcheck’s popularity shows
that programmers are willing to use a tool with a large slow-down if
its benefits are high enough, and it is easily the fastest shadow value
tool we know of that is also robust and general. We also believe and
that Valgrind’s design features—such as its unique D&R IR with
first-class shadow registers—are crucial in achieving this reason-
able performance despite the challenging requirements of shadow
values.

5.5 Summary
Every DBI framework has a number of important characteristics:
ease of tool-writing, robustness, instrumentation capabilities, and
performance. Robustness and performance are also important for
DBA tools built with DBI frameworks, and tool designs crucially
affect these characteristics. Performance has traditionally received
the most attention, but the other characteristics are equally impor-
tant. Trade-offs must be made in any framework or tool, and all
relevant characteristics should be considered in any comparisons
between frameworks and/or tools.

For lightweight DBA, Valgrind is less suitable than more
performance-oriented frameworks such as Pin and DynamoRIO.
For heavyweight DBA, Valgrind has a uniquely suitable combina-
tion of characteristics: it makes tools relatively easy to write, allows
them to be robust, provides powerful instrumentation capabilities,
and allows reasonable performance. These characteristics are ex-
emplified by Memcheck, which is highly accurate, widely used,
and reasonably fast.

6. Related Work
There are many DBI frameworks; Nethercote [15] compares eleven
in detail (that publication also discusses shadow values, but in less
detail than this paper). They vary in numerous ways: platforms
supported, instrumentation mechanisms, kinds of analysis code
supported, robustness, speed, and availability. Judging by recent
literature, those that are both widely-used and actively maintained
are Pin [11], DynamoRIO [3], DIOTA [12], and Valgrind.

We compared Valgrind to Pin in Section 5. As for other DBI
frameworks, they all provide less shadow value support than Pin;
in particular, they provide no support for R1 (provide shadow
registers), such as virtual registers or register re-allocation. We
believe R1 is the hardest requirement for a tool to fulfil without help
from its framework; without such support, tools have to find ways
to “steal” extra registers for themselves. This is possible to some



extent, but very difficult to do on the scale required for shadow
values in a manner that is robust and gives reasonable performance.

The nine shadow value tools we know of were discussed in
Section 1.2 and 5.4. Six of them were built with Valgrind.

Shadow value tools are not only applicable at the binary level.
For example, Perl’s “taint mode” [29] and Patil and Fischer’s
bounds checker for C [21] implement analyses similar to those of
TaintCheck and Annelid (see Section 1) at the level of source code.
The underlying tool ideas are very similar, but the implementation
details are completely different.

7. Future Work and Conclusion
Valgrind is a widely-used DBI framework. It is designed to support
DBA heavyweight tools, such as shadow value tools, and therefore
can be used to build most conceivable DBA tools. This paper
has identified the requirements of shadow value tools and how
Valgrind supports them, and shown that Valgrind inhabits a unique
part of the DBI framework design space. We have focused more
on Valgrind’s instrumentation capabilities than its performance,
because (a) they are an equally important but less-studied topic,
and (b) they distinguish Valgrind from other related frameworks.

We think there are two main areas of future research for Val-
grind. First, we want to find a way to avoid forcing serial thread
execution in a way that does not compromise the correctness of
shadow value tools. This will become increasingly important as
multi-core machines proliferate. Second, Memcheck has already
shown that heavyweight DBA tools can help programmers greatly
improve their programs. We think there is plenty of scope for new
heavyweight DBA tools, particularly shadow value tools, and we
hope Valgrind will be used to build some of these tools.
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Abstract 
We describe the design and implementation of Dynamo, a 

software dynamic optimization system that is capable of 
transparently improving the performance of a native instruction 
stream as it executes on the processor. The input native instruction 
stream to Dynamo can be dynamically generated (by a JIT for 
example), or it can come from the execution of a statically 
compiled native binary. This paper evaluates the Dynamo system 
in the latter, more challenging situation, in order to emphasize the 
limits, rather than the potential, of the system. Our experiments 
demonstrate that even statically optimized native binaries can be 
accelerated Dynamo, and often by a significant degree. For 
example, the average performance of –O optimized SpecInt95 
benchmark binaries created by the HP product C compiler is 
improved to a level comparable to their –O4 optimized version 
running without Dynamo. Dynamo achieves this by focusing its 
efforts on optimization opportunities that tend to manifest only at 
runtime, and hence opportunities that might be difficult for a static 
compiler to exploit. Dynamo’s operation is transparent in the sense 
that it does not depend on any user annotations or binary 
instrumentation, and does not require multiple runs, or any special 
compiler, operating system or hardware support. The Dynamo 
prototype presented here is a realistic implementation running on 
an HP PA-8000 workstation under the HPUX 10.20 operating 
system. 

1. Introduction 
Recent trends in software and hardware technologies appear 

to be moving in directions that are making traditional performance 
delivery mechanisms less effective. The use of object-oriented 
languages and techniques in modern software development has 
resulted in a greater degree of delayed binding, limiting the size of 
the scope available for static compiler analysis. Shrink-wrapped 
software is being shipped as a collection of DLLs rather than a 
single monolithic executable, making whole-program optimization 
at static compile-time virtually impossible. Even in cases where 
powerful static compiler optimizations can be applied, computer 
system vendors have to rely on the ISV (independent software 
vendor) to enable them. This puts computer system vendors in the 
uncomfortable position of not being able to control the very keys 
that unlock the performance potential of their own machines. More 

recently, the use of dynamic code generation environments (like 
Java JITs and dynamic binary translators) makes the applicability 
of heavyweight static compiler optimization techniques 
impractical. Meanwhile, on the hardware side, technology is 
moving toward offloading more complexity from the hardware 
logic to the software compiler, as evidenced by the CISC to RISC 
to VLIW progression. 

The problem with this trend is that the static compiler is 
taking on an increasingly greater performance burden while the 
obstacles to traditional static compiler analysis are continuing to 
increase. This will inevitably lead to either very complex compiler 
software that provides only modest performance gains on general-
purpose applications, or highly customized compilers that are 
tailored for very narrow classes of applications. 

The Dynamo project was started in 1996 to investigate a 
technology that can complement the static compiler’s traditional 
strength as a static performance improvement tool with a novel 
dynamic performance improvement capability [3]. In contrast to 
the static compiler, Dynamo offers a client-side performance 
delivery mechanism that allows computer system vendors to 
provide some degree of machine-specific performance without the 
ISV’s involvement. 

Dynamo is a dynamic optimization system (i.e., the input is an 
executing native instruction stream), implemented entirely in 
software. Its operation is transparent: no preparatory compiler 
phase or programmer assistance is required, and even legacy native 
binaries can be dynamically optimized by Dynamo. Because 
Dynamo operates at runtime, it has to focus its optimization effort 
very carefully. Its optimizations have to not only improve the 
executing native program, but also recoup the overhead of 
Dynamo’s own operation. 

The input native instruction stream to Dynamo can come from 
a statically prepared binary created by a traditional optimizing 
compiler, or it can be dynamically generated by an application 
such as a JIT. Clearly, the runtime performance opportunities 
available for Dynamo can vary significantly depending on the 
source of this input native instruction stream. The experiments 
reported in this paper only discuss the operation of Dynamo in the 
more challenging situation of accelerating the execution of a 
statically optimized native binary. The performance data presented 
here thus serve as an indicator of the limits of the Dynamo system, 
rather than its potential. The data demonstrates that even in this 
extreme test case, Dynamo manages to speedup many applications, 
and comes close to breaking even in the worst case. 

Section 1 gives an overview of how Dynamo works. The 
following sections highlight several key innovations of the 
Dynamo system. Section 2 describes Dynamo’s startup 
mechanism, Section 4 gives an overview of the hot code selection, 
optimization and code generation process, Section 5 describes how 
different optimized code snippets are linked together, Section 6 
describes how the storage containing the dynamically optimized 
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code is managed, and Section 7 describes signal handling. Finally, 
Section 8 summarizes the experimental data to evaluate Dynamo’s 
performance. Dynamo is a complex system that took several years 
to engineer. This paper only provides an overview of the whole 
system. Further details are available in [2] and on the Dynamo 
project website (www.hpl.hp.com/cambridge/projects/Dynamo). 

2. Overview 
From a user’s perspective, Dynamo looks like a PA-8000 

software interpreter that itself runs on a PA-8000 processor (the 
hardware interpreter). Interpretation allows Dynamo to observe 
execution behavior without having to instrument the application 
binary. Since software interpretation is much slower than direct 
execution on the processor, Dynamo only interprets the instruction 
stream until a “hot” instruction sequence (or trace) is identified. At 
that point, Dynamo generates an optimized version of the trace 
(called a fragment) into a software code cache (called the fragment 
cache). Subsequent encounters of the hot trace’s entry address 
during interpretation will cause control to jump to the top of the 
corresponding cached fragment. This effectively suspends the 
interpreter and allows the cached code to execute directly on the 
processor without incurring any further interpretive overhead. 
When control eventually exits the fragment cache, Dynamo 
resumes interpreting the instruction stream, and the process repeats 
itself. 

Figure 1 illustrates this flow of control in more detail. 
Dynamo starts out by interpreting the input native instruction 
stream until a taken branch is encountered (A). If the branch target 
address corresponds to the entry point of a fragment already in the 
fragment cache (B), control jumps to the top of that fragment, 
effectively suspending Dynamo, and causing execution of the 
cached fragments to occur directly on the underlying processor (F). 
Otherwise, if the branch target satisfies a “start-of-trace” condition 
(C), a counter associated with the target address is incremented (D). 

Our current prototype defines start-of-trace as targets of backward-
taken branches (likely loop headers) and fragment cache exit 
branches (exits from previously identified hot traces). If the 
counter value exceeds a preset hot threshold (E), the interpreter 
toggles state and goes into “code generation mode” (G). When 
interpreting in this mode, the native instruction sequence being 
interpreted is recorded in a hot trace buffer, until an “end-of-trace” 
condition is reached (H). At that point the hot trace buffer is 
processed by a fast, lightweight optimizer (I) to create an 
optimized single-entry, multi-exit, contiguous sequence of 
instructions called the fragment1. Our current prototype defines 
end-of-trace as backward taken branches or taken branches whose 
targets correspond to fragment entry points in the fragment cache 
(i.e., fragment cache hits). A trace may also be truncated if its 
length exceeds a certain number of instructions. The fragment 
generated by the optimizer is emitted into the fragment cache by a 
linker (J), which also connects fragment exit branches to other 
fragments in the fragment cache if possible. Connecting fragments 
together in this manner minimizes expensive fragment cache exits 
to the Dynamo interpretive loop. The new fragment is tagged with 
the application binary address of the start-of-trace instruction. 

As execution proceeds, the application’s working set 
gradually materializes in the fragment cache, and the Dynamo 
overhead (time spent in the Dynamo interpretive loop / time spent 
executing in the fragment cache) begins to drop. Assuming that the 
majority of an application’s execution time is typically spent in a 
small portion of its code, the performance benefits from repeated 
reuse of the optimized fragments can be sufficient to offset the 
overhead of Dynamo’s operation. On the SpecInt95 benchmarks, 

                                                           
1 A fragment is similar to a superblock, except for the fact that it is 

a dynamic instruction sequence, and can cross static program 
boundaries like procedure calls and returns. 
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the average Dynamo overhead is less than 1.5% of execution time. 
Dynamo’s interpreter-based hot trace selection process (A-H) 
dominates this overhead, with the optimizer and linker components 
(I, J) contributing a relatively insignificant amount. 

3. Startup and Initialization 
Dynamo is provided as a user-mode dynamically linked 

library (shared library). The entry point into this library is the 
routine dynamo_exec. When dynamo_exec is invoked by an 
application, the remainder of the application code after return from 
the dynamo_exec call will execute under Dynamo control. 

As outlined in Figure 2, dynamo_exec first saves a snapshot 
of the application’s context (i.e., the machine registers and stack 
environment) to an internal app-context data structure. It then 
swaps the stack environment so that Dynamo’s own code uses a 
custom runtime stack allocated separately for its use. Dynamo’s 
operation thus does not interfere with the runtime stack of the 
application running on it. The interpreter (box A in Figure 1) is 
eventually invoked with the return-pc corresponding to the 
application’s dynamo_exec call. The interpreter starts interpreting 
the application code from this return-pc, using the context saved in 
app-context. The interpreter never returns to dynamo_exec (unless 
a special bailout condition occurs, which is discussed later), and 
Dynamo has gained control over the application. From this point 
onwards, an application instruction is either interpreted, or a copy 
of it is executed in the fragment cache. The original instruction is 
never executed in place the way it would have been if the 
application were running directly on the processor. 

We provide a custom version of the execution startup code 
crt0.o, that checks to see if the Dynamo library is installed on the 
system, and if it is, invokes dynamo_start prior to the jump to 
_start (the application’s main entry point). Application binaries 
that are linked with this version of crt0.o will transparently invoke 
Dynamo if Dynamo is installed on the system, otherwise they will 
execute normally. The application binary itself remains unchanged 
whether or not it is run under Dynamo. This strategy allows 
Dynamo to preserve the original mapping of the application’s text 
segment, a key requirement for transparent operation. 

 As part of the initialization done in dynamo_exec prior to 
actually invoking the interpreter, Dynamo mmaps a separate area 
of memory that it manages itself. All dynamically allocated objects 
in Dynamo code are created in this area of memory. Access to this 
area is protected to prevent the application from inadvertently or 
maliciously corrupting Dynamo’s state. 

4. Fragment Formation 
Due to the significant overheads of operating at runtime, 

Dynamo has to maximize the impact of any optimization that it 
performs. Furthermore, since the objective is to complement, not 
compete, with the compiler that generated the instruction stream, 
Dynamo primarily looks for performance opportunities that tend to 
manifest themselves in the runtime context of the application. 
These are generally redundancies that cross static program 
boundaries like procedure calls, returns, virtual function calls, 
indirect branches and dynamically linked function calls. Another 
performance opportunity is instruction cache utilization, since a 
dynamically contiguous sequence of frequently executing 
instructions may often be statically non-contiguous in the 
application binary. 

Dynamo’s unit of runtime optimization is a trace, defined as a 
dynamic sequence of consecutively executed instructions. A trace 
starts at an address that satisfies the start-of-trace condition and 
ends at an address that satisfies the end-of-trace condition. Traces 
may extend across statically or dynamically linked procedure 
calls/returns, indirect branches and virtual function calls. Dynamo 
first selects a “hot” trace, then optimizes it, and finally emits 
relocatable code for it into the fragment cache. The emitted 
relocatable code is contiguous in the fragment cache memory, and 
branches that exit this code jump to corresponding exit stubs at the 
bottom of the code. This code is referred to as a fragment. The 
trace is a unit of the application’s dynamic instruction stream (i.e., 
a sequence of application instructions whose addresses are 
application binary addresses) whereas the fragment is a Dynamo 
internal unit, addressed by fragment cache addresses. The 
following subsections outline the trace selection, trace optimization 
and fragment code generation mechanisms of Dynamo. 

4.1 Trace selection 
Since Dynamo operates at runtime, it cannot afford to use 

elaborate profiling mechanisms to identify hot traces (such as 
[14][4]). Moreover, most profiling techniques in use today have 
been designed for offline use, where the gathered profile data is 
collated and analyzed post-mortem. The objective here is not 
accuracy, but predictability. If a particular trace is very hot over a 
short period of time, but its overall contribution to the execution 
time is small, it may still be an important trace to identify. Another 
concern for Dynamo is the amount of counter updates and counter 
storage required for identifying hot traces, since this adds to the 
overhead and memory footprint of the system. 

As discussed in Section 2, Dynamo uses software 
interpretation of the instruction stream to observe runtime 
execution behavior. Interpretation is expensive but it prevents the 

Application crt0 code 
... 
... 
push stack frame; 
spill caller-save regs; 
call dynamo_exec ; 
restore caller-save regs;  
pop stack frame; 
... 
... 
... 
 
 

Dynamo library code 
 
dynamo_exec : 
   save callee-save regs to app-context; 
   copy caller-save regs from stack frame 
        to app-context; 
   save stackptr to app-context; 
   return-pc = value of link reg;  
   swap Dynamo & application stack; 
   // stackptr now points to Dynamo stack 
   initialize internal data structures;  
   call interpreter  (return-pc, app-context); 
   // control does not return here!  
 

app runs 
natively 

 

app runs 
under Dynamo 

 

 
Figure 2. How Dynamo gains control over the application 
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need to instrument the application binary or otherwise perturb it in 
any way. Interpretation is preferable to statistical PC sampling 
because it does not interfere with applications that use timer 
interrupts. Also, as we will elaborate shortly, interpretation allows 
Dynamo to select hot regions directly without having to collate and 
analyze point statistics like the kind produced by PC sampling 
techniques. Another important advantage of interpretation is that it 
is a deterministic trace selection scheme, which makes the task of 
engineering the Dynamo system much easier. 

It is worth noting that the “interpreter” here is a native 
instruction interpreter and that the underlying CPU is itself a very 
fast native instruction interpreter implemented in hardware. This 
fact can be exploited on machines that provide fast breakpoint 
traps (e.g., through user-mode accessible breakpoint window 
registers) to implement the Dynamo interpreter very efficiently [2]. 
On the PA-8000 however, breakpoint traps are very expensive, and 
it was more efficient to implement the interpreter by using 
emulation. The higher the interpretive overhead, the earlier 
Dynamo has to predict the hot trace in order to keep the overheads 
low. In general, the more speculative the trace prediction scheme, 
the larger we need to size the fragment cache, to compensate for 
the larger number of traces picked as a result. Thus, the 
interpretive overhead has a ripple effect throughout the rest of the 
Dynamo system. 

Dynamo uses a speculative scheme we refer to as MRET (for 
most recently executed tail) to pick hot traces without doing any 
path or branch profiling. The MRET strategy works as follows. 
Dynamo associates a counter with certain selected start-of-trace 
points such as the target addresses of backward taken branches. 
The target of a backward taken branch is very likely to be a loop 
header, and thus the head of several hot traces in the loop body. If 
the counter associated with a certain start-of-trace address exceeds 
a preset threshold value, Dynamo switches its interpreter to a mode 
where the sequence of interpreted instructions is recorded as they 
are being interpreted. Eventually, when an end-of-trace condition 
is reached, the recorded sequence of instructions (the most recently 
executed tail starting from the hot start-of-trace) is selected as a hot 
trace. 

The insight behind MRET is that when an instruction 

becomes hot, it is statistically likely that the very next sequence of 
executed instructions that follow it is also hot. Thus, instead of 
profiling the branches in the rest of the sequence, we simply record 
the tail of instructions following the hot start-of-trace and 
optimistically pick this sequence as a hot trace. Besides its 
simplicity and ease of engineering, MRET has the advantage of 
requiring much smaller counter storage than traditional branch or 
path profiling techniques. Counters are only maintained for 
potential loop headers. Furthermore, once a hot trace has been 
selected and emitted into the fragment cache, the counter 
associated with its start-of-trace address can be recycled. This is 
possible because all future occurrences of this address will cause 
the cached version of the code to be executed and no further 
profiling is required. 

Subsequent hot traces that also start at the same start-of-trace 
address will be selected when control exits the first selected trace 
for that start-of-trace address. Exits from previously selected hot 
traces are treated as start-of-trace points by Dynamo (see Figure 1). 
This allows subsequent hot tails that follow the earlier hot start-of-
trace to be selected by the MRET scheme in the usual manner. 

No profiling is done on the code generated into Dynamo’s 
fragment cache. This allows the cached code to run directly on the 
processor at full native speed without any Dynamo introduced 
overheads. The flip side of this is that if the biases of some 
branches change after a hot trace was selected, Dynamo would be 
unable to detect it. In order to allow Dynamo to adapt to changing 
branch biases, the fragment cache is designed to tolerate periodic 
flushes. Periodically flushing some of the traces in the fragment 
cache helps remove unused traces, and also forces re-selection of 
active traces. This is discussed in more detail in Section 6. 

4.2 Trace optimization 
The selected hot trace is prepared for optimization by 

converting it into a low-level intermediate representation (IR) that 
is very close to the underlying machine instruction set. 

The first task of trace optimization is to transform the 
branches on the trace so that their fall-through direction remains on 
the trace. Loops are only allowed if the loop-back branch targets 
the start-of-trace. Otherwise the loop-back branch is treated as a 
trace exit. Unconditional direct branches are redundant on the trace 
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and can be removed. In the case of branches with side-effects, such 
as branch-and-link branches, the side-effect is preserved even if the 
branch itself is removed. After trace optimization, no branch-and-
link type branches remain on the trace.  

Even indirect branches may be redundant. For example, a 
return branch if preceded by the corresponding call on the trace is 
redundant and will be removed. Other indirect branches are 
optimistically transformed into direct conditional branches. The 
transformed conditional branch compares the dynamic branch 
target with the target contained in the trace at the time the trace 
was selected (referred to as the predicted indirect branch target). If 
the comparison succeeds, control goes to the predicted (on-trace) 
target. If the comparison fails, control is directed to a special 
Dynamo routine that looks up a Dynamo-maintained switch table. 
The switch table is a hash table indexed by indirect branch target 
addresses (application binary addresses). The table entries contain 
the fragment cache address corresponding to the target. If an entry 
is found for the dynamic indirect branch target, control is directed 
to the corresponding fragment cache address. Otherwise, control 
exits the fragment cache to the Dynamo interpreter. If the 
interpreter then selects a new hot trace starting at that dynamic 
indirect branch target, Dynamo will add a new entry to the switch 
table corresponding to the mapping from the start-of-trace 
application address to its fragment cache address. Assuming 
execution follows the selected hot trace most of the time, this 
transformation replaces a potentially expensive indirect branch 
with a less expensive direct conditional branch. The following 
outlines the transformed code for an indirect branch instruction: 

 
// assuming the indirect branch’s dynamic target is in Rx 
spill Rscratch to app-context; // free a fixed register 
set Rscratch = address of predicted on-trace target; 
if (Rx = = Rscratch) goto predicted target; 
copy Rx to Rscratch; 
goto switch_table_lookup(Rscratch); 
 
The actual register that contains the original indirect branch’s 

dynamic target can be different for different indirect branch 
instructions. The purpose of copying this dynamic target to register 
Rscratch is to ensure that when control enters the switch table 
lookup routine at execution time, the same fixed register (Rscratch) 
will contain the dynamic target that has to be looked up. 

Finally, an unconditional trace exit branch is appended to the 
bottom of the trace so that control reaching the end of the trace can 
exit it via a taken branch. After fixing up the branches on the trace, 
the result is a single-entry, multi-exit sequence of instructions with 
no internal control join points. Figure 3 illustrates the branch 
adjustments that occur after a trace is selected from the application 
binary. 

Since traces are free of internal join points, new opportunities 
for optimization may be exposed that were otherwise unsafe in the 
original program code. The simplicity of control flow allowed 
within a trace also means traces can be analyzed and optimized 
very rapidly. In fact, the Dynamo trace optimizer is non-iterative, 
and optimizes a trace in only two passes: a forward pass and a 
backward pass. During each pass the necessary data flow 
information is collected as it proceeds along the fragment. Most of 
the optimizations performed involve redundancy removal: 
redundant branch elimination, redundant load removal, and 
redundant assignment elimination. These opportunities typically 
result from partial redundancies in the original application binary 
that become full redundancies in a join-free trace. 

The trace optimizer also sinks all partially redundant 
instructions (i.e., on-trace redundancies) into special off-trace 
compensation blocks that it creates at the bottom of the trace. This 
ensures that the partially redundant instructions get executed only 
when control exits the trace along a specific path where the 
registers defined by those instructions are downward-exposed. 
Fragment A in Figure 5 illustrates such a case. The assignment to 
register r5 shown in the compensation block (thick border) could 
have originally been in the first trace block. This sinking code 
motion ensures that the overhead of executing this assignment is 
only incurred when control exits the fragment via the path along 
which that assignment to r5 is downwards exposed. 

Other conventional optimizations performed are copy 
propagation, constant propagation, strength reduction, loop 
invariant code motion and loop unrolling. Dynamo also performs 
runtime disambiguated conditional load removal by inserting 
instruction guards that conditionally nullify a potentially redundant 
load. 

Note that load removal is only safe if it is known that the 
respective memory location is not volatile. Information about 
volatile variables may be communicated to Dynamo through the 
symbol table. In the absence of any information about volatile 
variables, load removal transformations are conservatively 
suppressed. 

4.3 Fragment code generation 
The fragment code generator emits code for the trace IR into 

the fragment cache. The emitted code is referred to as a fragment. 
The fragment cache manager (discussed in Section 6) first 
allocates sufficient room in the fragment cache to generate the 
code. 

A trace IR may be split into multiple fragments when it is 
emitted into the fragment cache. This is the case, for example, if a 
direct conditional branch is encountered on the trace, which was 
converted from the application’s original indirect branch 
instruction by the trace optimizer (see Section 4.2). Such a branch 
splits the trace into two fragments. The predicted on-trace target of 
the original indirect branch, which is the instruction immediately 
following this branch on the trace, starts a separate fragment. 

Virtual registers may be used in the IR but the trace optimizer 
retains their original machine register mappings. The register 
allocator attempts to preserve the original machine register 
mappings to the extent possible when the code is finally emitted. 
The allocator reservers one register to hold the address of the app-
context data structure (see Figure 2) when control is within the 
fragment. The app-context is a Dynamo internal data structure that 
is used to keep the application’s machine state during 
interpretation, and also to record a snapshot of the application’s 
machine state at the point of the last fragment cache exit to 
Dynamo. The trace optimizer uses the app-context as a spill area to 
create temporary scratch registers necessary for its optimizations. 
It cannot use the application’s runtime stack as a spill area because 
that would interfere with stack operations generated by the static 
compiler that created the application binary. 

Generation of the fragment code from the trace IR involves 
two steps: emitting the fragment body, and emitting the fragment 
exit stubs. Emitting the fragment body involves straightforward 
generation of the code corresponding to the trace IR itself. After 
that, a unique exit stub is emitted for every fragment exit branch 
and fragment loop-back branch. The exit stub is a piece of code 
that transfers control from the fragment cache to the Dynamo 
interpreter in a canonical way, as outlined below: 
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spill Rlink to app-context; 
branch & link to interpreter; // sets Rlink to the following PC 
<ptr to linkage info for this exit branch> 
 
Each stub can be entered by only one fragment exit branch. 

The stub code first saves the link register (Rlink) to the app-
context. It then does a branch and link to the entry point of the 
Dynamo interpreter, which sets the Rlink register to the fragment 
cache address following this branch. The Dynamo interpreter will 
take a snapshot of the application’s machine state (with the 
application’s original Rlink value being taken from the app-context 
data structure) prior to starting interpretation. The end of the exit 
stub beyond the branch and link instruction contains a pointer to 
linkage information for the fragment exit branch associated with 
the stub. When control exits the fragment to the Dynamo 
interpreter, the interpreter consults this linkage information to 
figure out the next application address at which it should start 
interpretation. The value of the Rlink register contains the address 
of the location containing the pointer to the linkage information for 
the current fragment exit. 

5. Fragment Linking 
After the fragment code is emitted into the fragment cache, 

the new fragment is linked to other fragments already in the 
fragment cache. Linking involves patching a fragment exit branch 
so that its taken target is the entry point of another fragment, 
instead of to its exit stub. 

As an example, suppose the trace BDGIJE in Figure 3 (a) now 
becomes hot (B is a valid start-of-trace by our definition, when it is 
entered via an exit from the earlier hot trace ACDGHJE). Figure 4 
illustrates the linking that occurs after the fragment corresponding 
to the BDGIJE trace is emitted into the fragment cache. Linked 
branches are shown as dark arrows, and their original unlinked 
versions are indicated as dashed light arrows. 

Fragment linking is essential for performance, because it 
prevents expensive exits from the fragment cache back to the 
Dynamo interpreter. In our prototype implementation on the PA-
8000 for example, disabling fragment linking results in an order of 
magnitude slowdown (by an average factor of 40 for the SpecInt95 
benchmarks). 

Fragment linking also provides an opportunity for removing 
redundant compensation code from the source fragment involved 

in the link. Recall that the trace optimizer sinks on-trace 
redundancies into compensation blocks, so that these instructions 
are only executed when control exits the fragment along a 
particular path (see Section 4.2). Fragment A in Figure 5 illustrates 
such a case, where the assignment to r5 shown in the compensation 
block (thick border) was originally in the first block before it was 
sunk into its compensation block. As part of the linkage 
information that is kept at each fragment exit stub (the shaded 
boxes in Figure 5), a mask of on-trace redundant register 
assignments along that particular fragment exit is maintained. In 
Figure 5, this mask would be kept in the exit stub corresponding to 
the compensation block, and bit 5 of the mask would be set. A 
similar mask of killed register assignments at the top of every 
fragment is also maintained as part of the Dynamo internal data 
structure that keeps fragment-related information. At link-time, if a 
register appears in both masks, the instruction that last defined it in 
the source fragment’s compensation block is dead and can be 
removed. This is illustrated in Figure 5, where the assignment to r5 
in Fragment A’s compensation block can be deleted because r5 is 
defined before being used on entry to Fragment B. 

While the advantages of linking are clear, it also has some 
disadvantages that impact other parts of the Dynamo system. For 
instance, linking makes the removal of individual fragments from 
the fragment cache expensive, because all incoming branches into 
a fragment must first be unlinked first. Linking also makes it 
difficult to relocate fragments in the fragment cache memory after 
they have been emitted. This might be useful for instance to do 
periodic de-fragmentation of the fragment cache memory. 

6. Fragment Cache Management 
Dynamo cannot afford to do complicated management of the 

fragment cache storage, because of the overheads this would incur. 
We could avoid storage management altogether by simply 
expanding the size of the fragment cache as needed. But this has 
several undesirable effects. For example, one of the advantages of 
collecting hot traces in a separate fragment cache is the improved 
instruction cache locality and TLB utilization that can result from 
keeping the working set close together in memory. This advantage 
could go away if over time, the hot traces that make up the current 
working set are spread out over a large area of fragment cache 
memory. Clearly, the ideal situation where the fragment cache only 
contains the traces that make up the current working set is difficult 
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to achieve. The overhead of implementing an LRU type scheme to 
identify cold fragments would be too expensive as well. Moreover, 
as pointed out earlier, any policy that only removes a few 
fragments would incur the expense of having to unlink every 
incoming branch into these fragments. 

Dynamo instead employs a novel pre-emptive flushing 
heuristic to periodically remove cold traces from the fragment 
cache without incurring a high penalty. A complete fragment cache 
flush is triggered whenever Dynamo recognizes a sharp increase in 
the fragment creation rate (or hot trace selection rate). The 
rationale here is that a sharp rise in new fragment creation is very 
likely indicative of a significant change in the working set of the 
program that is currently in the fragment cache. Since control is 
predominantly being spent in Dynamo during this stage, the 
fragment cache flush is essentially “free”. Figure 6 illustrates this 
scenario for the SpecInt95 m88ksim benchmark. Since all 
fragments are removed during a fragment cache flush, no unlinking 
of branches needs to be done. 

The pre-emptive flushing mechanism has other useful side 
effects. All fragment-related data structures maintained for internal 
bookkeeping by Dynamo are tied to the flush, causing these 
memory pools to be reset as a side effect of a pre-emptive flush. A 
pre-emptive flush thus serves as an efficient garbage collection 
mechanism to free dynamic objects associated with fragments that 
are likely to have dropped out of the current working set. If some 
fragments belonging to the new working set are inadvertently 
flushed as a result, they will be regenerated by Dynamo when 
those program addresses are encountered later during execution. 
Regeneration of fragments allows Dynamo to adapt to changes in 
the application’s branch biases. When a trace is re-created, 
Dynamo may select a different tail of instructions from the same 
start-of-trace point. This automatic “re-biasing” of fragments is 
another useful side effect of the pre-emptive cache flushing 
strategy. 

7. Signal Handling 
Optimizations that involve code reordering or removal, such 

as dead code elimination and loop unrolling, can create a problem 
if a signal arrives while executing the optimized fragment, by 
making it difficult or impossible for Dynamo to recreate the 

original signal context prior to the optimization. This can create 
complications for precise signal delivery. For example, the 
application might arm a signal with a handler that examines or 
even modifies the machine context at the instant of the signal. If a 
signal arrives at a point where a dead register assignment has been 
removed, the signal context is incomplete.  

Dynamo intercepts all signals, and executes the program’s 
signal handler code under its control, in the same manner that it 
executes the rest of the application code (box K in Figure 1). This 
gives Dynamo an opportunity to rectify the signal context that 
would otherwise be passed directly to the application’s handler by 
the operating system. Asynchronous signals (such as keyboard 
interrupts, etc., where the signal address is irrelevant) are treated 
differently from synchronous signals (such as segment faults, etc., 
where the signal address is critical). 

If an asynchronous signal arrives when executing a fragment, 
the Dynamo signal handler will queue it and return control back to 
the fragment cache. All queued asynchronous signals are processed 
when the next normal fragment cache exit occurs. This allows 
Dynamo to provide a proper signal context to the application’s 
handler since control is not in the middle of an optimized fragment 
at the time the signal context is constructed. 

In order to bound asynchronous signal handling latency, the 
Dynamo signal handler unlinks all linked branches on the current 
fragment prior to resuming execution of the fragment. To 
disconnect self-loops in a similar manner, the fragment generator 
emits an exit stub for each self-loop branch in addition to the exit 
stubs for the fragment exit branches. Unlinking the current 
fragment forces the next fragment exit branch to exit the fragment 
cache via the exit stub, preventing the possibility of control 
spinning within the fragment cache for an arbitrarily long period of 
time before the queued signals are processed. This feature allows 
Dynamo to operate in environments where soft real-time 
constraints must be met. 

Synchronous signals on the other hand are problematic, 
because they cannot be postponed. A drastic solution is to suppress 
code removing and reordering transformations altogether. A more 
acceptable alternative is to use techniques similar to that developed 
for debugging of optimized code to de-optimize the fragment code 
before attempting to construct the synchronous signal context. 

 

Figure 6. Dynamic trace selection rate for m88ksim, showing a sharp change in the working set ~106 sec into its execution 
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Fortunately, the problem of de-optimizing is much simpler in 
Dynamo since only straight-line fragments are considered during 
optimization. Optimization logs can be stored along with each 
fragment that describes compensation actions to be performed 
upon signal-delivery, such as the execution a previously deleted 
instruction. This is presently an ongoing effort in the Dynamo 
project. 

Our prototype currently implements a less ambitious solution 
to this problem, by dividing trace optimizations into two 
categories, conservative and aggressive. Conservative 
optimizations allow the precise signal context to be constructed if a 
synchronous fault occurs while executing the fragment. Aggressive 
optimizations on the other hand cannot guarantee this. Examples of 
conservative optimizations include constant propagation, constant 
folding, strength reduction, copy propagation and redundant 
branch removal. The aggressive category includes all of the 
conservative optimizations plus dead code removal, code sinking 
and loop invariant code motion. Certain aggressive optimizations, 
like redundant load removal, can sometimes be incorrect, if the 
load is from a volatile memory location. 

Dynamo’s trace optimizer is capable of starting out in its 
aggressive mode of optimization, and switching to conservative 
mode followed by a fragment cache flush if any suspicious 
instruction sequence is encountered. Unfortunately, the PA-RISC 
binary does not provide information about volatile memory 
operations or information about program-installed signal handlers. 
So this capability is currently unused in Dynamo. In a future 
version of Dynamo, we plan to investigate ways to allow the 
generator of Dynamo’s input native instruction stream to provide 
hints to Dynamo. Dynamo can use such hints if they are available, 
but will not rely on them for operation. 

8. Performance Data 
For performance evaluation we present experiments on 

several integer benchmarks. Dynamo incurs a fixed startup 
overhead for allocating and initializing its internal data structures 
and the fragment cache. The startup overhead could probably be 
improved through more careful engineering. But for the purposes 
of this study, we use benchmarks that long enough to allow the 
startup and initialization overhead to be recouped. This section 

presents data comparing the performance of running several 
integer benchmarks on Dynamo to the identical binary executing 
directly on the processor. Our benchmark set includes the 
SpecInt95 benchmarks2 and a commercial C++ code called 
deltablue, which is an incremental constraint solver [28]. The 
programs were compiled at the +O2 optimization level (equivalent 
to the default –O option) using the product HP C/C++ compiler. 
This optimization level includes global intraprocedural 
optimization. Performance measurements were based on wall clock 
time on a lightly loaded single-processor HP PA-8000 workstation 
[21] running the HP-UX 10.20 operating system. 

Figure 7 shows the speedup that Dynamo achieves over +O2 
optimized native program binaries running without Dynamo. For 
these runs, Dynamo was configured to use a fixed size 150 Kbyte 
fragment cache, which is flushed when sharp changes occur to the 
trace selection rate or there is no room to generate new fragments. 
Details about the performance impact of varying the fragment 
cache size are outside the scope of this paper and can be found 
elsewhere [2]. As the figure indicates, Dynamo achieves 
considerable speedup in some cases, over 22% in li and m88skim, 
about 18% in perl, and about 14% in compress. These four 
programs have relatively stable working sets, a fact that dynamic 
optimization can exploit very well. The average overall speedup is 
about 9%. A significant portion of the performance gains come 
from the act of selecting a trace and forming a fragment out of it, 
that is, from the implied partial procedure inlining and improved 

                                                           
2 Our experiments do not include the SpecInt95 gcc benchmark. 

This benchmark actually consists of repeated runs of gcc on a 
number of input files, and the individual runs are too short 
running to qualify for our performance study (less than 60 
seconds on the PA-8000). To understand the performance 
characteristics of gcc, we modified the gcc program to internally 
loop over the input files, thus resulting in a single long 
invocation of gcc. We do not show data for the modified gcc 
because it does not represent the original benchmark, but it’s 
performance characteristics are comparable to that of go for all 
of the data shown here. 
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code layout in the fragment cache. Fragment optimization accounts 
for approximately 3% of the total gains on average, and one-third 
of this is due to conservative (signal and volatile-memory safe) 
optimizations. Note however, that if we ignore the inputs on which 
Dynamo bails out (as discussed shortly), the average contribution 
due to trace optimization is around 5%. 

Dynamo does not achieve performance improvements on 
programs go, ijpeg and vortex. Dynamo’s startup time is a non-
negligible fraction of the total runtime of ijpeg, as ijpeg does not 
run long enough to recoup Dynamo’s startup overhead before 
starting to provide any performance benefit. In the case of go and 
vortex that run for a long time, the problem is the lack of a stable 
working set. A relatively high number of distinct dynamic 
execution paths are executed in these benchmarks [4]. Frequently 
changing dynamic execution paths result in an unstable working 
set, and Dynamo spends too much time selecting traces without 
these traces being reused sufficiently in the cache to offset the 
overhead of its own operation. 

Fortunately, since Dynamo is a native-to-native optimizer, it 
can use the original input program binary as a fallback when its 
overhead starts to get too high. Dynamo constantly monitors the 
ratio of time spent in Dynamo over time spent in the fragment 
cache. If this ratio stays above a tolerable threshold for a prolonged 
period of time, Dynamo assumes that the application cannot be 
profitably optimized at runtime. At that point Dynamo bails-out by 
loading the application’s app-context to the machine registers and 
jumping to an application binary address. From that point on the 
application runs directly on the processor, without any further 
dynamic optimization. Bail-out allows Dynamo to come close to 
break-even performance even on “ill-behaved” programs with 
unstable working sets. This is illustrated in the graph in Figure 8 
for the benchmark go. The Dynamo overhead for a relatively well-
behaved application, m88ksim, is also shown for comparison. 

 Figure 9 shows Dynamo’s performance on binaries compiled 
with higher optimization levels. The figure shows the program 

runtimes with and without Dynamo, for three optimization levels: 
+O2 (same as –O), +O4, and profile-based +O4 +P (i.e., +O4 with 
a prior profile collection run). At level +O4, the HP C compiler 
performs global interprocedural and link-time optimization. At 
level +O4 +P the compiler performs +O4 optimizations based on 
profile information gathered during a prior +O4 run. However, 
compile-time increases very significantly from +O2 to +O4, and 
the ability to debug the binary is lost. Because of this, most 
software vendors are reluctant to enable higher optimization levels, 
in spite of the performance advantages they offer. 

The data in Figure 9 shows that Dynamo finds performance 
improvement opportunities even in highly optimized binaries. In 
fact, on this set of benchmarks, Dynamo is able to raise the average 
performance of +O2 compiled binaries to a level that slightly 
exceeds the performance of their +O4 compiled versions running 
without Dynamo! This performance boost comes in a transparent 
fashion, without the creator of the binary having to do anything 
special. The fact that Dynamo finds performance improvement 
opportunities even in +O4 optimized binaries is not as surprising 
as it first seems, because Dynamo primarily focuses on runtime 
performance opportunities that a static compiler would find 
difficult to exploit. 

In some programs (such as li and perl), Dynamo is able to 
boost the performance of even profile-feedback compiled binaries 
(+O4 +P). On average however, the benefits of Dynamo disappear 
once static optimization is enhanced with profile information. This 
is to be expected, as the most beneficial inlining and other path-
sensitive optimizations have been already made at compile-time. 

As pointed out in the introduction, the goal of this study is to 
establish the limits of Dynamo’s capabilities in an extreme setting, 
where the quality of the input program code is good. In compiling 
these benchmarks, the static compiler had all of the program 
sources available, and no dynamically linked libraries were used. 
Using good quality compiled code as input forced the development 
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effort to focus on fine-tuning the engineering of the Dynamo 
system. 

It should be emphasized that the performance data shown here 
is very specific to the quality of the code produced by the PA-8000 
compiler, and to the PA-8000 processor implementation. Although 
the hot trace selection and dynamic optimization can be expected 
to provide benefits in general, the actual impact in terms of wall-
clock performance improvement will vary from target to target. On 
the deeply pipelined PA-8000 for example, the branch 
misprediction penalty is 5 cycles, and indirect branches (including 
returns) are always mispredicted. Indirect branch removal therefore 
makes a big contribution toward Dynamo’s performance gains on 
the PA-8000. On the other hand, the PA-8000 has a large 
instruction cache (1 Mbyte), so the gains from improved I-cache 
locality in the software fragment cache code are unlikely to be 
significant. However, the processor has a unified instruction and 
data TLB with only 96 entries, so the reduction in TLB pressure 
due to better locality of the working set in the fragment cache can 
contribute to a performance boost. 

9. Related Work 
In focusing on native-to-native runtime optimization, Dynamo 

is a fundamentally different approach from past work on dynamic 
compilation. Just-in-time compilers delay all compilation until 
runtime [6][11][10]. Selective dynamic compilation 
[1][9][23][13][22][26][16][24] is a staged form of compilation that 
restricts dynamic compilation to selected portions of code 
identified by user annotations or source language extensions. In 
these cases, the static compiler prepares the dynamic compilation 
process as much as possible by generating templates that are 
instantiated at run-time by a specialized dynamic compiler. 

In contrast to both just-in-time and selective dynamic 
compilation, Dynamo separates that task of compilation, which 
occurs prior to execution, from dynamic optimization, which 
occurs entirely at runtime and without requiring user assistance. 
Dynamo’s input is an already compiled native instruction stream, 
that is re-optimized to exploit performance opportunities that 
manifest themselves at runtime.  

A lot of work has been done on dynamic translation as a 
technique for non-native system emulation [8][30][5][31][12][17]. 
The idea is to lower emulation overhead by caching native code 
translations of frequently interpreted regions. Unlike such binary 
translators, Dynamo is not concerned with translation. The 
Dynamo approach does however allow one to couple a fast 
lightweight translator that emits native code to Dynamo, which 
then becomes a backend optimizer. 

There are several implementations of offline binary 
translators that also perform native code optimization [7][29]. 
These generate profile data during the initial run via emulation, 
and perform background translation together with optimization of 
hot spots based on the profile data. The benefit of the profile-based 
optimization is only available during subsequent runs of the 
program and the initial profile-collecting run may suffer from 
worsened performance.  

Hardware solutions for a limited form of runtime code 
optimization are now commonplace in modern superscalar 
microprocessors [21][25][19]. The optimization unit is a fixed size 
instruction window, with the optimization logic operating on the 
critical execution path. The Trace Cache is another hardware 
alternative that can be extended to do superscalar-like optimization 
off the critical path [27][15]. Dynamo offers the potential for a 
purely software alternative, which could allow it to be tailored to 
specific application domains, and cooperate with the compiler or 
JIT in ways that hardware dynamic optimizers cannot. 

10. Conclusion 
Dynamo is a novel performance delivery mechanism. It 

complements the compiler’s traditional strength as a static 
performance improvement tool by providing a dynamic 
optimization capability. In contrast to other approaches to dynamic 
optimization, Dynamo works transparently, requiring no user 
intervention. This fact allows Dynamo to be bundled with a 
computer system, and shipped as a client-side performance 
delivery mechanism, whose activation does not depend on the 
ISVs (independent software vendors) in the way that traditional 
compiler optimizations do. 
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This paper demonstrates that it is possible to engineer a 
practical software dynamic optimizer that provides a significant 
performance benefit even on highly optimized executables 
produced by a static compiler. The key is to focus the optimization 
effort on opportunities that are likely to manifest themselves only 
at runtime, and hence those that a static compiler might miss. 

We are currently investigating applications of Dynamo’s 
dynamic optimization technology in many different areas. One of 
the directions we are exploring is to export an API to the 
application program, so that a “Dynamo-aware” application can 
use the underlying system in interesting ways. This might be useful 
for example to implement a very low-overhead profiler, or a JIT 
compiler. From Dynamo’s perspective, user and/or compiler hints 
provided via this API might allow it to perform more 
comprehensive optimizations that go beyond the scope of 
individual traces. Finally, we are also looking at the problem of 
transparent de-optimization at runtime. 
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Summary 

In January of 2000, Transmeta Corporation introduced the Crusoe™ processors, an x86-compatible 
family of solutions that combines strong performance with remarkably low power consumption. As might 
be expected, a new technology for designing and implementing microprocessors underlies the 
development of these products. As might not be expected, the new technology is fundamentally software-
based: the power savings come from replacing large numbers of transistors with software. 

The Crusoe processor solutions consist of a hardware engine logically surrounded by a software layer. The 
engine is a very long instruction word (VLIW) CPU capable of executing up to four operations in each 
clock cycle. The VLIW’s native instruction set bears no resemblance to the x86 instruction set; it has been 
designed purely for fast low-power implementation using conventional CMOS fabrication. The 
surrounding software layer gives x86 programs the impression that they are running on x86 hardware. 
The software layer is called Code Morphing™ software because it dynamically “morphs” x86 instructions 
into VLIW instructions. The Code Morphing software includes a number of advanced features to achieve 
good system-level performance. Code Morphing support facilities are also built into the underlying 
CPUs. In other words, the Transmeta designers have judiciously rendered some functions in hardware and 
some in software, according to the product design goals and constraints. Different goals and constraints in 
future products may result in different hardware-software partitioning. 

Transmeta’s Code Morphing technology changes the entire approach to designing microprocessors. By 
demonstrating that practical microprocessors can be implemented as hardware-software hybrids, 
Transmeta has dramatically expanded the design space that microprocessor designers can explore for 
optimum solutions. Microprocessor development teams may now enlist software experts and expertise, 
working largely in parallel with hardware engineers to bring products to market faster. Upgrades to the 
software portion of a microprocessor can be rolled out independently from the chip. Finally, decoupling 
the hardware design from the system and application software that use it frees hardware designers to 
evolve and eventually replace their designs without perturbing legacy software. 

Technology Perspective

The Transmeta designers have decoupled the x86 instruction set architecture (ISA) from the underlying 
processor hardware, which allows this hardware to be very different from a conventional x86 
implementation. For the same reason, the underlying hardware can be changed radically without affecting 
legacy x86 software: each new CPU design only requires a new version of the Code Morphing software to 
translate x86 instructions to the new CPU’s native instruction set. 

For the initial Transmeta products, models TM3120 and TM5400, the hardware designers opted for 
minimal space and power. By eliminating roughly three quarters of the logic transistors that would be 
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required for an all-hardware design of similar performance, the designers have likewise reduced power 
requirements and die size. However, future hardware designs can emphasize different factors and 
accordingly use different implementation techniques. 

Finally, the Code Morphing software itself offers opportunities to improve performance without altering 
the underlying hardware. The current system is a first-generation embodiment of a new technology that 
can be further optimized with experience and experimentation. Because the Code Morphing software 
would typically reside in standard Flash ROMs on the motherboard, improved versions can even be 
downloaded into processors in the field. 

Crusoe Processor Fundamentals

With the Code Morphing software handling x86 compatibility, Transmeta hardware designers created a 
very simple, high-performance, VLIW engine with two integer units, a floating point unit, a memory 
(load/store) unit, and a branch unit. A Crusoe processor long instruction word, called a molecule, can be 
64 bits or 128 bits long and contain up to four RISC-like instructions, called atoms. All atoms within a 
molecule are executed in parallel, and the molecule format directly determines how atoms get routed to 
functional units; this greatly simplifies the decode and dispatch hardware. Figure 1 shows a sample 128-
bit molecule and the straightforward mapping from atom slots to functional units. Molecules are executed 
in order, so there is no complex out-of-order hardware. To keep the processor running at full speed, 
molecules are packed as fully as possible with atoms. In a later section, we describe how the Code 
Morphing software accomplishes this.

Figure 1.  A molecule can contain up to four atoms, which are executed in parallel.

The integer register file has 64 registers, %r0 through %r63. By convention, the Code Morphing software 
allocates some of these to hold x86 state while others contain state internal to the system, or can be used 
as temporary registers, e.g., for register renaming in software. In the assembly code examples in this paper, 
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we write one molecule per line, with atoms separated by semicolons. The destination register of an atom 
is specified first; a “.c” opcode suffix designates an operation that sets the condition codes. Where a 
register holds x86 state, we use the x86 name for that register (e.g., %eax instead of the less descriptive 
%r0).

Superscalar out-of-order x86 processors, such as the Pentium II and Pentium III processors, also have 
multiple functional units that can execute RISC-like operations (micro-ops) in parallel. Figure 2 depicts 
the hardware these designs use to translate x86 instructions into micro-ops and schedule (dispatch) the 
micro-ops to make best use of the functional units. Since the dispatch unit reorders the micro-ops as 
required to keep the functional units busy, a separate piece of hardware, the in-order retire unit, is needed 
to effectively reconstruct the order of the original x86 instructions, and ensure that they take effect in 
proper order. Clearly, this type of processor hardware is much more complex than the Crusoe processor’s 
simple VLIW engine. 

Figure 2.  Conventional superscalar out-of-order CPUs use hardware 
to create and dispatch micro-ops that can execute in parallel. 

Because the x86 instruction set is quite complex, the decoding and dispatching hardware requires large 
quantities of power-hungry logic transistors; the chip dissipates heat in rough proportion to their 
numbers. Table 1 compares the sizes of Intel mobile and Crusoe processor models.

 

Viewing power dissipation as heat, Figure 3 and Figure 4 contrast the operating temperatures of a 
Pentium III and a Crusoe processor running a software DVD (Digital Versatile Disk) player. The model 
TM5400 requires no active cooling, whereas the Pentium III processor can heat to the point of failure if it 
is not aggressively cooled. 

Mobile PII Mobile PII Mobile PIII TM3120 TM5400

Process .25m .25m shrink .18m .22m .18m

On-chip L1 Cache 32KB 32KB 32KB 96KB 128KB

On-chip L2 Cache 0 256KB 256KB 0 256KB

Die Size 130mm2 180mm2 106mm2 77mm2 73mm2

Table 1.  The Code Morphing software simplifies chip hardware.
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Figure 3.  A Pentium III processor plays a DVD at 105° C (221° F).

Figure 4.  A Crusoe processor model TM5400 plays a DVD at 48° C (118° F).
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The Code Morphing Software

The Code Morphing software is fundamentally a dynamic translation system, a program that compiles 
instructions for one instruction set architecture (in this case, the x86 target ISA) into instructions for 
another ISA (the VLIW host ISA). The Code Morphing software resides in a ROM and is the first 
program to start executing when the processor boots. The Code Morphing Software supports ISA, and is 
the only thing x86 code sees;; the only program written directly for the VLIW engine is the Code 
Morphing software itself. Figure 5 shows the relationship between x86 code, the Code Morphing 
software, and a Crusoe processor.

Figure 5.  The Code Morphing software mediates between x86 software and the Crusoe processor. 

Because the Code Morphing software insulates x86 programs—including a PC’s BIOS and operating 
system—from the hardware engine’s native instruction set, that native instruction set can be changed 
arbitrarily without affecting any x86 software at all. The only program that needs to be ported is the Code 
Morphing software itself, and that work is done once for each architectural change, by Transmeta. The 
feasibility of this concept has already been demonstrated: the native ISA of the model TM5400 is an 
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enhancement (neither forward nor backward compatible) of the model TM3120’s ISA and therefore runs 
a different version of Code Morphing software. The processors are different because they are aimed at 
different segments of the mobile market: the model TM3120 is aimed at Internet appliances and ultra-
light mobile PCs, while the model TM5400 supports high-performance, full-featured 3-4lb. mobile PCs. 

Coincidentally, hiding the chip’s ISA behind a software layer also avoids a problem that has in the past 
hampered the acceptance of VLIW machines. A traditional VLIW exposes details of the processor 
pipeline to the compiler, hence any change to that pipeline would require all existing binaries to be 
recompiled to make them run on the new hardware. Note that even traditional x86 processors suffer from 
a related problem: while old applications will run correctly on a new processor, they usually need to be 
recompiled to take full advantage of the new processor implementation. This is not a problem on Crusoe 
processors, since in effect, the Code Morphing software always transparently “recompiles” and optimizes 
the x86 code it is running.

The flexibility of the software-translation approach comes at a price: the processor has to dedicate some of 
its cycles to running the Code Morphing software, cycles that a conventional x86 processor could use to 
execute application code. To deliver good practical system performance, Transmeta has carefully designed 
the Code Morphing software for maximum efficiency and low overhead.

Drawing the Hardware-Software Line

Virtualizing an x86 CPU is a challenging undertaking because of the complexity of the x86 architecture. 
Choosing which functions to implement in hardware and which in software is a major engineering 
challenge, involving issues such as cost and complexity, overall performance and power consumption. 
Clearly, there are many possible choices, influenced by market demands, or the latest hardware 
technologies available.

For its initial products, Transmeta has drawn the line between hardware and software so that software 
handles the complex task of decoding x86 instructions and generating explicitly parallel molecules, which 
the hardware executes using a very simple, high-speed, VLIW engine. A few unique hardware features, 
described later in this paper, were added to better support dynamic translation. The hardware-software 
line might be drawn differently for another kind of product, for example, a high-end server processor. 

Decoding and Scheduling

Conventional x86 superscalar processors fetch x86 binary instructions from memory and decode them 
into micro-operations, which are then reordered by out-of-order dispatch hardware and fed to the 
functional units for parallel execution.
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In contrast (besides being a software rather than a hardware solution), Code Morphing can translate an 
entire group of x86 instructions at once, creating a translation, whereas a superscalar x86 translates single 
instructions in isolation. Moreover, while a traditional x86 translates each x86 instruction every time it is 
executed, Transmeta’s software translates instructions once, saving the resulting translation in a translation 
cache. The next time the (now translated) x86 code is executed, the system skips the translation step and 
directly executes the existing optimized translation.

Implementing the translation step in software as opposed to hardware opens up new opportunities and 
challenges. Since an out-of-order processor has to translate and schedule instructions every time they 
execute, it must do so very quickly. This seriously limits the kinds of transformations it can perform. The 
Code Morphing approach, on the other hand, can amortize the cost of translation over many executions, 
allowing it to use much more sophisticated translation and scheduling algorithms. Likewise, the amount 
of power consumed for the translation process is amortized, as opposed to having to pay it on every 
execution. Finally, the translation software can optimize the generated code and potentially reduce the 
number of instructions executed in a translation. In other words, Code Morphing can speed up execution 
while at the same time reducing power!

Caching

The translation cache, along with the Code Morphing code, resides in a separate memory space that is 
inaccessible to x86 code. (For better performance, the Code Morphing software copies itself from ROM 
to DRAM at initialization time.) The size of this memory space can be set at boot time, or the operating 
system can make the size adjustable.

As with all caching, the Code Morphing software’s technique of reusing translations takes advantage of 
“locality of reference”. Specifically, the translation system exploits the high repeat rates (the number of 
times a translated block is executed on average) seen in real-life applications. After a block has been 
translated once, repeated execution “hits” in the translation cache and the hardware can then execute the 
optimized translation at full speed.

Some benchmark programs attempt to exercise a large set of features in a small amount of time, with little 
repetition—a pattern that differs significantly from normal usage. (When was the last time you used every 
other feature of Microsoft Word exactly once, over a period of a minute?) The overhead of Code 
Morphing translation is obviously more evident in those benchmarks. Furthermore, as an application 
executes, Code Morphing “learns” more about the program and improves it so it will execute faster and 
faster. Today’s benchmarks have not been written with a processor in mind that gets faster over time, and 
may “charge” Code Morphing for the learning phase without waiting for the payback. As a result, some 
benchmarks do not accurately predict the performance of Crusoe processors.

On typical applications, due to their high repeat rates, Code Morphing has the opportunity to optimize 
execution and amortize any initial translation overhead. As an example, consider a multimedia 
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application such as playing a DVD—before the first video frame has been drawn, the DVD decoder will 
have been fully translated and optimized, incurring no further overhead during the playing time of the 
DVD. In summary, we find that the Crusoe processor’s approach of caching translations delivers excellent 
performance in real-life situations.

Filtering 

It is well known that in typical applications, a very small fraction of the application’s code (often less than 
10%, sometimes as little as 1%) accounts for more than 95% of execution time. Therefore, the translation 
system needs to choose carefully how much effort to spend on translating and optimizing a given piece of 
x86 code. Obviously, we want to lavish the optimizer’s full attention on the most frequently executed code 
but not waste it on code that executes only once.

The Code Morphing software includes in its arsenal a wide choice of execution modes for x86 code, 
ranging from interpretation (which has no translation overhead at all, but executes x86 code more slowly), 
through translation using very simple-minded code generation, all the way to highly optimized code 
(which takes longest to generate, but which runs fastest once translated). A sophisticated set of heuristics 
helps choose among these execution modes based on dynamic feedback information gathered during 
actual execution of the code.

Prediction and Path Selection

One of the many ways in which the Code Morphing software can gather feedback about the x86 program 
is to instrument translations: the translator adds code whose sole purpose is to collect information such as 
block execution frequencies, or branch history. This data can be used later to decide when and what to 
optimize and translate. For example, if a given conditional x86 branch is highly biased (e.g., usually 
taken), the system can likewise bias its optimizations to favor the most frequently taken path. 
Alternatively, for more balanced branches (taken as often as not, for example), the translator can decide to 
speculatively execute code from both paths and select the correct result later. Analogously, knowing how 
often a piece of x86 code is executed helps decide how much to try to optimize that code. It would be 
extremely difficult to make similar decisions in a traditional hardware-only x86 implementation.
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Making a Translation

To conclude this section, we illustrate by way of a simple example how the Code Morphing system 

translates a chunk of x86 code into equivalent code for the Crusoe processor’s VLIW engine.1 Assume 
that the filtering and path selection algorithms have chosen the following four x86 instructions, (A) 
through (D), for translation.

A. addl %eax,(%esp) // load data from stack, add to %eax 
B. addl %ebx,(%esp) // ditto, for %ebx
C. movl %esi,(%ebp) // load %esi from memory
D. subl %ecx,5 // subtract 5 from %ecx register

In a first pass, the frontend of the translation system decodes the x86 instructions and translates them into 
a simple sequence of atoms. At this stage, it is still fairly easy to discern the correspondence between the 
original and generated code. (Registers %r30 and %r31 are used as temporaries for the memory-load 
operations.)

ld %r30,[%esp] // load from stack, into temporary
add.c %eax,%eax,%r30 // add to %eax, set condition codes.
ld %r31,[%esp]
add.c %ebx,%ebx,%r31
ld %esi,[%ebp]
sub.c %ecx,%ecx,5

In a second pass, the optimizer applies well-known compiler optimizations to the code, such as common 
subexpression elimination, loop invariant removal, or dead code elimination (including unnecessary 
settings of the condition codes). This exemplifies optimizations that a hardware-only x86 implementation 
cannot do: a software-based translation system can actually eliminate atoms from the instruction stream, 
rather than just reorder them. In this example, all but the last setting of the condition code is unnecessary 
(allowing for greater flexibility in scheduling), and one of the load atoms is redundant, leaving fewer 
atoms to be executed.

ld %r30,[%esp] // load from stack only once
add %eax,%eax,%r30
add %ebx,%ebx,%r30 // reuse data loaded earlier
ld %esi,[%ebp]
sub.c %ecx,%ecx,5 // only this last condition code needed

In a final pass, the scheduler reorders the remaining atoms and groups them into individual molecules. 
This process is similar to what out-of-order processors do in their dispatch hardware. However, by using 
software to schedule the code, it becomes feasible to use more effective scheduling algorithms and 

1. As a reminder, we write VLIW code one molecule per line, with atoms separated by semicolons. The destination register of an atom 
is specified first; a “.c” opcode suffix designates an operation that sets the condition codes. 
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consider a larger window of instructions than would be reasonable in hardware. After scheduling, we have 
reduced the four original x86 instructions down to just two molecules:

1. ld %r30,[%esp]; sub.c %ecx,%ecx,5
2. ld %esi,[%ebp]; add %eax,%eax,%r30; add %ebx,%ebx,%r30

There are two important points to observe here:

• Though the molecules are executed in-order by the hardware, they perform the work of the original 
x86 instructions out of order.

• The molecules explicitly encode the instruction-level parallelism, hence they can be executed by a 
simple (and hence fast and low-power) VLIW engine; the hardware need not perform any complex 
instruction reordering itself. 

Crusoe Hardware Support for Code Morphing

Dynamic translation on conventional processors would result in unsatisfactory performance. In contrast, 
the Crusoe hardware can achieve excellent performance because it has been designed specifically with 
dynamic translation in mind. Below, we discuss three simple hardware features that support exceptions, 
speculation, optimization of memory operations, and self-modifying code.

Exceptions and Speculation

Without special hardware support, it is in general very difficult for a dynamic translation system to 
correctly model the exception semantics of the target ISA while at the same time achieving high 
performance. The reason is that exception semantics impose severe constraints on instruction scheduling. 
Consider again the example from the previous section, where the following x86 code:

A. addl %eax,(%esp)
B. addl %ebx,(%esp)
C. movl %esi,(%ebp)
D. subl %ecx,5

was translated into the following two molecules:

1. ld %r30,[%esp]; sub.c %ecx,%ecx,5
2. ld %esi,[%ebp]; add %eax,%eax,%r30; add %ebx,%ebx,%r30

In the x86 ISA, exceptions are precise: when one instruction causes an exception, all instructions preceding 
it must complete before the exception is reported, and none of the subsequent instructions may complete. 
Observe that in the translation above, atoms occur out of order with respect to the original x86 code 
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order. Now imagine that during execution, the load instruction in molecule 2, corresponding to x86 
instruction (C), takes a page fault. However, by that time, the processor has already executed code in 
molecule 1 corresponding to instruction (D), which violates the rules of precise exceptions. 

Solving this problem without special hardware support unduly constrains the scheduling of host 
instructions, or requires extra host instructions to be issued, either of which reduces performance even in 
the common case where no exceptions occur.

It is worth noting at this point that out-of-order processors, too, have this problem. They typically 
employ complex hardware mechanisms to delay or undo the effects of micro-ops that have been executed 
“too soon”.

The Crusoe host processor provides a much simpler hardware solution that works hand-in-hand with the 
Code Morphing software. All registers holding x86 state are shadowed, i.e., there exist two copies of each 
register, a working and a shadow copy. Normal atoms only update the working copy of the register. When 
execution reaches the end of a translation without encountering an exception, a special commit operation 
copies all working registers into their corresponding shadow registers, indeed committing the work done 
in the translation. On the other hand, if any x86-level exception occurs inside the translation, the runtime 
system undoes the effects of all molecules executed since the start of the translation. This is done via a 
rollback operation which copies the shadow register values (last committed at the end of the previous 
translation) back into the working registers. At this point, the Code Morphing software re-executes the 
x86 instructions conservatively, that is to say in their original program order, to determine the actual 
location of the exception. 

Undoing changes to memory is slightly more complicated. The Crusoe processor handles x86 store 
operations by holding store data in a “gated store buffer”, from which they are only released to the 
memory system at the time of a commit. On a rollback, stores not yet committed can simply be dropped 
from the store buffer. To speed the common case (no exceptions), the Crusoe hardware is designed such 
that commit operations are effectively “free”.

Alias Hardware

The more freedom the scheduler has to move atoms around to fill molecules, the better code it can 
usually generate. One of the biggest limits on this freedom comes from potential dependencies between 
memory operations. In particular, it is often desirable to be able to reorder load instructions ahead of store 
instructions. However, doing that is incorrect if the load happens to use data from the preceding store, 
and since it is generally hard to prove otherwise at translation time, a translator often has to make overly 
conservative assumptions. (This is also a problem for traditional compilers and microprocessors.)

The Crusoe host provides innovative alias hardware that addresses this problem. When the translator 
moves a load operation ahead of a store operation, it converts the load into a load-and-protect (which in 
addition to loading data also records the address and size of the data loaded) and the store into a 
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store-under-alias-mask (which checks for protected regions). In the (unlikely) event that the store 
operation overwrites the previously loaded data, the processor raises an exception and the runtime system 
can take corrective action. Using this mechanism, it is always safe to reorder memory loads and stores. 
Again, Crusoe hardware provides a very simple hardware mechanism that in concert with software solves 
a thorny problem.

The alias hardware can be put to even better use than moving atoms around: it can help to eliminate 
redundant load/store atoms. Consider the case where a datum is loaded from memory twice, but there is 
an intervening store operation (a code sequence that is actually fairly common in processors with few 
registers, like the x86):

ld %r30,[%x] // first load from location X
...
st %data,[%y] // might overwrite location X
ld %r31,[%x] // this accesses location X again
use %r31

As long as the intervening store operation does not overlap with the first load, the second load is 
redundant, but all too often a translator or compiler cannot prove that this is the case. Using the alias 
hardware, it is a simple matter to protect the first load, have the store check pending aliases, and eliminate 
the second load:

ldp %r30,[%x] // load from X and protect it
...
stam %data,[%y] // this store traps if it writes X
use %r30 // can use data from first load

Notice that the use of the loaded data can now also be scheduled earlier, further speeding up the generated 
code. To our knowledge, no out-of-order processor can perform a similar feat!

Coping with Self-modifying Code

At times, x86 instructions in memory get overwritten, either because the operating system is loading a 
new program, or because an application is using self-modifying code. When this happens to code that has 
already been translated, the Code Morphing software needs to be notified to keep it from erroneously 
executing a translation for the old code. To this end, whenever the system translates a block of x86 code, 
it write-protects the page of x86 memory containing that code. It does so by setting a dedicated 
“translated” bit in that page’s entry in the processor’s memory management unit. (As with other details of 
the VLIW hardware, that bit is invisible to x86 software.) When a protected page is written to, the 
simplest remedy is to invalidate the affected translation(s). As the runtime system dynamically learns 
more about the program’s behavior, it switches to more sophisticated strategies (beyond the scope of this 
paper).
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Example: A Complex Translation

We close our review of translation technology with a slightly longer example taken from an actual x86 
application running on Windows NT, illustrating more of the sophisticated capabilities of Code 
Morphing. The following twenty x86 instructions (which in a conventional processor would generate 
more than twenty micro-ops):

1. movl %ecx,$0x3
2. jmp lbl1
...

3. lbl1: movl %edx,0x2fc(%ebp)
4. movl %eax,0x304(%ebp) 
5. movl %esi,$0x0 
6. cmpl %edx,%eax
7. movl 0x40(%esp,1),$0x0
8. jle skip1
9. movl %esi,$0x1

10. skip1: movl 0x6c(%esp,1),%esi
11. cmpl %edx,%eax   
12. movl %eax,$0x1
13. jl skip2
14. xorl %eax,%eax
15. skip2: movl %esi,0x308(%ebp)
16. movl %edi,0x300(%ebp)
17. movl 0x7c(%esp,1),%eax
18. cmpl %esi,%edi
19. movl %eax,$0x0
20. jnl exit1

exit2:

were translated into the following ten VLIW instructions:

1. addi %r39,%ebp,0x2fc 
2. addi %r38,%ebp,0x304
3. ld %edx,[%r39]; add %r27,%r38,4; add %r26,%r38,-4
4. ld %r31,[%r38]; add %r35,0,1; add %r36,%esp,0x40
5. ldp %esi,[%r27]; add %r33,%esp,0x6c; sub.c %null,%edx,%r31
6. ldp %edi,[%r26]; sel #le,%r32,0,%r35
7. stam 0,[%r36]; sel #l,%r24,%r35,0; add %r25,%esp,0x7c
8. stam %r32,[%r33]; add %ecx,0,3; sub.c %null,%esi,%edi
9. st %r24,[%r25]; or %eax,0,0; brcc #lt,<exit2>

10. br <exit1>
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There are several interesting points to note:

• The x86 unconditional JMP has no corresponding instruction in the translation: the path selector 
simply “follows” the branch and continues translation at the target of the JMP. 

• Registers have been aggressively renamed in software; there is no need for a complex (and power 
consuming) register renamer in hardware.

• The scheduler has rearranged the instructions to execute out of order relative to the original x86 
“source” code. 

• The translator has replaced the two internal conditional branches with “select” instructions (which 
conditionally pick one of two results). In effect, the Code Morphing system is speculatively executing 
both legs of a branch and picking the correct result later. Reducing the number of branches is highly 
desirable, since they often cause inefficiencies in pipelined processors. We know of no out-of-order 
processor that can completely eliminate conditional branches.

• The Crusoe alias hardware has been used in the translation (in molecules 5 through 8) to hoist loads 
above stores and thus pack the code more effectively.

LongRun™ Power Management

Although the Code Morphing software’s primary responsibility is ensuring x86 compatibility, it also 
provides interfaces to capabilities available only in Crusoe processor models. LongRun power 
management is one example—a facility in the TM5400 model that can further minimize that processor’s 
already low power consumption.

In a mobile setting, most conventional x86 CPUs regulate their power consumption by rapidly 
alternating between running the processor at full speed and (in effect) turning the processor off. Different 
performance levels can be obtained by varying the on/off ratio (the “duty cycle”). However, with this 
approach, the processor may be shut off just when a time-critical application needs it. The result may be 
glitches, such as dropped frames during movie playback, that are perceptible (and annoying) to a user.

In contrast, the TM5400 can adjust its power consumption without turning itself off—instead, it can 
adjust its clock frequency on the fly. It does so extremely quickly, and without requiring an operating 
system reboot or having to go through a slow sequence of suspending to and restarting from RAM. As a 
result, software can continuously monitor the demands on the processor and dynamically pick just the 
right clock speed (and hence power consumption) needed to run the application—no more and no less. 
Since the switching happens so quickly, it is not noticeable to the user.
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Finally, the Code Morphing software can also adjust the Crusoe processor’s voltage on the fly (since at a 
lower operating frequency, a lower voltage can be used). Because power varies linearly with clock speed 
and by the square of the voltage, adjusting both can produce cubic reductions in power consumption 
whereas a conventional CPUs can adjust power only linearly. For example, assume an application 
program only requires 90% of the processor’s speed. On a conventional processor, throttling back the 
processor speed by 10% cuts power by 10%, whereas under the same conditions, LongRun power 
management can reduce power by almost 30%—a noticeable advantage!

Conclusion

In 1995, Transmeta set out to expand the reach of microprocessors into new markets by dramatically 
changing the way microprocessors are designed. The initial market is mobile computing, in which 
complex power-hungry processors have forced users to give up either battery running time or 
performance. The Crusoe processor solutions have been designed for lightweight (two to four pound) 
mobile computers and Internet access devices such as handhelds and web pads. They can give these 
devices PC capabilities and unplugged running times of up to a day. 

To design the Crusoe processor chips, the Transmeta engineers did not resort to exotic fabrication 
processes. Instead they rethought the fundamentals of microprocessor design. Rather than “throwing 
hardware” at design problems, they chose an innovative approach that employs a unique combination of 
hardware and software. Using software to decompose complex instructions into simple atoms and to 
schedule and optimize the atoms for parallel execution saves millions of logic transistors and cuts power 
consumption on the order of 60–70% over conventional approaches—while at the same time enabling 
aggressive code optimization techniques that are simply not feasible in traditional x86 implementations. 
Transmeta’s Code Morphing software and fast VLIW hardware, working together, achieve low power 
consumption without sacrificing high performance for real-world applications. 

Although the model TM3120 and model TM5400 are impressive first efforts, the significance of the 
Transmeta approach to microprocessor design is likely to become more apparent over the next several 
years. The technology is young and offers more freedom to innovate (both hardware and software) than 
conventional hardware-only designs. Nor is the approach limited to low-power designs or to x86-
compatible processors. Freed to render their ideas in a combination of hardware and software, and to 
evolve hardware without breaking legacy code, Transmeta microprocessor designers may produce one 
surprise after another in the new millennium.

To learn more about the Transmeta Crusoe processor family, consult http://www.transmeta.com.
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Because Digital’s Alpha architecture
provides the world’s fastest proces-
sors, many applications, especially

those requiring high processor performance,
have been ported to it. However, many other
applications are available only under the x86
architecture. We designed Digital FX!32 to
make the complete set of applications, both
native and x86, available to Alpha. The goal
for the software is to provide fast and trans-
parent execution of x86 Win32 applications
on Alpha systems. FX!32 achieves its goal by
transparently running those applications at
speeds comparable to high-performance x86
platforms. Digital FX!32 is a software utility
that enables x86 Win32 applications to be run
on Windows NT/Alpha platforms. Once
FX!32 has been installed, almost all x86 appli-
cations can be run on Alpha without special
commands and with excellent performance.

Before the introduction of this software,
two common techniques for running an
application on a different architecture than
the one for which it was originally compiled
were emulation and binary translation. Each
technique has an advantage, but also a
drawback. Emulation is transparent and
robust, but delivers only modest perfor-
mance. Binary translation1 is fast, but not
transparent. For the first time, Digital FX!32
combines these technologies to provide
both fast and transparent execution. 

This software consists of three interoper-
ating components. There is a runtime envi-
ronment providing transparent execution, a
binary translator (the background optimiz-
er) providing high performance, and a serv-
er coordinating them. Although FX!32 is
transparent and does not require user inter-
vention, it includes a graphical interface for
monitoring status and managing system
resources.

The first time an x86 application runs, all of
the application is emulated. Together with

transparently running the application, the
emulator generates an execution profile
describing the application’s execution histo-
ry. The profile shows which parts of the appli-
cation are heavily used (for each user) and
which parts are unimportant or rarely used.
While the first run may be slow, it “primes the
pump” for additional processing. Later, after
the application exits, the profile data directs
the background optimizer to generate native
Alpha code to replace all the frequently exe-
cuted procedures. The next time the applica-
tion runs, native Alpha code is used and the
application executes much faster. This process
repeats whenever a sufficiently enlarged pro-
file shows that it is warranted. 

Three significant innovations of Digital
FX!32 include transparent operation, inter-
face to native APIs, and, most importantly,
profile-directed binary translation.

Transparent operation
When we say FX!32 is transparent, we

mean two things: applications execute in the
expected way (without any special com-
mands), and interoperability with native
applications works normally.

Launching x86 applications. Transpar-
ent launching of Win32 x86 applications
comes from a dynamically linked library
(DLL), the transparency agent. Launching an
application on Windows NT always results
in a call to the CreateProcess function. By
intercepting calls to CreateProcess, the trans-
parency agent can examine every image as
it is about to be executed. If a call to Cre-
ateProcess specifies an x86 image, the trans-
parency agent instead invokes the FX!32
runtime to execute the image. Although spe-
cial privileges are required to install FX!32,
once installed, the transparency agent, and
therefore the applications themselves, run
without special privileges. 

Digital FX!32 inserts the transparency
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agent into the address space of each process. A process con-
taining the transparency agent is said to be enabled. Once a
process is enabled, any attempt to execute a Win32 x86
image causes the runtime to start executing the process. The
agent propagates through the system because each attempt
to create a process to run an Alpha image results in that cre-
ated process being enabled. By the time a user is logged on,
all top-level processes have been enabled by Digital FX!32,
and any attempt to execute a Win32 x86 application invokes
FX!32’s runtime. 

Processes are enabled by injecting a copy of the trans-
parency agent into the process’s address space, using a tech-
nique described by Richter.2 The transparency agent’s
initialization routine then modifies a number of imported
entry points by changing the addresses in the image import
tables of all loaded modules to point to routines in the agent.

The transparency agent provides a general mechanism to
change the behavior of an API routine called from Alpha
code. We use this in a number of ways. For example, the
behavior of the Win32 API routine LoadLibrary changes so
that FX!32 loads x86 images. This is important because an
attempt to load an x86 image on an NT Alpha system using
the native loader results in an error. As another part of its
function, FX!32 jackets the x86 image’s exports so that they
can be called from native Alpha code (discussed later). Final-
ly, if FX!32’s runtime is not already in memory, the trans-
parency agent loads the runtime when it loads an x86 image.

The transparency agent we developed can be used for
utilities besides Digital FX!32. For example, the transparen-
cy agent supports SPIKE (once known as OM), an Alpha
native link-time optimization tool.3 Users of SPIKE need only
mark an application as interesting and every internally used
library and image will be translated.

Runtime environment. The Windows NT operating sys-
tem invokes the FX!32 runtime via the transparency agent
whenever the user runs an x86 Win32 application. The run-
time provides transparent execution because it contains an
emulator that implements the entire x86 user-mode instruc-
tion set, and because it supports the complete x86 Win32
environment.

When the application first executes, Digital FX!32 has no
knowledge of this application for this user and so runs it
completely in the emulator. (As explained later, application
calls to the x86 Win32 APIs, in fact, call corresponding native
Alpha APIs.) The next execution of the application runs trans-
lated code for greater performance. The emulator remains
present to interpret those x86 instructions that, for whatev-
er reason, cannot be translated.

The rest of the transparency is provided by full support
for the Win32 environment, such as multiple threads, struc-
tured exception handling, and the Microsoft component
object model (COM) architecture across both the Alpha and
x86 architectures. The runtime allows interfaces to all COM
objects to be accessed from either x86 or Alpha code. 

Runtime operation
The performance of Digital FX!32 comes from executing

high-speed, native Alpha code. To secure high performance,
the runtime transparently substitutes native Alpha code in

place of x86 code whenever possible.
The FX!32 runtime is invoked whenever an enabled

process attempts to execute an x86 image. The runtime loads
the image into memory, sets up the runtime environment,
and then starts emulating the image.

The runtime loader duplicates the functionality of the NT
loader. This is necessary since the Alpha NT loader returns
an error indicating that the image is of the wrong architec-
ture if the loader is invoked to load an x86 image. This would
have been much simpler had we been able to modify NT.
Duplicating the functionality of the NT loader requires that
the runtime relocate images not loaded at their preferred
base address, set up shared sections, and process static
thread local storage (TLS) sections.

After the image is loaded, the loader inserts pointers to
the image into various lists used internally by NT. Maintain-
ing those lists allows the native Windows NT code to treat
both x86 and Alpha images identically. Fortunately, those
image lists are in the user’s address space, and no modifica-
tion of NT is required. Unfortunately, the structure of those
lists is not part of the documented Win32 interface and using
them creates a dependency on the version of NT being run.
This is one of a number of places where Digital FX!32 has
dependencies on undocumented NT features, making it
more dependent on a particular version of NT than a typi-
cal layered application would be. On the other hand, it is
remarkable that Digital FX!32 implementation required no
changes to NT.

Next, the image is entered into FX!32’s database. The data-
base provides the name of the translated image to be used
with a given x86 image. The database is accessed by using
an image ID obtained by hashing the image’s header. The ID
uniquely identifies the image by its contents, independent
of the image’s name or location in the file system. Both the
runtime and the server use the image ID to access informa-
tion stored in the database about the image.

If there is a translated image in the database, the runtime
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loads that image along with the original x86 image. Translat-
ed images are normal NT DLLs loaded by the native loader.
A translated image contains the translated Alpha code, togeth-
er with the two additional sections that define the corre-
spondence between x86 code and Alpha code:

• A section containing relocation information for refer-
ences to the x86 image. If the x86 image was not loaded
at its preferred base address, those references must be
relocated.

• A section containing a map between x86 and translat-
ed routine entry points. The runtime processes this map
to update a hash table, indexed by x86 addresses, with
entries pointing to the corresponding translated code. 

Once the images are loaded, the runtime starts emulating
the x86 instructions. When the emulator interprets a CALL
instruction, it looks for the target x86 address in the hash
table. If a corresponding translated address exists, the emu-
lator transfers to the translated code. The emulator also gen-
erates profile data for use by the translator containing the
following information:

• addresses that are targets of CALL instructions,
• source address/target address pairs for indirect jumps,

and
• addresses of instructions that make unaligned references

to memory.

The profile data is collected by inserting values into the
runtime hash table whenever a relevant instruction is emu-
lated. For example, when emulating the CALL instruction,
the emulator records the call’s target. When an image is
unloaded, or when the application exits, the hash table is
processed, and a profile for that image is written. The serv-
er processes this profile, merging it with any previous pro-
files and may invoke the translator.

Cross-architecture interoperability
Win32 applications make calls to routines that are not part

of the application, specifically the Win32 API. Because these
are x86 applications, they make calls by using the x86 call-
ing conventions. NT Alpha provides the same routines, but
with Alpha calling conventions. FX!32 provides a mechanism
to connect the two. 

Transformations are required to manage a call between a
native Alpha routine and a piece of emulated or translated
code. For example, x86 routines pass arguments on the stack
while Alpha routines expect arguments in registers. Small
code fragments called jackets, which manage the transition
between the x86 and Alpha environments and calling con-
ventions, perform these transformations. 

There are two basic kinds of jackets, static and dynamic,
based on how and when they are created. Static jackets are
created from a defined interface known at load time. They
are included as part of Digital FX!32’s runtime. Most static
jackets are simple and are generated automatically from doc-
umentation and header files. Some static jackets are built by
hand because code is required to process the arguments in

a special way. Digital FX!32 provides static jackets for the
Win32 API interface, NT call-back routines, standard object
linking and embedding (OLE) objects, and some selected
plug-in extensions. 

COM objects whose interfaces are not statically available
are dynamically jacketed at runtime. These dynamic jackets
are created by using type information obtained from the OLE
libraries.

Interface to native APIs
Unlike Unix, in Windows NT most system APIs are part of

the operating system. For example, most graphical user inter-
face functions are built into NT system DLLs. We found that
some applications, such as Microsoft Excel, spend almost half
their execution time in these libraries. We knew that it was
very important for Digital FX!32 to call native libraries when-
ever possible to achieve our performance goals. 

When the NT loader loads an image, the loader “snaps” the
image’s imports by using symbolic information in the image
to locate the addresses of the imported routines or data. The
runtime duplicates this process. However, the runtime treats
imports referring to entries in Alpha images specially, by
redirecting them to refer to the correct jacket entry.

Each jacket contains a special illegal x86 instruction that
serves as a signal to the emulator to switch into the Alpha
environment by calling Alpha code at a fixed offset from the
illegal x86 instruction. The basic operation of most jacket
routines is to move arguments from the x86 stack to the
appropriate Alpha registers, as dictated by the Alpha calling
standard. Some jacket routines provide special semantics for
the native routine being called. For example, the jacket for
GetSystemDirectory returns the path to the x86 system direc-
tory rather than to the true system directory, so x86 appli-
cations do not overwrite native Alpha DLLs.

Jacketing the Win32 API. Previous translation utilities (for
various Unix flavors) created by Digital jacketed the operating
system call interface because that was the defined interface
between applications and the operating system. This required
jacketing an interface to about 100 system calls. Windows NT
defines and documents the Win32 API (layered above the sys-
tem call interface) as the interface between applications and the
operating system, and Digital FX!32 jackets the complete Win32
API. Although jacketing the complete Win32 API is a significant
task, it is required to guarantee correctness and provides bet-
ter initial performance because the jacketed routines are native
and do not need translation. As a result, Digital FX!32 provides
static jackets for entries to over 50 native Alpha DLLs, includ-
ing jackets for many undocumented routines. About 12,000
routines are currently jacketed.

Jacketing call-back routines. Many Windows NT rou-
tines are passed the addresses of routines to call back when
an event occurs. If these values were to be passed blindly,
the Windows NT Alpha code would make a call to a loca-
tion containing x86 code and would certainly crash. A jack-
et is statically created for each procedure-pointer argument,
and the address of that jacket is passed to the native Alpha
code. When Alpha code calls back to its argument, the jack-
et enters the FX!32 runtime.

Jacketing COM objects. The most complicated jacketing
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problem is associated with COM. A COM object is represented
by a table of OLE function pointers. These functions often
have arguments that are pointers to functions or structures
containing pointers to functions. Digital FX!32 manages these
objects in a way that can be used from either native Alpha or
x86 code.

Jacketing plug-in extensions. For full interoperability, it
is also desirable to support x86 plug-ins (add-ons or exten-
sions defined by an application vendor) with the corre-
sponding native application, when it is available. Each of
these introduces another interface (requiring jackets) that is
not defined by NT and not available at runtime. Digital FX!32
cannot load such a plug-in unless it is programmed to jack-
et the interfaces. The current version of Digital FX!32 jackets
a few common plug-in interfaces—we are working on ways
to describe arbitrary plug-in interfaces for a future release. 

Runtime and background optimizer
Commercial applications typically consist of numerous

executable files, called images. Some images are unique to
the application, and some are shared across different appli-
cations on the system. Each time the runtime loads an x86
image, the runtime queries the database as to whether trans-
lated code exists for that image to run in place of the slow-
er x86 code. Translated code is high-speed, native Alpha
code, produced by the background optimizer after previ-
ously emulating the image under Digital FX!32.

After loading the translated code, the runtime sets up tables
that correlate addresses between any x86 code and the trans-
lated code. The runtime then initiates the emulator, which
starts executing the application. From careful design and
alignment with the Alpha architecture, the emulator is both
small and efficient. The emulator is small enough to reside
mostly in the high-speed instruction cache, is optimized for
the Alpha processor pipeline, and takes full advantage of the
64-bit Alpha processor registers.

As it emulates untranslated portions of x86 images, the
runtime collects and saves execution profiles for subsequent
use by the background optimizer. The performance of Dig-
ital FX!32 is based on this cooperation between the runtime
and the background optimizer. 

Coordinating the process: the server 
The server manages FX!32’s environment by coordinating

the runtime and the background optimizer. The server acts
according to Digital FX!32 defaults or according to parame-
ters that can be specified by the user. In response to these
parameters, the server manages execution profiles and
invokes the background optimizer.

After an x86 image is unloaded, the server merges any
new profile information with any existing profiles and com-
pares the size of the result with any previous size. A new
profile means that a previously unseen x86 image has been
executed and may require optimization. An enlarged profile
contains new information, indicating that the current opti-
mized image is incomplete. In either case, the server places
the image and the corresponding profile on the work list for
the background optimizer.

This process is repeated each time the image runs. Figure

1 shows the execution flow among FX!32 components. When
the size of the profile stabilizes (typically at two or three iter-
ations), it indicates that virtually all executed routines in the
image are translated. The image and corresponding profile
are no longer placed on the work list for the background
optimizer. Running the image executes high-performance,
native Alpha code, rather than the slower x86 code. The
image runs at its highest performance.

Creating the speed: binary translation
The background optimizer, a third-generation, profile-

directed binary translator, produces high-speed, native Alpha
code from x86 code by using information gathered into pro-
files by the runtime. A binary translator is a program that,
from the original code, produces translated native code that
can be executed directly. The native Alpha code is subse-
quently made available to the runtime and executed the next
time the image is run. It is this coordinated process that adds
high performance to the transparency of execution.

Design goals. The operation and output of the back-
ground optimizer must be as transparent and robust as the
runtime environment. The user never sees the operation of
the background optimizer; it always presents code to the
runtime that runs to correct completion. To ensure trans-
parency, the background optimizer design allows for no
assumptions, no manual initiation, and no user intervention
in any question/answer cycle. 

Coupled with the stringent need for transparent and flaw-
less operation is a requirement for the highest possible
performance.

Realization of the goals. The background optimizer
guarantees transparent and robust operation by cooperating
with the runtime to ensure a faithful representation of the
x86 machine state. A coherent x86 machine state means the
x86 register assignments, call/return boundaries, and the x86
stack all reflect what would be observed on actual x86 hard-
ware at relevant observation points.

Achieving the performance goals required us to exploit
the full range of modern compiler optimization techniques,
which are all predicated on global optimization.

Previous binary translators operated with a poor quality
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approximation of the application’s control flow graph. As a
consequence, they were limited to the basic block, or perhaps
the extended basic block, as the fundamental unit of transla-
tion. (A basic block is a sequence of instructions with a sin-
gle entry point and a single exit point.) All modern optimizing
compilers require global optimization techniques that direct-
ly conflict with such a basic-block unit restriction. Therefore,
removal of this restriction was the fundamental performance
requirement. The background optimizer successfully removes
this restriction by using profiles to organize carefully chosen
groupings of basic blocks into significantly larger units, called
translation units. Conceptually, a translation unit approximates
a “routine” in a more traditional compiler and thus allows the
full exploitation of global optimization techniques. 

Profile-directed binary translators
Digital has used other binary translation techniques in the

past,1 mainly static binary translation. Our development
group has extensive experience with previous binary trans-
lators. We also looked at other solutions, such as hardware
engines and dynamic binary translation. 

In Digital FX!32, we have developed a new approach to
translation. The emulator captures an execution profile, which
the binary translator subsequently uses to translate executed
x86 code into native Alpha code. Since the translator runs in
the background, it can use complex algorithms to improve the
quality of the generated code. To our knowledge, Digital
FX!32 is the first system to exploit this combination of emu-
lation, profile generation, and binary translation. We call our
approach profile-directed to contrast it with static and dynam-
ic approaches.

Because we have the execution profile, our binary trans-
lator was easier to write, runs faster, and produces better
code than any previous static binary translators. Our trans-
lator was easier to write because the complex search algo-
rithms and heuristics used to find the code and the control
flow graph were replaced by much faster and simpler
lookups. Digital FX!32 produces better code because the pro-
files result in more accurate approximations of the control
flow graph, allowing optimizations to be more effective. 

Translator operation
In many ways our binary translator is a traditional high-

performance compiler. However, there is an important dif-
ference. Compilers start from source level and proceed to
lower the semantic level, while binary translators start with

bits and raise the semantic level first to instructions and then
to control flow graphs. The challenge for the translator is to
produce correct and efficient code in this framework. 

Locating code. The search for code begins at all the des-
tinations of call instructions recorded in the profile. As the
code is parsed, the destinations of indirect branches are
resolved by looking in the profile. As a consequence, no
complex and slow iterated data flow is required. The profile-
directed approach needs less code in the translator even
though this approach makes a more accurate determination
of the location of code and control flow edges.

Since the translator builds a good approximation to the con-
trol flow graph, basic blocks can be joined into larger units.
The translator contains a component called the regionizer that
divides the x86 image into routines.4 Routines are units of
translation that approximate real routines in source programs.

The regionizer represents routines as a collection of
regions. Each region is a contiguous range of addresses con-
taining instructions that can be reached from an entry address
of the routine. Routines end at the return statements identi-
fied by the profile. Unlike basic blocks, regions can have
multiple entry points. The smallest collection of regions con-
taining all the instructions reachable from the routine entry
represents the routine. Most routines have a single region.
This representation efficiently describes the division of the
source image into units of translation.

Intermediate representation. The remaining translator
components process the source image one routine at a time.
All control flow is explicitly represented (including all the
direct control flow), as well as indirect control flow record-
ed in the profile information. For every transfer of control
that might have additional unknown destinations (such as
indirect branches), the translator inserts a call to the emula-
tor. Only the routine’s entry points are entered in the x86-to-
Alpha correlation table, ensuring that the emulator cannot
transfer to an arbitrary block in the routine.

The emulator and translator share a canonical represen-
tation of the x86 state. In the translator, all entries into and
out of the routine use explicit intermediate representation
to represent the canonical x86 state. Other than at these
points, the translator is free to use whatever representations
for the x86 state it finds convenient. As a result, the trans-
formations and optimizations do not have to be as conserv-
ative as in the static translators, which have to allow for the
emulator transferring control to almost any basic block. This
allows the translator to perform global transformations and
optimizations on the whole routine.

A more accurate control flow graph, based on the profile,
is vital to our performance. Each time the application exe-
cutes, an indirect branch to a target not previously execut-
ed invokes the emulator. Once in the emulator, translated
code is not resumed until another routine is called or the
routine returns to a translated caller. The runtime then adds
that fact to the profile.

The same intermediate representation has primitives for
both x86 and Alpha operations. The processing of a routine
starts by building a representation of the x86 code. Then,
multiple transformations convert the representation from an
x86 semantic model to an Alpha semantic model. Optimiza-
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tion phases are interspersed with these transformations. At
the end of processing each routine, the final Alpha code is
assembled into the translated image.

Translation and optimization
Our goal was to handle a very large percentage of x86

applications, including those that do not follow the NT call-
ing conventions. We knew that Digital FX!32 would need to
maintain great fidelity. The translator uses a simple code gen-
erator to map x86 instructions into a correct general, but long,
sequence of Alpha instructions. Then the translator uses glob-
al transformations and optimization to improve the code.

The translator uses many traditional compiler techniques.
It includes optimization phases for dead-code elimination,
constant propagation, common subexpression elimination,
register renaming, global register allocation, instruction
scheduling, and numerous peephole optimizations. 

Condition code management. Most x86 instructions
generate condition codes, but only rarely are they consumed.
Initially, the x86 model is represented in the intermediate
representation with condition code information for each
instruction. Global data flow determines the lifetimes of the
x86 condition codes. Explicit Alpha code is then inserted to
compute only those condition codes used.

Register management. The x86 architecture uses distinct
registers to access different bytes of the same underlying reg-
ister. The mapping of these overlaid registers to Alpha reg-
isters uses data flow to minimize the amount of generated
Alpha code. Since the x86 state only has to be canonical at
routine boundaries, the various overlays of an x86 register
within a routine can be maintained in separate Alpha regis-
ters to allow more efficient access. This also allows global
renaming to reduce register dependencies, increasing the
benefits of instruction scheduling.

Stack management. The x86 architecture has few regis-
ters, so x86 code tends to make extensive use of the x86
stack to hold temporary results. The translator analyzes
memory accesses to identify storing and loading from the
x86 stack. The translator assumes that when the x86 stack is
popped, any data stored above the new stack pointer is dead.
The translator uses this information to eliminate those unnec-
essary loads and stores. Any loads and stores that cannot be
proved to be unaliased are not eliminated. After eliminating
loads and stores, the translator coalesces increments and
decrements to the x86 stack pointer to minimize the number
of updates, while preserving the runtime convention that the
stack is never accessed above the stack pointer.

Routine management. We have found x86 routines that
walk up the stack and modify local variables of their callers,
including return addresses. To make these routines work, FX!32
needs to make the x86 application see an identical stack image.
The translation of a CALL instruction saves the x86 return
address on the x86 stack and then calls the translated code for
the routine. After the translated call, the x86 return address is
on the x86 stack, and the native return address that corresponds
to the x86 return address is in an Alpha register. In the usual
case, the routine does not change the return address, and the
translated code can pop the x86 stack and perform a native
return by using the native return address. However, there are

two problems to solve. First, it must be possible to determine
whether the application modified the x86 return address. Sec-
ond, there must be a place to save the native return address.
Both problems are solved using the shadow stack.

The shadow stack resides at the top of the native Alpha
stack and is maintained by the translated code and the emu-
lator. A shadow stack frame holds the x86 and the Alpha
return addresses, along with the x86 stack pointer at the time
of the call. The translated code for a RET instruction uses
these values to determine when it is not legal to make a native
return, at which point the emulator is entered to start emu-
lating from the modified x86 return address. The emulator
consults the shadow stack when emulating RET instructions
to see if translated code can be resumed. In this case, the
emulator uses the Alpha return address in the shadow stack.

The emulator uses the x86 stack pointer saved in the shad-
ow stack to remove shadow-stack frames above the current
value of the x86 stack pointer. Such frames can occur if the
code cuts back the x86 stack to return to an earlier caller (as
is done by the longjmp C library routine). This cleanup
always finishes before the emulator uses the shadow stack,
ensuring the shadow stack does not overflow.

Alternative solutions
As mentioned previously, our primary design goals for

Digital FX!32 were transparency and high performance.
Before arriving at the coordinated combination of emulation,
profile generation, and profile-directed binary translation,
we examined a range of alternative solutions.5-7

Hardware-based solutions. One approach would have
been to design a new chip that supports both the Alpha and
the x86 ISAs. Similar techniques exist in a number of designs.
The most popular variations on this approach use a hybrid
design known as a decoupled microarchitecture. This design
combines a high-performance execution core with a sophis-
ticated x86 instruction decoder. The decoder translates x86
instructions into simpler operations that execute more effi-
ciently. This approach can generate quite good performance
on applications written for the x86. Some examples of
machines that use this approach are the AMD K6, Intel Pen-
tium Pro, and NexGen Nx586. None of these machines
expose the alternative instruction set architecture (ISA) to the
user, and therefore they pay the penalty of being basically
CISC designs (albeit with a RISC core). This limitation could
be overcome with an x86/Alpha chip that exposes both ISAs.
However, we felt that Digital FX!32 could achieve good per-
formance for x86 applications by using a totally software-
based solution, avoiding the complexity of including support
for the x86 ISA in future Alpha chip designs.

Software-based solutions. There are two common soft-
ware alternatives that also allow applications written for one
ISA to execute on a different ISA—emulation and binary
translation.

Emulators. These programs, at runtime, dynamically exe-
cute instructions written in the original ISA. Many systems
have successfully used emulators to run applications on plat-
forms for which they were not targeted.8 The major advantage
of emulators is transparency. The major drawback is poor
performance. For example, our x86 emulator, which we care-
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fully wrote in Alpha assembler, requires an average of 45
Alpha instructions to emulate one x86 instruction (or 30 Alpha
instructions per Pentium Pro micro-operation). While this is
acceptable for infrequent use, it is too slow to meet our goals. 

Emulators are commonly deployed in one of two ways:
within a restricted environment or tightly integrated into the
operating system. In a typical restricted environment, the
user brings up an emulator window, and the emulator exe-
cutes any application launched in that window. Our goal of
transparent execution made us reject restricted environments.

In an integrated system, a modified operating system
loader automatically launches the emulator whenever an
emulated application is started. Windows NT has contained
an emulator to run 16-bit x86 applications since it was first
released on RISC platforms. Since we did not build Windows
NT, we developed a scheme that allows us to launch emu-
lated applications without needing source changes to NT.

Binary translators. These programs start with original code
and produce translated native code that can be executed
directly. The main advantage of binary translation is that the
translated applications run at high speed. For example, after
translation, Digital FX!32 executes an average of 4.4 Alpha
instructions per x86 instruction (2.1 Alpha instructions per
Pentium Pro micro-operation). Since the typical clock speed
of an Alpha (500 to 600 MHz) is twice the clock speed of an
x86 (166 to 233 MHz), it is clear that using a binary transla-
tor could achieve our goal.

Two previous types of binary translation already existed
when we began to design Digital FX!32: dynamic translators
and static translators. 

Dynamic binary translators
Several emulators9 have used dynamic translation, some-

times called just-in-time translation, or JIT, to achieve better
performance. This approach translates small segments of an
application while it is being executed. Systems using dynam-
ic translation trade off the amount of time spent translating and

the resulting benefit of the translation.
Too much time spent on the transla-
tion and related processing makes the
application unresponsive; too little
time makes the performance slow.

Therefore, most of these systems
limit the optimizations they perform
to minimize the translation overhead.
Dynamic translators are usually state-
less, so that each time an application
starts, the translator begins anew. For
each application, the start of each
execution serves as a training set that
is then used to guide the dynamic
translator. For code run only once,
this is an attractive option. Howev-
er, important applications are run
repeatedly, and the initial training is
thus repeated each time. 

Static binary translators
The other existing software alter-

native is static translation. Here, a translator program scans the
entire image and translates everything at once. We have built
several static binary translators in the past, and developers and
sophisticated end users have found them quite useful as a way
to quickly port an application. Static binary translation is par-
ticularly useful when the source code for the application is not
available or is prohibitively complex to recompile, as an inter-
im solution while source code is being ported, or when the
best possible performance is not an issue.

Static binary translator operation. The user manually
invokes the translation tool to convert code from a non-Alpha
ISA to Alpha. This scheme is difficult to use with an appli-
cation that contains many images, because each image
requires the user to manually invoke the tool. It is hard to get
users to run tools that have many steps; users expect appli-
cations to “just work.”

Static translators use a static approach to try to answer the
following questions: what part of an image is code, what
part is data, and what is the control flow graph?

Static translators separate an image into basic blocks using
the following steps:

1. The static translator identifies a set of addresses con-
sidered to be the start of a basic block. It looks for
addresses that meet the following criteria: they’re exter-
nally visible in the text section of an image, the address-
es serve as either an entry point or as the target of a
relocated instruction, and they start a valid sequence of
instructions that ends in a branch.

2. The static translator parses the identified basic blocks,
finds the ending branch, and tries to determine the des-
tination of the branch. Each such destination is consid-
ered the start of another basic block. For some branches,
finding the destination is simple, but for others (such as
indirect branches via a register), interprocedural global
data flow is required. It is possible to identify a sequence
of instructions as a single basic block and later find a
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branch into the middle of that sequence. Thus the trans-
lator needs to iterate both the data flow calculations (to
find possible values of registers) and the parsing of
blocks (to find indirect branches).

3. Because the data flow calculation misses many possi-
ble values, the static translator walks over the text sec-
tion and scans for missed basic blocks. It looks for any
sequence of bits not part of a known basic block, but
that could be parsed into a sequence of valid instruc-
tions ending in a branch.

At the end of this process, the static translator has a list of
addresses in the source image that are likely to be the start
of basic blocks, together with some control flow. As this sea
of basic blocks is translated, the list of addresses expands
into a structure called a correlation table. This table lists pairs
that contain source machine addresses and the addresses of
corresponding translated code. 

At runtime, indirect branches are translated into a call to
a library routine. This routine looks up the destination of the
branch in the correlation table. If there is an entry, there is
an available translation of the corresponding basic block and
the library routine branches to the translation. If there is no
entry, the library routine emulates up to the next branch and
tries the lookup again.

Since the emulator can enter translated code at any block
in the list of pairs, optimization is generally limited to single
basic blocks. However, optimizations can be done across
basic blocks, provided that the block is removed from the
correlation table. Of course, any block disconnected from
the control flow graph cannot be globally optimized. 

Analysis of static binary translators. Although we were
willing to use expensive techniques such as repeated full-
image data flow, the static translators missed important con-
trol flow edges and sometimes saw edges that were never
taken. The correlation table could contain entries for address-
es that appeared to be the start of a block but were actually
data. At the same time, the table could be missing entries for
blocks reached by indirect branches.

The performance of static translations tends to depend
upon how well destinations of indirect branches can be
resolved. When we started to build Digital FX!32, we realized
that the style of programming used in many x86 applications
would make resolving these destinations very difficult. Sta-
tic translators also provide no transparent way of executing
an application, requiring a full translation was manually done
before the application could be executed. This led us to con-
sider a profile-directed translator in conjunction with an emu-
lator that generates profiles.

What does not work?
The most obvious way in which Digital FX!32 is not trans-

parent is that x86 applications are installed by using an
add/remove x86 program applet visually and functionally
similar to the NT add/remove program applet. Another non-
transparency is that the first execution of an application is
much slower than the second execution. 

There are some things that the initial version of Digital
FX!32 was not designed to do. Digital FX!32 only executes

application code. It does not execute drivers, so a native dri-
ver is required for any peripheral device installed on an
Alpha system. Digital FX!32 does not provide complete sup-
port for x86 NT services (services from the NT control panel
services applet) because such services are enabled only
when they are started after FX!32’s server. We hope to
remove this restriction in future versions of Digital FX!32. 

Digital FX!32 does not support the NT debug API. Sup-
porting that interface would require the ability to rematerial-
ize the x86 state after every x86 instruction, severely limiting
optimizations that could be performed by the translator. This
limitation is similar to the trade-off in optimizing compilers
where debugging is restricted when optimizations are turned
on. Since Digital FX!32 does not support the debug interface,
applications requiring it do not run under Digital FX!32. Those
applications are mostly x86 development environments, and
it probably makes sense to run them on an x86 anyway.

Performance
Figure 2 shows relative performance on a set of bench-

marks for a 200-MHz Pentium and a 500-MHz Alpha with
similar configurations. A larger number indicates higher per-
formance. For the Alpha, we took the timings at the second
execution of the benchmark using the same input data. For
these benchmarks, the Alpha running Digital FX!32 provides
roughly the same performance as a 200-MHz Pentium. These
benchmarks are the set of applications included in the well-
known PC benchmark, BapCo SysMark 32.

Of course, no small set of benchmarks characterizes the
performance of a system. Even so, when executing translat-
ed x86 applications, we have consistently measured perfor-
mance on a 500-MHz Alpha in the range between a 200-MHz
Pentium and a 200-MHz Pentium Pro. 

SINCE IT WAS FIRST RELEASED two years ago, Digital
FX!32 has been used by thousands of NT/Alpha users, with
over 13,000 copies downloaded from FX!32’s Web site alone.
At least five commercial redistributors of NT/Alpha systems
have made FX!32 available on their own Web sites. FX!32 has
also been factory-installed software on all NT/Alpha worksta-
tions shipped by Digital. Although, it’s become the most wide-
ly used of all profile-directed software tools, development work
remains. Specifically, FX!32’s operation is still not completely
transparent to the user. To install an x86 application on
NT/Alpha, the user must check a box in the add/remove pro-
grams dialog box. Work remains to be done on the background
optimizer so that its operation need not be scheduled, and the
code produced by the optimizer is still not as close in perfor-
mance to native Alpha code as we would like. 
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ABS'I'I{ACr 

The Smalltalk-80* programming language includes dynamic 
storage allocation, fuU upward limargs, and universally 
polymorphic procedures; file Smalllalk-80 programming system 
features interactive exect, tion wiflt incremental compilation, and 
implementation portability. These features of  modern 
programming systems are among the most difficult tu implement 
efficiently, even individually. A new implemelltation of  the 
Small/alk-80 system, hnsted on a sinall microprocessor-based 
computer, achieves high performance while retaining' complete 
(object code) compatibility with existing implementations. This 
paper discusses the most significant optimization techniques 
developod over the course of  the project, many of  which are 
applicable to other languages. T h e  key idea is to represent 
certain nmtime state (both code and data) in more than one 
form. and to convert between fo~xns when needed. 

*Smalhalk-80 is a trademark of the Xerox Corporalion. 

B A C K G R O U N I )  

The Smalltalk-80 system is an object-oriented programming 
language and interactive programming environment. The 
Smalltalk-80 language inclodes many of  the most difficult-to- 
implement features of modern progralnming languages: dynamic 
storage allocation, full upward funargs, and call-time binding of  
procedure names to actual procedures based on dynamic type 
information, sometimes called message-pa~#tg. The interactive 
environment includes a full complement of  programming tools: 
compiler, debugger, editor, window system, and so on, all written 
in the Smalltalk-80 language itself. A detailed overview of  the 
system appears in [SCG 8l]. [Goldberg 83] is a technical 
refcrcncc for both file nnn-interactive programmer and the 
system implcmentor; [Goldberg 841 is a reference manual for the 
interactive system. 

SPE('IAL l)l I,'FICULTil,;S 

The standard Smalltalk-80 system implementation is based 
on an ideal virtual machine or v-machine. The compiler 
generates code for this machine, and the implementor's 
documentation describes the system as an interpreter for the v- 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the. title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1983 ACM 0-89791-125-3/84/001/0297 $00.75 

machine instruction set, similar to the Pascal P-system [Ammann 
75] [Ammann 77]. One unusual feature of the Smalltalk-80 v- 
machine is that it makes runtime state such as procedure 
activations visible to tile programmer as data objects. This is 
similar to tile "spaghetti stack" model of  Interlisp [XSIS 83l, but 
more straightforward: Intcrlisp uses a programmer-visible 
iudircction mechanism to reference pr~x:edure activations, 
whe~'cas Ihe Sinalltalk-80 programmer treats procedure 
actiwttioas just like any other data objects. 

The Sinalltalk-80 language approaches programming with 
generic data types through message-passing and dynamic typing. 
To invoke a pl'Occdure (method in Smalltalk-80 terminology), a 
message is sent to a data object (the receiver), which selects the 
method to be c×ecuted. 'Ibis means that a method address must 
bc found at runtime. At a given lexical point in the code, only 
die message name (selector) is known. To perform a message- 
send, the data type (class) of  file receiver is extracted, and the 
selector is used as a hash index into a table of  the message 
dicliottary of  the class, which maps selectors to methods. The 
task of  melhod-lookup is complicated by the inherilance property 
of classes -- a cla~ may be defined as a subclass to another, 
inheriting all of  the methods of  the supcrclass. If the initial 
method-lookup fails, the lookup algorithm tries again usirlg the 
message dictionary of  the superclass of the receiver's class, 
continuing in this way up the class hierarchy until a method 
cnrresponding to the selector is found or the top of the 
inheritance hierarchy is reached. 

The Smalltalk-80 language uses the organization of  objects 
into classes to provide strong information hiding. Only the 
methods associated with a given class (and its subclasses) can 
access directly the state nf an instance of  that class. All access 
from "outside" must be through messages. Ik'cause of  this, a 
Smalltalk-80 program must often make procedure calls to access 
state where I,mguages such as Pascal could compile a direct 
access to a tield of  a record. This makes the performance of  the 
method-lookup algorithm even more critical. 

IMPLEMENTATION OUTLINE 

The purpose of the research de~ribed here was to build a 
Smalltalk-80 system with acceptable performance on a relatively 
inexpensive, microproecssor-based computer; specifically, to 
discover how to implement the basic data and code objects of  
the Smalltalk-80 system in a way that still conformed to the v- 
machine specification, but were more suitable for conventional 
hardware. (As of  early 1982, the only implementations that ran 
at acceptable speed were on non-commercial, user- 
microprogra,nmable roachines, as de~ribed in [Krasner 83] 
[I.ampson 81].) The system specification in [Goldberg 83] 
includes tile definition of internal data structttres and object code 
representation for the virtual machine. Indeed, much of the 
system code depends on these definitions. We chose to take 
these definitions as given, rather than alter the system code. 
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"lhis was motivated partly by a desire to retain object-code 
portability, and pardy by a desire not to complicate the 
description of the SmaUtalk-80 machine model. 

The single principle that underlies all the results reported 
here is dynamic change of representation. By this we mean that 
the same infi)rmation is represented in more than one 
(structurally different) w,~y during its lifetime, being converted 
transparently between representations a:; needed for efficient use 
at any moment. An important special case of this idea is 
caching: one can think of information in a cache as a different 
representation of  the same information (considering contents and 
accessing information together) in the backup memory. In the 
implementation described in this paper, we applied this principle 
to several different kinds of runtime information in the 
Smalltalk-80 system. 

* We dynamically translate v-code (i.e., code in the 
instruction set of  the v-machine) into code that executes 
directly on the hardware without interpretation, the 
native code or n-code. Translated code is cached: it is 
regenerated rather than paged. 

* We represent procedure activation records (contexts in 
Smalltalk-80 parlance) in either a machine-oriented form, 
when they are being used to hold execution state, or in 
the form of  Smalltalk-80 data objects, when they are 
being treated as such. 

* We use several different caches to speed up the 
polymorphic search required at each procedure 
invocation. In the best case, which applies over 90% of  
the time, a Smalltalk-80 procedure invocation requires 
only one comparison operation in addition to a 
conventional procedure linkage. 

* Using the techniques in [Deutsch&Bobrow 76], we 
represent reference count information for automatic 
storage management in a way that eliminates 
approximately 85% of  the reference counting operations 
required by a standard implementation. 

CODE TRANSLATION 

Targeting code to a portable v-machine has been used in 
other language implementations. Usually v-code targeting is 
used only to avoid having multiple (one per target machine) 
code-generation phases of the compiler; a secondary benefit is 
that v-code is usually much more compact than code for any real 
machine. Since the Smalltalk-80 compiler is just one tool 
available in the same interactive environment used for execution, 
and other tools besides the compiler must be able to examine the 
machine state, the v-machine approach is even more attractive in 
reducing the cost o f  rehosting. 

PERFORMANCE ISSU I~ 

To rehost the system, an implementor must emulate the v- 
machine on the target hardware, either in microcode or in 
software. This normally incurs a severe performance penalty 
arising from several factors. 

* Processors have specialized hardware for fetching, 
decoding, and dispatching their own native instruction 
set. This hardware is typically not available to the 
prngrammcr (although it may be available at the 
microprogram level), and therefore not useful to the v- 
machine interpreter in its time-consuming operation of 
instruction fetching, decoding, and dispatching. 

* The v-machine architecture may be substantially 
different from that of the underlying hardware. [:or 
example, many v-machines, including both the P-system 

and Smalltalk-80 v-machines, use a stack-oriented 
architecture for convenience in code generation, but 
most available hardware machines execttte register- 
oriented code much more efficiently than stack-oriented 
code. 

* The basic operations of the v-machine may be 
relatively expensive to implement, even though the 
overall algorithm represeqted by a v-code program may 
not be much more expensive than if it were 
implemented in the hardware instruction set. For 
example, even though a naive interpreter for the 
Smalltalk-80 v-code must perform rcl~:renee counting 
operations every time it pushes a variable value onto the 
stack, a sequence of  several instructions often has no net 
effect on reference counts. 

If the v-code were translated to n-code after normal 
compilation of a source program to v-code, the interpreter's 
overhead could be eliminated and some optimizations become 
possible. One technique for eliminating part of the overhead of  
interpretation is threaded code [Bell 73] [Moore 741. In this 
approach, v-code consists o f  an actual sequence of  subroutine 
calls on runtime routines. This technique does reduce the 
o~;erhead for fetching and dispatching v-code instructions, 
although it does not help with operaod decoding, or enable 
optimizations that span more than one v-instruction. We prefer 
to translate v-code to in-line n-code in a more sophisticated way. 

Naive translation from v-code to n-code is a process 
something like macro-expansion. In fact, [Mitchell 71] observed 
that a translator can be derived very simply from an interpreter 
by having the interpreter save its action-routine code in a buffer 
rather than executing it. If the computation performed by 
individual action routines is small relative to the computation 
needed for the interpreter loop, the benefit of  even this simple 
kind of translation will be great. 

Translation-time can also be considered an opportunity for 
peephole optimization or even mapping stack references to 
registers [Pittman 80]. Translation back-ends for portable 
compilers have been implemented [Zellweger 79]. 

DYNAMIC TRANSI,ATION 

Because the Smalltalk-80 v-code is a compact representation 
that captures the basic semantics of  the language, n-code will 
typically take up much more space than v-code. (In the 
implementation discussed in this paper, n-code takes about 5 
times as much space as v-code.) This would place severe stress 
on a virtual memory system if the n-code were being paged. 
However, since n-code is derived algorithmicafiy from v-code, 
there is no need to keep it permanently: it can be recomputed 
when needed, if this is more efficient than swapping it in from 
secondary storage. This leads us to the idea of  translating at 
runtime. (The idea of  dynamic translation appears in [Rau 78], 
where it is applied to translation from v-code to microcode.) 
When a procedure is about to be executed, it must exist in n- 
code form. If it does not, the call faults and the translator takes 
co,ltrol. The translator finds the corresponding v-code routine, 
translates it, and completes the call. Since, as mentioned earlier, 
the translation process is more akin to macro-expansion than 
compilation, translation time for a v-code byte is comparable to 
the time taken to interpret it. 

We consider the translation approach, and dynamic 
translation in partietdar, to be the most interesting part o f  our 
research, since it motivated the work on multiple state 
rcprcsentations described below. A later section of  this paper 
presents the experimental results that support our contention that 
dynamic translation is an effective technique in a substantial 
region of  current technological parameters. 

298 



MAPPING STNI'E AT RUNTIME 

Since the definition of  the Smalltalk-80 v-machine makes 
runtime state sucl~ as procedure activations visible to the 
progrannner as data objects, an implementation based on n-code 
must find a way to make the state appear to the programmer as 
though it were the state of  a v-machine, regardless of  the actual 
representation. The system must  maintain a mapping of  n- 
machine st.'tte to v-machine state; in particular, it nmst keep the 
v-code a~ailable for inspection. 

How can we guarantee that all attempts to access a quantity 
requiring representation mapping are detected? The structure of  
the Smalltalk-80 language guarantees that the only code that can 
access an object of  a given class directly is the code that 
implements messages sent to that class. 'lllus, the only code that 
can directly access the parts of  an object requiring mapping is 
code associated with that object's class. Recall that all the code 
in the Smalltalk-80 system is written in the Snlalitalk-80 
language, hence compiled into v-code. When we translate a 
p~x~cedure from v-code to n-code that is asst~.'iatcd with a class 
whose representation may require mapping, we generate special 
n-code that calls a subroutine to ensure that the object is 
represented in a form where accesses to its named parts are 
meaningful. 

The most obvious quantity requiring mapping is the return 
address (PC) in an activation record, whicll refers to a location in 
the n-code procedure rather than in the v-code. Although there 
is no simple algorithtnic correspondence between the v-PC and 
the n-PC values, the v-PC need only be available when a 
program attempts to inspect an activation as a data objcct. At 
that moment, the system can consult (or compute) a table 
associated with the procedure that gives the correspondence 
between n- and v-PC rallieS. 

We can greatly reduce the size of  the mapping tables for PC 
values by observing that the PC can only be accessed when an 
activation is suspended, i.e., at a procedure call or 
interrupt/process-switch. If we are willing to accept somewhat 
greater latency in a Smalltalk-80 program's response to 
interrupts, we can choose a restricted but sufficient set of  
allowable interrupt points, and only store the mapping tables for 
those points. This is what our implementation does: interrupts 
are only allowed at, and PC m a p  entries are only stored for, all 
prtx:cdure calls and backward branches (the latter since interrupts 
must be allowed inside loops). 

MUI,TIPLE REI)RI'2"iENTA'I'IONS OF CONTEXTS 

As mentioned earlier, the format of  procedure activation 
records are part of  the Smalltalk-80 v-machine specification. 
Contexts are full-fledged data objects; they have identifiable 
fields which can be accessed and they respond' to messages. A 
context is created for every message-send. There is also syntax 
in the language for creating contexts whose activation is deferred, 
cldled block contexts in Smalltalk-80 terminology, which 
correspond to the functional& closures, or funargs of  other 
languages. Most control structures in the Smalltalk-80 system are 
implemented with block contexts. 

The fact that contexts are standard data objects implies that 
they must be created like data objects, i.e., allocated on a heap 
and reclaimed by garbage collection or reference counting. 
Unforttmately. conventional machines are adapted for calling 
sequences that create a new activation record as a stack flame, 
storing suspended state in predefined slots in the frame. 
Actually implementing contexts as heap objects results in a 
serious performance penalty. 

Mcasttrements show that even in Smalltalk-80 programs, 
more than 85% of  all contexts behave like procedure activations 
in conventional languages: they are created by a call, never 

referenced as a data object, and can be freed as soon as control 
returns from them. (Note that any context in which a block 
context is created does not satisfy this criterio,1.) Such contexts 
are candidates for stack-frame representation. (An unpublished 
experimental implementation of  an earlier Smalltalk system used 
linear stacks, but did not deal properly with contexts that 
outlived their callers.) 

Stack allt~cation of contexts solves one o f  the two major 
efficiency problems associated with treating contexts like other 
objects, namely the ovcrbead o f  allocating the contexts 
themselves. [l)ctltmh&llobrow 76] shows how to solve the other 
problem, of reference counting operations apparently being 
required on every store into a local variable. With these two 
problems solved, we can rise the hardware subroutine call, 
return, and store instructions directly. 

Ottr system has several types o f  context representations. A 
message-send creates a new context in a representation optimized 
for execution: a frame is allocated on the machine's stack (with 
some spare slots) by the usual machine instructions. In the 
simple case, where no reference is ever made to the context as a 
data object, the machine's return iristruction simply pops the 
fi'ame off  file stack when control returns fi'om the context. This 
kind of  context, which lives its life as a stack frame, we call 
volatile. 

At the other extreme, we store contexts in a format 
compliant with the virtual machine specification, which can be 
manipttlated as data items. We call this representation stable. 

The third representation of  a context, called hybrid, is a stack 
frame that incorporates header information to make it look partly 
like an ordinary data object. A volatile context is converted to 
hybrid when a pointer is generated to it. Since this makes it 
possible fi~r programs to refer to the context as an object, we fill 
in slots in the frame corresponding to the header fields in an 
ordinary object. This pseudo-object is tagged as being of  a class 
we name "l)ummyContext." A block o f  memory is allocated, 
and its address is stored in the context in case the context must 
be stabilized in the future. Since there may be pointers to this 
context, it cannot be returned fiom in a normal way, so the 
return address is copied to another slot in the frame and 
replaced with the address of  a clean-up routine that stabilizes the 
context on return. 

When a message is sent to a hybrid context, the send fails 
(there are no procedures defined for the DummyContext class), 
and a routine is called to convert the hybrid context to the 
stabilized form. At this point PC mappitlg comes into play; the 
n-PC in the activation is converted to a v-PC for the stabilized 
representation. Poi,lters to the hybrid context are switched to 
refer to the stable context (this is simple in our system, which 
uses an indirection table for all objects). After the context has 
been stabilized, tile failed mess,age is re-sent to the stable form. 

A stable context is not suitable for execution. Before a 
stabilized context can be resumed, it is reconstituted on the stack 
as hybrid. Again, this means that the n-PC must be 
reconstructed fi'om tile v-PC. Usually the v-PC does not change 
during the stable period, so our system includes a one-element 
cache ill each n-code procedure for tile most recent v-PC/n-PC 
pair, to avoid having to run the mapping algorithm. 

Block contexts are "~boro" in stable form, since the whole 
purpose of  closures is to provide a representation for an 
execution context which can be invoked later. 

IN-I,INE CACI lING OF METHOI)  Ai)I)R I~JSES 

Mess~tge-passing is applied down to the simplest operations 
in Smalltalk. The system provides a variety of  predefined 
classes: the most basic operations on.elementary data types (such 
as addition of integers) are performed by primitives implemented 
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by the kernel of  die system, rather Ih;in by Smalltalk routines, 
but there is no distinction drawn at the language level. Since 
mes.~ge-sends are so ubiquitous, they must bc fast: the operation 
6f method-lookup is both expensive and critical. 

All existing Smalltalk-80 implementations accelerate method- 
lookup by using a method cache, a hash table of  pooular method 
addresses indexed by the pair (receiver class, message selector). 
This simple technique typically improves system perfi~rmance by 
20-30%. More extensive measurements of  this improvement 
appear in [Krasner 83]. 

Further performance improvements are suggested by the 
observation of  dynamic locality of lype usage. That is, at a given 
point in code, the receiver is often the same class as the receiver 
at the same point when the code was last exect,ted. If wc cache 
the looked-up method address at the point of send, subsequent 
execution of the send code has the method address at hand, and 
method-lookup can be avoided if the class of  the receiver is the 
same as it was at the previous execution of  this particular send. 
Of course, the class of  the receiver may have changed, and must 
be checked against the class corresponding to the cached method 
address. 

In the implementation described here, the translator 
generates n-code for sends unlit~ked -- as a call to the method- 
lookup routine, with the selector as an in-line argument. The 
method-lookup routine l inks the call by finding the receiver 
class, storing it in-line at the call point, and doing the method- 
lookup (like other implementations, it uses a selector/class- 
method cache). When the n-code method address is found, it is 
placed in-line with a call instruction, overwriting the former call 
to the lookup routine. "['he call is then re-executed. (Of course, 
there may be no corresponding n-code method, in which case the 
translator is called firsL) Note that this is a kind of  dynamic 
code modification, which is generally condemned in modern 
practice. The n-method address can just as well be placed out- 
of-line and accessed indirectly; c~de modificatioll is more 

• cl~cicnt, and we are using it in a weIFconfined way. 

The entry code of  an n-code method checks the stored 
recei~crclass from the point of call against the actoal receiver 
class. If they do not match, relinking must ¢~:cur, just as if the 
call had not yet been linked. 

Since linked sends have n'code method addresses bound in- 
line, this address must be invalidated if the called n-code method 
is being discarded from memory. The idea of" scanning all n- 
code routines to invalidated linked addresses was initially so 
daunting that we almost rejected the scheme. However, since n- 
code only exists in main memory, invalidation cannot produce 
time-consuming page faults. Furthermore. since the PC mapping 
tables described earlier contain precisely the addresses of  calls in 
the n-code, no searching of  the n-code is required: it is only 
necessary to go through the mapping tables and overwrite the 
call instructions to which the entries point. (A scheme similar to 
this may be found in [Moon 73].) 

For a few special selectors like + ,  the translator generates 
in-line code fi~r the common case along with the standard send 
code. For example. -I- generates a class check to verity that both 
argnments are small integers, native code for integer addition, 
and an overflow check on the result. If any of the checks fail, 
the send code is execrated. This is a space-time tradeoff justified 
by measurements that indicate that the ovcrwhehning majority of  
arithmetic operations invoh'c only small integers, even though 
they are (in principle) polymorphic like all other operations in 
the language. 

E X P E R I M E N T A L  R F, SULTS 

Three aspects of  our results deserve experimental validation: 
the use of stable and volatile context representations, the use of  

the one-clement in-line cache and linked sends for accelerating 
method-lookup, and the technique of v-codc to n-code 
translation (specifically, dynamic translation). 

CON'I'I£XT R I':PRF~SENTATIONS 

The dramatic drop in reference counting overhead obtained 
by treating contexts specially has been documented elsewhere 
(e.g., [Krasqcr 83], section 19). We also obtain a striking 
efficiency improvement by allocating contexts oil a stack, and by 
keeping their contents in execution-oriented form. Off`setting 
these advantages, in our implementation there is an added 
overhead of converting coqtcxts between volatile/hybrid and 
stable fi}rms, and of ensuring that a context accessed as a data 
object (either by sending it a message or directly while running a 
method ilnplcmentcd in a context class) is in stable form. 

3'o evaluate the perfi~rmance advantage of  linear context. 
allocation and volatile rcpresentatinn, we compared our code for 
allocating and deallocating contexts against code based on a 
hypothetical design that used the standard object representation 
for contexts, but did not reference-count their contcnts. This 
code appears to take about 8 times as hmg to exccutc, which 
would nlakc it consume 12°o of total execution time compared to 
1.5% for our present code. 

I,ess than 10CO of all co,~texts cvcr exist in othcr than volatile 
fibrin, l~lock contexts, which arc created in stable fi~rm, and their 
cnclosing context, which must be madc hybrid so the block 
context can refer to it, account for two-thirds of these: nearly all 
of the remainder arise fi'om an implcmcntation detail rcgarding 
linkiqg togcther fixed-size stack segments. [n all of  our 
measured examples, the time rcquired for thc conversion 
between the stable and volatile form was under 3CO of total 
execution time. 

If the receiver of a message is not a hybrid context, there is 
no overhead for making the check bccausc it happens as part of 
the normal mcthnd-k)okup (recall that hybrid contexts appear to 
be objects of  a special class DummyContcxt with no associated 
methods). Only when method-loukup fails is a check made 
whether the receiver was actually a DummyCoqtext. In the 
normal operation of the system, mcssagcs are only sent to 
contexts by thc debugger and for cleanup during dcstruction of  a 
process, so the overall impact is negligible. 

As di~usscd above, methods associated with context classes 
must be translated specially, so that each rcfcrence to an instance 
variablc chccks to makc snrc the rcccivcr is in stable form. The 
time required for this check is negligible. 

IN-LINE CACIIE AND ],INKED SENDS 

Independent measurements by us and by a group at U.C. 
Bcrkcley confirm that the one-element in-line cache is cffective 
about 95% of  the time. Measuremcnts reported in [Krasner 83] 
indicate that a more conventional global cache of  a reasonable 
size is effective about 85-90% of the time. It may be that an in- 
linc cache tends to lower the effectiveness of  the global cache, 
since most of  thc Iookups that would socceed in the global cache 
are now handled by the in-line cache, but we have no direct 
evidence on this point. 

Adding an in-line cache to the simple translator described 
below improved overall performance by only 9%. On a 
benchmark consisting ahnost entirely of  message sends where the 
in-'line cache is guaranteed valid, the in-line cache only improved 
pcrforlnanc¢ by 11%. 'l'llc improvement obtained by adding an 
in-line cache to the optimizing translator was also about L0%. 
Our original hand-analysis indicated that the overall 
improvement should be closer to 20%, and we cannot yet account 
for the discrepancy. The code produced by the optimizing 
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translator for the activate-and-return benchmark is a remarkable 
47% faster than the code from the simple translator with the in- 
line cache, s'lggesting that operations other than the overhead 
eliminated by the in-line cacl~e still dominates overall execution 
time. 

I)YNAMIC COIIE "I'IIANSLATION 

Our implementation of the Smalltalk-80 v-machine is 
designed to be easily switchable between different execution 
strategies. We have implemented a straightforward interpreter, a 
simple translator with almost no optimization, and a more 
sophisticated translator. Both translators exist in two variants, 
with and without the in-line cache described above. Switching 
between strategies simply requires relinking the implementation 
with a different set of modules; the price in execution speed paid 
for this flexibility is negligible. 

Our first experiment in code translation was a simple 
translator that does little peephole optimization and always 
generates exactly 4 n-bytes per v-byte. Clhe latter restriction 
eliminated the need for the PC mapping tables described earlier.) 

Our second experiment was a translator that does significant 
peephole nptilnization. The code it generates keeps the top 
element of the v-machine stack in a machine register whenever 
possible, and implements all v-instructions in-line except sends 
and a few rare instructions like load current context. Even 
arithmetic and relational operations are implemented in-line, with 
a call on an nttt-of-line routine if the operands arc not small 
integers. The resulting code is bulky but fast. 

To estimate the space required by translated methods, we 
have observed that the average v-method consists of 55% pointers 
(literal constants, message selectot.'s, and references to global 
variables) and 45% v-instructions. Since our simple translator 
expands each v-code byte to 4 n-code bytes, the expansion factor 
for the method as a whole is .55+(.45*4)=2.35. The version of 
the simple translator that uses an in-line cache simply triples the 
size of the pointer area, leaving room for a cached class and n- 
method pointer regardless of whether the pointer is a selector or 
something else. This expands the total size of methods by a 
factor of (3*.55)+(4*.45)=3.45. The observed expansion factors 
for the optimizing translators appear in the table below. 

We ran the standard set of Smalltalk-80 benchmarks 
described in [Krasner 83], section 9, using each of our five 
execution strategies. The normalized results are summarized in 
the following table: 

Strategy Space Ti.me 

Interpreter 1.00 1.000 

Simple translator, 2.35 0.686 
no in-line cache 

Simple translator 3.45 0.625 
with in-line cache 

Optimizing translator, 5.0 0.564 
no in-line cache 

Optimizing translator 5,03 0.515 
with in-line cache 

The space figure fi)r the optimizing translator without the in- 
line cache could be reduced at the expense of further sh)wing the 
code down. 

With respcct to paging behavior in a virtual memory 
environment, we would like to compare the following three 
execution strategies: 

* Pure interpretation: only v-code exists; it is brought 
into main memory as needed. 

* Static translation: n-code is generated simultaneously 
with v-code. Only n-code is needed at execution time. 
N-code is brought into memory as needed, 

* Dynamic translation: n-code is kept in a cache in main 
memory: v-code is brought into memory for translation 
as needed. 

Note that space taken by n-code in main memory trades off 
against space for data. When main memory space is needed 
(either fi)r n-code or for da~0, we have the option of replacing 
data pages or discarding n-code. Unfortunately, since the work 
described here has been carried out in a non-virtual memory 
environment, we have no experimental results on this topic. 

CONCLUSIONS AND RELATED WORK 

Perhaps the most intportant observation from our research is 
that we have demonstrated that it is possible to implement an 
interactive system based on a demanding high-level language. 
with only a modest increase in memory requirements and 
without the use of any of the special hardware (special-purpose 
mierocude, tagged memory architecture, garbage collection co- 
processor) often advocated for such systems, and with resulting 
perfonnanee that users judge excellent. We have achieved this 
by careful optimization of the observed common cases and by 
the plentiful use of caches and other changes of representation. 

A related research project [Patterson 83] is investigating a 
Smalllalk-80 implementation that uses only n-code, on a specially 
designed VI,SI processor called SOAR. As discussed above, this 
implementation requires rewriting the compiler, debugger, and 
other tools that manipulate compiled code and contexts, We 
expect some interesting comparisons between the two approaches 
sometime in 1984, when the SOAR implementation becomes 
operational. 

We believe the techniques described in this paper are 
applicable in varying degrees to other late-bound languages such 
as I,isp, and to portable V-code-based language implementations 
such as the Pascal P-system, but we have no current plans to 
investigate these other languages. 
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Abstract
We present a new technique,failure-oblivious comput-

ing, that enables servers to execute through memory er-
rors without memory corruption. Our safe compiler for
C inserts checks that dynamically detect invalid memory
accesses. Instead of terminating or throwing an excep-
tion, the generated code simply discards invalid writes
and manufactures values to return for invalid reads, en-
abling the server to continue its normal execution path.

We have applied failure-oblivious computing to a
set of widely-used servers from the Linux-based open-
source computing environment. Our results show that
our techniques 1) make these servers invulnerable to
known security attacks that exploit memory errors, and
2) enable the servers to continue to operate successfully
to service legitimate requests and satisfy the needs of
their users even after attacks trigger their memory errors.

We observed several reasons for this successful con-
tinued execution. When the memory errors occur in ir-
relevant computations, failure-oblivious computing en-
ables the server to execute through the memory errors to
continue on to execute the relevant computation. Even
when the memory errors occur in relevant computations,
failure-oblivious computing converts requests that trig-
ger unanticipated and dangerous execution paths into an-
ticipated invalid inputs, which the error-handling logic
in the server rejects. Because servers tend to have small
error propagation distances (localized errors in the com-
putation for one request tend to have little or no effect
on the computations for subsequent requests), redirect-
ing reads that would otherwise cause addressing errors
and discarding writes that would otherwise corrupt crit-
ical data structures (such as the call stack) localizes the
effect of the memory errors, prevents addressing excep-
tions from terminating the computation, and enables the
server to continue on to successfully process subsequent
requests. The overall result is a substantial extension of
the range of requests that the server can successfully pro-
cess.

1 Introduction

Memory errors such as out of bounds array accesses and
invalid pointer accesses are a common source of program
failures. Safe languages such as ML and Java use dy-
namic checks to eliminate such errors — if, for exam-
ple, the program attempts to access an out of bounds ar-
ray element, the implementation intercepts the attempt
and throws an exception. The rationale is that an invalid
memory access indicates an unanticipated programming
error and it is unsafe to continue the execution without
first taking some action to recover from the error.

Recently, several research groups have developed
compilers that augment programs written in unsafe lan-
guages such as C with dynamic checks that intercept out
of bounds array accesses and accesses via invalid point-
ers (we call such a compiler asafe-Ccompiler) [17, 58,
45, 36, 50, 37]. These checks use additional information
about the layout of the address space to distinguish ille-
gal accesses from legal accesses. If the program fails a
check, it terminates after printing an error message.

1.1 Failure-Oblivious Computing

Note that it is possible for the compiler to automatically
transform the program so that, instead of throwing an ex-
ception or terminating, it simply ignores any memory er-
rors and continues to execute normally. Specifically, if
the program attempts to read an out of bounds array ele-
ment or use an invalid pointer to read a memory location,
the implementation can simply (via any number of mech-
anisms) manufacture a value to supply to the program as
the result of the read, and the program can continue to ex-
ecute with that value. Similarly, if the program attempts
to write a value to an out of bounds array element or use
an invalid pointer to write a memory location, the im-
plementation can simply discard the value and continue.
We call a computation that uses this strategy afailure-
obliviouscomputation, since it is oblivious to its failure
to correctly access memory.



It is not immediately clear what will happen when a
program uses this strategy to execute through a memory
error. When we started this project, our hypothesis was
that, for at least some programs, this continued execution
would produce acceptable results. To test this hypothe-
sis, we implemented a C compiler that generates failure-
oblivious code, obtained some C programs with known
memory errors, and observed the execution of failure-
oblivious versions of these programs. Here is a summary
of our observations:

• Acceptable Continued Execution: We targeted
memory errors in servers that correspond to security
vulnerabilities as documented at vulnerability track-
ing web sites [13, 12]. For all of our tested servers,
failure-oblivious computing 1) eliminates the secu-
rity vulnerability and 2) enables the server to suc-
cessfully execute through the error to continue to
serve the needs of its users.

• Acceptable Performance:Failure-oblivious com-
puting entails the insertion of dynamic bounds
checks into the compiled program. Previous ex-
periments with safe-C compilers have indicated that
these checks usually cause the program to run less
than a factor of two slower than the version without
checks, but that in some cases the program may run
as much as eight to twelve times slower [58, 50].
Our results are consistent with these previous re-
sults. Note that many of our servers implement
interactive computations for which the appropriate
performance measure is the observed pause times
for processing interactive requests. For all of our in-
teractive servers, the application of failure-oblivious
computing does not perceptibly increase the pause
times.

Our conclusion is that continued execution through
memory errors produces completely acceptable results
for all of our serversas long as failure-oblivious com-
puting prevents these errors from corrupting the server’s
address space or data structures.

1.2 Reason for Successful Execution
Memory errors can damage a computation in several
ways: 1) they can cause the computation to terminate
with an addressing exception, 2) they can cause the com-
putation to become stuck in an infinite loop, 3) they can
change the flow of control to cause the computation to
generate a new and unacceptable interaction sequence
(either with the user or with I/O devices), 4) they can
corrupt data structures that must be consistent for the re-
mainder of the computation to execute acceptably, or 5)
they can cause the computation to produce unacceptable
results.

Because failure-oblivious computing intercepts all in-
valid memory accesses, it eliminates the possibility that
the computation may terminate with an addressing ex-
ception. It is still possible for the computation to infi-
nite loop, but we have found a sequence of return values
for invalid reads that, in practice, appears to eliminate
this problem for our server programs. Our servers have
simple interaction sequences — read a request, process
the request without further interaction, then return the re-
sponse. As long as the computation that processes the
request terminates, control will appropriately flow back
to the code that reads the next request and there will
be no unacceptable interaction sequences. Discarding
invalid writes tends to localize any memory corruption
effects. In particular, it prevents an access to one data
unit (such as a buffer, array, or allocated memory block)
from corrupting another data unit. In practice, this lo-
calization protects many critical data structures (such as
widely used application data structures or the call stack)
that must remain consistent for the program to execute
acceptably.

The remaining issue is the potential production of
unacceptable results. Manufacturing values for reads
clearly has the potential to cause a subcomputation to
produce an incorrect or unexpected result. The key ques-
tion is how (or even if) the incorrect or unexpected result
may propagate through the remaining computation to af-
fect the overall results of the program.

All of our initially targeted memory errors eventually
boil down to buffer-overrun problems: as it processes a
request, the server allocates a fixed-size buffer, then (un-
der certain circumstances) fails to check that the data ac-
tually fits into this buffer. An attacker can exploit this
error by submitting a request that causes the server to
write beyond the bounds of the buffer to overwrite the
contents of the stack or heap, typically with injected code
that the server then executes. Such attacks are currently
the most common source of exploited security vulnera-
bilities in modern networked computer systems [2]. Es-
timates place the total cost of such attacks in the billions
of dollars annually [3].

Failure-oblivious computing makes a server invulner-
able to this kind of attack — the server simply discards
the out of bounds writes, preserving the consistency of
the call stack and other critical data structures. For two
of our servers the memory errors occur in computations
and buffers that are irrelevant to the overall results that
the server produces for that request. Because failure
oblivious computing eliminates any addressing excep-
tions that would otherwise terminate the computation,
the server executes through the irrelevant computation
and proceeds on to process the request (and subsequent
requests) successfully. For the other servers (in these
servers the memory errors occur in relevant computa-



tions and buffers) , failure-oblivious computing converts
the attack request (which would otherwise trigger a dan-
gerous, unanticipated execution path) into an anticipated
invalid input which the server’s standard error-handling
logic rejects. The server then proceeds on to read and
process subsequent requests acceptably.

One of the reasons that failure-oblivious computing
works well for our servers is that they have short error
propagation distances — an error in the computation for
one request tends to have little or no effect on the com-
putation for subsequent requests. By discarding invalid
writes, failure-oblivious computing isolates the effect of
any memory errors to data local to the computation for
the request that triggered the errors. The result is that
the server has short data error propagation distances —
the errors do not propagate to data structures required to
process subsequent requests. The servers also have short
control flow error propagation distances: by preventing
addressing exceptions from terminating the computation,
failure-oblivious computing enables the server to return
to a control flow path that leads it back to read and pro-
cess the next request. Together, these short data and con-
trol flow propagation distances ensure that any effects of
the memory error quickly work their way out of the com-
putation, leaving the server ready to successfully process
subsequent requests.

1.3 Scope
Our expectation is that failure-oblivious computing will
work best with computations, such as servers, that
have short error propagation distances. Failure-oblivious
computing enables these programs to survive otherwise
fatal errors or attacks and to continue on to execute and
interact acceptably. Failure-oblivious computing should
also be appropriate for multipurpose systems with many
components — it can prevent an error in one component
from corrupting data in other components and keep the
system as a whole operating so that other components
can continue to successfully fulfill their purpose in the
computation.

Until we develop technology that allows us to track re-
sults derived from computations with memory errors, we
anticipate that failure-oblivious computing will be less
appropriate for programs (such as many numerical com-
puting programs) in which a single error can propagate
through to affect much of the computation. We also an-
ticipate that it will be less appropriate for programs in
which it is acceptable and convenient to terminate the
computation and await external intervention. This sit-
uation occurs, for example, during development — the
program is typically not producing any useful results and
developers with the ability and motivation to find and
eliminate any errors are readily available. We therefore
see failure-oblivious computing as useful primarily for

deployed programs whose users 1) need the results that
the program produces and 2) are unable or unwilling to
tolerate failures or to find and fix errors in the program.

1.4 Advantages and Drawbacks
The primary characteristic of failure-oblivious comput-
ing as compared with previous approaches is continued
execution combined with the elimination of data struc-
ture corruption caused by memory errors. The potential
benefits include:

• Availability: The combination of protection against
data structure corruption and continued execution in
the face of memory errors can significantly increase
the availability of the server. This combination en-
ables the server to continue to provide service to le-
gitimate users even in the face of repeated attacks
(or, for that matter, other infrequently-triggered fa-
tal memory errors).

• Security: Failure-oblivious computing eliminates
the possibility that an attacker can exploit memory
errors to corrupt the address space of the server. The
result is a more secure system that is immune to
buffer-overrun attacks.

• Minimal Adoption Cost: The net adoption cost
to the developer is to recompile the server using
a compiler that generates failure-oblivious code.
There is no need to change programming languages,
write exception handling code, or modify the soft-
ware in any way. Failure-oblivious computing can
therefore be applied immediately to today’s soft-
ware infrastructure.

• Reduced Administration Overhead: One of the
most challenging system administration tasks is en-
suring that servers are kept up to date with a con-
stant stream of (potentially disruptive) patches and
upgrades; this stream is driven, in large part, by
the need to eliminate memory-error based secu-
rity vulnerabilities in otherwise perfectly acceptable
servers. Because failure-oblivious computing elim-
inates this class of errors, it may enable system ad-
ministrators to safely ignore patches whose purpose
is to eliminate security vulnerabilities caused by
memory errors. Ideally, administrators would be-
come able to patch their systems primarily to obtain
new functionality, not because they need to close se-
curity vulnerabilities in programs that are otherwise
fully serving the needs of their users.



There are also several potential drawbacks:

• Unanticipated Execution Paths:Failure-oblivious
computing has the potential to take the program
down an execution path that was unanticipated by
the programmer, with the prospect of this path pro-
ducing unacceptable results.1 This possibility can
be especially problematic if errors in the unantici-
pated path have long propagation distances through
the relevant data or when control fails to flow back
to an appropriate point in the program. This draw-
back is, in our view, an unavoidable consequence of
any mechanism that is intended to increase the re-
silience of programs in the face of errors — errors
occur precisely because the program encountered a
situation that the programmer either did not antici-
pate or did not deem worth handling correctly.

• The Bystander Effect: A more abstract issue is the
potential for failure-oblivious computing to trigger
the bystander effectin developers. In a variety of
settings that range from manufacturing [25] to per-
sonal relationships [40, 24], the mere presence of
mechanisms that may detect and compensate for er-
rors has the effect of reducing the effectiveness of
the participants in the setting and, in the end, the
overall quality of the system as a whole. A po-
tential explanation is that the participants start to
rely psychologically on the error recovery mech-
anisms, which reduces their motivation to elimi-
nate errors in their own work. Deploying failure-
oblivious computing into a software development
setting may therefore reduce the quality of the soft-
ware that the developers are able to deliver. One
obvious way to combat the bystander effect in this
setting is to ban the use of failure-oblivious comput-
ing during development. Once again, note that the
possibility of triggering the bystander effect is not
restricted to failure-oblivious computing —anyer-
ror recovery mechanism has the potential to trigger
this effect.

1.5 Contributions
This paper makes the following contributions:

• Failure-Oblivious Computing: It introduces the
concept of failure-oblivious computing, in which
the program discards illegal writes, manufactures
values for illegal reads, and continues to execute
through memory errors without address space or
data structure corruption.

1We note in passing that this potential is already present in every
program — the mere absence of memory errors provides no guarantee
that the program is, in fact, operating acceptably.

• Experience: It presents our experience using
failure-oblivious computing to enhance the security
and availability of a range of widely used open-
source servers. Our results show that:

– Standard Compilation: With the standard
unsafe C compiler, the servers are vulnerable
to memory errors and attacks that exploit these
memory errors.

– Safe Compilation: With a C compiler that
generates code that exits with an error mes-
sage when it detects a memory error, the
servers exit when presented with an input that
triggers a memory error (denying the user ac-
cess to the services that the server is intended
to provide).

– Failure-Oblivious Compilation: With our C
compiler that generates failure-oblivious code,
all of our servers execute successfully through
memory errors and attacks to continue to sat-
isfy the needs of their users. Failure-oblivious
computing improves both the availability and
the security of the servers in our test suite.

• Explanation: By relating the properties of servers
to the properties of failure-oblivious computing, we
explain why failure-oblivious computing may work
well for this general class of programs.

2 Example
We next present a simple example that illustrates how
failure-oblivious computing operates. Figure 1 presents
a (somewhat simplified) version of a procedure from the
Mutt mail client discussed in Section 4.6. This procedure
takes as input a string encoded in the UTF-8 format and
returns as output the same string encoded in modified
UTF-7 format. This conversion may increase the size
of the string; the problem is that the procedure fails to
allocate sufficient space in the return string for the worst-
case size increase. Specifically, the procedure assumes a
worst-case increase ratio of 2; the actual worst-case ratio
is 7/3. When passed (the very rare) inputs with large
increase ratios, the procedure attempts to write beyond
the end of its output array.

With standard compilers, these writes succeed, corrupt
the address space, and the program terminates with a seg-
mentation violation. With safe-C compilers, Mutt exits
with a memory error and does not even start the user
interface. With our compiler, which generates failure-
oblivious code, the program discards all writes beyond
the end of the array and the procedure returns with an
incompletely translated (truncated) version of the string.
Mutt then uses the return value to tell the mail server



static char *
utf8_to_utf7 (const char *u8, size_t u8len) {

char *buf, *p;
int ch, int n, i, b = 0, k = 0, base64 = 0;

/* The following line allocates the return
string. The allocated string is too small;
instead of u8len*2+1, a safe length would
be u8len*4+1.

*/
p = buf = safe_malloc (u8len * 2 + 1);

while (u8len) {
unsigned char c = *u8;
if (c < 0x80) ch = c, n = 0;
else if (c < 0xc2) goto bail;
else if (c < 0xe0) ch = c & 0x1f, n = 1;
else if (c < 0xf0) ch = c & 0x0f, n = 2;
else if (c < 0xf8) ch = c & 0x07, n = 3;
else if (c < 0xfc) ch = c & 0x03, n = 4;
else if (c < 0xfe) ch = c & 0x01, n = 5;
else goto bail;

u8++, u8len--;
if (n > u8len) goto bail;
for (i = 0; i < n; i++) {

if ((u8[i] & 0xc0) != 0x80) goto bail;
ch = (ch << 6) | (u8[i] & 0x3f);

}
if (n>1 && !(ch >> (n*5+1))) goto bail;
u8 += n, u8len -= n;

if (ch < 0x20 || ch >= 0x7f) {
if (!base64) {

*p++ = ’&’;
base64 = 1;
b = 0;
k = 10;

}
if (ch & ˜0xffff) ch = 0xfffe;
*p++ = B64Chars[b | ch >> k];
k -= 6;
for (; k >= 0; k -= 6)

*p++ = B64Chars[(ch >> k) & 0x3f];
b = (ch << (-k)) & 0x3f;
k += 16;

} else {
if (base64) {

if (k > 10) *p++ = B64Chars[b];
*p++ = ’-’;
base64 = 0;

}
*p++ = ch;
if (ch == ’&’) *p++ = ’-’;

}
}

if (base64) {
if (k > 10) *p++ = B64Chars[b];
*p++ = ’-’;

}

*p++ = ’\0’;
safe_realloc ((void **) &buf, p - buf);
return buf;

bail:
safe_free ((void **) &buf);
return 0;

}

Figure 1: String Encoding Conversion Procedure

which mail folder it wants to open. The mail server re-
sponds with an error code indicating that the folder does
not exist. Mutt correctly handles this error and continues
to execute, enabling the user to process email from other,
legitimate, folders.

This example illustrates two key aspects of applying
failure-oblivious computing:

• Subtle Errors: Real-world programs can contain
subtle memory errors that can be very difficult to
detect by either testing or code inspection, and these
errors can have significant negative consequences
for the program and its users.

• Mostly Correct Programs: Testing usually en-
sures that the program is mostly correct and works
well except for exceptional operating conditions or
inputs. Failure-oblivious computing can therefore
be seen as a way to enable the program to pro-
ceed past such exceptional situations to return back
within its normal operating envelope. And as this
example illustrates, failure-oblivious computing can
actually facilitate this return by converting unantici-
pated memory corruption errors into anticipated er-
ror cases that the program handles correctly.

3 Implementation
A failure-oblivious compiler generates two kinds of ad-
ditional code: checking code and continuation code. The
checking code detects memory errors and can be the
same as in any memory-safe implementation. The con-
tinuation code executes when the checking code detects
an attempt to perform an illegal access. This code is rela-
tively simple: it discards erroneous writes and manufac-
tures a sequence of values for erroneous reads.

Our implementation uses a checking scheme origi-
nally developed by Jones and Kelly [37] and then signif-
icantly enhanced by Ruwase and Lam [50]. This check-
ing scheme maintains a table that maps locations to data
units (each struct, array, and variable is a data unit) and
uses this table to distinguish in bounds and out of bounds
pointers.

Our implementation of the write continuation code
simply discards the value. Our implementation of the
read continuation code redirects the read to a preallo-
cated buffer of values. In principle, any sequence of man-
ufactured values should work. In practice, these values
are sometimes used to determine loop conditions. Mid-
night Commander (see Section 4.5), for example, con-
tains a loop that, for some inputs, searches past the end
of a buffer looking for the “/ ” character. If the sequence
of generated values does not include this character, the
loop never terminates and Midnight Commander hangs.
We therefore generate a sequence that iterates through



all small integers, increasing the chance that, if the val-
ues are used to determine loop conditions, the compu-
tation will hit upon a value that will exit the loop (and
avoid nontermination). Because zero and one are usu-
ally the most commonly loaded values in computer pro-
grams [59], the sequence is designed to return these val-
ues more frequently than other, less common, values.

One potential concern is that failure-oblivious com-
puting may hide errors that would otherwise be detected
and eliminated. To help make the errors more apparent,
our compiler can optionally augment the generated code
to produce a log containing information about the pro-
gram’s attempts to commit memory errors. This log may
help administrators to detect and respond appropriately
to the presence such errors. Note, however, that hiding
errors is one of the primary goals of this research, and
that any technique that makes programs more resilient in
the face of errors will reduce the negative impact of the
errors and therefore the incentive to find and eliminate
them.

4 Experience
We implemented a compiler that generates failure-
oblivious code, obtained several widely-used open-
source servers with known memory errors, and evalu-
ated the impact of failure-oblivious computing on their
behavior. Many of these servers are key components of
the Linux-based open-source interactive computing en-
vironment.

4.1 Methodology
We evaluate the behavior of three different versions of
each server: theStandardversion compiled with a stan-
dard C compiler (this version is vulnerable to any mem-
ory errors that the server may contain), theBounds Check
version compiled with the CRED safe-C compiler [50]
(this version terminates the server with an error message
at the first memory error), and theFailure Obliviousver-
sion compiled with our compiler. We evaluate three as-
pects of each server’s behavior:

• Security and Resilience:We chose a workload that
contains an input that triggers a known memory er-
ror in the server; this input typically exploits a secu-
rity vulnerability as documented by vulnerability-
tracking organizations such as Security Focus [13]
and SecuriTeam [12]. We observe the behavior of
the different versions on this workload; for the Fail-
ure Oblivious version we focus on the acceptability
of the continued execution after the error.

• Performance: We chose a workload that both the
Standard and Failure Oblivious versions can exe-
cute successfully. We use this workload to measure
the request processing time, or the time required

for each version to process representative requests.
We obtain this time by instrumenting the server to
record the time when it starts processing the request
and the time when it stops processing the request,
then subtracting the start time from the stop time.

• Stability: When possible, we deploy the Failure
Oblivious version of each server into daily use
as part of our normal computational environment.
During this deployment we ensure that the work-
load contains attacks that trigger memory errors in
each server. We focus on the long-term acceptabil-
ity of the continued execution of the Failure Oblivi-
ous version of the deployed server.

We note that two of our servers (Pine and Midnight
Commander) use out of bounds pointers in pointer in-
equality comparisons. While this is, strictly speaking, an
error, the intention of the programmer is clear. To avoid
having these errors cripple the Bounds Check versions of
these servers, we (manually) rewrote the code containing
the inequality comparisons to eliminate pointer compar-
isons involving out of bounds pointers.

We ran all the servers on a Dell workstation with two
2.8 GHz Pentium 4 processors, 2 GBytes of RAM, and
running Red Hat 8.0 Linux.

4.2 Pine
Pine is a widely used mail user agent (MUA) that is dis-
tributed with the Linux operating system [11]. Pine al-
lows users to read mail, fetch mail from an IMAP server,
compose and forward mail messages, and perform other
email-related tasks. We use Pine 4.44, which is dis-
tributed with Red Hat Linux version 8.0. This version
of Pine has a memory error associated with a failure to
correctly parse certain From fields [10].

4.2.1 The Memory Error

When Pine displays a list of messages, it processes the
From field of each message to quote certain characters.
This quoting is implemented by transferring the From
field into a heap-allocated character buffer for display,
inserting a\ character into the buffer before any quoted
character. As part of the transfer, the length of the string
can increase because of the additional\ characters. The
procedure that calculates the maximum possible length
of the character buffer fails to correctly account for the
potential increase and produces a length that is too short
for messages whose From fields contain many quoted
characters.

4.2.2 Security and Resilience

The Standard version of Pine writes beyond the end of
the buffer, corrupts its heap, and terminates with a seg-
mentation violation. The Bounds Check version detects



the memory error and terminates the computation. With
both of these versions, the user is unable to use Pine to
read mail because Pine aborts or terminates during ini-
tialization as the mail file is loaded and before the user
has a chance to interact with the server. The user must
manually eliminate the From field from the mail file (us-
ing some other mail reader or file editor) before he or she
can use Pine to read mail at all.

The Failure Oblivious version discards the out of
bounds writes (in effect, truncating the translated From
field) and continues to execute through the memory er-
ror, enabling the user to process their mail. Because the
mail list user interface displays only an initial segment of
long From fields, the truncation is not visible to the user.
If the user selects the message, a different execution path
correctly translates the From field. The displayed mes-
sage contains the complete From field and the user can
read, forward, and otherwise process the message.

4.2.3 Performance

Figure 2 presents the request processing times for the
Standard and Failure Oblivious versions of Pine. All
times are given in milliseconds. The Read request dis-
plays a selected empty message, the Compose request
brings up the user interface to compose a message, and
the Move request moves an empty message from one
folder to another. We performed each request at least
twenty times and report the means and standard devia-
tions of the request processing times. All times are given
in milliseconds.

Request Standard Failure Slowdown
Oblivious

Read 0.287± 7.1% 1.98± 1.5% 6.9
Compose 0.385± 4.3% 3.11± 2.6% 8.1
Move 1.34± 10.4% 1.80± 11.2% 1.34

Figure 2: Request Processing Times for Pine
(milliseconds)

As these numbers indicate, the Failure Oblivious ver-
sion is not substantially slower than the Standard ver-
sion. Because Pine is an interactive program, its perfor-
mance is acceptable as long as it feels responsive to its
users. Assuming a pause perceptibility threshold of 100
milliseconds for this kind of interactive program [21], it
is clear that failure-oblivious computing should not de-
grade the program’s interactive feel. Our subjective ex-
perience confirms this expectation: all pause times are
imperceptible for all versions.

4.2.4 Stability

During our stability testing period, we used Pine as a de-
fault mail reader. Our activities included reading mail,
replying to mails, forwarding mails, and managing mail
folders. During this time we used Pine to process roughly

25 new mail messages a day (after spam filtering). To test
Pine’s ability to successfully execute through errors, we
periodically sent an email that triggered the memory er-
ror discussed above in Section 4.2.1. We also used the
failure-oblivious version of Pine to successfully process
a large mail folder containing over 100,000 messages.
During this usage period, the Failure Oblivious version
executed successfully through all errors to perform all
requests flawlessly.

4.3 Apache
The Apache HTTP server is the most widely used web
server in the world: a recent survey found that 64% of
the web sites on the Internet use Apache [9]. Apache
version 2.0.47 contains a (under certain circumstances)
remotely exploitable memory error [1].

4.3.1 The Memory Error

Apache can be configured to automatically redirect in-
coming URLs via a set of URL rewrite rules. Each
rewrite rule contains amatch pattern(a regular expres-
sion that may match an incoming URL) and areplace-
ment pattern. The match pattern may contain paren-
thesizedcaptures, each of which may match a sub-
string from the incoming URL. The replacement pattern
may reference these captures. When an incoming URL
matches the match pattern, Apache replaces the URL
with the replacement pattern after substituting out any
referenced captures with the corresponding captured sub-
strings from the incoming URL. As Apache processes
the incoming URL, it uses a (stack-allocated) buffer to
hold pairs of offsets that identify the captured substrings
in the incoming URL. The buffer contains enough room
for ten captures. If there are more, Apache writes the cor-
responding pairs of offsets beyond the end of the buffer.

4.3.2 Security and Resilience

The Standard version performs the out of bounds writes,
corrupts its stack, and terminates with a segmentation vi-
olation. The Bounds Check version correctly processes
legitimate requests without memory errors until it is pre-
sented with a URL that triggers the memory error. At this
point the child process serving the connection detects the
error and terminates. Apache uses a pool of child pro-
cesses to serve incoming requests. When one of the child
processes terminates, the main Apache process creates
a new child process to take its place. This mechanism
allows both the Standard and Bounds Check versions of
Apache to continue to service requests even when repeat-
edly presented with inputs that cause the child processes
to terminate because of memory errors.

The Failure Oblivious version discards the out of
bounds writes and continues to execute. It proceeds on to
copy the first ten pairs of offsets into another data struc-



ture. Apache uses this data structure to apply the rewrite
rule and generate the new URL. Because the rewrite
rule uses a single digit to reference each captured sub-
string (these substrings have names $0 through $9), it
will never attempt to access any discarded substring off-
set data. The Failure-Oblivious version of Apache there-
fore processes each input correctly and continues on to
successfully process any subsequent requests. Because
the memory errors occur in irrelevant data structures and
computations, Failure Oblivious computing eliminates
the memory error without affecting the results of the
computation at all.

Because Apache isolates request processing inside a
pool of regenerating processes, the Bounds Check ver-
sion successfully processes subsequent requests. The
overhead of killing and restarting child processes, how-
ever, makes this version vulnerable to an attack that ties
up the server by repeatedly presenting it with requests
that trigger the error. To investigate this effect, we used
several (local) machines to load the server with requests
that trigger the error. We then used another client ma-
chine to repeatedly fetch the home page of our research
project and measured the request throughput at the client.
For this workload, the Failure Oblivious version provides
a throughput roughly 5.7 times more than the Bounds
Check version provides (the insecure Standard version
provides a throughput roughly 4.8 times less than the
Failure Oblivious version). We attribute the slowdown
for the Bounds Check and Standard versions to process
management overhead.

4.3.3 Performance

Figure 5 presents the request processing times for the
Standard and Failure Oblivious versions of Apache. The
Small request serves an 5KByte page (this is the home
page for our research project); the large request serves
an 830KByte file used only for this experiment. Both re-
quests were local — they came from the same machine
on which Apache was running. We performed each re-
quest at least twenty times and report the means and stan-
dard deviations of the request processing times. All times
are given in milliseconds.

Request Standard Failure Slowdown
Oblivious

Small 44.4± 1.3% 47.1± 2.5% 1.06
Large 48.7± 1.8% 50.0± 1.3% 1.03

Figure 3: Request Processing Times for Apache
(milliseconds)

4.3.4 Stability

For the last nine months we have been using the Fail-
ure Oblivious version of Apache to serve our research
project’s web site atwww.flexc.csail.mit.edu; during this

time period we measured approximately 400 requests a
day from outside our institution. We also generated tens
of thousands of requests from another machine, all of
which were served correctly. We anticipate that we will
continue to use the Failure Oblivious version to serve this
web site for the foreseeable future.

During this time period we periodically presented the
web server with requests that triggered the vulnerability
discussed above. The Failure Oblivious version executed
successfully through all of these attacks to continue to
successfully service legitimate requests. We observed no
anomalous behavior and received no complaints from the
users of the web site.

4.4 Sendmail

Sendmail is the standard mail transfer agent for Linux
and other Unix systems [15]. It is typically configured
to run as a daemon which creates a new process to ser-
vice each new mail transfer connection. This process ex-
ecutes a simple command language that allows the re-
mote agent to transfer email messages to the Sendmail
server, which may deliver the messages to local users or
(if necessary) forward some or all of the messages on
to other Sendmail servers. Versions of Sendmail ear-
lier than 8.11.7 and 8.12.9 (8.11 and 8.12 are separate
development threads) have a memory error vulnerability
which is triggered when a remote attacker sends a care-
fully crafted email message through the Sendmail dae-
mon [14]. We worked with Sendmail version 8.11.6.

4.4.1 The Memory Error

The memory error occurs when Sendmail parses a mail
address. A prescan procedure processes the address one
character at a time to transfer characters from the ad-
dress into a fixed-size stack-allocated buffer. This trans-
fer is coded to use a lookahead character and to treat the
\ character specially. It is possible for there to be no
lookahead character, in which case the integer variable
that holds the lookahead character is set to -1. If this
variable is set to -1 or contains a\ character that appears
in an odd position (first, third, fifth, ...) in a sequence of
contiguous\ characters in the address, the prescan skips
the block of code that writes the lookahead character into
the buffer (also skipping a check to see if the buffer has
enough space to hold the lookahead character). It later
writes a\ character into the buffer without a check if the
lookahead character was\ and not -1. If the execution
platform performs sign extension on character to integer
assignments, an attack message containing an appropri-
ately placed alternating sequence of -1 and\ characters
in the address can therefore cause the prescan to write ar-
bitrarily many\ characters beyond the end of the buffer.



4.4.2 Security and Resilience

The Standard version of Sendmail performs the out of
bounds writes and corrupts its call stack. It is apparently
possible for an attacker to exploit the memory error to
cause the Sendmail server to execute arbitrary injected
code [14]. The Bounds Check version exits with a mem-
ory error during initialization and fails to operate at all.
The Failure Oblivious version is not vulnerable to the at-
tack — when sent the attack message, it discards the out
of bounds writes (preserving the integrity of the stack)
and returns back out of the prescan to continue to parse
the email address. The next step is to check if the in-
put mail address is too long. This check fails, throwing
Sendmail into an anticipated error case. The standard er-
ror processing logic in Sendmail then rejects the address,
enabling Sendmail to continue on to successfully process
subsequent commands.

4.4.3 Performance

Figure 4 presents the means and standard deviations of
the request processing times for the Standard and Failure
Oblivious versions of Sendmail. All times are given in
milliseconds. The Receive Small request receives a mes-
sage whose body is 4 bytes long; the Send Small request
sends the same message. The Receive Large request re-
ceives a message whose body is 4Kbytes long; the Send
Large request sends the same message. We performed
each test at least twenty times to obtain the numbers in
Figure 4.

Request Standard Failure Slowdown
Oblivious

Recv Small 15.6± 2.9% 60.4± 1.5% 3.9
Recv Large 16.8± 4.3% 65.1± 2.3% 3.9
Send Small 20.3± 3.2% 75.0± 3.4% 3.7
Send Large 21.5± 5.7% 76.9± 3.8% 3.6

Figure 4: Request Processing Times for Sendmail
(milliseconds)

4.4.4 Stability

We installed the Failure Oblivious version of Sendmail
on one of our machines and, over the course of several
days, used it to send and receive hundreds of thousands
of email messages. During this time we repeatedly sent
the attack message through the Sendmail daemon, which
continued through the attack to correctly process all sub-
sequent Sendmail commands. All of the messages were
correctly delivered with no problems. Our memory error
logs indicate that Sendmail generates a steady stream of
memory errors during its normal execution. In particular,
every time the Sendmail daemon wakes up to check for
incoming messages, it generates a memory error. This
memory error apparently completely disables the Bounds
Check version.

4.5 Midnight Commander
Midnight Commander is an open source file manage-
ment tool that allows users to browse files and archives,
copy files from one folder to another, and delete files [6].
Midnight Commander is vulnerable to a memory-error
attack associated with accessing an uninitialized buffer
when processing symbolic links intgz archives [5]. We
used Midnight Commander version 4.5.55 for our exper-
iments.

4.5.1 The Memory Error

Midnight Commander converts absolute symbolic links
in tgz files into links relative to the start of thetgz
file. It uses thestrcat procedure to build up the name
of the relative link in a stack-allocated buffer. Unfortu-
nately, the buffer is never initialized. If there are multi-
ple symbolic links in the directory, the component names
from all of the links simply accumulate sequentially in
the buffer as Midnight Commander processes the set of
links. If the combined length of all of the component
names exceeds the length of the buffer,strcat writes
the component names beyond the end of the buffer.

4.5.2 Security and Resilience

The Standard version performs the writes, corrupts its
stack, and terminates with a segmentation violation. The
Bounds Check version detects the out of bounds access
and terminates. The Failure Oblivious version discards
the out of bounds writes, enabling Midnight Commander
to continue and attempt to look up the data for the ref-
erenced file. This lookup always fails (apparently even
for the first symbolic link, when the name in the buffer
is correct). This is an anticipated case in the Midnight
Commander code, which treats the symbolic link as a
dangling link and displays it as such to the user. Mid-
night Commander then continues on to successfully pro-
cess any subsequent user commands.

4.5.3 Performance

Figure 5 presents the request processing times for the
Standard and Failure Oblivious versions of Midnight
Commander. The Copy request copies a 31Mbyte di-
rectory structure, the Move request moves a directory of
the same size, the MkDir request makes a new directory,
and the Delete request deletes a 3.2 Mbyte file. We per-
formed each request at least twenty times and report the
means and standard deviations of the request processing
times. All times are given in milliseconds.

As these numbers indicate, the Failure Oblivious ver-
sion is not dramatically slower than the Standard ver-
sion. Moreover, because Midnight Commander is an
interactive program, its performance is acceptable as
long as it feels responsive to its users, and these perfor-
mance results make it clear that the application of failure-



Request Standard Failure Slowdown
Oblivious

Copy 377± 0.7% 535± 2.0% 1.4
Move 0.30± 2.4% 0.406± 1.8% 1.4
MkDir 0.69± 7.0% 1.27± 6.6% 1.8
Delete 2.54± 11.3% 2.72± 11.1% 1.1

Figure 5: Request Processing Times for Midnight Com-
mander (milliseconds)

oblivious computing to this program should not degrade
its interactive feel. Our subjective experience confirms
this expectation: all pause times are imperceptible for
both the Standard and Failure Oblivious versions.

4.5.4 Stability

One of the authors uses Midnight Commander on a daily
basis as his standard file manipulation tool. During the
stability testing period, he used the Failure Oblivious
version of Midnight Commander to manage his files.
Periodically during the sessions he attempted to open
the problematic archive (causing the program to execute
through the resulting memory error), then went back to
using the Midnight Commander to accomplish his work.
Midnight Commander performed without a problem dur-
ing this time.

The error log shows that Midnight Commander has a
memory error that is triggered whenever a blank line oc-
curs in its configuration file. We verified that this er-
ror completely disabled the Bounds Check version until
we removed the blank lines. The Failure Oblivious ver-
sion, on the other hand, executed successfully through all
memory errors to perform flawlessly for all requests.

4.6 Mutt
Mutt is a customizable, text-based mail user agent that is
widely used in the Unix system administration commu-
nity [8]. It is descended from ELM [4] and supports a
variety of features including email threading and correct
NFS mail spool locking. We used Mutt version 1.4. As
described at [7] and discussed in Section 2, this version
is vulnerable to an attack that exploits a memory error in
the conversion from UTF-8 to UTF-7 string formats.

4.6.1 The Memory Error

When Mutt opens a mailbox with an IMAP address, it
converts the mail folder name from UTF-8 to UTF-7
character encoding. Mutt allocates (in the heap) a tem-
porary character buffer to hold the UTF-7 encoded name.
Because UTF-8 to UTF-7 conversion can increase the
length of the name, Mutt allocates a buffer twice as long
as the UTF-8 name to hold the converted UTF-7 name.
However, this buffer is not, in general, long enough —
the conversion can increase the length of the UTF-8
name by as much as a factor of 7/3 and not just a factor

of 2. When presented with an appropriately constructed
UTF-8 folder name, Mutt writes the converted name be-
yond the end of the UTF-7 buffer.

4.6.2 Security and Resilience

The Standard version performs the writes, corrupts its
heap, and terminates with a segmentation violation. The
Bounds Check version detects the memory error and ter-
minates before the user interface comes up. The Failure
Oblivious version discards the out of bounds writes, ef-
fectively truncating the converted name. Note that even
though the UTF-7 buffer may contain no null characters,
the folder name is effectively null-terminated: reads be-
yond the end of the buffer will eventually return null.
Once Mutt has obtained the converted folder name, the
next step is to place a quoted and escaped version of the
name into yet another buffer, then pass this name on as
part of a command to the IMAP server. The IMAP server
returns an error code indicating that the folder does not
exist, Mutt’s standard error-handling logic handles the
returned error code, and Mutt continues on to success-
fully process any subsequent user commands.

4.6.3 Performance

Figure 6 presents the request processing times for the
Standard and Failure Oblivious versions of Mutt. The
Read request reads a selected empty message and the
Move request moves an empty message from one folder
to another. We performed each request at least twenty
times and report the means and standard deviations of
the request processing times. All times are given in mil-
liseconds.

Request Standard Failure Slowdown
Oblivious

Read .655± 4.3% 2.31± 4.8% 3.6
Move 6.94± 6.2% 9.78± 6.2% 1.4

Figure 6: Request Processing Times for Mutt
(milliseconds)

Because Mutt is an interactive program, its perfor-
mance is acceptable as long as it feels responsive to its
users. These performance results make it clear that the
application of failure-oblivious computing to this pro-
gram should not degrade its interactive feel. Our sub-
jective experience confirms this expectation: all pause
times are imperceptible for both the Standard and Fail-
ure Oblivious versions.

4.6.4 Stability

During the stability testing period we used the Failure
Oblivious version of Mutt to process email messages.
We configured Mutt to trigger the security vulnerability
described above when it loaded. Mutt successfully ex-
ecuted through the resulting memory errors to correctly



execute all of his requests. We were able to read, for-
ward, and compose mail with no problems even after ex-
ecuting through the memory error. We also used Mutt to
process (with no problems) a large mail folder containing
over 100,000 messages.

4.7 Discussion
Despite the fact that the dynamic bounds checks have,
in theory, the potential to substantially degrade the per-
formance, for several of our servers the overhead is rel-
atively small — the execution times of many of the
tasks we measured are apparently dominated by activi-
ties (such I/O or operating system functionality) outside
the program. Because failure-oblivious computing does
not affect the efficiency of these activities, the amortized
overhead is relatively small. Moreover, several of our
servers are interactive, and interactive tasks can tolerate
substantial execution time increases as long as the sys-
tem maintains its interactive feel. Our results show that
failure-oblivious computing maintained acceptable inter-
active response times for all of our interactive tasks, even
for tasks with substantial execution time increases.

For servers, a monitor that detects memory errors
and reboots the server when it commits such an error
might seem to provide an obvious potential alternative to
failure-oblivious computing. Apache, for example, im-
plements a regenerating pool of child processes. The
net effect is that the Bounds Check version of Apache
can terminate child processes at the first memory error
without impairing its ability to continue to service new
requests. In comparison with the Failure Oblivious ver-
sion, the only downside is the performance degradation
associated with the resulting increase in process manage-
ment overhead.

The situation is somewhat different for Pine, Mutt, and
Midnight Commander. All of these programs initialize
with no memory errors on standard workloads. But once
the mailbox contains a message that elicits a memory er-
ror (Pine), the system is configured to use a mail folder
whose name elicits a memory error (Mutt), or the con-
figuration file contains a blank line (Midnight Comman-
der), the Bounds Check versions exit during initializa-
tion. In this situation, restarting is of no use because the
restarted computations would, once again, simply exit
during initialization. Because these errors are triggered
only by carefully crafted or unusual inputs, they could
easily make it through a fairly rigorous testing process
without being detected. These servers illustrate how ag-
gressively terminating computations at the first memory
error can leave deployed systems vulnerable to unantic-
ipated inputs that trigger memory errors and persist or
recurr in the environment.

Because Sendmail has a memory error whenever it
wakes up to check for work, the Bounds Check version

is simply unusable with or without restarting. But note
that because the memory errors occur on every execution,
it should be possible to use the Bounds Check version
to find and eliminate them (as well as any other repro-
ducible memory errors that occur during testing). Even
with this change, however, terminating and restarting
Sendmail might prove to be problematic — the Sendmail
monitor would somehow have to avoid repeatedly pre-
senting Sendmail with messages that triggered a mem-
ory error. In contrast, the Failure Oblivious version of
Sendmail correctly executed through memory errors to
correctly process subsequent messages and the Failure
Oblivious version of Pine correctly processed mail mes-
sages with headers that elicited memory errors.

5 Related Work
We first note that failure-oblivious computing is
an instance of acceptability-oriented computing [47].
Acceptability-oriented computing replaces the concept
of program correctness with a set ofacceptability prop-
ertiesthat must hold for the execution of the program to
remain acceptable. The programmer then builds and de-
ploys acceptability enforcement mechanismswhose ac-
tions ensure that these acceptability properties do, in fact,
hold. In the case of failure-oblivious computing, the ac-
ceptability properties are the absence of memory errors
and continued execution; the acceptability enforcement
mechanism discards invalid writes and returns manufac-
tured values for invalid reads.

Memory errors, failures, and failure recovery have
been core concerns in the field of computer systems since
its inception. We discuss related work in these areas.

5.1 Variants and Extensions
We have implemented with several variants and exten-
sions of our basic failure-oblivious compiler. These
include a compiler that implementsboundless memory
blocks— instead of discarding invalid writes, the gener-
ated code stores the values in a hash table indexed under
the data unit identifier and offset [48]. Corresponding
invalid reads return the appropriate stored values. This
variant eliminates size calculation errors — if the pro-
gram logic is otherwise acceptable, the program will ex-
ecute acceptably. Another variant redirects out of bounds
accesses back into the accessed data unit at an appropri-
ate offset. This strategy may help related sets of out of
bounds reads return consistent values from properly ini-
tialized data units. Our experience indicates that our set
of servers works acceptably with both of these variants.

5.2 Transactional Function Termination
Researchers have also developed a technique to protect
servers against buffer-overflow attacks by dynamically
detecting buffer overflows, then immediately terminating



the enclosing function and continuing on to execute the
code immediately following the corresponding function
call [52]. The results indicate that, in many cases, the
program can continue on to execute acceptably after the
premature function termination. This experience is con-
sistent with our experience that servers can continue to
execute successfully through memory errors if they sim-
ply discard out of bounds writes and manufacture values
for out of bounds reads.

5.3 Safe-C Compilers
Our work builds directly on previous research into
memory-safe C implementations [17, 58, 45, 36, 50, 37].
Building on Ruwase and Lam’s implementation enabled
us to apply failure-oblivious computing directly to legacy
programs without modification (some implementations
also have this property [58]); some other implementa-
tions may require source code changes [22, 38].

It is also feasible to apply failure-oblivious computing
to safe languages such as Java or ML by simply replacing
the generated code that throws an exception in response
to a memory error. As for safe-C implementations, the
new code would simply discard illegal writes and return
manufactured values for illegal reads.

5.4 Static Analysis
It is also possible to attack the memory error problem
directly at its source: a combination of static analysis
and program annotations should, in principle, enable pro-
grammers to deliver programs that are completely free
of memory errors [28, 27, 57, 49]. All of these tech-
niques share the same advantage (a static guarantee that
the program will not exhibit a specific kind of memory
error) and drawbacks (the need for programmer annota-
tions or the possibility of conservatively rejecting safe
programs). Even if the analysis is not able to verify that
the entire program is free of memory errors, it may be
able to statically recognize some accesses that will never
cause a memory error, remove the dynamic checks for
those accesses, and thereby reduce any dynamic check-
ing overhead [32, 18, 49].

Researchers have also developed unsound, incom-
plete analyses that heuristically identify potential er-
rors [54, 19]. The advantage is that such approaches typ-
ically require no annotations and scale better to larger
programs; the disadvantage is that (because they are un-
sound) they may miss some genuine memory errors.

5.5 Buffer-Overrun Detection Tools
Researchers have developed techniques that are designed
to detect buffer-overrun attacks after they have occurred,
then halt the execution of the program before the attack
can take effect. StackGuard [23] and StackShield [16]
modify the compiler to generate code to detect attacks

that overwrite the return address on the stack; Stack-
Shield also performs range checks to detect overwrit-
ten function pointers. It is also possible to apply buffer-
overrun detection directly to binaries. Purify instruments
the binary to detect a range of memory errors, including
buffer overruns [34]. Program shepherding uses an effi-
cient binary interpreter to prevent an attacker from exe-
cuting injected code [39]. A key difference is that failure-
oblivious computing prevents the attack from performing
the writes that corrupt the address space, which enables
the program to continue to execute successfully.

5.6 Rebooting
A traditional and widely used error recovery mechanism
is to reboot the system, with repair applied during the re-
boot if necessary to bring the system back up success-
fully [30]. Mechanisms such as fast reboots [51] and
checkpointing [41, 42] can improve the performance of
the basic reboot process.

It is also possible to subdivide (potentially recursively)
a system into isolated components, then apply a partial
reboot strategy at the granularity of the components. By
promoting the construction of the operating system as
a collection of small components, microkernel architec-
tures [46, 33, 29] support the application of this approach
to operating systems. It is also possible to use mecha-
nisms such as software-based fault isolation [55] or fine-
grained hardware memory protection [56] to apply this
strategy to selected parts of monolithic operating sys-
tems such as kernel extensions. The experimental results
show that this approach can eliminate the vast majority of
system crashes caused by such extensions [53]. Helper
agents are often useful to facilitate the clean termination
and reintegration of the restarted component back into
the running system (this approach generalizes to support
arbitrary recovery actions) [53]. It may also be worth-
while to recursively restart larger and larger subsystems
until the system successfully recovers [20].

Failure-oblivious computing differs in that it is de-
signed to keep the system operating through errors in-
stead of restarting. The potential advantages include bet-
ter availability because of the elimination of down time
and the elimination of vulnerabilities to persistent errors.
Rebooting, on the other hand, may help ensure that the
system stays more closely within the anticipated operat-
ing envelope.

5.7 Manual Error Detection and Recovery
Motivated in part by the need to avoid rebooting, re-
searchers have developed more fine-grain error recov-
ery mechanisms. The Lucent 5ESS switch and the IBM
MVS operating system, for example, both contain soft-
ware components that detect and attempt to repair in-
consistent data structures [35, 44, 31]. Other techniques



include failure recovery blocks and exception handlers,
both of which may contain hand-coded recovery algo-
rithms [43].

To apply these techniques, the programmer must an-
ticipate some aspects of the error and, based on this un-
derstanding, develop an appropriate recovery strategy.
Failure-oblivious computing, on the other hand, can be
applied without programmer intervention to any system
and may therefore make the system oblivious to even
completely unanticipated errors. Of course, this general-
ity cuts both ways — in particular, failure-oblivious com-
puting may produce less appropriate responses to antic-
ipated errors. We therefore view failure-oblivious com-
puting as largely orthogonal to more application-tailored
recovery mechanisms (although failure-oblivious com-
puting may eliminate some of the errors that these mech-
anisms would otherwise have handled).

Data structure repair [26] occupies a middle ground.
Like more traditional error detection and recovery tech-
niques, it requires the programmer to provide some
application-specific information (in the case of data
structure repair, a data structure consistency specifica-
tion). But because there is no explicit recovery procedure
and because the consistency specification is not tied to
specific blocks of code, data structure repair may enable
systems to more effectively recover from unanticipated
data structure corruption errors.

6 Conclusion
The seemingly inherent brittleness, complexity, and vul-
nerability (to both errors and attacks) of computer pro-
grams can make them frustrating or even dangerous
to use. While existing memory-safe languages and
memory-safe implementations of unsafe languages may
eliminate memory-error vulnerabilities, they can also de-
crease availability by aggressively throwing exceptions
or even terminating the program at the first sign of an
error.

Our results show that failure-oblivious computation
enhances availability, resilience, and security by continu-
ing to execute through memory errors while ensuring that
such errors do not corrupt the address space or data struc-
tures of the computation. In many cases failure-oblivious
computing can automatically convert unanticipated and
dangerous inputs or data into anticipated error cases that
the program is designed to handle correctly. The result
is that the program survives the unanticipated situation,
returns back into its normal operating envelope, and con-
tinues to satisfy the needs of its users.

One of the major long-term goals of computer science
has been understanding how to build more robust, re-
silient programs that can flexibly and successfully cope
with unanticipated situations. Our research suggests that,
remarkably, current systems may already have a substan-

tial capacity for exhibiting this kind of desirable behavior
if we only provide a way for them to ignore their errors,
protect their data structures from damage, and continue
to execute.
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Abstract
Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C; D.3.4 [Programming
Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction
The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c© ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2011 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), San Jose,
CA, Jun. 2011, http://doi.acm.org/10.1145/NNNNNNN.NNNNNNN

1 int foo (void) {
2 signed char x = 1;
3 unsigned char y = 255;
4 return x > y;
5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the
compilers they use” (emphasis ours). As another example, the front
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page of the Web site for GMP, the GNU Multiple Precision Arith-
metic Library, states, “Most problems with compiling GMP these
days are due to problems not in GMP, but with the compiler.”

Improving the correctness of C compilers is a worthy goal:
C code is part of the trusted computing base for almost every modern
computer system including mission-critical financial servers and life-
critical pacemaker firmware. Large-scale source-code verification
efforts such as the seL4 OS kernel [12] and Airbus’s verification
of fly-by-wire software [24] can be undermined by an incorrect
C compiler. The need for correct compilers is amplified because
operating systems are almost always written in C and because C
is used as a portable assembly language. It is targeted by code
generators from a wide variety of high-level languages including
Matlab/Simulink, which is used to generate code for industrial
control systems.

Despite recent advances in compiler verification, testing is still
needed. First, a verified compiler is only as good as its specification
of the source and target language semantics, and these specifications
are themselves complex and error-prone. Second, formal verification
seldom provides end-to-end guarantees: “details” such as parsers,
libraries, and file I/O usually remain in the trusted computing
base. This second point is illustrated by our experience in testing
CompCert [14], a verified C compiler. Using Csmith, we found
previously unknown bugs in unproved parts of CompCert—bugs
that cause this compiler to silently produce incorrect code.

Our goal was to discover serious, previously unknown bugs:

• in mainstream C compilers like GCC and LLVM;
• that manifest when compiling core language constructs such as

arithmetic, arrays, loops, and function calls;
• targeting ubiquitous architectures such as x86 and x86-64; and
• using mundane optimization flags such as –O and –O2.

This paper reports our experience in achieving this goal. Our first
contribution is to advance the state of the art in compiler test-case
generation, finding—as far as we know—many more previously
unknown compiler bugs than any similar effort has found. Our
second contribution is to qualitatively and quantitatively characterize
the bugs found by Csmith: What do they look like? In what parts of
the compilers are they primarily found? How are they distributed
across a range of compiler versions?

2. Csmith
Csmith began as a fork of Randprog [27], an existing random
C program generator about 1,600 lines long. In earlier work, we
extended and adapted Randprog to find bugs in C compilers’
translation of accesses to volatile-qualified objects [6], resulting
in a 7,000-line program. Our previous paper showed that in many
cases, these bugs could be worked around by turning volatile-object
accesses into calls to helper functions. The key observation was this:
while the rules regarding the addition, elimination, and reordering
of accesses to volatile objects are not at all like the rules governing
ordinary variable accesses in C, they are almost identical to the rules
governing function calls.

For some test programs generated by Randprog, our rewriting
procedure was insufficient to correct a defect that we had found in
the C compiler. Our hypothesis was that this was always due to “reg-
ular” compiler bugs not related to the volatile qualifier. To investigate
these compiler defects, we shifted our research emphasis toward
looking for generic wrong-code bugs. We turned Randprog into
Csmith, a 40,000-line C++ program for randomly generating C pro-
grams. Compared to Randprog, Csmith can generate C programs
that utilize a much wider range of C features including complex
control flow and data structures such as pointers, arrays, and structs.
Most of Csmith’s complexity arises from the requirement that it
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Figure 2. Finding bugs in three compilers using randomized differ-
ential testing

interleave static analysis with code generation in order to produce
meaningful test cases, as described below.

2.1 Randomized Differential Testing using Csmith
Random testing [9], also called fuzzing [17], is a black-box testing
method in which test inputs are generated randomly. Randomized
differential testing [16] has the advantage that no oracle for test
results is needed. It exploits the idea that if one has multiple, deter-
ministic implementations of the same specification, all implementa-
tions must produce the same result from the same valid input. When
two implementations produce different outputs, one of them must
be faulty. Given three or more implementations, a tester can use
voting to heuristically determine which implementations are wrong.
Figure 2 shows how we use these ideas to find compiler bugs.

2.2 Design Goals
Csmith has two main design goals. First and most important, every
generated program must be well formed and have a single meaning
according to the C standard. The meaning of a C program is the
sequence of side effects it performs. The principal side effect of a
Csmith-generated program is to print a value summarizing the com-
putation performed by the program.1 This value is a checksum of the
program’s non-pointer global variables at the end of the program’s
execution. Thus, if changing the compiler or compiler options causes
the checksum emitted by a Csmith-generated program to change, a
compiler bug has been found.

The C99 language [11] has 191 undefined behaviors—e.g.,
dereferencing a null pointer or overflowing a signed integer—that
destroy the meaning of a program. It also has 52 unspecified
behaviors—e.g., the order of evaluation of arguments to a function—
where a compiler may choose from a set of options with no
requirement that the choice be made consistently. Programs emitted
by Csmith must avoid all of these behaviors or, in certain cases
such as argument-evaluation order, be independent of the choices
that will be made by the compiler. Many undefined and unspecified
behaviors can be avoided structurally by generating programs in
such a way that problems never arise. However, a number of
important undefined and unspecified behaviors are not easy to avoid
in a structural fashion. In these cases, Csmith solves the problem
using static analysis and by adding run-time checks to the generated
code. Section 2.4 describes the hazards that Csmith must avoid and
its strategies for avoiding them.

Csmith’s second design goal is to maximize expressiveness
subject to constraints imposed by the first goal. An “expressive”
generator supports many language features and combinations of
features. Our hypothesis is that expressiveness is correlated with
bug-finding power.

1 Accesses to volatile objects are also side effects as described in the C
standard. We do not discuss these “secondary” side effects of Csmith-
generated programs further in this paper.
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Csmith creates programs with the following features:

• function definitions, and global and local variable definitions
• most kinds of C expressions and statements
• control flow: if/else, function calls, for loops, return,
break, continue, goto

• signed and unsigned integers of all standard widths
• arithmetic, logical, and bitwise operations on integers
• structs: nested, and with bit-fields
• arrays of and pointers to all supported types, including pointers

and arrays
• the const and volatile type qualifiers, including at different

levels of indirection for pointer-typed variables

The most important language features not currently supported
by Csmith are strings, dynamic memory allocation, floating-point
types, unions, recursion, and function pointers. We plan to add some
of these features to future versions of our tool.

2.3 Randomly Generating Programs
The shape of a program generated by Csmith is governed by a
grammar for a subset of C. A program is a collection of type,
variable, and function definitions; a function body is a block; a
block contains a list of declarations and a list of statements; and a
statement is an expression, control-flow construct (e.g., if, return,
goto, or for), assignment, or block. Assignments are modeled
as statements—not expressions—which reflects the most common
idiom for assignments in C code. We leverage our grammar to
produce other idiomatic code as well: in particular, we include a
statement kind that represents a loop iterating over an array. The
grammar is implemented by a collection of hand-coded C++ classes.

Csmith maintains a global environment that holds top-level
definitions: i.e., types, global variables, and functions. The global
environment is extended as new entities are defined during program
generation. To hold information relevant to the current program-
generation point, Csmith also maintains a local environment with
three primary kinds of information. First, the local environment
describes the current call chain, supporting context-sensitive pointer
analysis. Second, it contains effect information describing objects
that may have been read or written since (1) the start of the current
function, (2) the start of the current statement, and (3) the previous
sequence point.2 Third, the local environment carries points-to
facts about all in-scope pointers. These elements and their roles
in program generation are further described in Section 2.4.

Csmith begins by randomly creating a collection of struct type
declarations. For each, it randomly decides on a number of members
and the type of each member. The type of a member may be
a (possibly qualified) integral type, a bit-field, or a previously
generated struct type.

After the preliminary step of producing type definitions, Csmith
begins to generate C program code. Csmith generates a program
top-down, starting from a single function called by main. Each step
of the program generator involves the following sub-steps:

1. Csmith randomly selects an allowable production from its gram-
mar for the current program point. To make the choice, it consults

2 As explained in Section 3.8 of the C FAQ [25], “A sequence point is a
point in time at which the dust has settled and all side effects which have
been seen so far are guaranteed to be complete. The sequence points listed
in the C standard are at the end of the evaluation of a full expression (a full
expression is an expression statement, or any other expression which is not a
subexpression within any larger expression); at the ||, &&, ?:, and comma
operators; and at a function call (after the evaluation of all the arguments,
and just before the actual call).”

a probability table and a filter function specific to the current
point: there is a table/filter pair for statements, another for ex-
pressions, and so on. The table assigns a probability to each
of the alternatives, where the sum of the probabilities is one.
After choosing a production from the table, Csmith executes the
filter, which decides if the choice is acceptable in the current con-
text. Filters enforce basic semantic restrictions (e.g., continue
can only appear within a loop), user-controllable limits (e.g.,
maximum statement depth and number of functions), and other
user-controllable options. If the filter rejects the selected pro-
duction, Csmith simply loops back, making selections from the
table until the filter succeeds.

2. If the selected production requires a target—e.g., a variable or
function—then the generator randomly selects an appropriate
target or defines a new one. In essence, Csmith dynamically
constructs a probability table for the potential targets and in-
cludes an option to create a new target. Function and variable
definitions are thus created “on demand” at the time that Csmith
decides to refer to them.

3. If the selected production allows the generator to select a type,
Csmith randomly chooses one. Depending on the current context,
the choice may be restricted (e.g., while generating the operands
of an integral-typed expression) or unrestricted (e.g., while
generating the types of parameters to a new function). Random
choices are guided by the grammar, probability tables, and filters
as already described.

4. If the selected production is nonterminal, the generator recurses.
It calls a function to generate the program fragment that corre-
sponds to the nonterminal production. More generally, Csmith
recurses for each nonterminal element of the current production:
e.g., for each subcomponent of a compound statement, or for
each parameter in a function call.

5. Csmith executes a collection of dataflow transfer functions. It
passes the points-to facts from the local environment to the
transfer functions, which produce a new set of points-to facts.
Csmith updates the local environment with these facts.

6. Csmith executes a collection of safety checks. If the checks
succeed, the new code fragment is committed to the generated
program. Otherwise, the fragment is dropped and any changes
to the local environment are rolled back.

When Csmith creates a call to a new function—one whose body
does not yet exist—generation of the current function is suspended
until the new function is finished. Thus, when the top-level function
has been completely generated, Csmith is finished. At that point
it pretty-prints all of the randomly generated definitions in an
appropriate order: types, globals, prototypes, and functions. Finally,
Csmith outputs a main function. The main function calls the top-
level randomly generated function, computes a checksum of the
non-pointer global variables, prints the checksum, and exits.

2.4 Safety Mechanisms
Table 1 lists the mechanisms that Csmith uses to avoid generating C
programs that execute undefined behaviors or depend on unspecified
behaviors. This section provides additional detail about the hazards
that Csmith must avoid and its strategies for avoiding them.

Integer safety More and more, compilers are aggressively ex-
ploiting the undefined nature of integer behaviors such as signed
overflow and shift-past-bitwidth. For example, recent versions of
Intel CC, GCC, and LLVM evaluate (x+1)>x to 1 while also eval-
uating (INT_MAX+1) to INT_MIN. In another example, discovered
by the authors of Google’s Native Client software [3], routine refac-
toring of C code caused the expression 1<<32 to be evaluated on a
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Code-Generation- Code-Execution-
Problem Time Solution Time Solution
use without initialization explicit initializers, —

avoid jumping over
initializers

qualifier mismatch static analysis —
infinite recursion disallow recursion —
signed integer overflow bounded loop vars safe math wrappers
OOB array access bounded loop vars force index in bounds
unspecified eval. order effect analysis —

of function arguments
R/W and W/W conflicts effect analysis —

betw. sequence points
access to out-of-scope pointer analysis —

stack variable
null pointer dereference pointer analysis null pointer checks

Table 1. Summary of Csmith’s strategies for avoiding undefined
and unspecified behaviors. When both a code-generation-time and
code-execution-time solution are listed, Csmith uses both.

platform with 32-bit integers. The compiler exploited this undefined
behavior to turn a sandboxing safety check into a nop.

To keep Csmith-generated programs from executing integer
undefined behaviors, we implemented a family of wrapper functions
for arithmetic operators whose (promoted) operands might overflow.
This was not difficult, but had a few tricky aspects. For example,
the C99 standard does not explicitly identify the evaluation of
INT_MIN%-1 as being an undefined behavior, but most compilers
treat it as such. The C99 standard also has very restrictive semantics
for signed left-shift: it is illegal (for implementations using 2’s
complement integers) to shift a 1-bit into or past the sign bit. Thus,
evaluating 1<<31 destroys the meaning of a C99 program on a
platform with 32-bit ints.

Several safe math libraries for C that we examined themselves ex-
ecute operations with undefined behavior while performing checks.
Apparently, avoiding such behavior is indeed a tricky business.

Type safety The aspect of C’s type system that required the
most care was qualifier safety: ensuring that const and volatile
qualifiers attached to pointers at various levels of indirection are not
removed by implicit casts. Accessing a const- or volatile-qualified
object through a non-qualified pointer results in undefined behavior.

Pointer safety Null-pointer dereferences are easy to avoid using
dynamic checks. There is, on the other hand, no portable run-time
method for detecting references to a function-scoped variable whose
lifetime has ended. (Hacks involving the stack pointer are not robust
under inlining.) Although there are obvious ways to structurally
avoid this problem, such as using a type system to ensure that a
pointer to a function-scoped variable never outlives the function, we
judged this kind of strategy to be too restrictive. Instead, Csmith
freely permits pointers to local variables to escape (e.g., into global
variables) but uses a whole-program pointer analysis to ensure that
such pointers are not dereferenced or used in comparisons once they
become invalid.

Csmith’s pointer analysis is flow sensitive, field sensitive, context
sensitive, path insensitive, and array-element insensitive. A points-to
fact is an explicit set of locations that may be referenced, and may
include two special elements: the null pointer and the invalid (out-
of-scope) pointer. Points-to sets containing a single element serve as
must-alias facts unless the pointed-to object is an array element.
Because Csmith does not generate programs that use the heap,
assigning names to storage locations is trivial.

Effect safety The C99 standard states that “[t]he order of evalua-
tion of the function designator, the actual arguments, and subexpres-
sions within the actual arguments is unspecified.” Also, undefined

behavior occurs if “[b]etween two sequence points, an object is
modified more than once, or is modified and the prior value is read
other than to determine the value to be stored.”

To avoid these problems, Csmith uses its pointer analysis to
perform a conservative interprocedural analysis and determine the
effect of every expression, statement, and function that it generates.
An effect consists of two sets: locations that may be read and
locations that may be written. Csmith ensures that no location is
both read and written, or written more than once, between any pair
of sequence points. As a special case, in an assignment, a location
can be read on the RHS and also written on the LHS.

Effects are computed, and effect safety guaranteed, incrementally.
At each sequence point, Csmith resets the current effect (i.e., may-
read and may-write sets). As fragments of code are generated,
Csmith tests if the new code has a read/write or write/write conflict
with the current effect. If a conflict is detected, the new code is
thrown away and the process restarts. For example, if Csmith is
generating an expression p + func() and it happens that func may
modify p, the call to func is discarded and a new subexpression is
generated. If there is no conflict, the read and write sets are updated
and the process continues. Probabilistic progress is guaranteed: by
design, Csmith always has a non-zero chance of generating code
that introduces no new conflicts, such as a constant expression.

Array safety Csmith uses several methods to ensure that array
indices are in bounds. First, it generates index variables that are
modified only in the “increment” parts of for loops and whose
values never exceed the bounds of the arrays being indexed. Second,
variables with arbitrary value are forced to be in bounds using the
modulo operator. Finally, as needed, Csmith emits explicit checks
against array lengths.

Initializer safety A C program must not use an uninitialized
function-scoped variable. For the most part, initializer safety is
easy to ensure structurally by initializing variables close to where
they are declared. Gotos introduce the possibility that initializers
may be jumped over; Csmith solves this by forbidding gotos from
spanning initialization code.

2.5 Efficient Global Safety
Csmith never commits to a code fragment unless it has been shown
to be safe. However, loops and function calls threaten to invalidate
previously validated code. For example, consider the following code,
in which Csmith has just added the loop back-edge at line 7.

1 int i;
2 int *p = &i;
3 while (...) {
4 *p = 3;
5 ...
6 p = 0;
7 }

The assignment through p at line 4 was safe when it was
generated. However, the newly added line 7 makes line 4 unsafe,
due to the back-edge carrying a null-valued p.

One solution to this problem is to be conservative: run the whole-
program dataflow analysis before committing any new statement to
the program. This is not efficient. We therefore restrict the analysis
to local scope except when function calls and loops are involved. For
a function call, the callee is re-analyzed at each call site immediately.

Csmith uses a different strategy for loops. This is because so
many statements are inside loops, and the extra calls to the dataflow
analysis add substantial overhead to the code generator. Csmith’s
strategy is to optimistically generate code that is locally safe. Local
safety includes running a single step of the dataflow engine (which
reaches a sound result when generating code not inside any loop).

4



The global fixpoint analysis is run when a loop is closed by adding
its back-edge. If Csmith finds that the program contains unsafe
statements, it deletes code starting from the tail of the loop until
the program becomes globally safe. This strategy is about three
times faster than pessimistically running the global dataflow analysis
before adding every piece of code.

2.6 Design Trade-offs
Allow implementation-defined behavior An ideally portable test
program would be “strictly conforming” to the C language standard.
This means that the program’s output would be independent of all
unspecified and unspecified behaviors and, in addition, be indepen-
dent of any implementation-defined behavior. C99 has 114 kinds of
implementation-defined behavior, and they have pervasive impact
on the behavior of real C programs. For example, the result of per-
forming a bitwise operation on a signed integer is implementation-
defined, and operands to arithmetic operations are implicitly cast to
int (which has implementation-defined width) before performing
the operation. We believe it is impossible to generate realistically ex-
pressive C code that retains a single interpretation across all possible
choices of implementation-defined behaviors.

Programs generated by Csmith do not generate the same output
across compilers that differ in (1) the width and representation of
integers, (2) behavior when casting to a signed integer type when
the value cannot be represented in an object of the target type, and
(3) the results of bitwise operations on signed integers. In practice
there is not much diversity in how C implementations define these
behaviors. For mainstream desktop and embedded targets, there
are roughly three equivalence classes of compiler targets: those
where int is 32 bits and long is 64 bits (e.g., x86-64), those where
int and long are 32 bits (e.g., x86, ARM, and PowerPC), and
those where int is 16 bits and long is 32 bits (e.g., MSP430 and
AVR). Using Csmith, we can perform differential testing within an
equivalence class but not across classes.

No ground truth Csmith’s programs are not self-checking: we are
unable to predict their outputs without running them. This is not a
problem when we use Csmith for randomized differential testing.

We have never seen an “interesting” split vote where randomized
differential testing of a collection of C compilers fails to produce
a clear consensus answer, nor have we seen any cases in which a
majority of tested compilers produces the same incorrect result.
(We would catch the problem by hand as part of verifying the
failure-inducing program.) In fact, we have not seen even two
unrelated compilers produce the same incorrect output for a Csmith-
generated test case. It therefore seems unlikely that all compilers
under test would produce the same incorrect output for a test case.
Of course, if that did happen we would not detect that problem; this
is an inherent limitation of differential testing without an oracle.
In summary, despite the fact that Knight and Leveson [13] found
a substantial number of correlated errors in an experiment on N-
version programming, Csmith has yielded no evidence of correlated
failures among unrelated C compilers. Our hypothesis is that the
observed lack of correlation stems from the fact that most compiler
bugs are in passes that operate on an intermediate representation
and there is substantial diversity among IRs.

No guarantee of termination It is not difficult to generate random
programs that always terminate. However, we judged that this would
limit Csmith’s expressiveness too much: for example, it would force
loops to be highly structured. Additionally, always-terminating
tests cannot find compiler bugs that wrongfully terminate a non-
terminating program. (We have found bugs of this kind.) About
10% of the programs generated by Csmith are (apparently) non-
terminating. In practice, during testing, they are easy to deal with
using timeouts.

Target middle-end bugs Commercial test suites for C compil-
ers [1, 19, 20] are primarily aimed at checking standards confor-
mance. Csmith, on the other hand, is mainly intended to find bugs in
the parts of a compiler that perform transformations on an interme-
diate representation—the so-called “middle end” of a compiler. As a
result, we have found large numbers of middle-end bugs missed by
existing testing techniques (Section 3.6). At the same time, Csmith
is rather poor at finding gaps in standards conformance. For example,
it makes no attempt to test a compiler’s handling of trigraphs, long
identifier names, or variadic functions.

Targeting the middle end has several aspects. First, all generated
programs pass the lexer, parser, and typechecker. Second, we per-
formed substantial manual tuning of the 80 probabilities that govern
Csmith’s random choices. Our goal was to make the generated pro-
grams “look right”—to contain a balanced mix of arithmetic and
bitwise operations, of references to scalars and aggregates, of loops
and straight-line code, of single-level and multi-level indirections,
and so on. Third, Csmith specifically generates idiomatic code (e.g.,
loops that access all elements of an array) to stress-test parts of the
compiler we believe to be error-prone. Fourth, we designed Csmith
with an eye toward generating programs that exercise the constructs
of a compiler’s intermediate representation, and we decided to avoid
generating source-level diversity that is unlikely to improve the
“coverage” of a compiler’s intermediate representations. For exam-
ple, since additional levels of parentheses around expressions are
stripped away early in the compilation process, we do not generate
them, nor do we generate all of C’s syntactic loop forms since they
are typically all lowered to the same IR constructs. Finally, Csmith
was designed to be fast enough that it can generate programs that
are a few tens of thousands of lines long in a few seconds. Large
programs are preferred because (empirically—see Section 3.3) they
find more bugs. In summary, many aspects of Csmith’s design and
implementation were informed by our understanding of how modern
compilers work and how they break.

3. Results
We conducted five experiments using Csmith, our random program
generator. This section summarizes our findings.

Our first experiment was uncontrolled and unstructured: over a
three-year period, we opportunistically found and reported bugs in
a variety of C compilers. We found bugs in all the compilers we
tested—hundreds of defects, many classified as high-priority bugs.
(§3.1)

In the second experiment, we compiled and ran one million
random programs using several years’ worth of versions of GCC
and LLVM, to understand how their robustness is evolving over time.
As measured by our tests over the programs that Csmith produces,
the quality of both compilers is generally improving. (§3.2)

Third, we evaluated Csmith’s bug-finding power as a function of
the size of the generated C programs. The largest number of bugs is
found at a surprisingly large program size: about 81 KB. (§3.3)

Fourth, we compared Csmith’s bug-finding power to that of four
previous random C program generators. Over a week, Csmith was
able to find significantly more distinct compiler crash errors than
previous program generators could. (§3.4)

Finally, we investigated the effect of testing random programs on
branch, function, and line coverage of the GCC and LLVM source
code. We found that these metrics did not significantly improve
when we added randomly generated programs to the compilers’
existing test suites. Nevertheless, as shown by our other results,
Csmith-generated programs allowed us to discover bugs that are
missed by the compilers’ standard test suites. (§3.5)

We conclude the presentation of results by analyzing some of
the bugs we found in GCC and LLVM. (§3.6, §3.7)
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GCC LLVM
Crash 2 10
Wrong code 2 9
Total 4 19

Table 2. Crash and wrong-code bugs found by Csmith that manifest
when compiler optimizations are disabled (i.e., when the –O0
command-line option is used)

3.1 Opportunistic Bug Finding
We reported bugs to 11 different C compiler development teams.
Five of these compilers (GCC, LLVM, CIL, TCC, and Open64)
were open source and five were commercial products. The eleventh,
CompCert, is publicly available but not open source.

What kinds of bugs are there? It is useful to distinguish between
errors whose symptoms manifest at compile time and those that
only manifest when the compiler’s output is executed. Compile-
time bugs that we see include assertion violations or other internal
compiler errors; involuntary compiler termination due to memory-
safety problems; and cases in which the compiler exhausts the RAM
or CPU time allocated to it. We say that a compile-time crash error
has occurred whenever the compiler process exits with a status other
than zero or fails to produce executable output. Errors that manifest
at run time include the computation of a wrong result; a crash or
other abnormal termination of the generated code; termination of a
program that should have executed forever; and non-termination of
a program that should have terminated. We refer to these run-time
problems as wrong-code errors. A silent wrong-code error is one
that occurs in a program that was produced without any sort of
warning from the compiler; i.e., the compiler silently miscompiled
the test program.

Experience with commercial compilers There exist many more
commercial C compilers than we could easily test. The ones we
chose to study are fairly popular and were produced by what we
believe are some of the strongest C compiler development teams.
Csmith found wrong-code errors and crash errors in each of these
tools within a few hours of testing.

Because we are not paying customers, and because our findings
represent potential bad publicity, we did not receive a warm response
from any commercial compiler vendor. Thus, for the most part, we
simply tested these compilers until we found a few crash errors and
a few wrong-code errors, reported them, and moved on.

Experience with open-source compilers For several reasons, the
bulk of our testing effort went towards GCC and LLVM. First and
most important, compiler testing is inherently interactive: we require
feedback from the development team in the form of bug fixes.
Bugs that occur with high probability can mask tricky, one-in-a-
million bugs; thus, testing proceeds most smoothly when we can
help developers rapidly destroy the easy bugs. Both the GCC and
LLVM teams were responsive to our bug reports. The LLVM team
in particular fixed bugs quickly, often within a few hours and usually
within a week. The second reason we prefer dealing with open-
source compilers is that their development process is transparent:
we can watch the mailing lists, participate in discussions, and see
fixes as they are committed. Third, we want to help harden the
open-source development tools that we and many others use daily.

So far we have reported 79 GCC bugs and 202 LLVM bugs—the
latter figure represents about 2% of all LLVM bug reports. Most of
our reported bugs have been fixed, and twenty-five of the GCC bugs
were marked by developers as P1: the maximum, release-blocking
priority for a bug. To date, we have reported 325 in total across all
tested compilers (GCC, LLVM, and others).

An error that occurs at the lowest level of optimization is
pernicious because it defeats the conventional wisdom that compiler
bugs can be avoided by turning off the optimizer. Table 2 counts
these kinds of bugs, causing both crash and wrong-code errors, that
we found using Csmith.

Testing CompCert CompCert [14] is a verified, optimizing com-
piler for a large subset of C; it targets PowerPC, ARM, and x86. We
put significant effort into testing this compiler.

The first silent wrong-code error that we found in CompCert was
due to a miscompilation of this function:

1 int bar (unsigned x) {
2 return -1 <= (1 && x);
3 }

CompCert 1.6 for PowerPC generates code returning 0, but the
proper result is 1 because the comparison is signed. This bug and five
others like it were in CompCert’s unverified front-end code. Partly
in response to these bug reports, the main CompCert developer
expanded the verified portion of CompCert to include C’s integer
promotions and other tricky implicit casts.

The second CompCert problem we found was illustrated by two
bugs that resulted in generation of code like this:

stwu r1, -44432(r1)

Here, a large PowerPC stack frame is being allocated. The problem
is that the 16-bit displacement field is overflowed. CompCert’s
PPC semantics failed to specify a constraint on the width of this
immediate value, on the assumption that the assembler would catch
out-of-range values. In fact, this is what happened. We also found a
handful of crash errors in CompCert.

The striking thing about our CompCert results is that the middle-
end bugs we found in all other compilers are absent. As of early 2011,
the under-development version of CompCert is the only compiler we
have tested for which Csmith cannot find wrong-code errors. This is
not for lack of trying: we have devoted about six CPU-years to the
task. The apparent unbreakability of CompCert supports a strong
argument that developing compiler optimizations within a proof
framework, where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.

3.2 Quantitative Comparison of GCC and LLVM Versions
Figure 3 shows the results of an experiment in which we com-
piled and ran 1,000,000 randomly generated programs using
LLVM 1.9–2.8, GCC 3.[0–4].0, and GCC 4.[0–5].0. Every pro-
gram was compiled at –O0, –O1, –O2, –Os, and –O3. A test case
was considered valid if every compiler terminated (successfully
or otherwise) within five minutes and if every compiled random
program terminated (correctly or otherwise) within five seconds. All
compilers targeted x86. Running these tests took about 1.5 weeks
on 20 machines in the Utah Emulab testbed [28]. Each machine had
one quad-core Intel Xeon E5530 processor running at 2.4 GHz.

Compile-time failures The top row of graphs in Figure 3 shows
the observed rate of crash errors. (Note that the y-axes of these
graphs are logarithmic.) These graphs also indicate the number of
crash bugs that were fixed in response to our bug reports. Both
compilers became at least three orders of magnitude less “crashy”
over the range of versions covered in this experiment. The GCC
results appear to tell a nice story: the 3.x release series increases
in quality, the 4.0.0 release regresses because it represents a major
change to GCC’s internals, and then quality again starts to improve.

The middle row of graphs in Figure 3 shows the number of
distinct assertion failures in LLVM and the number of distinct
internal compiler errors in GCC induced by our tests. These are the
numbers of code locations in LLVM and GCC at which an internal
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Figure 3. Distinct crash errors found, and rates of crash and wrong-code errors, from recent LLVM and GCC versions

consistency check failed. These graphs conservatively estimate the
number of distinct failures in these compilers, since we encountered
many segmentation faults caused by use of free memory, null-pointer
dereferences, and similar problems. We did not include these faults
in our graphed results due to the difficulty of mapping crashes back
to distinct causes.

It is not clear which of these two metrics of crashiness is
preferable. The rate of crashes is easy to game: we can make it
arbitrarily high by biasing Csmith to generate code triggering known

bugs, and compiler writers can reduce it to zero by eliminating
error messages and always returning a “success” status code to the
operating system. The number of distinct crashes, on the other hand,
suffers from the drawback that it depends on the quantity and style
of assertions in the compiler under test. Although GCC has more
total assertions than LLVM, LLVM has a higher density: about one
assertion per 100 lines of code, compared to one in 250 for GCC.

Run-time failures The bottom pair of graphs in Figure 3 shows
the rate of wrong-code errors in our experiment. Unfortunately, we
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Figure 4. Number of distinct crash errors found in 24 hours of
testing with Csmith-generated programs in a given size range

can only report the rate of errors, and not the number of bugs causing
them, because we do not know how to automatically map failing
tests back to the bugs that cause them. These graphs also indicate
the number of wrong-code bugs that were fixed in response to our
bug reports.

3.3 Bug-Finding Performance as a Function of Test-Case Size
There are many ways in which a random test-case generator might
be “tuned” for particular goals, e.g., to focus on certain kinds
of compiler defects. We performed an experiment to answer this
question: given the goal of finding many defects quickly, should one
configure Csmith to generate small programs or large ones? Other
factors being equal, small test cases are preferable because they are
closer to being reportable to compiler developers.

Using the same compilers and optimization options that we
used for the experiments in Section 3.2, we ran our testing process
multiple times. For each run we selected a size range for test inputs,
configured Csmith to generate programs in that range,3 executed
the test process for 24 hours, and counted the distinct crash errors
found. We repeated this for various ranges of test-input sizes.

Figure 4 shows that the rate of crash-error detection varies
significantly as a function of the sizes of the test programs produced
by Csmith. The greatest number of distinct crash errors is found
by programs containing 8 K–16 K tokens: these programs averaged
81 KB before preprocessing. The confidence intervals are at 95%
and were computed based on five repetitions.

We hypothesize that larger test cases expose more compiler errors
for two reasons. First, throughput is increased because compiler start-
up costs are better amortized. Second, the combinatorial explosion of
feature interactions within a single large test case works in Csmith’s
favor. The decrease in bug-finding power at the largest sizes appears
to come from algorithms—in Csmith and in the compilers—that
have superlinear running time.

3.4 Bug-Finding Performance Compared to Other Tools
To evaluate Csmith’s ability to find bugs, we compared it to four
other random program generators: the two versions of Randprog
described in Section 2 and two others described in Section 5. We ran
each generator in its default configuration on one of five identical

3 Although we can tune Csmith to prefer generating larger or smaller output,
it lacks the ability to construct a test case of a specific size on demand. We
ran this experiment by precomputing seeds to Csmith’s random-number
generator that cause it to generate programs of the sizes we desired.
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Figure 5. Comparison of the ability of five random program gener-
ators to find distinct crash errors

Line Function Branch
Coverage Coverage Coverage

make check-c 75.13% 82.23% 46.26%
make check-c & random 75.58% 82.41% 47.11%

GCC % change +0.45% +0.13% +0.85%
absolute change +1,482 +33 +4,471
make test 74.54% 72.90% 59.22%
make test & random 74.69% 72.95% 59.48%

Clang % change +0.15% +0.05% +0.26%
absolute change +655 +74 +926

Table 3. Augmenting the GCC and LLVM test suites with 10,000
randomly generated programs did not improve code coverage much

and otherwise-idle machines, using one CPU on each host. Each
generator repeatedly produced programs that we compiled and tested
using the same compilers and optimization options that were used
for the experiments in Section 3.2. Figure 5 plots the cumulative
number of distinct crash errors found by these program generators
during the one-week test. Csmith significantly outperforms the other
tools.

3.5 Code Coverage
Because we find many bugs, we hypothesized that randomly gener-
ated programs exercise large parts of the compilers that were not cov-
ered by existing test suites. To test this, we enabled code-coverage
monitoring in GCC and LLVM. We then used each compiler to
build its own test suite, and also to build its test suite plus 10,000
Csmith-generated programs. Table 3 shows that the incremental
coverage due to Csmith is so small as to be a negative result. Our
best guess is that these metrics are too shallow to capture Csmith’s
effects, and that we would generate useful additional coverage in
terms of deeper metrics such as path or value coverage.

3.6 Where Are the Bugs?
Table 4 characterizes the GCC and LLVM bugs we found by
compiler part. Tables 5 and 6 show the ten buggiest files in LLVM
and GCC as measured by our experiment in Section 3.1. Most of
the bugs we found in GCC were in the middle end: the machine-
independent optimizers. LLVM is a younger compiler and our
testing shook out some front-end and back-end bugs that would
probably not be present in a more mature software base.
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GCC LLVM
Front end 0 10
Middle end 49 75
Back end 17 74
Unclassified 13 43
Total 79 202

Table 4. Distribution of bugs across compiler stages. A bug is
unclassified either because it has not yet been fixed or the developer
who fixed the bug did not indicate what files were changed.

Wrong-
Code Crash

C File Name Purpose Bugs Bugs
fold-const constant folding 3 6
combine instruction combining 1 5
tree-ssa-pre partial redundancy elim. 0 4
tree-vrp variable range propagation 0 4
tree-ssa-dce dead code elimination 0 3
tree-ssa-reassoc arithmetic expr. reassociation 0 2
reload1 register reloading 1 1
tree-ssa-loop- loop iteration counting 1 1

niter
dse dead store elimination 2 0
tree-scalar- scalar evolution 2 0

evolution
Other (15 files) n/a 19 24
Total (25 files) n/a 29 50

Table 5. Top ten buggy files in GCC

Wrong-
Code Crash

C++ File Name Purpose Bugs Bugs
Instruction- mid-level instruction 9 6

Combining combining
SimpleRegister- register coalescing 1 10

Coalescing
DAGCombiner instruction combining 5 3
LoopUnswitch loop unswitching 1 4
LICM loop invariant code motion 0 5
LoopStrength- loop strength reduction 1 3

Reduce
FastISel fast instruction selection 1 3
llvm-convert GCC-LLVM IR conversion 0 4
ExprConstant constant folding 2 2
JumpThreading jump threading 0 4
Other (72 files) n/a 46 92
Total (82 files) n/a 66 136

Table 6. Top ten buggy files in LLVM

3.7 Examples of Wrong-Code Bugs
This section characterizes a few of the bugs that were revealed by
miscompilation of programs generated by Csmith. These bugs fit
into a simple model in which optimizations are structured like this:

analysis
if (safety check) {
transformation

}

An optimization can fail to be semantics-preserving if the
analysis is wrong, if the safety check is insufficiently conservative,
or if the transformation is incorrect. The most common root cause
for bugs that we found was an incorrect safety check.

GCC Bug #1: wrong safety check4 If x is variable and c1 and
c2 are constants, the expression (x/c1)!=c2 can be profitably
rewritten as (x-(c1*c2))>(c1-1), using unsigned arithmetic
to avoid problems with negative values. Prior to performing the
transformation, expressions such as c1*c2 and (c1*c2)+(c1-1)
are checked for overflow. If overflow occurs, further simplifications
can be made; for example, (x/1000000000)!=10 always evaluates
to 0 when x is a 32-bit integer. GCC falsely detected overflow for
some choices of constants. In the failure-inducing test case that we
discovered, (x/-1)!=1 was folded to 0. This expression should
evaluate to 1 for many values of x, such as 0.

GCC Bug #2: wrong transformation5 In C, if an argument of
type unsigned char is passed to a function with a parameter of
type int, the values seen inside the function should be in the range
0..255. We found a case in which a version of GCC inlined this kind
of function call and then sign-extended the argument rather than
zero-extending it, causing the function to see negative values of the
parameter when the function was called with arguments in the range
128..255.

GCC Bug #3: wrong analysis6 We found a bug that caused GCC
to miscompile this code:

1 static int g[1];
2 static int *p = &g[0];
3 static int *q = &g[0];
4
5 int foo (void) {
6 g[0] = 1;
7 *p = 0;
8 *p = *q;
9 return g[0];

10 }

The generated code returned 1 instead of 0. The problem oc-
curred when the compiler failed to recognize that p and q are aliases;
this happened because q was mistakenly identified as a read-only
memory location, which is defined not to alias a mutable location.
The wrong not-alias fact caused the store in line 7 to be marked as
dead so that a subsequent dead-store elimination pass removed it.

GCC Bug #4: wrong analysis7 A version of GCC miscompiled
this function:

1 int x = 4;
2 int y;
3
4 void foo (void) {
5 for (y = 1; y < 8; y += 7) {
6 int *p = &y;
7 *p = x;
8 }
9 }

When foo returns, y should be 11. A loop-optimization pass
determined that a temporary variable representing *p was invariant
with value x+7 and hoisted it in front of the loop, while retaining
a dataflow fact indicating that x+7 == y+7, a relationship that no
longer held after code motion. This incorrect fact lead GCC to
generate code leaving 8 in y, instead of 11.

4 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42721
5 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43438
6 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952
7 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43360
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LLVM Bug #1: wrong safety check8 (x==c1)||(x<c2) can be
simplified to x < c2 when c1 and c2 are constants and c1<c2.
An LLVM version incorrectly transformed (x==0)||(x<-3) to
x < -3. LLVM did a comparison between 0 and −3 in the safety
check for this optimization, but performed an unsigned comparison
rather than a signed one, leading it to incorrectly determine that the
transformation was safe.

LLVM Bug #2: wrong safety check9 (x|c1)==c2 evaluates to 0
if c1 and c2 are constants and (c1&˜c2)!=0. In other words, if any
bit that is set in c1 is unset in c2, the original expression cannot be
true. A version of LLVM contained a logic error in the safety check
for this optimization, wrongly replacing this kind of expression with
0 even when c1 was not a constant.

LLVM Bug #3: wrong safety check10 “Narrowing” is a strength-
reduction optimization that can be applied to loads when only part
of an object is needed, or to stores where only part of an object is
modified. For example, at the level of the abstract machine this code
loads and stores an unsigned int:

1 unsigned y;
2
3 void bar (void) {
4 y |= 255;
5 }

Optimizing compilers for x86 may translate bar into the following
code, which loads nothing and stores a single byte:

bar:
movb $-1, y
ret

We found a case in which LLVM attempted to perform an
analogous narrowing operation, but a logic error caused the safety
check to succeed even when a different store modified the object
prior to the store that was the target of the narrowing transformation.

LLVM Bug #4: wrong analysis11 This code should print “5”:

1 void foo (void) {
2 int x;
3 for (x = 0; x < 5; x++) {
4 if (x) continue;
5 if (x) break;
6 }
7 printf("%d", x);
8 }

LLVM’s scalar evolution analysis computes properties of loop
induction variables, including the maximum number of iterations.
Line 5 of the program above caused this analysis to mistakenly
conclude that x was 1 after the loop executed.

4. Discussion
Are we finding bugs that matter? One might suspect that random
testing finds bugs that do not matter in practice. Undoubtedly
this happens sometimes, but in a number of instances we have
direct confirmation that Csmith is finding bugs that matter, because
bugs that we have found and reported have been independently
rediscovered and re-reported by application developers. By a very
conservative estimate—counting only the times that a compiler

8 http://llvm.org/bugs/show_bug.cgi?id=2844
9 http://llvm.org/bugs/show_bug.cgi?id=7750
10 http://llvm.org/bugs/show_bug.cgi?id=7833
11 http://llvm.org/bugs/show_bug.cgi?id=7845

developer explicitly labeled a wrong-code bug report as a duplicate
of one of ours—this has happened eight times: four times for GCC
and four for LLVM. We also have indirect confirmation that our bugs
matter. The developers of open-source compilers fixed almost all of
the bugs that we reported, and the GCC development team marked
25 of our bugs as P1: the maximum, release-blocking priority.

Creating reportable bugs Reporting compiler crash bugs is easy,
but reporting wrong-code bugs is harder. Compiler developers will
(rightfully) ignore a wrong-code bug report that is based on a large
random program. Rather, a bug report must be accompanied by com-
pelling evidence that a bug exists; in most cases the best evidence
is a small test case that is obviously miscompiled. Delta debug-
ging [31] automates test-case reduction, but all existing variants that
are intended for reducing C programs—such as hierarchical delta
debugging [18] and Wilkerson’s implementation [29]—introduce
undefined behavior. The resulting programs are small but useless.
To avoid undefined behavior during reduction, we rely on compiler
warnings, dynamic checkers, and manual test-case reduction. There
is substantial room for improvement.

The relationship between testing and verification As our Comp-
Cert results make plain, verification does not obviate testing, but
rather complements it. Testing can provide end-to-end evidence that
numerous paths through a system work properly. Verification, on the
other hand, typically focuses on a narrow slice of a stack of tools,
and the parts outside the slice remain in the trusted computing base.
There does not yet appear to be a nuanced understanding of the
kinds of testing, and the amount of testing effort, that are rendered
unnecessary by artifacts like CompCert [14] and seL4 [12].

Toward realistic, correct compilers Compilers must support rapid
development to cope with new optimizations, new source languages,
and new target architectures. Generated code often needs to be
resource-efficient to support application developers’ goals. Finally,
compilers should generate correct code. Meeting even two of these
goals is challenging, and it is not clear how to meet all three in a
single tool. There seem to be four paths forward.

Compiler verification. Although it is difficult to imagine a
verified compiler for C++0x, due to the immense complexity of
the draft standard, CompCert is an existence proof that a verified,
optimizing C compiler is within reach. However, the burden of
verification is significant. CompCert still lacks a number of useful
C features and few mainstream compiler developers have the
formal verification skills that are needed to add new language
features and optimization passes. On the other hand, projects such as
XCERT [26] may dramatically lower the bar for working on verified
compilation.

Compiler simplicity. For non-bottleneck applications, compiler
optimization adds little end-user value. It would seem possible to
take a simple compiler such as TCC [2], which does not optimize
across statement boundaries, and validate it through code inspec-
tions, heavy use, and other techniques. At present, however, TCC is
much buggier than more heavily-used compilers such as GCC and
LLVM.

Compiler testing. We hypothesize that it is possible to gain
high confidence in a complex compiler like GCC by choosing a
fixed configuration, disabling optimization passes whose effects are
significantly non-local, and performing “just enough testing.” A
test plan would be sufficient if all code paths through the compiler
that are used to compile an application of interest had been tested.
Clearly, a sophisticated way to abstract over paths is needed.

Equivalence checking. If equivalence checkers for machine
code [7] could scale to large programs, verified compilers would
be largely unnecessary because one compiler’s output could be
proved equivalent to another’s. Although these tools are not likely
to scale up to multi-megabyte applications anytime soon, it should
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be possible to automatically partition applications into smaller parts
so that equivalence checking can be done piecewise.

Future work Augmenting Csmith with white-box testing tech-
niques, where the structure of the tested system is taken into account
in a first-class way, would be productive. This will be difficult for
several reasons. First, we anticipate substantial challenges in inte-
grating the necessary constraint-solving machinery with Csmith’s
existing logic for generating valid C programs. It is possible that we
will need to start over, next time engineering a version of Csmith in
which all constraints are explicit and declarative, rather than being
buried in a small mountain of C++. Second, the inverse problems
that must be solved to generate an input become prohibitively dif-
ficult when inputs pass through a parser, particularly if the parser
contains hash tables. Godefroid et al. [8] showed a way to solve this
problem by integrating a constraint solver with a grammar for the
language being generated. However, due to its non-local pointer and
effect analyses, the validity decision problem for programs in the
subset of C that Csmith generates is far harder than the question
of whether a program can be generated by the JavaScript grammar
used by Godefroid et al.

5. Related Work
Compilers have been tested using randomized methods for nearly
50 years. Boujarwah and Saleh [4] gave a good survey in 1997.
In 1962, Sauder [22] tested the correctness of COBOL compilers
by placing random variables in programs’ data sections. In 1970,
Hanford [10] used a PL/1 grammar to drive the generation of random
programs. The grammar was extensible and was augmented by
“syntax generators” that could be used, for example, to ensure that
variables were declared before being used. In 1972, Purdom [21]
used a syntax-directed method to generate test sentences for a parser.
He gave an efficient algorithm for generating short sentences from a
context-free grammar such that each production of the grammar was
used at least once, and he tested LR(1) parsers using this technique.

Burgess and Saidi [5] designed an automatic generator of test
cases for FORTRAN compilers. The tests were designed to be self-
checking and to contain features that optimizing compilers were
known to exploit. In order to predict test cases’ results, the code
generator restricted assignment statements to be executed only once
during the execution of the sub-program or main program. These
tests found four bugs in two FORTRAN 77 compilers.

In 1998, McKeeman [16] coined the term “differential testing.”
His work resulted in DDT, a family of program generators that
conform to the C standard at various levels, from level 1 (random
characters) to level 7 (generated code is “model conforming,” incor-
porating some high-level structure). DDT is more expressive than
Csmith (DDT is capable of generating all legal C programs) and it
was used to find numerous bugs in C compilers. To our knowledge,
McKeeman’s paper contains the first acknowledgment that it is im-
portant to avoid undefined behavior in generated C programs used
for compiler testing. However, DDT avoided only a small subset
of all undefined behaviors, and only then during test-case reduc-
tion, not during normal testing. Thus, it is not a suitable basis for
automatic bug-finding.

Lindig [15] used randomly generated C programs to find several
compiler bugs related to calling conventions. His tool, called Quest,
was specially targeted: rather than generating code with control
flow and arithmetic, Quest generates code that creates complex data
structures, loads them with constant values, and passes them to a
function where assertions check the received values. Because its
tests are self-checking, Quest is not based on differential testing.
Self-checking tests are convenient, but the drawback is that Quest
is far less expressive than Csmith. Lindig used Quest to test GCC,
LCC, ICC, and a few other compilers and found 13 bugs.

Sheridan [23] also used a random generator to find bugs in
C compilers. A script rotated through a list of constants of the
principal arithmetic types, producing a source file that applied
various operators to pairs of constants. This tool found two bugs in
GCC, one bug in SUSE Linux’s version of GCC, and five bugs in
CodeSourcery’s version of GCC for ARM. Sheridan’s tool produces
self-checking tests. However, it is less expressive than Csmith and it
fails to avoid undefined behavior such as signed overflow.

Zhao et al. [32] created an automated program generator for
testing an embedded C++ compiler. Their tool allows a general test
requirement, such as which optimization to test, to be specified in a
script. The generator constructs a program template based on the test
requirement and uses it to drive further code generation. Zhao et al.
used GCC as the reference to check the compiler under test. They
reported greatly improved statement coverage in the tested modules
and found several new compiler bugs.

6. Conclusion
Using randomized differential testing, we found and reported hun-
dreds of previously unknown bugs in widely used C compilers, both
commercial and open source. Many of the bugs we found cause a
compiler to emit incorrect code without any warning. Most of our re-
ported defects have been fixed, meaning that compiler implementers
found them important enough to track down, and 25 of the bugs we
reported against GCC were classified as release-blocking. All of this
evidence suggests that there is substantial room for improvement in
the state of the art for compiler quality assurance.

To create a random program generator with high bug-finding
power, the key problem we solved was the expressive generation
of C programs that are free of undefined behavior and independent
of unspecified behavior. Csmith, our program generator, uses both
static analysis and dynamic checks to avoid these hazards.

The return on investment from random testing is good. Our rough
estimate—including faculty, staff, and student salaries, machines
purchased, and university overhead—is that each of the more than
325 bugs we reported cost less than $1,000 to find. The incremental
cost of a new bug that we find today is much lower.

Software Csmith is open source and available for download at
http://embed.cs.utah.edu/csmith/.
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A Guide to Unde⟜ned Behavior in C
and C++, Part 1

Also see Part 2 and Part 3.

Programming languages typically make a distinction between normal program

actions and erroneous actions. For Turing-complete languages we cannot

reliably decide ooine whether a program has the potential to execute an error;

we have to just run it and see.

In a safe programming language, errors are trapped as they happen. Java, for

example, is largely safe via its exception system. In an unsafe programming

language, errors are not trapped. Rather, after executing an erroneous operation

the program keeps going, but in a silently faulty way that may have observable

consequences later on. Luca Cardelli’s article on type systems has a nice clear

introduction to these issues. C and C++ are unsafe in a strong sense: executing

an erroneous operation causes the entire program to be meaningless, as

opposed to just the erroneous operation having an unpredictable result. In these

languages erroneous operations are said to have unde㍛�ned behavior.

The C FAQ deªnes “undeªned behavior” like this:

Anything at all can happen; the Standard imposes no requirements.
The program may fail to compile, or it may execute incorrectly (either
crashing or silently generating incorrect results), or it may fortuitously
do exactly what the programmer intended.

This is a good summary. Pretty much every C and C++ programmer understands

that accessing a null pointer and dividing by zero are erroneous actions. On the
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other hand, the full implications of undeªned behavior and its interactions with

aggressive compilers are not well-appreciated. This post explores these topics.

A Model for Undeªned Behavior

For now, we can ignore the existence of compilers. There is only the “C

implementation” which — if the implementation conforms to the C standard —

acts the same as the “C abstract machine” when executing a conforming

program. The C abstract machine is a simple interpreter for C that is described

in the C standard. We can use it to determine the meaning of any C program.

The execution of a program consists of simple steps such as adding two

numbers or jumping to a label. If every step in the execution of a program has

deªned behavior, then the entire execution is well-deªned. Note that even

well-deªned executions may not have a unique result due to unspeciªed and

implementation-deªned behavior; we’ll ignore both of these here.

If any step in a program’s execution has undeªned behavior, then the entire

execution is without meaning. This is important: it’s not that evaluating

(1<<32) has an unpredictable result, but rather that the entire execution of a

program that evaluates this expression is meaningless. Also, it’s not that the

execution is meaningful up to the point where undeªned behavior happens: the

bad ezects can actually precede the undeªned operation.

As a quick example let’s take this program:

#include <limits.h> 
#include <stdio.h> 
 
int main (void) 
{ 
  printf ("%d\n", (INT_MAX+1) < 0); 
  return 0; 
}



The program is asking the C implementation to answer a simple question: if we

add one to the largest representable integer, is the result negative? This is

perfectly legal behavior for a C implementation:

$ cc test.c -o test 
$ ./test 
1

So is this:

$ cc test.c -o test 
$ ./test 
0

And this:

$ cc test.c -o test 
$ ./test 
42

And this:

$ cc test.c -o test 
$ ./test 
Formatting root partition, chomp chomp

One might say: Some of these compilers are behaving improperly because the C

standard says a relational operator must return 0 or 1. But since the program

has no meaning at all, the implementation can do whatever it likes. Undeªned

behavior trumps all other behaviors of the C abstract machine.



Will a real compiler emit code to chomp your disk? Of course not, but keep in

mind that practically speaking, undeªned behavior often does lead to Bad

Things because many security vulnerabilities start out as memory or integer

operations that have undeªned behavior. For example, accessing an out of

bounds array element is a key part of the canonical stack smashing attack. In

summary: the compiler does not need to emit code to format your disk. Rather,

following the OOB array access your computer will begin executing exploit code,

and that code is what will format your disk.

No Traveling

It is very common for people to say — or at least think — something like this:

The x86 ADD instruction is used to implement C’s signed add
operation, and it has two’s complement behavior when the result
over㔛�ows. I’m developing for an x86 platform, so I should be able to
expect two’s complement semantics when 32-bit signed integers
over㔛�ow.

THIS IS WRONG. You are saying something like this:

Somebody once told me that in basketball you can’t hold the ball and
run. I got a basketball and tried it and it worked just ㍛�ne. He obviously
didn’t understand basketball.

(This explanation is due to Roger Miller via Steve Summit.)

Of course it is physically possible to pick up a basketball and run with it. It is

also possible you will get away with it during a game.  However, it is against the

rules; good players won’t do it and bad players won’t get away with it for long.

Evaluating (INT_MAX+1) in C or C++ is exactly the same: it may work

sometimes, but don’t expect to keep getting away with it. The situation is

actually a bit subtle so let’s look in more detail.

First, are there C implementations that guarantee two’s complement behavior

when a signed integer overºows? Of course there are. Many compilers will have

http://www.eskimo.com/~scs/readings/undef.950311.html


this behavior when optimizations are turned oz, for example, and GCC has an

option (-fwrapv) for enforcing this behavior at all optimization levels. Other

compilers will have this behavior at all optimization levels by default.

There are also, it should go without saying, compilers that do not have two’s

complement behavior for signed overºows. Moreover, there are compilers (like

GCC) where integer overºow behaved a certain way for many years and then at

some point the optimizer got just a little bit smarter and integer overºows

suddenly and silently stopped working as expected. This is perfectly OK as far as

the standard goes. While it may be unfriendly to developers, it would be

considered a win by the compiler team because it will increase benchmark

scores.

In summary: There’s nothing inherently bad about running with a ball in your

hands and also there’s nothing inherently bad about shifting a 32-bit number

by 33 bit positions. But one is against the rules of basketball and the other is

against the rules of C and C++. In both cases, the people designing the game

have created arbitrary rules and we either have to play by them or else ªnd a

game we like better.

Why Is Undeªned Behavior Good?

The good thing — the only good thing! — about undeªned behavior in C/C++ is

that it simpliªes the compiler’s job, making it possible to generate very

e⟜cient code in certain situations. Usually these situations involve tight loops.

For example, high-performance array code doesn’t need to perform bounds

checks, avoiding the need for tricky optimization passes to hoist these checks

outside of loops. Similarly, when compiling a loop that increments a signed

integer, the C compiler does not need to worry about the case where the variable

overºows and becomes negative: this facilitates several loop optimizations. I’ve

heard that certain tight loops speed up by 30%-50% when the compiler is

permitted to take advantage of the undeªned nature of signed overºow.

Similarly, there have been C compilers that optionally give undeªned semantics

to unsigned overºow to speed up other loops.

Why Is Undeªned Behavior Bad?



Why Is Undeªned Behavior Bad?

When programmers cannot be trusted to reliably avoid undeªned behavior, we

end up with programs that silently misbehave. This has turned out to be a really

bad problem for codes like web servers and web browsers that deal with hostile

data because these programs end up being compromised and running code that

arrived over the wire. In many cases, we don’t actually need the performance

gained by exploitation of undeªned behavior, but due to legacy code and legacy

toolchains, we’re stuck with the nasty consequences.

A less serious problem, more of an annoyance, is where behavior is undeªned in

cases where all it does is make the compiler writer’s job a bit easier, and no

performance is gained. For example a C implementation has undeªned behavior

when:

An unmatched ‘ or ” character is encountered on a logical source line
during tokenization.

With all due respect to the C standard committee, this is just lazy. Would it

really impose an undue burden on C implementors to require that they emit a

compile-time error message when quote marks are unmatched? Even a 30 year-

old (at the time C99 was standardized) systems programming language can do

better than this. One suspects that the C standard body simply got used to

throwing behaviors into the “undeªned” bucket and got a little carried away.

Actually, since the C99 standard lists 191 dizerent kinds of undeªned behavior,

it’s fair to say they got a lot carried away.

Understanding the Compiler’s View of
Undeªned Behavior

The key insight behind designing a programming language with undeªned

behavior is that the compiler is only obligated to consider cases where the

behavior is deªned. We’ll now explore the implications of this.



If we imagine a C program being executed by the C abstract machine, undeªned

behavior is very easy to understand: each operation performed by the program

is either deªned or undeªned, and usually it’s pretty clear which is which.

Undeªned behavior becomes di⟜cult to deal with when we start being

concerned with all possible executions of a program. Application developers,

who need code to be correct in every situation, care about this, and so do

compiler developers, who need to emit machine code that is correct over all

possible executions.

Talking about all possible executions of a program is a little tricky, so let’s

make a few simplifying assumptions. First, we’ll discuss a single C/C++

function instead of an entire program. Second, we’ll assume that the function

terminates for every input. Third, we’ll assume the function’s execution is

deterministic; for example, it’s not cooperating with other threads via shared

memory. Finally, we’ll pretend that we have inªnite computing resources,

making it possible to exhaustively test the function. Exhaustive testing means

that all possible inputs are tried, whether they come from arguments, global

variables, ªle I/O, or whatever.

The exhaustive testing algorithm is simple:

1. Compute next input, terminating if we’ve tried them all

2. Using this input, run the function in the C abstract machine, keeping track of

whether any operation with undeªned behavior was executed

3. Go to step 1

Enumerating all inputs is not too di⟜cult. Starting with the smallest input

(measured in bits) that the function accepts, try all possible bit patterns of that

size. Then move to the next size. This process may or may not terminate but it

doesn’t matter since we have inªnite computing resources.

For programs that contain unspeciªed and implementation-deªned behaviors,

each input may result in several or many possible executions. This doesn’t

fundamentally complicate the situation.

OK, what has our thought experiment accomplished? We now know, for our

function, which of these categories it falls into:



Type 1: Behavior is deªned for all inputs

Type 2: Behavior is deªned for some inputs and undeªned for others

Type 3: Behavior is undeªned for all inputs

Type 1 Functions

These have no restrictions on their inputs: they behave well for all possible

inputs (of course, “behaving well” may include returning an error code).

Generally, API-level functions and functions that deal with unsanitized data

should be Type 1. For example, here’s a utility function for performing integer

division without executing undeªned behaviors:

int32_t safe_div_int32_t (int32_t a, int32_t b) { 
  if ((b == 0) || ((a == INT32_MIN) && (b == -1))) { 
    report_integer_math_error(); 
    return 0; 
  } else { 
    return a / b; 
  } 
}

Since Type 1 functions never execute operations with undeªned behavior, the

compiler is obligated to generate code that does something sensible regardless

of the function’s inputs. We don’t need to consider these functions any further.

Type 3 Functions

These functions admit no well-deªned executions. They are, strictly speaking,

completely meaningless: the compiler is not even obligated to generate even a

return instruction. Do Type 3 functions really exist? Yes, and in fact they are

common. For example, a function that — regardless of input — uses a variable

without initializing it is easy to unintentionally write. Compilers are getting

smarter and smarter about recognizing and exploiting this kind of code. Here’s

a great example from the Google Native Client project:

http://code.google.com/p/nativeclient/issues/detail?id=245


When returning from trusted to untrusted code, we must sanitize
the return address before taking it. This ensures that untrusted
code cannot use the syscall interface to vector execution to an
arbitrary address. This role is entrusted to the function
NaClSandboxAddr, in sel_ldr.h. Unfortunately, since r572, this
function has been a no-op on x86.

-- What happened?

During a routine refactoring, code that once read

aligned_tramp_ret = tramp_ret & ~(nap->align_boundary - 1);

was changed to read

return addr & ~(uintptr_t)((1 << nap->align_boundary) - 1);

Besides the variable renames (which were intentional and
correct), a shift was introduced, treating nap->align_boundary
as the log2 of bundle size.

We didn't notice this because NaCl on x86 uses a 32-byte bundle
size.  On x86 with gcc, (1 << 32) == 1. (I believe the standard
leaves this behavior undefined, but I'm rusty.) Thus, the entire
sandboxing sequence became a no-op.

This change had four listed reviewers and was explicitly LGTM'd
by two. Nobody appears to have noticed the change.

-- Impact

There is a potential for untrusted code on 32-bit x86 to unalign
its instruction stream by constructing a return address and
making a syscall. This could subvert the validator. A similar
vulnerability may affect x86- 64.



ARM is not affected for historical reasons: the ARM
implementation masks the untrusted return address using a
different method.

What happened? A simple refactoring put the function containing this code into

Type 3. The person who sent this message believes that x86-gcc evaluates

(1<<32) to 1, but there’s no reason to expect this behavior to be reliable (in fact

it is not on a few versions of x86-gcc that I tried). This construct is deªnitely

undeªned and of course the compiler can do done anything it wants. As is

typical for a C compiler, it chose to simply not emit the instructions

corresponding to the undeªned operation. (A C compiler’s #1 goal is to emit

e⟜cient code.) Once the Google programmers gave the compiler the license to

kill, it went ahead and killed. One might ask: Wouldn’t it be great if the

compiler provided a warning or something when it detected a Type 3 function?

Sure! But that is not the compiler’s priority.

The Native Client example is a good one because it illustrates how competent

programmers can be suckered in by an optimizing compiler’s underhanded way

of exploiting undeªned behavior. A compiler that is very smart at recognizing

and silently destroying Type 3 functions becomes ezectively evil, from the

developer’s point of view.

Type 2 Functions

These have behavior that is deªned for some inputs and undeªned for others.

This is the most interesting case for our purposes. Signed integer divide makes

a good example:

int32_t unsafe_div_int32_t (int32_t a, int32_t b) { 
  return a / b; 
}

This function has a precondition; it should only be called with arguments that

satisfy this predicate:



(b != 0) && (!((a == INT32_MIN) && (b == -1)))

Of course it’s no coincidence that this predicate looks a lot like the test in the

Type 1 version of this function. If you, the caller, violate this precondition, your

program’s meaning will be destroyed. Is it OK to write functions like this, that

have non-trivial preconditions? In general, for internal utility functions this is

perfectly OK as long as the precondition is clearly documented.

Now let’s look at the compiler’s job when translating this function into object

code. The compiler performs a case analysis:

Case 1: (b != 0) && (!((a == INT32_MIN) && (b == -1))) 

Behavior of / operator is deªned → Compiler is obligated to emit code

computing a / b

Case 2: (b == 0) || ((a == INT32_MIN) && (b == -1)) 

Behavior of / operator is undeªned → Compiler has no particular obligations

Now the compiler writers ask themselves the question: What is the most

e⟜cient implementation of these two cases? Since Case 2 incurs no obligations,

the simplest thing is to simply not consider it. The compiler can emit code only

for Case 1.

A Java compiler, in contrast, has obligations in Case 2 and must deal with it

(though in this particular case, it is likely that there won’t be runtime overhead

since processors can usually provide trapping behavior for integer divide by

zero).

Let’s look at another Type 2 function:

int stupid (int a) { 
  return (a+1) > a; 
}

The precondition for avoiding undeªned behavior is:



(a != INT_MAX)

Here the case analysis done by an optimizing C or C++ compiler is:

Case 1: a != INT_MAX 

Behavior of + is deªned → Computer is obligated to return 1

Case 2: a == INT_MAX 

Behavior of + is undeªned → Compiler has no particular obligations

Again, Case 2 is degenerate and disappears from the compiler’s reasoning. Case

1 is all that matters. Thus, a good x86-64 compiler will emit:

stupid: 
  movl $1, %eax 
  ret

If we use the -fwrapv ºag to tell GCC that integer overºow has two’s

complement behavior, we get a dizerent case analysis:

Case 1: a != INT_MAX 

Behavior is deªned → Computer is obligated to return 1

Case 2: a == INT_MAX 

Behavior is deªned → Compiler is obligated to return 0

Here the cases cannot be collapsed and the compiler is obligated to actually

perform the addition and check its result:

stupid: 
  leal 1(%rdi), %eax 
  cmpl %edi, %eax 
  setg %al 
  movzbl %al, %eax 
  ret



Similarly, an ahead-of-time Java compiler also has to perform the addition

because Java mandates two’s complement behavior when a signed integer

overºows (I’m using GCJ for x86-64):

_ZN13HelloWorldApp6stupidEJbii: 
  leal 1(%rsi), %eax 
  cmpl %eax, %esi 
  setl %al 
  ret

This case-collapsing view of undeªned behavior provides a powerful way to

explain how compilers really work. Remember, their main goal is to give you

fast code that obeys the letter of the law, so they will attempt to forget about

undeªned behavior as fast as possible, without telling you that this happened.

A Fun Case Analysis

About a year ago, the Linux kernel started using a special GCC ºag to tell the

compiler to avoid optimizing away useless null-pointer checks. The code that

caused developers to add this ºag looks like this (I’ve cleaned up the example

just a bit):

static void __devexit agnx_pci_remove (struct pci_dev *pdev) 
{ 
  struct ieee80211_hw *dev = pci_get_drvdata(pdev); 
  struct agnx_priv *priv = dev->priv;  
 
  if (!dev) return;

  ... do stuff using dev ... 
}



The idiom here is to get a pointer to a device struct, test it for null, and then use

it. But there’s a problem! In this function, the pointer is dereferenced before the

null check. This leads an optimizing compiler (for example, gcc at -O2 or

higher) to perform the following case analysis:

Case 1: dev == NULL 

“dev->priv” has undeªned behavior → Compiler has no particular

obligations

Case 2: dev != NULL 

Null pointer check won’t fail → Null pointer check is dead code and may be

deleted

As we can now easily see, neither case necessitates a null pointer check. The

check is removed, potentially creating an exploitable security vulnerability.

Of course the problem is the use-before-check of pci_get_drvdata()’s return

value, and this has to be ªxed by moving the use after the check. But until all

such code can be inspected (manually or by a tool), it was deemed safer to just

tell the compiler to be a bit conservative. The loss of e⟜ciency due to a

predictable branch like this is totally negligible. Similar code has been found in

other parts of the kernel.

Living with Undeªned Behavior

In the long run, unsafe programming languages will not be used by mainstream

developers, but rather reserved for situations where high performance and a

low resource footprint are critical. In the meantime, dealing with undeªned

behavior is not totally straightforward and a patchwork approach seems to be

best:

Enable and heed compiler warnings, preferably using multiple compilers

Use static analyzers (like Clang’s, Coverity, etc.) to get even more warnings

Use compiler-supported dynamic checks; for example, gcc’s -ftrapv ºag

generates code to trap signed integer overºows

Use tools like Valgrind to get additional dynamic checks



29 thoughts on “A Guide to Unde⟜ned Behavior in C
and C++, Part 1”

Michael Norrish

July 9, 2010 at 6:13 am

Nice write-up!

Eric LaForest

July 9, 2010 at 6:56 am

Thought-provoking post, thank you.

But I’m puzzled: what type of optimization can infer the indeterminacy of

stupid() or the null-pointer check? I’ve not heard of it.

Wouldn’t it be better for the compiler to decide what to do based on what

knowledge it has at compile-time?

For example: stupid(foo) would compile the full code, while stupid(5) would

compile to a literal, as per constant propagation and expression simpliªcation.

When functions are “type 2” as categorized above, document their

preconditions and postconditions

Use assertions to verify that functions’ preconditions are postconditions

actually hold

Particularly in C++, use high-quality data structure libraries

  Basically: be very careful, use good tools, and hope for the best.

regehr July 9, 2010 Computer Science, Software Correctness/ /

http://www.eecg.utoronto.ca/~laforest/
http://blog.regehr.org/archives/author/admin
http://blog.regehr.org/archives/213
http://blog.regehr.org/archives/category/cs
http://blog.regehr.org/archives/category/software-correctness


Similarly, in the case of the NULL-check, why bother at all? The value of dev is

not known at compile time, and the ªrst dereference would trigger a segfault in

the case of a NULL anyway.

regehr

July 9, 2010 at 10:13 am

Hi Eric- I may need to update this post to be a bit more clear about these

things!

I don’ t think these optimizations have any speciªc names, nor do I think

they’re written up in the textbooks. But basically they all fall under the

umbrella of “standard dataºow optimizations.” In other words, the compiler

learns some facts and propagates them around in order to make changes

elsewhere. The only dizerence is in the details of what facts are learned.

Just to be clear, these optimizations are absolutely based on knowledge the

compiler has at compile time. Everything I described in this post is just a

regular old compile-time optimization.

stupid(foo) — where foo is a free variable — compiles to “return 1” using the

case analysis.

Re. the null check example, remember this is in the Linux kernel. In the best

possible case, accessing a null pointer crashes the machine. In the worst case

there is no crash: exploit code is waiting to take over the machine when you

access the null pointer. This is precisely the case that the kernel programmers

are worried about. This is not theoretical: if your Linux kernel accesses a null

pointer, I can probably own your machine.

Matthias Felleisen

July 9, 2010 at 10:44 am

Thank you.



http://www.cs.utah.edu/~regehr/


What’s really sad is that some so-called high-level languages like Scheme

intentionally include undeªned behavior, too. This may make Scheme look like

a real systems language after all.

I have been preaching the ‘unsafe and undeªned gospel’ for a long time in PL

courses. Indeed, I have been preaching it for such a long time that former

students still have T shirts with my quote “Scheme is just as bad as FORTRAN”

for the same issue. Indeed, some HotSpot compiler authors may still own this T

shirt.

Sadly, I never got support from ‘real’ compiler colleagues at Rice nor from the

systems people. Real man just cope. Shut up and work.

So thanks for speaking up as a “systems” person.

— Matthias

regehr

July 9, 2010 at 11:15 am

Hi Matthias- Thanks for the note!

I feel like certain languages were designed by and for compiler people.

Optimizations good, everything else: irrelevant. Hopefully these languages will

lose (or be revised) to cope with the modern situation where machine resources

are relatively cheap and program errors are relatively costly. Of course

multicores will probably set us back a couple decades in terms of program

correctness…

I was very surprised to learn from Matthew about Scheme’s undeªned

behaviors.

Matthias Felleisen

July 9, 2010 at 12:23 pm


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You write “Of course multicores will probably set us back a couple decades in

terms of program correctness…” How sad and how true!

In Scheme’s case, it is fortunately acceptable for a compiler to implement a safe

and determinate language, which is what Matthew’s PLT Scheme did and what

Racket does now. Sadly, compiler writers love indeterminate specs and they love

writing language speciªcations even more. Perhaps the latter is the real reason

that we will not get away from such bad languages for ever.

Adam Morrison

July 10, 2010 at 12:20 pm

I’m not sure about the Google Native client example. Looks to me like the

compiler emitted x86 code that, when passed 32 as input, would calculate

(1<<32) == 1.

It just so happened that this function was always called with the "bundle_size"

being 32 and as a result it became a no-op semantically. It didn't mask out the

low bits of the address like it was supposed to.

Ben L. Titzer

July 12, 2010 at 5:43 pm

Though I completely agree with the idea of making programs’ semantics as well

deªned as possible (independent of implementation and target machine of

course), there are always cracks to slip through. E.g. most semantics assume

that the target machine has enough resources to actually run the program. Of

course then they deªne what should happen if the machine does not–

OutOfMemoryError, StackOverFlowError, and the like. But what about the case

when the machine almost has enough resources. Then the impact of

optimizations can be felt. E.g. how much of the heap is occupied by class

metadata? Even with the same heap size, the same program might run to

completion (or continue working) or throw OutOfMemory on dizerent VMs.

Similarly with stack size–if the compiler or VM performs tail recursion

http://www.cs.tau.ac.il/~adamx


elimination, the program may work ªne, but fail immediately without (note

that no compliant JVM does).

Although one can deªne semantics to be nondeterministic, it is unusual to go to

all the trouble of formally deªning them in order to leave some part

nondeterministic. We try to eradicate it but nondeterminism keeps creeping in,

like these choice examples in Java:

* result of java.lang.System.identityHashCode() 

* order of ªnalizers being run, and on which thread 

* policy for clearing of SoftReferences

Ben L. Titzer

July 12, 2010 at 5:46 pm

Just to be clear though: nondeterministic behavior is far preferable to undeªned

behavior 

regehr

July 12, 2010 at 7:30 pm

Hey Ben- Let’s be clear that there are two separate questions here. First,

whether or not an error occurs. Second, what should the language do when an

error occurs.

People developing security-, safety-, and mission-critical software care a lot

about the ªrst one and it’s a really hard problem, optimizations matter, etc.

This post was only about the second one: does the program halt with a nice

error or does it keep going in some screwed-up state. Nailing this down seems

like the ªrst order of business, then later on we can worry about making ooine

guarantees about error-freedom and all that.

Eugene Toder



http://www.cs.utah.edu/~regehr/


July 30, 2010 at 4:32 pm

GCC actually tends to evaluate (1 <= 32 to 0. This is even more optimal than

evaluating it to x, as there’s no need to evaluate x, literal 0 can trigger further

optimizations and literal 0 is very cheap on most platforms. In this case most

likely GCC was not able to ªnd undeªned behaviour at compile-time and

generated x86 shl instruction. 32-bit shl on x86 only looks at the lowest 5 bits

of it’s RHS, thus (1 << 32) == (1 << 0) == 1. However non-intuitive this is, this is

a result of CPU optimization, not compiler optimization.

Nadav

August 17, 2010 at 11:30 pm

This is a good article!

I wanted to point out that in Verilog and VHDL (hardware description

languages) you have syntax that is undeªned. It is a part of the standard of the

language but it is unsynthesizable to hardware circuits.

Neil Harding

August 19, 2010 at 10:18 am

The reason that arithmetic operations are undeªned is due to not requiring a

particular implementation, so if you used a processor with BCD (binary coded

decimal) values for integer operations, or 1’s complement format then

INT_MAX + 1 would return dizerent values than a 2’s complement format

architecture.

ASSERT can be used to check for preconditions, but since you are running in

debug mode when this is enabled, some optimizations are not enabled and so

the preconditions may hold true in debug mode, but not in release mode.

I actually prefer coding in 68000 (6502 & Z80 required too much work for the

simple operations) to programming in C, or Java. I found I could do optimal

code, and use the condition code ºags to perform multiple checks at one time.

http://cs.haifa.ac.il/~rotemn/


So a = a + 1, would set Z ºag if a was = -1, V ºag (overºow) if a = MAX_INT,

and N ºag (if result < 0, which include MAX_INT). I've done some x86

assembly but since it is such a horrible mess, then C/C++ is preferable.

Peter da Silva

August 19, 2010 at 4:23 pm

The reason for things like “An unmatched ‘ or ” character is encountered on a

logical source line during tokenization” being undeªned is not to make the

compiler’s job easier, it’s to make the standards body’s job possible. Many of

these kinds of undeªned behavior are cases where:

* Important compilers did it dizerently. 

* Important code depended on what their particular compiler did.

I am 99.44% positive that there are a number of cases where it would make a

lot of sense to deªne certain behavior as an error, but if you did that you’d have

to rewrite parts of the Linux kernel or the NT kernel because GCC and Microsoft

C did things dizerent ways… and since you’re never going to compile the Linux

kernel with anything but GCC (try it some time) or the NT kernel with Microsoft

C, neither side has a good reason to back down.

regehr

August 19, 2010 at 9:59 pm

Neil, how many non-2’s complement targets are out there? I know this

rationale was used historically but it hardly seems relevant to C99 and C++0x.

I agree with you that the lack of access to overºow ºags in C and C++ is really

annoying. It makes certain kinds of code hard or impossible to express

e⟜ciently.

regehr

August 19, 2010 at 10:02 pm




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Peter of course you’re right, thanks for pointing this out. The standards body

certainly had an unenviable task.

Kumari Swarnim

August 20, 2010 at 4:50 am

It is nice.

Steve

August 20, 2010 at 8:53 am

You go too far when you say that anyone relying on twos-complement overºow

behaviour will one day be proven wrong. Of course pedantically it’s true, but in

reality, people know broadly what kind of platform they’re developing for even

if not precisely which platform. Twos-complement is pretty much universal

now, and C/C++ compiler developers would be insane to not ensure it just

worked as expected irrespective of the letter of the standards. Anyone

developing for an obscure sign-magnitude platform or whatever will know

about it.

regehr

August 20, 2010 at 11:18 am

Hi Steve- I must have failed to explain things clearly. This is the situation:

today’s C and C++ compilers do not have 2’s complement semantics for signed

overºow. Did you read the example in the post where real C compilers evaluate

(x+1)>x as “true”? Do I need to point out that this result is not correct under a

2’s complement interpretation of integers?

Steve

August 20, 2010 at 3:20 pm



http://www.cs.utah.edu/~regehr/


Hi – no you didn’t explain badly, but my point still stands. When dealing with

the boundary between what is formally-undeªned-but-expected and what is

just plain undeªned, there’s always going to be a degree of subjectivity, but

here’s the thing – it is (for example) impractical if not impossible to implement

a big-integer library without making (reasonable but standards-undeªned)

assumptions about integer representation and overºow behaviour. Big integer

libraries exist. They won’t run on every platform everywhere, but they still

manage a fair bit of portability.

If you write “(x+1)>x”, the real question is “why are you doing this?”. Of course

the optimisation makes sense, just as the 2s complement assumption would

make sense. But equally, this is an artiªcial example. For real world code, you

can rely on the fact that compiler writers actually want scripting languages and

other big-integer clients to carry on working too. I believe GCC even *uses*

GNUs big integer library to do it’s compile-time calculations these days.

I repeat – pedantically, yes, you are going to encounter problems and odd

corner cases – but stick within the kinds of coding patterns that are widely used

and your code will work irrespective of “undeªned behaviour”.

The purpose of a real-world compiler is to compile real-world code and, while

optimisation can sometimes get overzealous, the integer overºow issue isn’t as

bad as you make out.

OTOH – pointer alias analysis (or rather the failure to detect an alias due to

pointer casts and arithmetic) is a real expletive-causing issue. I’ve had that

with GCC recently, and I couldn’t really ªgure out a resolution other than (1)

have tons of template bloat to avoid having a type-unsafe implementation, or

(2) dial down the optimisations. Yet no-one can seriously claim that there’s no

history of pointer casts and arithmetic in C and C++.

But IMO this ones a reason to complain to the compiler writers – as I said, the

purpose of a real-world compiler is to compile real-world code. It’s virtually

impossible to write a real-world app that doesn’t invoke some kind of

undeªned behaviour in C or C++, so compiler writers have more responsibilities

than just complying with the standards. The end users, after all, are you and me

– not just the standards people.



That said, so far I haven’t looked that hard for a resolution, and that’s the real

issue here with the alias analysis. C and C++ are languages for people who are

willing to patch up the problems from time to time (or stick to known versions

of known compilers), and I just haven’t checked how to ªx this one low-priority

library yet.

regehr

August 20, 2010 at 6:42 pm

Hi Steve- There is much merit to what you say. However, you are wrong about

one fundamental point: when dealing with a programming language the real

question is not “why are you doing this.” I actually wrote a post about this

exact topic a while ago:

http://blog.regehr.org/archives/47

I’ll tell you what, let’s run an experiment. If you’ve looked at part 2 of this

series of posts, you’ll see that my group has a tool for detecting integer

undeªned behaviors. I’ll run this on GMP, which I suspect is the most popular

bignum package (if you have other ideas, let me know).

My expectation is that every single signed overºow in GMP will be considered a

bug by the GMP developers and will be ªxed after I report it. Your position, if I

guess correctly, is that they are happy to leave these in there because the

compiler somehow understands what the developer is trying to do, and respects

2’s complement behavior when it really matters. Does that sound right?

Steve

August 21, 2010 at 1:59 pm

I got your e-mails, and to be honest, I’m surprised this is going on so long.

After all, we agree that C and C++ leave a lot undeªned, and that means that

those languages aren’t as safe as e.g. Ada.


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As for what happens on GMP, my guess is that they’ll look at the speciªc cases

and see what they can do. Especially as, based on you ªnding a grand total of

nine issues, it looks like I was wrong in saying that doing big integers is

impractical without relying on integer representation and overºow behaviour.

Since it’s impossible to ever say “I’m wrong” without a “but” 

Am I correct in saying that until C99 and stdint.h, there was no way in standard

C to specify that you want a 32bit (or any other speciªc size) integer? GMP was

ªrst released in 1991, certainly. Evolving towards greater portability is hardly a

surprise, but it *is* evolution, with problems ªxed as and when they’re found.

Those undeªned behaviour “bugs” are there now and have probably been there

a while. I assume GMP have strong unit tests, so if a real problem arose, it

would have been noticed.

So one relevant question is – is it actually productive to be spending time

hunting down and ªxing undeªned behaviour bugs that don’t cause anyone a

problem, when they could be investing that time in something else?

As you said, one thing the developer has to do is to hope. I’d say it’s more a

matter of expecting to do maintenance as platforms and compilers evolve. And

even if you code in Ada, you’d still need to do maintenance from time to time –

e.g. you might ªnd around now that you need 64 bit integers, where not only

didn’t you anticipate it years ago, but your compiler wouldn’t allow it anyway.

Is the Ada way better that the C/C++ way? I think so, and apparently so do you.

But reality is that very few people use Ada, and while C and C++ are less than

ideal, they’re only occasionally fatal. And lets face it – GNAT even has those

mandated overºow checks disabled by default for performance reasons, so

using Ada is no guarantee in itself. And I guess if your unit tests are strong

enough, it doesn’t matter – don’t laugh, some people can manage to write unit

tests, honest.

Actually, since you mentioned LLVM and Clang in an e-mail – bugpoint is

something I must look at some time.



Moving on – if the compiler doesn’t care about intent and only cares about the

letter of the standard, how do you balance that against the fact that for half of

its history C didn’t have a standard – the ratio being somewhat worse for C++.

Obviously it’s not the job of the compiler to guess, but there’s no fundamental

dizerence between the guys who write standards and the guys who write

compilers – they’re all people and all (hopefully) experienced developers.

Someone somewhere ªgures out what is needed, documents it and develops it,

not necessarily in that order. If they develop something that can’t cope with

real world code, thousands of other developers will shout foul. In the aftermath,

either the ozending compilers or real-world programming practice will adapt.

In a world where perfection is rare, this mostly sort-of works.

For example, can you imagine what would happen if the Python devs suddenly

decided (with no standard to say they can’t) to change the semantics of the

division operator? Errrm. Oh. Errr – actually, forget that bit 

Thinking about it, my whole argument requires people to shout foul from time

to time, which you were doing. So maybe again I’m on the wrong side of things.

regehr

August 21, 2010 at 2:21 pm

Hi Steve- Yeah, we mostly agree. I think the point of disagreement is whether

people should ªx undeªned behaviors if they’re not currently causing problems.

Of course this is an individual choice made by each developer. My position on

the matter, for any software I cared about, would be to ªx these issues once I

knew about them — it just saves time later. It’s sort of like ªxing compiling

warnings that aren’t pointing out major problems — often you just do it to get

the tool to shut up, so that next time the tool says something you’ll notice.

Steve

August 21, 2010 at 7:16 pm

On the warnings thing, I see the point.


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BTW – I just realised a minor misunderstanding, which kind of explains why

you said about compilers guessing intent. When I said “If you write “(x+1)>x”,

the real question is “why are you doing this?”.”, my intent wasn’t to suggest

the compiler should work out your intent, but to point out that this isn’t sane

real-world code. Depending on your choice of common interpretation this either

evaluates to (true) or to (x != INT_MAX) – and one of those is what you’d

expect to see in real code.

OTOH the issue can happen indirectly, and implicit inlines can lead to the

optimisation happening where you wouldn’t expect it, which is potentially a

problem.

regehr

August 22, 2010 at 8:56 pm

Hi Steve- – Yes this is exactly right: machine generated code, macros, inlining,

etc. can cause bizarre source code that a human would never write. Also, most

good compilers these days will perform inlining across compilation units, so it’s

not really easy to predict what the code that the compiler ªnally sees will look

like.

Steve

August 25, 2010 at 3:36 pm

Cleared up my full misundertanding here…

http://stackoverºow.com/questions/3569424/how-to-do-a-double-chunk-

add-with-no-undeªned-behaviour

Basically, big integers without undeªned behaviour have been perfectly possible

for some time – the languages are (slightly, but in a very signiªcant way) better

deªned than I realised, and have been for a little over ten years.

Pingback: Undeªned behavior in C and C++ « IPhVu::iLearn
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Towards Optimization-Safe Systems:
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Abstract
This paper studies an emerging class of software bugs
called optimization-unstable code: code that is unexpect-
edly discarded by compiler optimizations due to unde-
fined behavior in the program. Unstable code is present
in many systems, including the Linux kernel and the Post-
gres database. The consequences of unstable code range
from incorrect functionality to missing security checks.

To reason about unstable code, this paper proposes
a novel model, which views unstable code in terms of
optimizations that leverage undefined behavior. Using
this model, we introduce a new static checker called Stack
that precisely identifies unstable code. Applying Stack
to widely used systems has uncovered 160 new bugs that
have been confirmed and fixed by developers.

1 Introduction
The specifications of many programming languages des-
ignate certain code fragments as having undefined behav-
ior [15: §2.3], giving compilers the freedom to generate
instructions that behave in arbitrary ways in those cases.
For example, in C the “use of a nonportable or erroneous
program construct or of erroneous data” leads to unde-
fined behavior [24: §3.4.3].

One way in which compilers exploit undefined behavior
is to optimize a program under the assumption that the pro-
gram never invokes undefined behavior. A consequence
of such optimizations is especially surprising to many pro-
grammers: code which works with optimizations turned
off (e.g., -O0) breaks with a higher optimization level (e.g.,
-O2), because the compiler considers part of the code dead
and discards it. We call such code optimization-unstable
code, or just unstable code for short. If the discarded

Permission to make digital or hard copies of part or all of this work for
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char *buf = ...;
char *buf_end = ...;
unsigned int len = ...;
if (buf + len >= buf_end)

return; /* len too large */
if (buf + len < buf)

return; /* overflow, buf+len wrapped around */
/* write to buf[0..len-1] */

Figure 1: A pointer overflow check found in several code bases.
The code becomes vulnerable as gcc optimizes away the second if
statement [13].

unstable code happens to be used for security checks, the
optimized system will become vulnerable to attacks.

This paper presents the first systematic approach for
reasoning about and detecting unstable code. We imple-
ment this approach in a static checker called Stack, and
use it to show that unstable code is present in a wide
range of systems software, including the Linux kernel and
the Postgres database. We estimate that unstable code
exists in 40% of the 8,575 Debian Wheezy packages that
contain C/C++ code. We also show that compilers are
increasingly taking advantage of undefined behavior for
optimizations, leading to more vulnerabilities related to
unstable code.

To understand unstable code, consider the pointer over-
flow check buf+len < buf shown in Figure 1, where buf
is a pointer and len is a positive integer. The program-
mer’s intention is to catch the case when len is so large
that buf + len wraps around and bypasses the first check
in Figure 1. We have found similar checks in a number of
systems, including the Chromium browser [7], the Linux
kernel [49], and the Python interpreter [37].

While this check appears to work with a flat address
space, it fails on a segmented architecture [23: §6.3.2.3].
Therefore, the C standard states that an overflowed pointer
is undefined [24: §6.5.6/p8], which allows gcc to simply
assume that no pointer overflow ever occurs on any archi-
tecture. Under this assumption, buf + len must be larger
than buf, and thus the “overflow” check always evaluates
to false. Consequently, gcc removes the check, paving the
way for an attack to the system [13].

In addition to introducing new vulnerabilities, unstable
code can amplify existing weakness in the system. Fig-
ure 2 shows a mild defect in the Linux kernel, where the
programmer incorrectly placed the dereference tun->sk
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struct tun_struct *tun = ...;
struct sock *sk = tun->sk;
if (!tun)

return POLLERR;
/* write to address based on tun */

Figure 2: A null pointer dereference vulnerability (CVE-2009-
1897) in the Linux kernel, where the dereference of pointer tun is
before the null pointer check. The code becomes exploitable as gcc
optimizes away the null pointer check [10].

before the null pointer check !tun. Normally, the kernel
forbids access to page zero; a null tun pointing to page
zero causes a kernel oops at tun->sk and terminates the
current process. Even if page zero is made accessible (e.g.,
via mmap or some other exploits [25, 45]), the check !tun
would catch a null tun and prevent any further exploits. In
either case, an adversary should not be able to go beyond
the null pointer check.

Unfortunately, unstable code can turn this simple bug
into an exploitable vulnerability. For example, when gcc
first sees the dereference tun->sk, it concludes that the
pointer tun must be non-null, because the C standard
states that dereferencing a null pointer is undefined [24:
§6.5.3]. Since tun is non-null, gcc further determines that
the null pointer check is unnecessary and eliminates the
check, making a privilege escalation exploit possible that
would not otherwise be [10].

Poor understanding of unstable code is a major obstacle
to reasoning about system behavior. For programmers,
compilers that discard unstable code are often “baffling”
and “make no sense” [46], merely gcc’s “creative reinter-
pretation of basic C semantics” [27]. On the other hand,
compiler writers argue that the C standard allows such
optimizations, which many compilers exploit (see §2.3);
it is the “broken code” [17] that programmers should fix.

Who is right in this debate? From the compiler’s point
of view, the programmers made a mistake in their code.
For example, Figure 2 clearly contains a bug, and even
Figure 1 is arguably incorrect given a strict interpretation
of the C standard. However, these bugs are quite subtle,
and understanding them requires detailed knowledge of
the language specification. Thus, it is not surprising that
such bugs continue to proliferate.

From the programmer’s point of view, the compilers are
being too aggressive with their optimizations. However,
optimizations are important for achieving good perfor-
mance; many optimizations fundamentally rely on the
precise semantics of the C language, such as eliminating
needless null pointer checks or optimizing integer loop
variables [20, 29]. Thus, it is difficult for compiler writers
to distinguish legal yet complex optimizations from an op-
timization that goes too far and violates the programmer’s
intent [29: §3].

This paper helps resolve this debate by introducing a
model for identifying unstable code that allows a com-

piler to generate precise warnings when it removes code
based on undefined behavior. The model specifies precise
conditions under which a code fragment can induce un-
defined behavior. Using these conditions we can identify
fragments that can be eliminated under the assumption
that undefined behavior is never triggered; specifically,
any fragment that is reachable only by inputs that trigger
undefined behavior is unstable code. We make this model
more precise in §3.

The Stack checker implements this model to identify
unstable code. For the example in Figure 2, it emits a
warning that the null pointer check !tun is unstable due
to the earlier dereference tun->sk. Stack first computes
the undefined behavior conditions for a wide range of con-
structs, including pointer and integer arithmetic, memory
access, and library function calls. It then uses a constraint
solver [3] to determine whether the code can be simplified
away given the undefined behavior conditions, such as
whether the code is reachable only when the undefined be-
havior conditions are true. We hope that Stack will help
programmers find unstable code in their applications, and
that our model will help compilers make better decisions
about what optimizations might be unsafe and when an
optimizer should produce a warning.

We implemented the Stack checker using the LLVM
compiler framework [30] and the Boolector solver [3].
Applying it to a wide range of systems uncovered 160 new
bugs, which were confirmed and fixed by the developers.
We also received positive feedback from outside users
who, with the help of Stack, fixed additional bugs in both
open-source and commercial code bases. Our experience
shows that unstable code is a widespread threat in systems,
that an adversary can exploit vulnerabilities caused by
unstable code with major compilers, and that Stack is
useful for identifying unstable code.

The main contributions of this paper are:

• a new model for understanding unstable code,

• a static checker for identifying unstable code, and

• a detailed case study of unstable code in real systems.

Another conclusion one can draw from this paper is
that language designers should be careful with defining
language construct as undefined behavior. Almost every
language allows a developer to write programs that have
undefined meaning according to the language specifica-
tion. Our experience with C/C++ indicates that being
liberal with what is undefined can lead to subtle bugs.

The rest of the paper is organized as follows. §2 pro-
vides background information. §3 presents our model of
unstable code. §4 outlines the design of Stack. §5 sum-
marizes its implementation. §6 reports our experience of
applying Stack to identify unstable code and evaluates
Stack’s techniques. §7 covers related work. §8 concludes.
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Construct Sufficient condition Undefined behavior

Language p + x p∞ + x∞ < [0, 2n − 1] pointer overflow
∗p p = NULL null pointer dereference
x ops y x∞ ops y∞ < [−2n−1, 2n−1 − 1] signed integer overflow
x / y, x % y y = 0 division by zero
x << y, x >> y y < 0 ∨ y ≥ n oversized shift
a[x] x < 0 ∨ x ≥ ARRAY_SIZE(a) buffer overflow

Library abs(x) x = −2n−1 absolute value overflow
memcpy(dst, src, len) |dst − src| < len overlapping memory copy
use q after free(p) alias(p, q) use after free
use q after p′ B realloc(p, ...) alias(p, q) ∧ p′ , NULL use after realloc

Figure 3: A list of sufficient (though not necessary) conditions for undefined behavior in certain C constructs [24: §J.2]. Here p, p′, q
are n-bit pointers; x, y are n-bit integers; a is an array, the capacity of which is denoted as ARRAY_SIZE(a); ops refers to binary operators
+, -, *, /, % over signed integers; x∞ means to consider x as infinitely ranged; NULL is the null pointer; alias(p, q) predicates whether p and q
point to the same object.

2 Background
This section provides some background on undefined be-
havior and how it can lead to unstable code. It builds on
earlier surveys [26, 41, 49] and blog posts [29, 39, 40] that
describe unstable code examples, and extends them by
investigating the evolution of optimizations in compilers.

2.1 Undefined behavior
Figure 3 shows a list of constructs and their undefined be-
havior conditions, as specified in the C standard [24: §J.2].
One category of undefined behavior is simply program-
ming errors, such as null pointer dereference, buffer over-
flow, and use after free. The other category is non-portable
constructs, the hardware implementations of which often
have subtle differences.

For instance, when signed integer overflow or division
by zero occurs, a division instruction traps on x86 [22:
§3.2], while it silently produces an undefined result on
PowerPC [21: §3.3.8]. Another example is shift instruc-
tions: left-shifting a 32-bit one by 32 bits produces 0 on
ARM and PowerPC, but 1 on x86; however, left-shifting
a 32-bit one by 64 bits produces 0 on ARM, but 1 on x86
and PowerPC. Wang et al.’s survey [49] provides more
details of such architectural differences.

To build a portable system, the language standard could
impose uniform behavior over erroneous or non-portable
constructs, as many higher-level languages do. In doing
so, the compiler would have to synthesize extra instruc-
tions. For example, to enforce well-defined error han-
dling (e.g., run-time exception) on buffer overflow, the
compiler would need to insert extra bounds checks for
memory access operations. Similarly, to enforce a consis-
tent shift behavior on x86, for every x << y the compiler
would need to insert a check against y (unless it is able to
prove that y is not oversized), as follows:

if (y < 0 ∨ y ≥ n) then 0 else x << y.

The C-family languages employ a different approach.
Aiming for system programming, their specifications
choose to trust programmers [23: §0] and assume that
their code will never invoke undefined behavior. This
assumption gives more freedom to the compiler than
simply saying that the result of a particular operation
is architecture-dependent. While it allows the compiler to
generate efficient code without extra checks, the assump-
tion also opens the door to unstable code.

2.2 Examples of unstable code

The top row of Figure 4 shows six representative examples
of unstable code in the form of sanity checks. All of these
checks may evaluate to false and become dead code under
optimizations, even though none appear to directly invoke
undefined behavior. We will use them to test existing
compilers in §2.3.

The check p + 100 < p resembles Figure 1, which is
dead assuming no pointer overflow.

The null pointer check !p with an earlier dereference
is from Figure 2, which is dead assuming no null pointer
dereference.

The check x+100 < x with a signed integer x becomes
dead assuming no signed integer overflow. It once led
to a harsh debate between some C programmers and gcc
developers [17].

Another check x++100 < 0 tests whether optimizations
perform more elaborate reasoning assuming no signed
integer overflow; x+ is known to be positive.

The shift check !(1 << x) was intended to catch a large x,
from a patch to the ext4 file system [31]. It becomes dead
assuming no oversized shift amount.

The check abs(x) < 0 was used in the PHP interpreter
to catch the most negative value (i.e., −2n−1). It becomes
dead when optimizations understand this library function
and assume no absolute value overflow [18].
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if (p + 100 < p) ∗p; if (!p) if (x + 100 < x) if (x+ + 100 < 0) if (!(1 << x)) if (abs(x) < 0)

gcc-2.95.3 – – O1 – – –
gcc-3.4.6 – O2 O1 – – –
gcc-4.2.1 O0 – O2 – – O2

gcc-4.8.1 O2 O2 O2 O2 – O2

clang-1.0 O1 – – – – –
clang-3.3 O1 – O1 – O1 –
aCC-6.25 – – – – – O3

armcc-5.02 – – O2 – – –
icc-14.0.0 – O2 O1 O2 – –
msvc-11.0 – O1 – – – –
open64-4.5.2 O1 – O2 – – O2

pathcc-1.0.0 O1 – O2 – – O2

suncc-5.12 – O3 – – – –
ti-7.4.2 O0 – O0 O2 – –
windriver-5.9.2 – – O0 – – –
xlc-12.1 O3 – – – – –

Figure 4: Optimizations of unstable code in popular compilers: gcc, clang, aCC, armcc, icc, msvc, open64, pathcc, suncc, TI’s
TMS320C6000, Wind River’s Diab compiler, and IBM’s XL C compiler. In the examples, p is a pointer, x is a signed integer, and x+
is a positive signed integer. In each cell, “On” means that the specific version of the compiler optimizes the check into false and discards it
at optimization level n, while “–” means that the compiler does not discard the check at any level.

2.3 An evolution of optimizations
We chose 12 well-known C/C++ compilers to see what
they do with the unstable code examples: two open-source
compilers (gcc and clang) and ten recent commercial com-
pilers (HP’s aCC, ARM’s armcc, Intel’s icc, Microsoft’s
msvc, AMD’s open64, PathScale’s pathcc, Oracle’s suncc,
TI’s TMS320C6000, Wind River’s Diab compiler, and
IBM’s XL C compiler). For every unstable code example,
we test whether a compiler optimizes the check into false,
and if so, find the lowest optimization level -On at which
it happens. The result is shown in Figure 4.

We further use gcc and clang to study the evolution of
optimizations, as the history is easily accessible. For gcc,
we chose the following representative versions that span
more than a decade:

• gcc 2.95.3, the last 2.x, released in 2001;

• gcc 3.4.6, the last 3.x, released in 2006;

• gcc 4.2.1, the last GPLv2 version, released in 2007
and still widely used in BSD systems;

• gcc 4.8.1, the latest version, released in 2013.

For comparison, we chose two versions of clang, 1.0
released in 2009, and the latest 3.3 released in 2013.

We make the following observations of existing com-
pilers from Figure 4. First, discarding unstable code is
common among compilers, not just in recent gcc versions
as some programmers have claimed [27]. Even gcc 2.95.3
eliminates x + 100 < x. Some compilers discard unstable
code that gcc does not (e.g., clang on 1 << x).

Second, from different versions of gcc and clang, we
see more unstable code discarded as the compilers evolve
to adopt new optimizations. For example, gcc 4.x is

more aggressive in discarding unstable code compared to
gcc 2.x, as it uses a new value range analysis [36].

Third, discarding unstable code occurs with standard
optimization options, mostly at -O2, the default optimiza-
tion level for release build (e.g., autoconf [32: §5.10.3]);
some compilers even discard unstable code at the lowest
level of optimization -O0. Hence, lowering the optimiza-
tion level as Postgres did [28] is an unreliable way of
working around unstable code.

Fourth, optimizations exploit undefined behavior not
only from the core language features, but also from li-
brary functions (e.g., abs [18] and realloc [40]) as the
compilers evolve to understand them.

As compilers improve their optimizations, for example,
by implementing new algorithms (e.g., gcc 4.x’s value
range analysis) or by exploiting undefined behavior from
more constructs (e.g., library functions), we anticipate an
increase in bugs due to unstable code.

3 Model for unstable code
Discarding unstable code, as the compilers surveyed in §2
do, is legal as per the language standard, and thus is not a
compiler bug [39: §3]. But, it is baffling to programmers.
Our goal is to identify such unstable code fragments and
generate warnings for them. As we will see in §6.2, these
warnings often identify code that programmers want to
fix, instead of having the compiler remove it silently. This
goal requires a precise model for understanding unstable
code so as to generate warnings only for code that is
unstable, and not for code that is trivially dead and can
be safely removed. This section introduces a model for
thinking about unstable code and a framework with two
algorithms for identifying it.
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3.1 Unstable code
To formalize a programmer’s misunderstanding of the C
specification that leads to unstable code, let C⋆ denote
a C dialect that assigns well-defined semantics to code
fragments that have undefined behavior in C. For example,
C⋆ is defined for a flat address space, a null pointer that
maps to address zero, and wrap-around semantics for
pointer and integer arithmetic [38]. A code fragment e is
a statement or expression at a particular source location in
program P. If the compiler can transform the fragment e
in a way that would change P’s behavior under C⋆ but
not under C, then e is unstable code.

Let P[e/e′] be a program formed by replacing e with
some fragment e′ at the same source location. When is it
legal for a compiler to transform P into P[e/e′], denoted
as P { P[e/e′]? In a language specification without
undefined behavior, the answer is straightforward: it is
legal if for every input, both P and P[e/e′] produce the
same result. In a language specification with undefined
behavior, the answer is more complicated; namely, it is
legal if for every input, one of the following is true:

• both P and P[e/e′] produce the same results without
invoking undefined behavior, or

• P invokes undefined behavior, in which case it does
not matter what P[e/e′] does.

Using this notation, we define unstable code below.

Definition 1 (Unstable code). A code fragment e in pro-
gram P is unstable w.r.t. language specifications C and
C⋆ iff there exists a fragment e′ such that P{ P[e/e′] is
legal under C but not under C⋆.

For example, for the sanity checks listed in Figure 4,
a C compiler is entitled to replace them with false, as
this is legal according to the C specification, whereas a
hypothetical C⋆ compiler cannot do the same. Therefore,
these checks are unstable code.

3.2 Approach for identifying unstable code
The above definition captures what unstable code is, but
does not provide a way of finding unstable code, because
it is difficult to reason about how an entire program will
behave. As a proxy for a change in program behavior,
Stack looks for code that can be transformed by some
optimizer O under C but not under C⋆. In particular,
Stack does this using a two-phase scheme:

1. run O without taking advantage of undefined behavior,
which resembles optimizations under C⋆; and

2. run O again, this time taking advantage of undefined
behavior, which resembles (more aggressive) optimiza-
tions under C.

If O optimizes extra code in the second phase, we assume
the reason O did not do so in the first phase is because it

would have changed the program’s semantics under C⋆,
and so Stack considers that code to be unstable.

Stack’s optimizer-based approach to finding unstable
code will miss unstable code that a specific optimizer
cannot eliminate in the second phase, even if there exists
some optimizer that could. This approach will also gener-
ate false reports if the optimizer is not aggressive enough
in eliminating code in the first phase. Thus, one challenge
in Stack’s design is coming up with an optimizer that is
sufficiently aggressive to minimize these problems.

In order for this approach to work, Stack requires an
optimizer that can selectively take advantage of unde-
fined behavior. To build such optimizers, we formalize
what it means to “take advantage of undefined behav-
ior” in §3.2.1, by introducing the well-defined program
assumption, which captures C’s assumption that program-
mers never write programs that invoke undefined behavior.
Given an optimizer that can take explicit assumptions as
input, Stack can turn on (or off) optimizations based on
undefined behavior by supplying (or not) the well-defined
program assumption to the optimizer. We build two ag-
gressive optimizers that follow this approach: one that
eliminates unreachable code (§3.2.2) and one that simpli-
fies unnecessary computation (§3.2.3).

3.2.1 Well-defined program assumption
We formalize what it means to take advantage of unde-
fined behavior in an optimizer as follows. Consider a
program with input x. Given a code fragment e, let Re(x)
denote its reachability condition, which is true iff e will
execute under input x; and let Ue(x) denote its undefined
behavior condition, or UB condition for short, which in-
dicates whether e exhibits undefined behavior on input x,
assuming C semantics (see Figure 3).

Both Re(x) and Ue(x) are boolean expressions. For
example, given a pointer dereference ∗p in expression e,
one UB condition Ue(x) is p = NULL (i.e., causing a null
pointer dereference).

Intuitively, in a well-defined program to dereference
pointer p, p must be non-null. In other words, the nega-
tion of its UB condition, p , NULL, must hold whenever
the expression executes. We generalize this below.

Definition 2 (Well-defined program assumption). A code
fragment e is well-defined on an input x iff executing e
never triggers undefined behavior at e:

Re(x)→ ¬Ue(x). (1)

Furthermore, a program is well-defined on an input iff
every fragment of the program is well-defined on that
input, denoted as ∆:

∆(x) =
∧
e∈P

Re(x)→ ¬Ue(x). (2)
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1: procedure Eliminate(P)
2: for all e ∈ P do
3: if Re(x) is UNSAT then
4: Remove(e) ▷ trivially unreachable
5: else
6: if Re(x) ∧ ∆(x) is UNSAT then
7: Report(e)
8: Remove(e) ▷ unstable code eliminated

Figure 5: The elimination algorithm. It reports unstable code that
becomes unreachable with the well-defined program assumption.

3.2.2 Eliminating unreachable code
The first algorithm identifies unstable statements that can
be eliminated (i.e., P{ P[e/∅] where e is a statement).
For example, if reaching a statement requires triggering
undefined behavior, then that statement must be unreach-
able. We formalize this below.

Theorem 1 (Elimination). In a well-defined program P,
an optimizer can eliminate code fragment e, if there is no
input x that both reaches e and satisfies the well-defined
program assumption ∆(x):

∄x : Re(x) ∧ ∆(x). (3)

The boolean expression Re(x) ∧ ∆(x) is referred as the
elimination query.

Proof. Assuming ∆(x) is true, if the elimination query
Re(x)∧∆(x) always evaluates to false, then Re(x) must be
false, meaning that e must be unreachable. One can then
safely eliminate e. □

Consider Figure 2 as an example. There is one input
tun in this program. To pass the earlier if check, the
reachability condition of the return statement is !tun.
There is one UB condition tun = NULL, from the pointer
dereference tun->sk, the reachability condition of which
is true. As a result, the elimination query Re(x)∧∆(x) for
the return statement is:

!tun ∧ (true→ ¬(tun = NULL)).

Clearly, there is no tun that satisfies this query. Therefore,
one can eliminate the return statement.

With the above definition it is easy to construct an al-
gorithm to identify unstable due to code elimination (see
Figure 5). The algorithm first removes unreachable frag-
ments without the well-defined program assumption, and
then warns against fragments that become unreachable
with this assumption. The latter are unstable code.

3.2.3 Simplifying unnecessary computation
The second algorithm identifies unstable expressions that
can be optimized into a simpler form (i.e., P{ P[e/e′]
where e and e′ are expressions). For example, if eval-
uating a boolean expression to true requires triggering

1: procedure Simplify(P, oracle)
2: for all e ∈ P do
3: for all e′ ∈ Propose(oracle, e) do
4: if e(x) , e′(x) ∧ Re(x) is UNSAT then
5: Replace(e, e′)
6: break ▷ trivially simplified
7: if e(x) , e′(x) ∧ Re(x) ∧ ∆(x) is UNSAT then
8: Report(e)
9: Replace(e, e′)

10: break ▷ unstable code simplified

Figure 6: The simplification algorithm. It asks an oracle to propose
a set of possible e′, and reports if any of them is equivalent to e with
the well-defined program assumption.

undefined behavior, then that expression must evaluate to
false. We formalize this below.

Theorem 2 (Simplification). In a well-defined pro-
gram P, an optimizer can simplify expression e with
another e′, if there is no input x that evaluates e(x) and
e′(x) to different values, while both reaching e and satis-
fying the well-defined program assumption ∆(x):

∃e′∄x : e(x) , e′(x) ∧ Re(x) ∧ ∆(x). (4)

The boolean expression e(x) , e′(x) ∧ Re(x) ∧ ∆(x) is
referred as the simplification query.

Proof. Assuming ∆(x) is true, if the simplification query
e(x) , e′(x)∧Re(x)∧∆(x) always evaluates to false, then
either e(x) = e′(x), meaning that they evaluate to the same
value; or Re(x) is false, meaning that e is unreachable. In
either case, one can safely replace e with e′. □

Simplification relies on an oracle to propose e′ for a
given expression e. Note that there is no restriction on the
proposed expression e′. In practice, it should be simpler
than the original e since compilers tend to simplify code.
Stack currently implements two oracles:

• Boolean oracle: propose true and false in turn for a
boolean expression, enumerating possible values.

• Algebra oracle: propose to eliminate common terms
on both sides of a comparison if one side is a subex-
pression of the other. It is useful for simplifying non-
constant expressions, such as proposing y < 0 for
x + y < x, by eliminating x from both sides.

As an example, consider simplifying p+100 < p using
the boolean oracle, where p is a pointer. For simplicity
assume its reachability condition is true. From Figure 3,
the UB condition of p + 100 is p∞ + 100∞ < [0, 2n − 1].
The boolean oracle first proposes true. The corresponding
simplification query is:

(p + 100 < p) , true
∧ true ∧ (true→ ¬(p∞ + 100∞ < [0, 2n − 1])) .

6



Compiler
frontend (§4.2)

UB condition
insertion (§4.3)

Solver-based
optimization (§4.4)

Bug report
generation (§4.5)

C IR

Figure 7: Stack’s workflow. It invokes clang to convert a C/C++ program into LLVM IR, and then detects unstable code based on the IR.

Clearly, this is satisfiable. The boolean oracle then pro-
poses false. This time the simplification query is:

(p + 100 < p) , false
∧ true ∧ (true→ ¬(p∞ + 100∞ < [0, 2n − 1])) .

Since there is no pointer p that satisfies this query, one
can fold p+ 100 < p into false. §6.2.2 will show more ex-
amples of identifying unstable code using simplification.

With the above definition it is straightforward to con-
struct an algorithm to identify unstable code due to simpli-
fication (see Figure 6). The algorithm consults an oracle
for every possible simpler form e′ for expression e. Simi-
larly to elimination, it warns if it finds e′ that is equivalent
to e only with the well-defined program assumption.

3.3 Discussion
The model focuses on discarding unstable code by ex-
ploring two basic optimizations, elimination because of
unreachability and simplification because of unnecessary
computation. It is possible to exploit the well-defined pro-
gram assumption in other forms. For example, instead of
discarding code, some optimizations reorder instructions
and produce unwanted code due to memory aliasing [47]
or data races [2], which Stack does not model.

Stack implements two oracles, boolean and algebra,
for proposing new expressions for simplification. One
can extend it by introducing new oracles.

4 Design
This section describes the design of the Stack checker
that detects unstable code by mimicking an aggressive
compiler. A challenge in designing Stack is to make
it scale to large programs. To address this challenge,
Stack uses variants of the algorithms presented in §3
that work on individual functions. A further challenge is
to avoid reporting false warnings for unstable code that
is generated by the compiler itself, such as macros and
inlined functions.

4.1 Overview
Stack works in four stages, as illustrated in Figure 7. In
the first stage, a user prepends a script stack-build to
the actual building command, such as:

% stack-build make

The script stack-build intercepts invocations to gcc and
invokes clang instead to compile source code into the
LLVM intermediate representation (IR). The remaining
three stages work on the IR.

In the second stage, Stack inserts UB conditions listed
in Figure 3 into the IR. In the third stage, it performs
a solver-based optimization using a variant of the algo-
rithms described in §3.2. In the fourth stage, Stack gen-
erates a bug report of unstable code discarded by the
solver-based optimization, with the corresponding set of
UB conditions. For example, for Figure 2 Stack links
the null pointer check !tun to the earlier pointer derefer-
ence tun->sk.

4.2 Compiler frontend
Stack invokes clang to compile C-family source code to
the LLVM IR for the rest of the stages. Furthermore, to
detect unstable code across functions, it invokes LLVM
to inline functions, and works on individual functions
afterwards for better scalability.

A challenge is that Stack should focus on unstable
code written by programmers, and ignore code generated
by the compiler (e.g., from macros and inline functions).
Consider the code snippet below:

#define IS_A(p) (p != NULL && p->tag == TAG_A)
p->tag == ...;
if (IS_A(p)) ...;

Assume p is a pointer passed from the caller. Ideally,
Stack could inspect the callers and check whether p can
be null. However, Stack cannot do this because it works
on individual functions. Stack would consider the null
pointer check p != NULL unstable due to the earlier deref-
erence p->tag. In our experience, this causes a large
number of false warnings, because programmers do not
directly write the null pointer check but simply reuse the
macro IS_A. To reduce false warnings, Stack ignores
such compiler-generated code by tracking code origins,
at the cost of missing possible bugs (see §4.6).

To do so, Stack implements a clang plugin to record the
original macro for macro-expanded code in the IR during
preprocessing and compilation. Similarly, it records the
original function for inlined code in the IR during inlin-
ing. The final stage uses the recorded origin information
to avoid generating bug reports for compiler-generated
unstable code (see §4.5).

4.3 UB condition insertion
Stack implements the UB conditions listed in Figure 3.
For each UB condition, Stack inserts a special function
call into the IR at the corresponding instruction:

void bug_on(bool expr);
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This function takes one boolean argument as the UB con-
dition of the instruction.

It is straightforward to represent UB conditions as a
boolean argument in the IR. For example, for a divi-
sion x/y, Stack inserts bug_on(y = 0) for division by zero.
The next stage uses these bug_on calls to compute the
well-defined program assumption.

4.4 Solver-based optimization
To detect unstable code, Stack runs the algorithms de-
scribed in §3.2 in the following order:
• elimination,
• simplification with the boolean oracle, and
• simplification with the algebra oracle.

To implement these algorithms, Stack consults the
Boolector solver [3] to decide satisfiability for elimination
and simplification queries, as shown in (3) and (4). Both
queries need to compute the terms Re(x)∧∆(x). However,
it is practically infeasible to precisely compute them for
large programs. By definition, computing the reachability
condition Re(x) requires inspecting all paths from the start
of the program, and computing the well-defined program
assumption ∆(x) requires inspecting the entire program
for UB conditions. Neither scales to a large program.

To address this challenge, Stack computes approximate
queries by limiting the computation to a single function.
To describe the impact of this change, we use the fol-
lowing two terms. First, let R′e(x) denote fragment e’s
reachability condition from the start of current function;
Stack replaces Re(x) with R′e. Second, let dom(e) denote
e’s dominators [35: §7.3], the set of fragments that ev-
ery execution path reaching e must have reached; Stack
replaces the well-defined program assumption ∆(x) over
the entire program with that over dom(e).

With these terms we describe the variant of the algo-
rithms for identifying unstable code by computing ap-
proximate queries. Stack eliminates fragment e if the
following query is unsatisfiable:

R′e(x) ∧
∧

d∈dom(e)

¬Ud(x). (5)

Similarly, Stack simplifies e into e′ if the following query
is unsatisfiable:

e(x) , e′(x) ∧ R′e(x) ∧
∧

d∈dom(e)

¬Ud(x). (6)

Appendix A provides a proof that using both approximate
queries still correctly identifies unstable code.

Stack computes the approximate queries as follows. To
compute the reachability condition R′e(x) within current
function, Stack uses Tu and Padua’s algorithm [48]. To
compute the UB condition

∧
d∈dom(e) ¬Ud(x), Stack col-

lects them from the bug_on calls within e’s dominators.

1: procedure MinUBCond(Qe

[
= H ∧

∧
d∈dom(e) ¬Ud(x)

]
)

2: ubset ← ∅
3: for all d ∈ dom(e) do
4: Q′e ← H ∧

∧
d′∈dom(e)\{d} ¬Ud′ (x)

5: if Q′e is SAT then
6: ubset ← ubset ∪ {Ud}

7: return ubset

Figure 8: Algorithm for computing the minimal set of UB condi-
tions that lead to unstable code given query Qe for fragment e.

4.5 Bug report generation
Stack generates a bug report for unstable code based
on the solver-based optimization. First, it inspects the
recorded origin of each unstable code case in the IR, and
ignores code that is generated by the compiler, rather than
written by the programmer.

To help users understand the bug report, Stack reports
the minimal set of UB conditions that make each report’s
code unstable [8], using the following greedy algorithm.

Let Qe be the query with which Stack decided that
fragment e is unstable. The query Qe then must be unsat-
isfiable. From (5) and (6), we know that the query must
be in the following form:

Qe = H ∧
∧

d∈dom(e)

¬Ud(x). (7)

H denotes the term(s) excluding
∧

d∈dom(e) ¬Ud(x) in Qe.
The goal is to find the minimal set of UB conditions that
help make Qe unsatisfiable.

To do so, Stack masks out each UB condition in e’s
dominators from Qe individually to form a new query Q′e;
if the new query Q′e becomes satisfiable, then the UB
condition masked out is crucial for making fragment e
unstable. The complete algorithm is listed in Figure 8.

4.6 Limitations
The list of undefined behavior Stack implements (see Fig-
ure 3) is incomplete. For example, it misses violations
of strict aliasing [24: §6.5] and uses of uninitialized vari-
ables [24: §6.3.2.1]. We decided not to implement them
because gcc already issues decent warnings for both cases.
It would be easy to extend Stack to do so as well.

Moreover, since our focus is to find subtle code changes
due to optimizations, we choose not to implement unde-
fined behavior that occurs in the frontend. One example
is evaluating (x = 1) + (x = 2); this fragment has un-
defined behavior due to “unsequenced side effects” [24:
§6.5/p2]. We believe that the frontend rather than the
optimizer should be able to warn against such cases.

As discussed in §4.4, Stack implements approximation
algorithms for better scalability, using approximate reach-
ability and UB conditions. Stack may miss unstable code
due to these approximations. As Stack consults a con-
straint solver with elimination and simplification queries,
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# bugs pointer null integer div shift buffer abs memcpy free realloc

Binutils 8 6 1 1
e2fsprogs 3 1 1 1
FFmpeg+Libav 21 9 6 1 1 3 1
FreeType 3 3
GRUB 2 2
HiStar [52] 3 1 2
Kerberos 11 1 9 1
libX11 2 2
libarchive 2 2
libgcrypt 2 2
Linux kernel 32 1 6 1 2 10 5 5 2
Mozilla 3 2 1
OpenAFS 11 6 4 1
plan9port 3 1 1 1
Postgres 9 1 7 1
Python 5 5
QEMU 4 3 1
Ruby+Rubinius 2 1 1
Sane 8 1 7
uClibc 2 2
VLC 2 2
Xen 3 1 1 1
Xpdf 9 8 1
others (⋆) 10 1 5 2 1 1

all 160 29 44 23 7 23 14 1 7 9 3

(⋆) Bionic, Dune [1], file, GMP, Mosh [51], MySQL, OpenSSH, OpenSSL, PHP, Wireshark.

Figure 9: New bugs identified by Stack. We also break down the number of bugs by undefined behavior from Figure 3: “pointer” (pointer
overflow), “null” (null pointer dereference), “integer” (signed integer overflow), “div” (division by zero), “shift” (oversized shift),
“buffer” (buffer overflow), “abs” (absolute value overflow), “memcpy” (overlapped memory copy), “free” (use after free), and “realloc” (use
after realloc).

Stack will also miss unstable code if the solver times out.
See §6.6 for a completeness evaluation.

Stack reports false warnings when it flags redundant
code as unstable, as programmers sometimes simply write
useless checks that have no effects (see §6.2.4). Note
that even though such redundant code fragments are false
warnings, discarding them is allowed by the specification.

5 Implementation
We implemented Stack using the LLVM compiler frame-
work [30] and the Boolector solver [3]. Stack consists of
approximately 4,000 lines of C++ code.

6 Evaluation
This section answers the following questions:

• Is Stack useful for finding new bugs? (§6.1)

• What kinds of unstable code does Stack find? (§6.2)

• How precise are Stack’s bug reports? (§6.3)

• How long does Stack take to analyze a large sys-
tem? (§6.4)

• How prevalent is unstable code in real systems, and
what undefined behavior causes it? (§6.5)

• What unstable code does Stack miss? (§6.6)

6.1 New bugs
From July 2012 to March 2013, we periodically applied
Stack to systems software written in C/C++ to identify
unstable code. The systems Stack analyzed are listed
in Figure 9, and include OS kernels, virtual machines,
databases, multimedia encoders/decoders, language run-
times, and security libraries. Based on Stack’s bug re-
ports, we submitted patches to the corresponding devel-
opers. The developers confirmed and fixed 160 new bugs.
The results show that unstable code is widespread, and
that Stack is useful for identifying unstable code.

We also break down the bugs by type of undefined
behavior. The results show that several kinds of undefined
behavior contribute to the unstable code bugs.

6.2 Analysis of bug reports
This subsection reports our experience of finding and
fixing unstable code with the aid of Stack. We manu-
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int64_t arg1 = ...;
int64_t arg2 = ...;
if (arg2 == 0)

ereport(ERROR, ...);
int64_t result = arg1 / arg2;
if (arg2 == -1 && arg1 < 0 && result <= 0)

ereport(ERROR, ...);

Figure 10: An invalid signed division overflow check in Postgres,
where the division precedes the check. A malicious SQL query will
crash it on x86-64 by exploiting signed division overflow.

ally classify Stack’s bug reports into the following four
categories based on the impact:

• non-optimization bugs, causing problems regardless
of optimizations;

• urgent optimization bugs, where existing compilers are
known to cause problems with optimizations turned
on, but not with optimizations turned off;

• time bombs, where no known compilers listed in §2.3
cause problems with optimizations, though Stack does
and future compilers may do so as well; and

• redundant code: false warnings, such as useless checks
that compilers can safely discard.

The rest of this subsection illustrates each category using
examples from Stack’s bug reports. All the bugs de-
scribed next were previously unknown but now have been
confirmed and fixed by the corresponding developers.

6.2.1 Non-optimization bugs
Non-optimization bugs are unstable code that causes prob-
lems even without optimizations, such as the null pointer
dereference bug shown in Figure 2, which directly invokes
undefined behavior.

To illustrate the subtle consequences of invoking unde-
fined behavior, consider the implementation of the 64-bit
signed division operator for SQL in the Postgres database,
as shown in Figure 10. The code first rejects the case
where the divisor is zero. Since 64-bit integers range
from −263 to 263 − 1, the only overflow case is −263/−1,
where the expected quotient 263 exceeds the range and
triggers undefined behavior. The Postgres developers in-
correctly assumed that the quotient must wrap around to
−263 in this case, as in some higher-level languages (e.g.,
Java), and tried to catch it by examining the overflowed
quotient after the division, using the following check:

arg2 == -1 && arg1 < 0 && arg1 / arg2 <= 0.

Stack identifies this check as unstable code: the divi-
sion implies that the overflow must not occur to avoid
undefined behavior, and thus the overflow check after the
division must be false.

While signed division overflow is undefined behavior
in C, the corresponding x86-64 instruction IDIV traps
on overflow. One can exploit this to crash the database

char buf[15]; /* filled with data from user space */
unsigned long node;
char *nodep = strchr(buf, ’.’) + 1;
if (!nodep)

return -EIO;
node = simple_strtoul(nodep, NULL, 10);

Figure 11: An incorrect null pointer check in the Linux sysctl im-
plementation for /proc/sys/net/decnet/node_address. A correct
null check should test the result of strchr, rather than that plus
one, which is always non-null.

server on x86-64 by submitting a SQL query that invokes
−263/−1, such as:

SELECT ((-9223372036854775808)::int8) / (-1);

Interestingly, we notice that the Postgres developers tested
the −263/−1 crash in 2006, but incorrectly concluded that
this “seemed OK” [34]. We believe the reason is that they
tested Postgres on x86-32, where there was no 64-bit IDIV
instruction. In that case, the compiler would generate a
call to a library function lldiv for 64-bit signed division,
which returns −263 for −263/−1 rather than a hardware
trap. The developers hence overlooked the crash issue.

To fix this bug, we submitted a straightforward patch
that checks whether arg1 is −263 and arg2 is −1 before
arg1/arg2. However, the Postgres developers insisted on
their own fix. Particularly, instead of directly comparing
arg1 with −263, they chose the following check:

arg1 != 0 && (-arg1 < 0) == (arg1 < 0).

Stack identifies this check as unstable code for similar
reasons: the negation −arg1 implies that arg1 cannot be
−263 to avoid undefined behavior, and thus the check must
be false. We will further analyze this check in §6.2.3.

By identifying unstable code, Stack is also useful for
uncovering programming errors that do not directly in-
voke undefined behavior. Figure 11 shows an incorrect
null pointer check from the Linux kernel. The intention
of this check was to reject a network address without any
dots. Since strchr(buf, ’.’) returns null if it cannot
find any dots in buf, a correct check should check whether
its result is null, rather than that plus one. One can bypass
the check !nodep with a malformed network address from
user space and trigger an invalid read at page zero. Stack
identifies the check !nodep as unstable code, because un-
der the no-pointer-overflow assumption nodep (a pointer
plus one) must be non-null.

6.2.2 Urgent optimization bugs
Urgent optimization bugs are unstable code that existing
compilers already optimize to cause problems. §2.2 de-
scribed a set of examples where compilers either discard
the unstable code or rewrite it into some vulnerable form.

To illustrate the consequences, consider the code snip-
pet from FFmpeg/Libav for parsing Adobe’s Action Mes-
sage Format, shown in Figure 12. The parsing code starts
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const uint8_t *data = /* buffer head */;
const uint8_t *data_end = /* buffer tail */;
int size = bytestream_get_be16(&data);
if (data + size >= data_end || data + size < data)

return -1;
data += size;
...
int len = ff_amf_tag_size(data, data_end);
if (len < 0 || data + len >= data_end

|| data + len < data)
return -1;

data += len;
/* continue to read data */

Figure 12: Unstable bounds checks in the form data + x < data
from FFmpeg/Libav, which gcc optimizes into x < 0.

void pdec(io *f, int k) {
if (k < 0) { /* print negative k */

if (-k >= 0) { /* not INT_MIN? */
pchr(f, ’-’); /* print minus */
pdec(f, -k); /* print -k */
return;

}
... /* print INT_MIN */
return;

}
... /* print positive k */

}

Figure 13: An unstable integer check in plan9port. The function
pdec prints a signed integer k; gcc optimizes the check -k >= 0 into
true when it learns that k is negative, leading to an infinite loop if
the input k is INT_MIN.

with two pointers, data pointing to the head of the input
buffer, and data_end pointing to one past the end. It first
reads in an integer size from the input buffer, and fails if
the pointer data+size falls out of the bounds of the input
buffer (i.e., between data and data_end). The intent of
the check data+size < data is to reject a large size that
causes data + size to wrap around to a smaller pointer
and bypass the earlier check data + size >= data_end.
The parsing code later reads in another integer len and
performs similar checks.

Stack identifies the two pointer overflow checks in the
form data + x < data as unstable code, where x is a
signed integer (e.g., size and len). Specifically, with the
algebra oracle Stack simplifies the check data+ x < data
into x < 0, and warns against this change. Note that this
is slightly different from Figure 1: x is a signed integer,
rather than unsigned, so the check is not always false
under the well-defined program assumption.

Both gcc and clang perform similar optimizations, by
rewriting data + x < data into x < 0. As a result, a large
size or len from malicious input is able to bypass the
checks, leading to an out-of-bounds read. A correct fix
is to replace data + x >= data_end || data + x < data
with x >= data_end − data, which is simpler and also
avoids invoking undefined behavior; one should also add
the check x < 0 if x can be negative.

int64_t arg1 = ...;
if (arg1 != 0 && ((-arg1 < 0) == (arg1 < 0)))

ereport(ERROR, ...);

Figure 14: A time bomb in Postgres. The intention is to check
whether arg1 is the most negative value −2n−1, similar to Figure 13.
struct p9_client *c = ...;
struct p9_trans_rdma *rdma = c->trans;
...
if (c)

c->status = Disconnected;

Figure 15: Redundant code from the Linux kernel, where the caller
of this code snippet ensures that c must be non-null and the null
pointer check against c is always true.

Figure 13 shows an urgent optimization bug that leads
to an infinite loop from plan9port. The function pdec is
used to print a signed integer k; if k is negative, the code
prints the minus symbol and then invokes pdec again with
the negation −k. Assuming k is an n-bit integer, one spe-
cial case is k being −2n−1 (i.e., INT_MIN), the negation
of which is undefined. The programmers incorrectly as-
sumed that -INT_MIN would wrap around to INT_MIN and
remain negative, so they used the check −k >= 0 to filter
out INT_MIN when k is known to be negative.

Stack identifies the check −k >= 0 as unstable code;
gcc also optimizes the check into true as it learns that k is
negative from the earlier k < 0. Consequently, invoking
pdec with INT_MIN will lead an infinite loop, printing
the minus symbol repeatedly. A simple fix is to replace
−k >= 0 with a safe form k != INT_MIN.

6.2.3 Time bombs
A time bomb is unstable code that is harmless at present,
since no compiler listed in §2.3 can currently optimize
it. But this situation may change over time. §2.3 already
showed how past compiler changes trigger time bombs
to become urgent optimization bugs. §6.2.1 illustrated
how a time bomb in Postgres emerged as the x86 pro-
cessor evolved: the behavior of 64-bit signed division on
overflow changed from silent wraparound to trap, allow-
ing one to crash the database server with malicious SQL
queries.

Figure 14 shows a time bomb example from Postgres.
As mentioned in §6.2.1, the Postgres developers chose
this approach to check whether arg1 is −263 without using
the constant value of −263; their assumption was that the
negation of a non-zero integer would have a different sign
unless it is −263.

The code currently works; the time bomb does not go
off, and does not cause any problems, unlike its “equiva-
lent” form in Figure 13. This luck relies on the fact that
no production compilers discard it. Nonetheless, Stack
identifies the check as unstable code, and we believe that
some research compilers such as Bitwise [43] already dis-
card the check. Relying on compilers to not optimize time
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build time analysis time # files # queries # query timeouts

Kerberos 1 min 2 min 705 79,547 2 (0.003%)
Postgres 1 min 11 min 770 229,624 1,131 (0.493%)
Linux kernel 33 min 62 min 14,136 3,094,340 1,212 (0.039%)

Figure 16: Stack’s performance numbers when running it against Kerberos, Postgres, and the Linux kernel, including the build time, the
analysis time, the number of files, the number of total queries Stack made, and the number of queries that timed out.

bombs for system security is risky, and we recommend
fixing problems flagged by Stack to avoid this risk.

6.2.4 Redundant code

Figure 15 shows an example of redundant code from
the Linux kernel. Stack identifies the null pointer check
against the pointer c in the if condition as unstable code,
due to the earlier dereference c->trans. The caller of the
code snippet ensures that the pointer c must be non-null,
so the check is always true. Our experience shows that
redundant code comprises only a small portion of unstable
code that Stack reports (see §6.3).

Depending on their coding conventions, it is up to pro-
grammers to decide whether to keep redundant code.
Based on the feedback from Stack’s users, we have
learned that programmers often prefer to remove such
redundant checks or convert them to assertions for better
code quality, even if they are not real bugs.

6.3 Precision
To understand the precision of Stack’s results, we further
analyzed every bug report Stack produced for Kerberos
and Postgres. The results below show that Stack has a
low rate of false warnings (i.e., redundant code).

Kerberos. Stack reported 11 bugs in total, all of which
were confirmed and fixed by the developers. In addition,
the developers determined that one of them was remotely
exploitable and requested a CVE identifier (CVE-2013-
1415) for this bug. After the developers fixed these bugs,
Stack produced zero reports.

Postgres. Stack reported 68 bugs in total. The develop-
ers promptly fixed 9 of them after we demonstrated how
to crash the database server by exploiting these bugs, as
described in §6.2.1. We further discovered that Intel’s icc
and PathScale’s pathcc compilers discarded 29 checks,
which Stack identified as unstable code (i.e., urgent op-
timization bugs), and reported these problems to the de-
velopers. At the writing of this paper, the strategies for
fixing them are still under discussion.

Stack found 26 time bombs (see §6.2.3 for one exam-
ple); we did not submit patches to fix these time bombs
given the developers’ hesitation in fixing urgent optimiza-
tion bugs. Stack also produced 4 bug reports that identi-
fied redundant code, which did not need fixing.

algorithm # reports # packages

elimination 23,969 2,079
simplification (boolean oracle) 47,040 2,672
simplification (algebra oracle) 871 294

Figure 17: Number of reports generated by each of Stack’s algo-
rithms from §3.2 for all Debian Wheezy packages, and the number
of packages for which at least one such report was generated.

6.4 Performance
To measure the running time of Stack, we ran it against
Kerberos, Postgres, and the Linux kernel (with all mod-
ules enabled), using their source code from March 23,
2013. The experiments were conducted on a 64-bit
Ubuntu Linux machine with an Intel Core i7-980 3.3 GHz
CPU and 24 GB of memory. The processor has 6 cores,
and each core has 2 hardware threads.

Stack built and analyzed each package using 12 pro-
cesses in parallel. We set a timeout of 5 seconds for each
query to the solver (including computing the UB condi-
tion set as described in §4.5). Figure 16 lists the build
time, the analysis time, the number of files, the number of
total queries to the solver, and the number of query time-
outs. The results show that Stack can finish analyzing a
large system within a reasonable amount of time.

We noticed a small number of solver timeouts (less
than 0.5%) due to complex reachability conditions, often
at the end of a function. Stack would miss unstable code
in such cases. To avoid this, one can increase the timeout.

6.5 Prevalence of unstable code
We applied Stack to all 17,432 packages in the Debian
Wheezy archive as of March 24, 2013. Stack checked
8,575 of them that contained C/C++ code. Building and
analyzing these packages took approximately 150 CPU-
days on Intel Xeon E7-8870 2.4 GHz processors.

For 3,471 out of these 8,575 packages, Stack detected
at least one instance of unstable code. This suggests that
unstable code is a widespread problem.

Figure 17 shows the number of reports generated by
each of Stack’s algorithms. These results suggest that
they are all useful for identifying unstable code.

Each of Stack’s reports contains a set of UB conditions
that cause the code to be unstable. Figure 18 shows the
number of times each kind of UB condition showed up
in a report. These numbers confirm that many kinds of
undefined behavior lead to unstable code in practice.
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UB condition # reports # packages

null pointer dereference 59,230 2,800
buffer overflow 5,795 1,064
signed integer overflow 4,364 780
pointer overflow 3,680 614
oversized shift 594 193
aliasing 330 70
overlapping memory copy 227 47
division by zero 226 95
use after free 156 79
other libc (cttz, ctlz) 132 7
absolute value overflow 86 23
use after realloc 22 10

Figure 18: Number of reports that involve each of Stack’s UB con-
ditions from Figure 3 for all Debian Wheezy packages, and the
number of packages for which at least one such report was gen-
erated.

As described in §4.5, Stack computes a minimal set
of UB conditions necessary for each instance of unstable
code. Most unstable code reports (69,301) were the result
of just one UB condition, but there were also 2,579 reports
with more than one UB condition, and there were even
4 reports involving eight UB conditions. These numbers
confirm that some unstable code is caused by multiple
undefined behaviors, which suggests that automatic tools
such as Stack are necessary to identify them. Program-
mers are unlikely to find them by manual inspection.

6.6 Completeness
Stack is able to identify all the unstable code examples de-
scribed in §2.3. However, it is difficult to know precisely
how much unstable code Stack would miss in general. In-
stead we analyze what kind of unstable code Stackmisses.
To do so, we collected all examples from Regehr’s “un-
defined behavior consequences contest” winners [40] and
Wang et al.’s undefined behavior survey [49] as a bench-
mark, a total of ten tests from real systems.

Stack identified unstable code in seven out of the ten
tests. Stack missed three for the following reasons. As
described in §4.6, Stack missed two because we chose
not to implement their UB conditions for violations of
strict aliasing and uses of uninitialized variables; it would
be easy to extend Stack to do so. The other case Stack
missed was due to approximate reachability conditions,
also mentioned in §4.6.

7 Related work
To the best of our knowledge, we present the first defini-
tion and static checker to find unstable code, but we build
on several pieces of related work. In particular, earlier
surveys [26, 41, 49] and blog posts [29, 39, 40] collect
examples of unstable code, which motivated us to tackle
this problem. We were also motivated by related tech-

niques that can help with addressing unstable code, which
we discuss next.

Testing strategies. Our experience with unstable code
shows that in practice it is difficult for programmers to
notice certain critical code fragments disappearing from
the running system as they are silently discarded by the
compiler. Maintaining a comprehensive test suite may
help catch “vanished” code in such cases, though doing
so often requires a substantial effort to achieve high code
coverage through manual test cases. Programmers may
also need to prepare a variety of testing environments as
unstable code can be hardware- and compiler-dependent.

Automated tools such as KLEE [4] can generate test
cases with high coverage using symbolic execution. These
tools, however, often fail to model undefined behavior
correctly. Thus, they may interpret the program differently
from the language standard and miss bugs. Consider a
check x + 100 < x, where x is a signed integer. KLEE
considers x + 100 to wrap around given a large x; in other
words, the check catches a large x when executing in
KLEE, even though gcc discards the check. Therefore, to
detect unstable code, these tools need to be augmented
with a model of undefined behavior, such as the one we
proposed in this paper.

Optimization strategies. We believe that programmers
should avoid undefined behavior, and we provide sugges-
tions for fixing unstable code in §6.2. However, overly
aggressive compiler optimizations are also responsible for
triggering these bugs. Traditionally, compilers focused on
producing fast and small code, even at the price of sacri-
ficing security, as shown in §2.2. Compiler writers should
rethink optimization strategies for generating secure code.

Consider x + 100 < x with a signed integer x again.
The language standard does allow compilers to consider
the check to be false and discard it. In our experience,
however, it is unlikely that the programmer intended the
code to be removed. A programmer-friendly compiler
could instead generate efficient overflow checking code,
for example, by exploiting the overflow flag available on
many processors after evaluating x + 100. This strategy,
also allowed by the language standard, produces more
secure code than discarding the check. Alternatively,
the compiler could produce warnings when exploiting
undefined behavior in a potentially surprising way [19].

Currently, gcc provides several options to alter the com-
piler’s assumptions about undefined behavior, such as

• -fwrapv, assuming signed integer wraparound for ad-
dition, subtraction, and multiplication;

• -fno-strict-overflow, assuming pointer arithmetic
wraparound in addition to -fwrapv; and

• -fno-delete-null-pointer-checks [44], assuming
unsafe null pointer dereferences.
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These options can help reduce surprising optimizations,
at the price of generating slower code. However, they
cover an incomplete set of undefined behavior that may
cause unstable code (e.g., no options for shift or division).
Another downside is that these options are specific to gcc;
other compilers may not support them or interpret them
in a different way [49].

Checkers. Many existing tools can detect undefined be-
havior as listed in Figure 3. For example, gcc provides the
-ftrapv option to insert run-time checks for signed inte-
ger overflows [42: §3.18]; IOC [11] (now part of clang’s
sanitizers [9]) and Kint [50] cover a more complete set
of integer errors; Saturn [12] finds null pointer derefer-
ences; several dedicated C interpreters such as kcc [14]
and Frama-C [5] perform checks for undefined behavior.
See Chen et al.’s survey [6] for a summary.

In complement to these checkers that directly target un-
defined behavior, Stack finds unstable code that becomes
dead due to undefined behavior. In this sense, Stack can
be considered as a generalization of Engler et al.’s in-
consistency cross-checking framework [12, 16]. Stack,
however, supports more expressive assumptions, such as
pointer and integer operations.

Language design. Language designers may reconsider
whether it is necessary to declare certain constructs as
undefined behavior, since reducing undefined behavior in
the specification is likely to avoid unstable code. One ex-
ample is left-shifting a signed 32-bit one by 31 bits. This
is undefined behavior [24: §6.5.7], even though the result
is consistently 0x80000000 on most modern processors.
The committee for the C++ language standard is already
considering this change [33].

8 Conclusion
This paper presented the first systematic study of unstable
code, an emerging class of system defects that manifest
themselves when compilers discard code due to unde-
fined behavior. Our experience shows that unstable code
is subtle and often misunderstood by system program-
mers, that unstable code prevails in systems software, and
that many popular compilers already perform unexpected
optimizations, leading to misbehaving or vulnerable sys-
tems. We introduced a new model for reasoning about
unstable code, and developed a static checker, Stack, to
help system programmers identify unstable code. We
hope that compiler writers will also rethink optimiza-
tion strategies against unstable code. Finally, we hope
this paper encourages language designers to be careful
with using undefined behavior in the language specifi-
cation. All Stack source code is publicly available at
http://css.csail.mit.edu/stack/.
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A Correctness of approximation
As discussed in §3.2, Stack performs an optimization
if the corresponding query Q is unsatisfiable. Using an
approximate query Q′ yields a correct optimization if Q′

is weaker than Q (i.e., Q → Q′): if Q′ is unsatisfiable,
which enables the optimization, the original query Q must
also be unsatisfiable.

To prove the correctness of approximation, it suffices to
show that the approximate elimination query (5) is weaker
than the original query (3); the simplification queries (6)
and (4) are similar. Formally, given code fragment e, it
suffices to show the following:

Re(x) ∧ ∆(x)→ R′e(x) ∧
∧

d∈dom(e)

¬Ud(x). (8)

Proof. Since e’s dominators are a subset of the program,
the well-defined program assumption over dom(e) must
be weaker than ∆(x) over the entire program:

∆(x)→
∧

d∈dom(e)

(
Rd(x)→ ¬Ud(x)

)
. (9)

From the definition of dom(e), if fragment e is reach-
able, then its dominators must be reachable as well:

∀d ∈ dom(e) : Re(x)→ Rd(x). (10)

Combining (9) and (10) gives:

∆(x)→
(
Re(x)→

∧
d∈dom(e)

¬Ud(x)
)
. (11)

With Re(x), we have:

Re(x) ∧ ∆(x)→ Re(x) ∧
∧

d∈dom(e)

¬Ud(x). (12)

By definition Re(x)→ R′e(x), so (12) implies (8). □
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����¥�� �5¦�¦���²p�k���±�(���Ê��¡P���¢¡P�k�¢¤��(�P�0� Û ªP���A���������5���q��¬Á«
���5¦�¦��i¬��?��¡ ���m��·(��¥
�"¡P�k¥
���»��¡ �q���Aªi�5¥
�Xµ�²C����¬��k¥ �X�Aª
àá¬�¥���µ0²P���5º(���5���¯�k�{��¡P���XµP�(�v�]�k�����5�]¬�¥�åa¬�º(�P��� .�§q¬��]�����5¤
¡P¬����q·5����.�é"�¯¬�¥������A�á���Ä�XµP�5��¬�¥P�`����¬�¥Pº(¦��`�k��¦�¦��¢¡p��¬�¥0�5���
���a��¡ �2¥P¬�¥ �2¦��A�5ª�¬�¥Pº�������¡ ¬��_�±� ¥ �v��¬��(¥á³X<G�����±�5���¯¬�¥ º���¬���«
¬�¦��5�­��¥ �5¦�����¬��6�±�(�2��¡ �&����¡P���­¡�� ¥ ª����kªP�2�5�_��¡P�(� ���5¥ ªP�2�5�
¦�¬�¥P�A�"���Gª���¬�·(���"��¥ ªZ¤(����¥P��¦á����ªP�������k���_¬��¯²P�¢�5�X��¬À����¦g³
��
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� ÍXÎÐÏqÒ4� Û ���k��¥i��²C�k��¬Á�±�+�"¡P����¡P�k�¯��¡P�k�°��¡ �5�P¦Àª°¨C����²�«
²P¦�¬��Aª���¬���¡P�k�Õª��q�"¥��5¦�¦�²p�q��¡p� Ú ¬g³ �(³�§�� �q�_«Ð���k¥ ��¬���¬�·5�eÜá�(�4¦�¬�¥�«
�k�5��¦��©��¡P���5�Pº(¡¯��¡P�6�X��ª�� Ú ¬g³ �(³�§�� �q�_«û¬�¥p���k¥ ��¬���¬�·5�eÜv³G¸���¬���«
²P¦��¯¬��¯²P¦����¯��¥��¢�q��¬��5¥»��� � �q�_«Ð���k¥ ��¬���¬�·5�¯� Û �2���5�P¦Àª��¢��¤5�
�Xµ�²C�5¥P�k¥���¬À��¦���¬��¯�Z¬�¥����(�������(���A��³ 8 ��� ������º5º(���A����¬�·5�
���(�¢¡P¬�¥Pº°���S²P���P¥P�»���kª��P¥pªP��¥����X��ª��»² �q��¡ �Z�"¡P�����»� Û
¬�¥ �r�¢��¥ ���k���±�(¦�¦��q�%² �q��¡ �2��¡ �q� �r�(¬�¥ Ú �5³ º ³�§]¬��Ä�����q�����¯��¥��¢��§
¦����(² �¢Üá��¥pª2���A�5�¢¡���¡P� �r�(¬�¥0²C�5¬�¥��a¬�¥2��¡P�������¯�`���������(³G£��P�
���(�¢¡P¬�¥Pº¯¬��"¨p�5���kªm�5¥Z��¡P�0�W�5�v�"��¡ �q�Ä��ªP�X���k���¯¬�¥P¬À�r��¬��0� Û
��² ²P¦�¬��kªZ������¡ �©�����¯�2¬�¥ ²P����¬�¥���¡ �©�����¯�2¬�¥�������¥ ��¦a�r�¢�q���
�­�p�r�]���5�¯²P�����G��¡P�����5���4���k���P¦��k³ È ¡ �`���������k������²P���k����¥����
��¡ �&�r�¢�q�������"��¥°� Û �5�2��·(�k�X���5�2¡ �5¦Àª�¬�¥ º���¡P��·q��¦��P�?�5�
¬����n·q�5��¬À��¨P¦��k�k³_åP�5���k�(�¢¡Z¥ ��ªP�0¬�¥���¡P�­¬�¥P²P�P� � �q�_«ûº5�¢��²P¡c§
¬������k���5�¢ªP�Ä��¡P�?���X�����_�r�¢�q���A��¬�¥»�"¡P¬À�¢¡ä¬��0¡ �5�6¨C���k¥�·�¬À�r«
¬����kªá³ ? �G�5¥�� Û �5����¬�·(�k���q�n��¥P��ª���¬�¥Z��¡P�2���5���2���������2�5�
��²P����·�¬��(� �_¬�¥ �r�¢��¥ ���5§���¡P�0���������k� ²P���P¥P�k�n¬Á�A³

8 ¡P¬�¦������(�¢¡P¬�¥Pº0�_�5���5��¬�º(¬�¥ �5¦�¦������5��¬�·q�q���Aª?¨�����²C���Aª{§
²C����¡ ��² �G¬����Õ�����r�4¬��¯²p�(���¢��¥��G�±�k�q���P����¬À�a��¡p�q�Õ¬��Õ²P���q·�¬Àª��k�
���X¦��k��¥&�±���5�¯�����5��¤©�±�(�"�X�5�¯²P�P��¬�¥Pº¯¦����5²S¶rÝPµ��Aª?²C�5¬�¥(�¢��¾
���¢��¥p��² �5���k¥���¦��5³ 8 ¡P��¥Z��¥m� Û ¡ �5���Xµ�¡ �5� �����kª���¡P���������5�
�����q���k�����k�(�¢¡ ��¨P¦��­�"¬���¡ ¬�¥»��¡ ��¦����5² Ú �r��²P¬À���5¦�¦��Ë�"¬���¡��r���
¬������¢�q��¬��(¥ �¢Üv§4Ì�ÍXÎÐÏqÒI�������5���q��¬��k��¦�¦��������(² �����¢�e·5���¢��¬�¥Pº?��¡P�
¦����(²á³ È ¡P¬À��ÝPµ��kª�«g²C�5¬�¥���¨C��¡p�e·�¬��5�0ªP��²C��¥ ªP�0�5¥���¡P�&� Û
¡ �e·�¬�¥Pº?�¯Ý ¥P¬���� Ú �5¥ ªË���¯�5¦�¦�Ü_¥��P�©¨p�k���5�4���������A��³ 8 �©ª��
¥P�5�Ä�X�P�����k¥���¦�����¥��±�(��������¡P¬À�"���A�r����¬À�v��¬��(¥á³
È ¡P�Õ���P������¥������ 	�	������������Eª����k�{¥ ���á¬�¥(����º(�������4º5¦��5¨p��¦

��¥p��¦�����¬À�&�"¬���¡t��¡P�+� Û �±���5�¯�����5��¤C³ ? ¥ �����A�5ª{§�¬Á��²P����«
·�¬�ªP�k���»¦�¬�¨P�¢�����½�������5�P��¬�¥P�k�����»�k�¯¬Á�?�X¦�¬���¥���«Ð��¥P¥ ���������Aª
� �q��º5�¢��² ¡ �G������Ý ¦��5§��"¡P¬À�¢¡&���5¥¯��¡P�k¥?¨p�����A�5ª��5¥ ª¯���¢�q«
·5�k�����kªá³Z���A�v��¬��5¥ <�º(¬�·(�k�2�5¥»��µP���¯²P¦��?���_¡P�q�%���?�p���Aª
��¡ ¬��0�±���5���k���(��¤Ë���Ë�X�(�¯²P�����?��¡P�������5¥ ��¬Á��¬�·(�?�X¦��(���P�����5�
��¦�¦�²p������¬�¨P¦���«Ð��¦����k²P¬�¥Pº+�±�P¥ �X��¬��5¥ �k³ 8 �»�5����¬�¥�����º5�¢�q��¬�¥ º
��¡ �k�����r����² �5�����k�k³

� �"&�ýAõgô�����* ��� �Kóeôöõ�ô��	�Kø�÷K÷gýeþ � �eôöõgù��$*öø��eý��¯üIÿvý$*�� ��ø &nù¢õ��vø��
�	�»ù��äô�& &"ø��eô ù��Kø��vør÷'�eø�*_õKø���&"ø �	�gù��gôöÿ����Àù¢ý$* �0õKô��eúrø�ú�ù�*�*öø�÷Kõ0ÿ��
�Kóeôöõ���ý3�eú��gôöÿ�� �eør÷gø���ø�÷Kø��eúrø �góAøI÷gø��Kýe÷'�eø��Õþ�ÿvô����Kør÷�ü]ô �Kóeÿvý3�Púgóeørú��kô����ücóeø��góAø�÷ �góAøÕù�*�*öÿkú�ù��Kôöÿ���õgýeúrúrørø��eø��,+
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Û �(�������a�5�P���Xµ�����¥ ��¬��(¥ �_�������¢¡P�A�¢¤5�k���`������¡P�k�`��¡ ��¥m·5����¬�«
Ýp���¢��ß���¡P�k�ZÝ ¥ ª�¨P� º(�k§ ¨P���2ª��?¥ ���Äº(� ���¢��¥����k����¡P�k¬�����¨P«
����¥p�X�5³
å �5���XµP�5��² ¦��(§`��¡P��¬���¬�º(¥P�5�¢��¥p�X�Z���2��¦�¬��(���A�©² ����«
·(��¥����­��¡ ���¿�±���5� �5�����k����¬�¥ º���¡ �������5¥��+�(�v��¬��5¥p�ä¶�����¥P«
¥ ���?¡ �5²P²p�k¥á³ ¾ ? ¥
º5�k¥P���¢��¦g§����5¥��i�X�(��² ¬�¦����?² ���(¨P¦��k���
�5���©�P¥ ª��A�X¬ÀªP��¨ ¦��(§á�"¡P¬À�¢¡�²P¦À�5���k�6¡ �5��ªä¦�¬��¯¬Á�¢���5¥���¡P�¯�X��«
�±�A�v��¬�·(��¥P�A���¯�5����������¬À�Z�5¥ ��¦�����¬À�k³$âÄ�A��²P¬�������¡P�k����¦�¬��¯¬����q«
��¬��(¥ �k§a�(�2�5�P�©���A��� ¦Á�¢�0��¡ �q�2§ Û ´)��µ�����¥ ��¬��5¥ �©�����?Ã(� ¬Á���
��ÂC�A�v��¬�·(�5³ 8 �0�5���2���P������¥���¦���¬�¥�·5�k����¬�º(����¬�¥Pº¯¡P�q�
���¯���P��¥
���5�¯�2�X¦À�5�����k�����G�¢¡P�k�¢¤(���¢��¬�¥����¯·5�k��¬�Ý �k���k³

8 �m���5¬�¥P¦��°�¢¡P�A�¢¤½�����r�������©����ª�¬Àª°¥P�5��¨P� ¬�¦Àª{³°¸Ä�
�¯���k���P¦��k§ ���5�¯�2���P¦��2·�¬��5¦À�q��¬��(¥ �"�����±�5�P¥pª���¬�º5¡��n¥P�5�Ä¨C�
¨ �Pº(�{¨C�k�k��� ���G��¡ �`�X��ª��`���5�P¦Àª6� ���`�_¥P�5¥P«g�(¨�·�¬��5� �{�����r�����
�±�A�q���P���Z��¡ �q�?���5��¤����X�5�����k�v��¦��+¬�¥$�½��²C�k��¬ÁÝC����¬���� ����¬��5¥á³
8 �Ä���5�P¥����k���Aª©��¡P¬À�`ªP�5¥Pº5�k�Õ¬�¥¯�r���2�_�e����³aå]¬��¢�r�A§(���n���k¥��
�(�P�6�������(�Ä¦��5º(�����&��¡P�������r����� ¬��¯²P¦��k�¯��¥����(���6����àá¬�¥��PµI§
åGà]¸���æ­§]��¥pª½ãÄ�5¤��±�5���X�(¥�Ý ���¯����¬��5¥á³�æn�q����·(���A§c�"¡P¬�¦��
���0º(���n�±�k�kª�¨ �(�¢¤m�(¥�����¥����������(���k§���¡ ��¬�����¡P���k�Ä¥��P�­¨C���
�¯�A��¥��&��¡ �q�Z�¯�5¥���ªP¬�ª
¥ �������A�X��¬�·5���������X�±� ¦Ä�XµP�5��¬�¥ ��«
��¬��(¥á³2���k���5¥ ª{§I���©���5¥ ������·q�q��¬�·5�k¦��Zª�¬ÀªË¥P�5�����5�P¥������5¥��
�k�5���k�n��¡ ���6�������©ª�¬:9?�X�P¦������m���A�5���5¥Ë��¨C�5�P�k³ 8 ¡P¬�¦����5� �
���k���P¦����Ä�¯�e�Z�r��¬�¦�¦G�X�5¥��¢��¬�¥���¬À��«ûª�¬À��º(¥P�(���k�k§P���­���5�P¦Àª�¨C�
���P��²P��¬����kª¯¬��c��¡P�k���6�k��� ���kª?���(���Ä��¡ �5¥m�­�±���$²C���¢�X�k¥�����º(�
²C�5¬�¥����"ª�¬�ÂI������¥ ���5³
���k·5�k���5¦p�5�c�5�P�"�¢¡P�A�¢¤5�k���`²P����ª��p�X���­¥��P�©¨p�k���5�á�W��¦À���

²C�(��¬���¬�·5�k� Ú ¬�¥m��¡P�����5�¢�r�_���5���5§�¬�¥����A�v��¬��(¥���§��P²m���©��¡ ���k�
²C���6�������5�vÜv³ È ¡P�k�����5����ª��P�©���m��¡P��¦�¬��¯¬����q��¬��(¥ �6���`¨C����¡
��������¬À����¥ �5¦�����¬��_��¥pª&�(�P�"�¢¡P�k�¢¤(���¢��§��"¡P¬À�¢¡m² ��¬�������¬�¦���� ���
��¬���² ¦��+¦�������¦0�5¥ ��¦������A��³ Æ���� �5¦�¦��$��¡P�k���+¥��P�­¨C���¢�����5¥
¨C�Z���Aª�� �X�Aª®��¬�º(¥P¬�Ýp���5¥(��¦��½¨��°�5ª ª�¬�¥ º»���5�¯�m�5�¯�5�P¥��¯���
º(¦��(¨ ��¦���¥ �5¦�����¬��2�(�©�����r������«û��²C�k�X¬�Ýp��¤�¥P�q�"¦��kªPº5�5³ ? ¥S��¦�«
�¯���r����¦�¦a�k�5���k�k§p�A�5�¢¡��W��¦À���­²C�(��¬Á��¬�·(�©���5¥Ë¨C�����P²P²P���k�����kª
�"¬���¡�����¬�¥Pº5¦������(�P�������5¥P¥P���¢�q��¬��(¥á³	:4µ����k¥ ��¬��5¥p���k��¥&² ���5«
·�¬Àª�����¥P¥P�5������¬��5¥ �`¨��?���P²P² ¦���¬�¥Pº������X�_���c���k������·5�Aª��±�P¥ �v«
��¬��(¥ �I��¡ �q�c��¦�¬���¥����]���5¦�¦q���"¬�¥pª�¬��k�q���G��¡ ���]�"��²C�k��¬ÁÝC�4���(�P�����X«
¦���·(��¦p���5��¥P¬�¥Pº0��¡P�5� ¦�ª�¨C�����P²P² ���A�����kª{³G¸Ä���2���XÝ ¥ ���¯��¥��k§
�¢¡ �k�¢¤5�k���­����¥°ªP�X���A�v�¯¨p�(º5� �­�5�©�������(¥P���(� �0��¥ ¥P���¢�q��¬��5¥p�
¨��?�_����¥P¬�¥Pº��"¡P��¥Z��¡ ���m�5���6¥P�5�n¥P���Aª��kª{³
¼_�5��¬�¥Pºä�(�P� Û ´ ���������k� �5¥S�½´ =?=É�X�(��² ¬�¦����¯¡ �(�

�k��� ���kª�ª�¬:9?�X�P¦���¬��k�]�"¡P�k¥­��²P² ¦���¬�¥Pºn¬��c����àá¬�¥��Pµ��5¥ ª�ãÄ�(¤C³
È ¡ �k���0�������������n�5º5º(���A����¬�·(��¦����5�����P�¯�©´�ç �"�¯�5���2���k¦���µ��kª
�r��²C�2����������� �5¥ ªm� ���?@B�ÄÆ���µ�����¥p��¬��5¥ ����¡ �q�n�����6¬�¦�¦��kº(�5¦
¬�¥ �3c'cC³ È ¡�� �k§_�"¡P¬�¦��Ë¬�¥i��¡P�k�5��� Û ´ ���5¥�¨p�ä�5²P²P¦�¬��Aª
���2�2�����������)���¢��¥ ��² �5���k¥(��¦��(§q���"¡p�5ª©���2�¯��ª�¬��±�­ãÄ�(¤©�5¥ ª
àc¬�¥���µ­���2�����¯�q·5� @B�ÄÆ�´®�X�(¥ �r�����p�v���a��¡ �q�`�5���_¬�¦�¦���º���¦�¬�¥
´ =?=©³ 8 �"�5¦������¯��ª�¬�Ý �kª©��¡P����c�c6�±���5¥���«û��¥pª0���6����¦À�qµ0¬����
�r��²C�6�¢¡ �k�¢¤�¬�¥ º ³ È �¯�e·5�(¬�ª¯��¡P¬À��¦À��¨C�5���±�5�_�5��¡P�k�_�����r�������k§
���m�5���Z�X�P������¥���¦��½Ý ¥P¬À��¡ ¬�¥Pº½�[�����e«g¨p�5���kª½¬���² ¦��k���k¥����q«
��¬��(¥®�5� � �
	�	"³ Û �5���mº(��¥P�k���5¦�¦��5§4��¬�¥ ���&��¡P�»Ì¯Í�ÎûÏ�Ò]¦À��¥P«
º(� ��º(�`¡ �(�G¨p�k��¥�ª��A��¬�º5¥P�Aª2���6¨C�n��¡P¬��k¦�ªP�kª­�±���(� ¨p�5��¡���¡ �
� ¥ ª�����¦���¬�¥Pº0¦À��¥ º5� �5º5�Ä�5¥ ª?�X�(�¯²P¬�¦����A§�����²P¦��5¥�����²C�5����¬��
�5��¡P�k�"¦��5¥Pº5�p��º5�A���5¥ ªZ����¡P���n���5�¯²P¬�¦��k���k³



È ¡P�0�������5¬�¥ ªP���n�5�a��¡P¬À�n² �5²p�k��ª��A������¬�¨p�A�_��¡ �­�Xµ�����¥�«
��¬��(¥ �Õ���Ä¬��¯²P¦��k�¯��¥����Aª�� ��¬�¥PºmÌ¯Í�ÎÐÏqÒ5�5¥ ª ��� 	�	+��¥ ª���¡P�
���k���P¦Á�¢�6�����5²P²P¦���¬�¥Pºm��¡ �����5¥ ����²��2������������«g¦���·(��¦4�X�(��² ¬Á«
¦À�q��¬��5¥m�������k�5¦{�������������k³

� � �mð5� 
 ��� � � �a��� � � ì�� ï�� � �
È ¡P��´ �����������n���(�X���_����¤(�k�á�Ä��¬�¥Pº5¦��Õ�X�(¥ ª�¬���¬��5¥0�(�á¬����c�5��«
º5� ���k¥��k§��¢¡P�k�¢¤��G��¡P¬����X�(¥ ª�¬���¬��5¥?���`��� ¥(��¬��¯�(§��5¥ ª���¨C�5�����
�Xµ��A�X����¬��(¥�¬��C��¡P�Ä���5¥ ªP¬Á��¬��(¥�¬À�G�W�5¦����5³ È ¡P¬À�4���5�X���2ª��XÝp¥P�k�
�5¥ �&���"��¡P����¬��¯²P¦��A�r���¯�X����«g¦À��¥ º5� �5º5�k�0²p������¬�¨ ¦��(ß�¬��¯¡ �5�
¥P�������q������¥ ª»����¬�¥Pº5¦��¯�5²C���¢�q��¬��(¥á³ È ¡ ¬��2���k�X��¬��5¥½��¡P�q�n�
¡P�q� Û ´i�k��¥?¡P�k¦�²&��·5�k¥&��� �¢¡?��¬��¯²P¦���¬�¥��������W�5���k�`¨���²P���X«
����¥���¬�¥Pº��r�����Xµ����k¥ ��¬��5¥p����¡ ���­�¢¡P�k�¢¤ä��¡P�?�±�5¦�¦��q�"¬�¥PºZ�r���
�5����������¬��5¥&¬�¥�·q����¬��5¥(�¢��ß

6(³n¸Ä�����k����¬��(¥ �G��¡P�(�P¦Àª­¥P�5�4¡ �e·5��¥P�5¥P«ûª��k¨P�Pº(º5¬�¥Pº6��¬Àª��X«
�XÂI�k�v�¢��³�åP���kÃ��P��¥���¦��(§ ������������¬��n� ���AªZ�5¥P¦����±�5��ª��X«
·5��¦��5² ���k¥��a��¥pª����P��¥P�Aª0��Â�¬�¥­²P����ª�� �X��¬��5¥©����ª��5³ ? �
��¥��
���������0�X�5¥pª�¬Á��¬��(¥¯¡ �5�4¬��¯²p�(���¢��¥��`��¬�ª���«g��ÂC�A�v�¢��§
��¡P�A���?�"¬�¦�¦�ª�¬À����²P²C�k�5�­��¥ ª+��¡P�?² ���(º5�¢���:�"¬�¦�¦`¨C�X«
¡ �e·5�6¬�¥p�X�5�����k�v��¦��(³

.P³n¸Ä�����k����¬��(¥����5¥ ªP¬Á��¬��(¥ �n��¡P�5�P¦Àª�¥P�5�n�W��¬�¦K³ <`���(º5�¢����«
���k���Õ� �����5�����k����¬��(¥ �G���©�¢¡P�k�¢¤©�±�5�`���5¥ ªP¬Á��¬��(¥ �4��¡ �q�
��¡P�(�P¦Àªä¥P�5�2¡ ��²P²C��¥c³¯¸Ä¥��ä�X��ª���² ����¡»¦��A�5ª�¬�¥PºZ���
��¥��5�����k����¬��(¥&��¡ �q�6�����p���A�"¬Á�¢�n¨C���5¦��k��¥���µ�² ���A����¬��(¥
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åa¬�º(�P��� /�²P���k����¥����¯�SÌ¯Í�ÎûÏ�Òa�¢¡ �k�¢¤5�k�­��¡ �q��¬�¥ ��²p�A�v�����(�r«
��������¬��5¥��Xµ�²P���k����¬��(¥ ���±�(����¬�ª���«g��ÂC�A�v�¢��³ È ¡P�Sª�¬����k�v��¬�·(�5§
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�W` � ����������¥pª �W` � ����� �"¬�¥¯�X�(�­¨P¬�¥ �q��¬��(¥á³ È ���5����¬À�r�Gª��X«
·(��¦��5²C���¢�a¬�¥¯�"��¬Á��¬�¥Pº���µ�����¥ ��¬��5¥ �k§PÌ�ÍXÎÐÏqÒq²P���q·�¬�ªP�k�G�������Õ���
º(��¥P�k��¬À�©�r��²p�A���±�5�0�������¢¡P¬�¥PºËª�¬�ÂC�k���k¥��­�X¦À�5�����A�������r��²C�k�
Ú �5³ º ³�§����k��¦À���¢��§e²C�5¬�¥������¢�k§�� �(�����¢Üv§5�5¥ ª­ª�¬�ÂI������¥��a² ���(º5�¢����«
�¯¬�¥Pº��X�(¥ �r�����p�v��� Ú �5³ º ³�§P���(����¦À��¨C��¦À��§P¬�¥ ª�¬����k�v��¬��(¥ �¢Üv³

8 ¡P�k¥$��²P² ¦�¬��kªi���+ãÄ�5¤Iç � :4µp£��S¦�¬�¨P�¢�����°�(²p�k������¬�¥Pº�����r������§2��¡P¬�� .5è�¦�¬�¥P�°�Xµ�����¥ ��¬��(¥��±�5�P¥pª 6 <�·�¬��5¦À�q��¬��5¥p�
¬�¥ 6 ��� ����� �����½� ���k�k³ È ���»���k���Z�W�5¦�����²p����¬���¬�·5�A������¬�º5«º(�����kª»¨���ª��k¨P�Pº(º5¬�¥Pº��±�P¥ �X��¬��5¥ �k³ È ¡P�k���?�X�(�P¦Àª½¨p�&���P²�«² ���A�����kª�¨����"���5²P²P¬�¥PºÄ��� �¢¡­�k��¦�¦��]¬�¥©�Äª�¬�ÂC�k���k¥���¦��6¥p���¯�kª{§� ¥ �¢¡P�k�¢¤(�kªË�(����������¬��5¥ä�¯�(�X��� ³ È ¡P�¯��������¬�¥P¬�¥Pº?�±�(�P�������k¥�k�5���k���������¯�������(���6¬�¥°�X��� �X¬À��¦`�����r����� �X��ª��¯��¡p�q�­���5�P¦Àª�±� ¥ �v��¬��(¥6¬�¥ ���5�����A�v��¦��n¬�����¡P�`�(����������¬��5¥6�_�5�I�����¯�q·5�Aª{³ È ¡P�� ¥ ª�����¦���¬�¥Pº?�k��� �������G��¡P�A���2�k�����5�¢�_�_�5� ����� �����Iç ��� ���­�(�
��¡P�(����¡ ��¥ ª��±�(���¢¡P�A�¢¤�¬�¥Pº���¡P�&���k���P¦��­���n²C�(����¬�¨P¦���«K�W�5¬�¦�¬�¥Pº�(²p�k������¬��5¥ �`��� �¢¡?�(�`¬�¥ ��������¬��5¥��5�I²p��º5�n����¨ ¦�����¥�����¬��A�`�5¥ ªªP�k��¦�¦����k�q��¬��(¥��5�c��¡p�����kª��¯���¯�5���©����º(¬��(¥ �k³]¸
�r��²P¬À���5¦p��µ�«
�5�¯²P¦��_¬À�a��¡P�_�±�(¦�¦��q�"¬�¥Pº6��¥P¬�²P²C�X�4�±���5����¡P� :4µp£��ä¶ 
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S�
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_?>7M*'�g _?>7M�@"! _7>BA�C*'�%6D�D�C�@�%(c��-V1d:!E< ! %$'����sd\b3b4<?dE]
È ¡ �4�XÂI�k�v�]�������k���q·�¬�¥Pº���¡P���5�����k���á�X�(¥ ª�¬���¬��5¥ Ú �5¥ ª6¡P��¥p�X�
��¡P�k���©�k��¦�¦��¢Ü"���5� ¦�ª�¨C���­���r������¬��(� �n·�¬������ ��¦]�¯���¯�5��������«
���5�¢�k³
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¸Ä����������¬��5¥ �Z��²C�k��¬Á�±�t�X�5¥pª�¬Á��¬��(¥ �m��¡ ������¡P�½²P���5º(���5���¯�k�
¨C��¦�¬��k·5�k�á�­� ���c¡P�(¦�ª{³ 8 ¬Á��¡P�5�P� Û ´�§A�X�5�¯²P¬�¦����¢�{�����4�5¨P¦�¬�·�«
¬��5� �G���2��¡ ¬��Õ�W�5�v�A§���� ����� �����­�¢¡P�A�¢¤��Õ���5¥��(¥P¦��©�������P�`ª���«
¥ �5��¬À���5¦�¦��5³ 8 ¬���¡ Û ´�§I¬Á��¬À��²C�(����¬�¨P¦��0���&Ýp¥ ªË�k�����5�¢�n¨��
��·q�5¦�� ����¬�¥Pºn��¡P�k���_�X�5¥pª�¬Á��¬��(¥ �a�r�¢�q��¬À���5¦�¦��5§e��¡P������¨��2Ã��P¬À�¢¤�¦��
��¥pª&²P���k��¬�����¦���Ý ¥pª�¬�¥ º��������(���k³

8 �"�"���5���"���p�¢¡¯�5¥¯�Xµ����k¥ ��¬��5¥��5¥����5²¯��� ��� 	�	"³a¸��`�
¡P¬�º5¡�¦��k·5��¦g§I¬Á��� ���k����� 	�	"ç �6ªP�������p�q�E���5�P��¬�¥P�k�Ä���m���¢�5�¢¤
��¡ �6·q�5¦��P�A�_���]�����5¦��5��·q�5��¬À��¨P¦��k�k³4¸��"�k�5�¢¡������������©�p���(§�¬Á�
��·q�5¦�� �����A�I��¡P�Õ�(����������¬��5¥6�Xµ�²P���k����¬��(¥6�5º(��¬�¥ ���I��¡P�A���Õ¤�¥P�q�"¥
���X������·q�5¦��P�A��³ ? �`��¡ ����µ�²P���A����¬��5¥ä���5�P¦Àª��W�5¬�¦g§{¬Á�2�k��¬����2�
�_����¥P¬�¥ º ³t´��P�����k¥���¦��5§�� �
	�	 �(¥P¦��®²p�k���±�(������²P��¬���¬���¬�·5�
��¥p��¦�����¬À�Ä��¡ �q�­���¢�5�¢¤�����¡P�?���X�0�5�_���5¥ �����5¥(�0�(����¬�º(¥P�¯��¥����
���������5¦��5��·q�5��¬À��¨P¦��k���(¥Z��º5¬�·5�k¥m²p�q��¡c³ È ¡P�2�����n���]²C�(����¬Á«
¨P¦��n·q��¦��P�k�Õ�±�5���2·q����¬��5¨P¦��"¬À�4��¡P��¥ �r� �r�`��¡P���P¥P¬��5¥����á���5¥�«
������¥��­�(����¬�º(¥P�¯��¥����6������¡ ���0·q����¬��5¨P¦��¯¨C�X�±�(����¬��­¬À�2� ���kª{³
? �Ä��¥��»¥P�5¥P«û���5¥ �����5¥(���5����¬�º5¥P�¯�k¥(�¢�2�������P�k§a��¡P�&·q��¦��P�m¬��
�X�(¥ ��¬�ª��k���Aª�¶�� ¥P¤�¥P�q�"¥á³ ¾ � �X���P��¥P¬�¥ ºä��¡P�Z���X�¯���n²C�(����¬Á«
¨P¦��m·q�5¦��P�A�¯��¦�¦��q�n�0��¡P�Z�XÂI�k�X��¬�·5��¥ �k���©�5�"��¡P���¢¡P�A�¢¤5�k�0���
���¢��¥p��² �5���k¥���¦��°¬�¥p�X���k�5�����5���(�P�&�5¥ ��¦�����¬À��¬�¥ � �
	�	)¨C�X«
�X�(�¯�k�����(���©²p�q�������±�P¦g³6¸����&²P�¢�5�v��¬��k��¦a����Ý ¥P�k���k¥��k§I���
��¦�¬���¬�¥ �����&��¦À����º5�?��¦��(�����5���W�5¦����?²C�(��¬Á��¬�·(�k�2¨���¬�º(¥P�5��¬�¥ º
�5����������¬��5¥ �&���2��¡ �»���5¥ �����5¥(�i¶�é(¾ Ú �"¡P¬À�¢¡t�5¦��_�e���¯�W��¬�¦À��Ü
��¬�¥ ���"��¡ ¬���¬�����¥�¬Àª�¬��5���q��¬��"�¯����¡P��ª��±�5��²P���5º5�¢���¯�¯���¢�a���
���k���¯¬�¥ �q�����Xµ��k������¬��5¥�¬�¥i¶�¬��¯²C�(����¬�¨P¦��k¾���¬����p�q��¬��5¥p��³

8 ¡P�k¥0��²P²P¦�¬��kª����"��¡P�ÕåGàc¸6��æ®�k�5�¢¡P�4�X�(¡P������¥p�X�Õ�X��ª��
Ú ªP¬����X� �����kªË�¯�(���©¬�¥½���k�X��¬��5¥ ��Ü"��¡P� 6ké5é&¦�¬�¥P���Xµ����k¥ ��¬��(¥
�±�5� ¥ ª¯Ý ·(�Ä�������5�¢�G��¡ �������5�P¦Àª�¡ �e·(�Ä�X�¢�5��¡P�kª���¡P��������������³
È ¡P�A���Ë�k�����5�¢�¯�P¥ ªP���¢�����5������¡P�Ë·q�5¦��P�ä���0�r�¢�q��¬��ä��·q��¦�� �q«
��¬��5¥c§a��¬�¥p�X�¯��¡ ���ä�������¯¬�¥°����ª��¯��¡ ���0¡ �5ª»¨C���k¥+¡P�k�e·�¬�¦��
���A�r���kªZ�±�(�"�q·5���_Ýp·5�2�5�A���¢��³ È ¡ ���&¡p�5ª�¨C����¥��¯¬À�����kªZ¨C�X«
���5� ���&��¡P��¦��k¥Pº���¡i�5¥ ª®���5�¯²P¦��Xµ�¬Á�r�+�5�Ä�r��²P¬À���5¦_åGà]¸���æ
�X��ª��m² �q��¡ �������p���Aª»��¡P�k�¿���ä�(¥P¦��»���k�X�P����²C�5�¢�5ª�¬À���5¦�¦��5³
È ¡P¬À�0�X�(�¯²P¦���µ�¬Á�r�ä�5¦���������¤5�A������¥�� ��¦ÕªP�X���A�v��¬��(¥»�5���k��«
���5�¢�6ªP¬ 9?�X� ¦Á�A³m£�¥»�(¥P�¯² �q��¡á§á��¡P���5����¬�º5¥ ���k¥��2�5¥ ªä��¡P�
�5����������¬��5¥i��¡ ���&¬��m·�¬��(¦������Aª����k��� /(é5é½¦�¬�¥P�A�&�5² �����m��¥pª
����² �5�������kªZ¨�� .�é¯¬��`�r�¢�q�����¯��¥����k§ <?��¦À���­�X¦À��� ���k�k§p�5¥ ª 6ké
�X�(¥ ª�¬���¬��5¥ �5¦(���5�¯²P¬�¦�����¬��5¥0ª�¬����A�v��¬�·(�k�k³c¸n¥P�5��¡P�k�a�k�5���4¨p�A�q�
��¡ ¬��`¨���¡ �e·�¬�¥Pº .06"¬��c�r�¢�q���k�¯��¥����k§�=0�k¦����n�X¦À���p���A��§���¥ ª . �
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In  2 002,  Coverity commercialized3 a research static 
bug-finding tool.6,9 Not surprisingly, as academics, 
our view of commercial realities was not perfectly 
accurate. However, the problems we encountered 
were not the obvious ones. Discussions with tool 
researchers and system builders suggest we were 
not alone in our naïveté. Here, we document some 
of the more important examples of what we learned 
developing and commercializing an industrial-
strength bug-finding tool. 

We built our tool to find generic errors (such as 
memory corruption and data races) and system-
specific or interface-specific violations (such as 
violations of function-ordering constraints). The tool, 

doi:10.1145/1646353.1646374

How Coverity built a bug-finding tool, and  
a business, around the unlimited supply  
of bugs in software systems. 
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A Few Billion 
Lines of  
Code Later  
Using Static Analysis  
to Find Bugs in  
the Real World 

like all static bug finders, leveraged 
the fact that programming rules often 
map clearly to source code; thus static 
inspection can find many of their vio-
lations. For example, to check the rule 
“acquired locks must be released,” a 
checker would look for relevant opera-
tions (such as lock() and unlock()) 
and inspect the code path after flagging 
rule disobedience (such as lock() with 
no unlock() and double locking). 

For those who keep track of such 
things, checkers in the research system 
typically traverse program paths (flow-
sensitive) in a forward direction, going 
across function calls (inter-procedural) 
while keeping track of call-site-specific 
information (context-sensitive) and 
toward the end of the effort had some 
of the support needed to detect when a 
path was infeasible (path-sensitive). 

A glance through the literature re-
veals many ways to go about static bug 
finding.1,2,4,7,8,11 For us, the central re-
ligion was results: If it worked, it was 
good, and if not, not. The ideal: check 
millions of lines of code with little 
manual setup and find the maximum 
number of serious true errors with the 
minimum number of false reports. As 
much as possible, we avoided using an-
notations or specifications to reduce 
manual labor. 

Like the PREfix product,2 we were 
also unsound. Our product did not veri-
fy the absence of errors but rather tried 
to find as many of them as possible. Un-
soundness let us focus on handling the 
easiest cases first, scaling up as it proved 
useful. We could ignore code constructs 
that led to high rates of false-error mes-
sages (false positives) or analysis com-
plexity, in the extreme skipping prob-
lematic code entirely (such as assembly 
statements, functions, or even entire 
files). Circa 2000, unsoundness was 
controversial in the research communi-
ty, though it has since become almost a 
de facto tool bias for commercial prod-
ucts and many research projects. 

Initially, publishing was the main 
force driving tool development. We 
would generally devise a set of checkers 
or analysis tricks, run them over a few 
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million lines of code (typically Linux), 
count the bugs, and write everything 
up. Like other early static-tool research-
ers, we benefited from what seems an 
empirical law: Assuming you have a rea-
sonable tool, if you run it over a large, 
previously unchecked system, you 
will always find bugs. If you don’t, the 
immediate knee-jerk reaction is that 
something must be wrong. Misconfigu-
ration? Mistake with macros? Wrong 
compilation target? If programmers 
must obey a rule hundreds of times, 
then without an automatic safety net 
they cannot avoid mistakes. Thus, even 
our initial effort with primitive analysis 
found hundreds of errors. 

This is the research context. We now 
describe the commercial context. Our 
rough view of the technical challenges of 
commercialization was that given that 
the tool would regularly handle “large 
amounts” of “real” code, we needed 
only a pretty box; the rest was a business 
issue. This view was naïve. While we in-
clude many examples of unexpected ob-
stacles here, they devolve mainly from 
consequences of two main dynamics: 

First, in the research lab a few peo-
ple check a few code bases; in reality 
many check many. The problems that 
show up when thousands of program-
mers use a tool to check hundreds (or 
even thousands) of code bases do not 
show up when you and your co-authors 
check only a few. The result of sum-
ming many independent random vari-
ables? A Gaussian distribution, most 
of it not on the points you saw and 
adapted to in the lab. Furthermore, 
Gaussian distributions have tails. As 
the number of samples grows, so, too, 
does the absolute number of points 
several standard deviations from the 
mean. The unusual starts to occur with 
increasing frequency. 

W. Bradford Paley’s CodeProfiles was
originally commissioned for the Whitney
Museum of American Art’s “CODeDOC”
Exhibition and later included in MoMA’s
“Design and the Elastic Mind” exhibition.
CodeProfiles explores the space of code
itself; the program reads its source into
memory, traces three points as they once 
moved through that space, then prints itself 
on the page.      
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For code, these features include 
problematic idioms, the types of false 
positives encountered, the distance 
of a dialect from a language standard, 
and the way the build works. For de-
velopers, variations appear in raw abil-
ity, knowledge, the amount they care 
about bugs, false positives, and the 
types of both. A given company won’t 

deviate in all these features but, given 
the number of features to choose from, 
often includes at least one weird odd-
ity. Weird is not good. Tools want ex-
pected. Expected you can tune a tool to 
handle; surprise interacts badly with 
tuning assumptions. 

Second, in the lab the user’s values, 
knowledge, and incentives are those 

Such champions make sales as easily as 
their antithesis blocks them. However, 
since their main requirements tend to 
be technical (the tool must work) the 
reader likely sees how to make them 
happy, so we rarely discuss them here. 

Most of our lessons come from two 
different styles of use: the initial trial of 
the tool and how the company uses the 

tool after buying it. The trial is a pre-sale 
demonstration that attempts to show 
that the tool works well on a potential 
customer’s code. We generally ship a 
salesperson and an engineer to the cus-
tomer’s site. The engineer configures 
the tool and runs it over a given code 
base and presents results soon after. Ini-
tially, the checking run would happen 

of the tool builder, since the user and 
the builder are the same person. De-
ployment leads to severe fission; us-
ers often have little understanding of 
the tool and little interest in helping 
develop it (for reasons ranging from 
simple skepticism to perverse reward 
incentives) and typically label any error 
message they find confusing as false. A 

tool that works well under these con-
straints looks very different from one 
tool builders design for themselves. 

However, for every user who lacks 
the understanding or motivation one 
might hope for, another is eager to un-
derstand how it all works (or perhaps al-
ready does), willing to help even beyond 
what one might consider reasonable. 
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in the morning, and the results meeting 
would follow in the afternoon; as code 
size at trials grows it’s not uncommon 
to split them across two (or more) days. 

Sending people to a trial dramatical-
ly raises the incremental cost of each 
sale. However, it gives the non-trivial 
benefit of letting us educate customers 
(so they do not label serious, true bugs 

as false positives) and do real-time, ad 
hoc workarounds of weird customer 
system setups. 

The trial structure is a harsh test for 
any tool, and there is little time. The 
checked system is large (millions of 
lines of code, with 20–30MLOC a pos-
sibility). The code and its build system 
are both difficult to understand. How-

sion to conditions likely to be true in a 
larger setting. 

Laws of Bug Finding 
The fundamental law of bug finding 
is No Check = No Bug. If the tool can’t 
check a system, file, code path, or given 
property, then it won’t find bugs in it. 
Assuming a reasonable tool, the first 
order bound on bug counts is just how 
much code can be shoved through the 
tool. Ten times more code is 10 times 
more bugs. 

We imagined this law was as simple 
a statement of fact as we needed. Un-
fortunately, two seemingly vacuous cor-
ollaries place harsh first-order bounds 
on bug counts: 

Law: You can’t check code you don’t 
see. It seems too trite to note that check-
ing code requires first finding it... until 
you try to do so consistently on many 
large code bases. Probably the most re-
liable way to check a system is to grab its 
code during the build process; the build 
system knows exactly which files are in-
cluded in the system and how to com-
pile them. This seems like a simple task. 
Unfortunately, it’s often difficult to un-
derstand what an ad hoc, homegrown 
build system is doing well enough to ex-
tract this information, a difficulty com-
pounded by the near-universal absolute 
edict: “No, you can’t touch that.” By de-
fault, companies refuse to let an exter-
nal force modify anything; you cannot 
modify their compiler path, their bro-
ken makefiles (if they have any), or in any 
way write or reconfigure anything other 
than your own temporary files. Which is 
fine, since if you need to modify it, you 
most likely won’t understand it. 

Further, for isolation, companies 
often insist on setting up a test ma-
chine for you to use. As a result, not 
infrequently the build you are given to 
check does not work in the first place, 
which you would get blamed for if you 
had touched anything. 

Our approach in the initial months 
of commercialization in 2002 was a 
low-tech, read-only replay of the build 
commands: run make, record its out-
put in a file, and rewrite the invoca-
tions to their compiler (such as gcc) 
to instead call our checking tool, then 
rerun everything. Easy and simple. 
This approach worked perfectly in the 
lab and for a small number of our ear-
liest customers. We then had the fol-

ever, the tool must routinely go from 
never seeing the system previously to 
getting good bugs in a few hours. Since 
we present results almost immediately 
after the checking run, the bugs must 
be good with few false positives; there 
is no time to cherry pick them. 

Furthermore, the error messages 
must be clear enough that the sales en-
gineer (who didn’t build the checked 
system or the tool) can diagnose and 
explain them in real time in response 
to “What about this one?” questions. 

The most common usage model for 
the product has companies run it as 
part of their nightly build. Thus, most 
require that checking runs complete in 
12 hours, though those with larger code 
bases (10+MLOC) grudgingly accept 
24 hours. A tool that cannot analyze 
at least 1,400 lines of code per minute 
makes it difficult to meet these targets. 
During a checking run, error messages 
are put in a database for subsequent 
triaging, where users label them as 
true errors or false positives. We spend 
significant effort designing the system 
so these labels are automatically reap-
plied if the error message they refer to 
comes up on subsequent runs, despite 
code-dilating edits or analysis-chang-
ing bug-fixes to checkers. 

As of this writing (December 2009), 
approximately 700 customers have 
licensed the Coverity Static Analysis 
product, with somewhat more than a 
billion lines of code among them. We 
estimate that since its creation the tool 
has analyzed several billion lines of 
code, some more difficult than others. 

Caveats. Drawing lessons from a sin-
gle data point has obvious problems. 
Our product’s requirements roughly 
form a “least common denominator” 
set needed by any tool that uses non-
trivial analysis to check large amounts 
of code across many organizations; the 
tool must find and parse the code, and 
users must be able to understand er-
ror messages. Further, there are many 
ways to handle the problems we have 
encountered, and our way may not be 
the best one. We discuss our methods 
more for specificity than as a claim of 
solution. 

Finally, while we have had success 
as a static-tools company, these are 
small steps. We are tiny compared to 
mature technology companies. Here, 
too, we have tried to limit our discus-“C
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lowing conversation with a potential 
customer: 

“How do we run your tool?” 
“Just type ‘make’ and we’ll rewrite 

its output.” 
“What’s ‘make’? We use ClearCase.” 
“Uh, What’s ClearCase?” 
This turned out to be a chasm we 

couldn’t cross. (Strictly speaking, the 
customer used ‘ClearMake,’ but the 
superficial similarities in name are en-
tirely unhelpful at the technical level.) 
We skipped that company and went 
to a few others. They exposed other 
problems with our method, which we 
papered over with 90% hacks. None 
seemed so troublesome as to force us 
to rethink the approach—at least until 
we got the following support call from 
a large customer: 

“Why is it when I run your tool, I 
have to reinstall my Linux distribution 
from CD?” 

This was indeed a puzzling ques-
tion. Some poking around exposed the 
following chain of events: the compa-
ny’s make used a novel format to print 
out the absolute path of the directory 
in which the compiler ran; our script 
misparsed this path, producing the 
empty string that we gave as the desti-
nation to the Unix “cd” (change direc-
tory) command, causing it to change 
to the top level of the system; it ran 
“rm -rf *” (recursive delete) during 
compilation to clean up temporary 
files; and the build process ran as root. 
Summing these points produces the 
removal of all files on the system. 

The right approach, which we have 
used for the past seven years, kicks off 
the build process and intercepts every 
system call it invokes. As a result, we can 
see everything needed for checking, in-
cluding the exact executables invoked, 
their command lines, the directory 
they run in, and the version of the com-
piler (needed for compiler-bug work-
arounds). This control makes it easy to 
grab and precisely check all source code, 
to the extent of automatically changing 
the language dialect on a per-file basis. 

To invoke our tool users need only 
call it with their build command as an 
argument: 

cov-build <build command> 

We thought this approach was bullet-
proof. Unfortunately, as the astute read-

er has noted, it requires a command 
prompt. Soon after implementing it we 
went to a large company, so large it had 
a hyperspecialized build engineer, who 
engaged in the following dialogue: 

“How do I run your tool?” 
“Oh, it’s easy. Just type ‘cov-build’ 

before your build command.” 
“Build command? I just push this 

[GUI] button...” 
Social vs. technical. The social restric-

tion that you cannot change anything, 
no matter how broken it may be, forces 
ugly workarounds. A representative ex-
ample is: Build interposition on Win-
dows requires running the compiler in 
the debugger. Unfortunately, doing so 
causes a very popular windows C++ com-
piler—Visual Studio C++ .NET 2003—to 
prematurely exit with a bizarre error 
message. After some high-stress fuss-
ing, it turns out that the compiler has a 
use-after-free bug, hit when code used a 
Microsoft-specific C language extension 
(certain invocations of its #using direc-
tive). The compiler runs fine in normal 
use; when it reads the freed memory, 
the original contents are still there, so 
everything works. However, when run 
with the debugger, the compiler switch-
es to using a “debug malloc,” which on 
each free call sets the freed memory 
contents to a garbage value. The subse-
quent read returns this value, and the 
compiler blows up with a fatal error. 
The sufficiently perverse reader can no 
doubt guess the “solution.”a 

Law: You can’t check code you can’t 
parse. Checking code deeply requires 
understanding the code’s semantics. 
The most basic requirement is that you 
parse it. Parsing is considered a solved 
problem. Unfortunately, this view is na-
ïve, rooted in the widely believed myth 
that programming languages exist. 

The C language does not exist; nei-
ther does Java, C++, and C#. While a 
language may exist as an abstract idea, 
and even have a pile of paper (a stan-
dard) purporting to define it, a stan-
dard is not a compiler. What language 
do people write code in? The character 
strings accepted by their compiler. 
Further, they equate compilation with 
certification. A file their compiler does 

a	 Immediately after process startup our tool 
writes 0 to the memory location of the “in de-
bugger” variable that the compiler checks to 
decide whether to use the debug malloc.

A misunderstood 
explanation 
means the error is 
ignored or, worse, 
transmuted into  
a false positive. 
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not reject has been certified as “C code” 
no matter how blatantly illegal its con-
tents may be to a language scholar. Fed 
this illegal not-C code, a tool’s C front-
end will reject it. This problem is the 
tool’s problem. 

Compounding it (and others) the 
person responsible for running the 
tool is often not the one punished if the 
checked code breaks. (This person also 
often doesn’t understand the checked 
code or how the tool works.) In particu-
lar, since our tool often runs as part of 
the nightly build, the build engineer 
managing this process is often in charge 
of ensuring the tool runs correctly. 
Many build engineers have a single con-
crete metric of success: that all tools ter-
minate with successful exit codes. They 
see Coverity’s tool as just another speed 
bump in the list of things they must get 
through. Guess how receptive they are 
to fixing code the “official” compiler ac-
cepted but the tool rejected with a parse 
error? This lack of interest generally ex-
tends to any aspect of the tool for which 
they are responsible. 

Many (all?) compilers diverge from 
the standard. Compilers have bugs. Or 
are very old. Written by people who mis-
understand the specification (not just 
for C++). Or have numerous extensions. 
The mere presence of these divergences 
causes the code they allow to appear. 
If a compiler accepts construct X, then 
given enough programmers and code, 
eventually X is typed, not rejected, then 
encased in the code base, where the 
static tool will, not helpfully, flag it as a 
parse error. 

The tool can’t simply ignore diver-
gent code, since significant markets 
are awash in it. For example, one enor-
mous software company once viewed 
conformance as a competitive disad-
vantage, since it would let others make 
tools usable in lieu of its own. Embed-
ded software companies make great 
tool customers, given the bug aversion 
of their customers; users don’t like it if 
their cars (or even their toasters) crash. 
Unfortunately, the space constraints in 
such systems and their tight coupling 
to hardware have led to an astonishing 
oeuvre of enthusiastically used com-
piler extensions. 

Finally, in safety-critical software 
systems, changing the compiler often 
requires costly re-certification. Thus, 
we routinely see the use of decades-

make two different things the same 

typedef char int; 

(“Useless type name in empty decla-
ration.”)

And one where readability trumps 
the language spec 

unsigned x = 0xdead _ beef; 
(“Invalid suffix ‘_beef’ on integer 

constant.”) 
From the embedded space, creating 

a label that takes no space 
void x; 

(“Storage size of ‘x’ is not known.”) 
Another embedded example that 

controls where the space comes from 

unsigned x @ “text”; 

(“Stray ‘@’ in program.”)
A more advanced case of a nonstan-

dard construct is  

Int16 ErrSetJump(ErrJumpBuf buf)
 = { 0x4E40 + 15, 0xA085; } 

It treats the hexadecimal values of 
machine-code instructions as program 
source. 

The award for most widely used ex-
tension should, perhaps, go to Micro-
soft support for precompiled headers. 
Among the most nettlesome troubles 
is that the compiler skips all the text 
before an inclusion of a precompiled 
header. The implication of this behav-
ior is that the following code can be 
compiled without complaint:  

I can put whatever I want here. 
It doesn’t have to compile. 
If your compiler gives an error, 
	 it sucks. 
#include <some-precompiled- 
	 header.h> 

Microsoft’s on-the-fly header fabri-
cation makes things worse. 

Assembly is the most consistently 
troublesome construct. It’s already 
non-portable, so compilers seem to 
almost deliberately use weird syn-
tax, making it difficult to handle in a 
general way. Unfortunately, if a pro-
grammer uses assembly it’s probably 
to write a widely used function, and 
if the programmer does it, the most 
likely place to put it is in a widely used 

old compilers. While the languages 
these compilers accept have interest-
ing features, strong concordance with 
a modern language standard is not one 
of them. Age begets new problems. 
Realistically, diagnosing a compiler’s 
divergences requires having a copy of 
the compiler. How do you purchase a 
license for a compiler 20 versions old? 
Or whose company has gone out of 
business? Not through normal chan-
nels. We have literally resorted to buy-
ing copies off eBay. 

This dynamic shows up in a softer 
way with non-safety-critical systems; the 
larger the code base, the more the sales 
force is rewarded for a sale, skewing sales 
toward such systems. Large code bases 
take a while to build and often get tied to 
the compiler used when they were born, 
skewing the average age of the compilers 
whose languages we must accept. 

If divergence-induced parse errors are 
isolated events scattered here and there, 
then they don’t matter. An unsound tool 
can skip them. Unfortunately, failure of-
ten isn’t modular. In a sad, too-common 
story line, some crucial, purportedly “C” 
header file contains a blatantly illegal 
non-C construct. It gets included by all 
files. The no-longer-potential customer 
is treated to a constant stream of parse 
errors as your compiler rips through the 
customer’s source files, rejecting each 
in turn. The customer’s derisive stance 
is, “Deep source code analysis? Your 
tool can’t even compile code. How can 
it find bugs?” It may find this event so 
amusing that it tells many friends. 

Tiny set of bad snippets seen in header 
files. One of the first examples we en-
countered of illegal-construct-in-key-
header file came up at a large network-
ing company 

// “redefinition of parameter ’a’”
void foo(int a, int a);

The programmer names foo’s first 
formal parameter a and, in a form of 
lexical locality, the second as well. 
Harmless. But any conformant com-
piler will reject this code. Our tool cer-
tainly did. This is not helpful; compil-
ing no files means finding no bugs, and 
people don’t need your tool for that. 
And, because its compiler accepted it, 
the potential customer blamed us. 

Here’s an opposite, less-harmless 
case where the programmer is trying to 



72    communications of the acm    |   february 2010  |   vol.  53  |   no.  2

contributed articles

header file. Here are two ways (out 
of many) to issue a mov instruction  

// First way
foo() { 
	 _ _ asm mov eax, eab  
	 mov eax, eab;
} 

// Second way
#pragma asm 
_ _ asm [ mov eax, eab mov 
eax, eab ]
#pragma end _ asm 

The only thing shared in addition to 
mov is the lack of common textual keys 
that can be used to elide them. 

We have thus far discussed only C, a 
simple language; C++ compilers diverge 
to an even worse degree, and we go to 
great lengths to support them. On the 
other hand, C# and Java have been eas-
ier, since we analyze the bytecode they 
compile to rather than their source. 

How to parse not-C with a C front-end. 
OK, so programmers use extensions. 
How difficult is it to solve this problem? 
Coverity has a full-time team of some of 
its sharpest engineers to firefight this ba-
nal, technically uninteresting problem 
as their sole job. They’re never done.b 

We first tried to make the problem 
someone else’s problem by using the 
Edison Design Group (EDG) C/C++ 
front-end to parse code.5 EDG has 
worked on how to parse real C code 
since 1989 and is the de facto indus-
try standard front-end. Anyone decid-
ing to not build a homegrown front-
end will almost certainly license from 
EDG. All those who do build a home-
grown front-end will almost certainly 
wish they did license EDG after a few 
experiences with real code. EDG aims 
not just for mere feature compatibility 
but for version-specific bug compat-
ibility across a range of compilers. Its 
front-end probably resides near the 
limit of what a profitable company can 
do in terms of front-end gyrations. 

Unfortunately, the creativity of com-
piler writers means that despite two de-
cades of work EDG still regularly meets 

b	 Anecdotally, the dynamic memory-checking 
tool Purify10 had an analogous struggle at the 
machine-code level, where Purify’s developers 
expended significant resources reverse engi-
neering the various activation-record layouts 
used by different compilers.

defeat when trying to parse real-world 
large code bases.c Thus, our next step is 
for each supported compiler, we write 
a set of “transformers” that mangle 
its personal language into something 
closer to what EDG can parse. The 
most common transformation simply 
rips out the offending construct. As 
one measure of how much C does not 
exist, the table here counts the lines of 
transformer code needed to make the 
languages accepted by 18 widely used 
compilers look vaguely like C. A line of 
transformer code was almost always 
written only when we were burned to a 
degree that was difficult to work around. 
Adding each new compiler to our list of 
“supported” compilers almost always 
requires writing some kind of trans-
former. Unfortunately, we sometimes 
need a deeper view of semantics so are 
forced to hack EDG directly. This meth-
od is a last resort. Still, at last count (as 
of early 2009) there were more than 
406(!) places in the front-end where we 
had an #ifdef COVERITY to handle a 
specific, unanticipated construct. 

EDG is widely used as a compiler 
front-end. One might think that for cus-
tomers using EDG-based compilers we 
would be in great shape. Unfortunately, 
this is not necessarily the case. Even ig-
noring the fact that compilers based on 
EDG often modify EDG in idiosyncratic 
ways, there is no single “EDG front-
end” but rather many versions and pos-
sible configurations that often accept a 
slightly different language variant than 
the (often newer) version we use. As a Si-
syphean twist, assume we cannot work 
around and report an incompatibility. If 
EDG then considers the problem impor-
tant enough to fix, it will roll it together 
with other patches into a new version. 

So, to get our own fix, we must up-

c	 Coverity won the dubious honor of being the 
single largest source of EDG bug reports after 
only three years of use.

grade the version we use, often caus-
ing divergence from other unupgraded 
EDG compiler front-ends, and more is-
sues ensue. 

Social versus technical. Can we get cus-
tomer source code? Almost always, no. 
Despite nondisclosure agreements, even 
for parse errors and preprocessed code, 
though perhaps because we are viewed 
as too small to sue to recoup damages. 
As a result, our sales engineers must 
type problems in reports from memory. 
This works as well as you might expect. 
It’s worse for performance problems, 
which often show up only in large-code 
settings. But one shouldn’t complain, 
since classified systems make things 
even worse. Can we send someone on-
site to look at the code? No. You listen to 
recited syntax on the phone. 

Bugs 
Do bugs matter? Companies buy bug-
finding tools because they see bugs as 
bad. However, not everyone agrees that 
bugs matter. The following event has 
occurred during numerous trials.  The 
tool finds a clear, ugly error (memory 
corruption or use-after-free) in impor-
tant code, and the interaction with the 
customer goes like thus: 

“So?”
“Isn’t that bad? What happens if 

you hit it?”
“Oh, it’ll crash. We’ll get a call.” 

[Shrug.]
If developers don’t feel pain, they 

often don’t care. Indifference can arise 
from lack of accountability; if QA can-
not reproduce a bug, then there is no 
blame. Other times, it’s just odd: 

“Is this a bug?” 
“I’m just the security guy.” 
“That’s not a bug; it’s in third-party 

code.” 
“A leak? Don’t know. The author left 

years ago...” 
No, your tool is broken; that is not 

a bug. Given enough code, any bug-

Lines of code per transformer for 18 common compilers we support. 

160 QNX 280 HP-UX 285 picc.cpp

294 sun.java.cpp 384 st.cpp 334 cosmic.cpp

421 intel.cpp 457 sun.cpp 603 iccmsa.cpp

629 bcc.cpp 673 diab.cpp 756 xlc.cpp

912 ARM 914 GNU 1294 Microsoft

1425 keil.cpp 1848 cw.cpp 1665 Metrowerks
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finding tool will uncover some weird 
examples. Given enough coders, 
you’ll see the same thing. The fol-
lowing utterances were culled from 
trial meetings: 

Upon seeing an error report saying 
the following loop body was dead code 
foo(i = 1; i < 0; i++) 
  ... deadcode ... 

“No, that’s a false positive; a loop ex-
ecutes at least once.” 

For this memory corruption error 
(32-bit machine) 

int a[2], b;
memset(a, 0, 12);

“No, I meant to do that; they are next 
to each other.” 

For this use-after-free 

free(foo); 
foo->bar = ...; 

“No, that’s OK; there is no malloc 
call between the free and use.” 

As a final example, a buffer overflow 
checker flagged a bunch of errors of the 
form 

unsigned p[4]; 
... 
p[4] = 1; 

“No, ANSI lets you write 1 past the 
end of the array.” 

After heated argument, the program-
mer said, “We’ll have to agree to dis-
agree.” We could agree about the dis-
agreement, though we couldn’t quite 
comprehend it. The (subtle?) interplay 
between 0-based offsets and buffer siz-
es seems to come up every few months. 

While programmers are not often 
so egregiously mistaken, the general 
trend holds; a not-understood bug 
report is commonly labeled a false 
positive, rather than spurring the pro-
grammer to delve deeper. The result? 
We have completely abandoned some 
analyses that might generate difficult-
to-understand reports. 

How to handle cluelessness. You can-
not often argue with people who are 
sufficiently confused about technical 
matters; they think you are the one 
who doesn’t get it. They also tend to get 
emotional. Arguing reliably kills sales. 
What to do? One trick is to try to orga-
nize a large meeting so their peers do 

the work for you. The more people in 
the room, the more likely there is some-
one very smart and respected and cares 
(about bugs and about the given code), 
can diagnose an error (to counter argu-
ments it’s a false positive), has been 
burned by a similar error, loses his/her 
bonus for errors, or is in another group 
(another potential sale). 

Further, a larger results meeting 
increases the probability that anyone 
laid off at a later date attended it and 
saw how your tool worked. True story: 
A networking company agreed to buy 
the Coverity product, and one week 
later laid off 110 people (not because of 
us). Good or bad? For the fired people 
it clearly wasn’t a happy day. However, 
it had a surprising result for us at a 
business level; when these people were 
hired at other companies some sug-
gested bringing the tool in for a trial, 
resulting in four sales. 

What happens when you can’t fix 
all the bugs? If you think bugs are bad 
enough to buy a bug-finding tool, you 
will fix them. Not quite. A rough heuris-
tic is that fewer than 1,000 bugs, then 
fix them. More? The baseline is to re-
cord the current bugs, don’t fix them 
but do fix any new bugs. Many compa-
nies have independently come up with 
this practice, which is more rational 
than it seems. Having a lot of bugs usu-
ally requires a lot of code. Much of it 
won’t have changed in a long time. A 
reasonable, conservative heuristic is 
if you haven’t touched code in years, 
don’t modify it (even for a bug fix) to 
avoid causing any breakage. 

A surprising consequence is it’s not 
uncommon for tool improvement to be 
viewed as “bad” or at least a problem. 
Pretend you are a manager. For anything 
bad you can measure, you want it to di-
minish over time. This means you are 
improving something and get a bonus. 

You may not understand techni-
cal issues that well, and your boss cer-
tainly doesn’t understand them. Thus, 
you want a simple graph that looks like 
Figure 1; no manager gets a bonus for 
Figure 2. Representative story: At com-
pany X, version 2.4 of the tool found 
approximately 2,400 errors, and over 
time the company fixed about 1,200 of 
them. Then it upgraded to version 3.6. 
Suddenly there were 3,600 errors. The 
manager was furious for two reasons: 
One, we “undid” all the work his people 

…it’s not  
uncommon for  
tool improvement  
to be viewed  
as “bad” or at  
least a problem.
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had done, and two, how could we have 
missed them the first time? 

How do upgrades happen when 
more bugs is no good? Companies in-
dependently settle on a small number 
of upgrade models: 

Never. Guarantees “improvement”; 
Never before a release (where it would 

be most crucial). Counterintuitively hap-
pens most often in companies that be-
lieve the tool helps with release quality 
in that they use it to “gate” the release; 

Never before a meeting. This is at least 
socially rational; 

Upgrade, then roll back. Seems to hap-
pen at least once at large companies; 
and 

Upgrade only checkers where they fix 
most errors. Common checkers include 
use-after-free, memory corruption, 
(sometimes) locking, and (sometimes) 
checkers that flag code contradictions.

Do missed errors matter? If people 
don’t fix all the bugs, do missed errors 
(false negatives) matter? Of course not; 
they are invisible. Well, not always. 
Common cases: Potential customers 
intentionally introduced bugs into the 
system, asking “Why didn’t you find it?” 
Many check if you find important past 

bugs. The easiest sale is to a group whose 
code you are checking that was horribly 
burned by a specific bug last week, and 
you find it. If you don’t find it? No mat-
ter the hundreds of other bugs that may 
be the next important bug. 

Here is an open secret known to bug 
finders: The set of bugs found by tool 
A is rarely a superset of another tool B, 
even if A is much better than B. Thus, 
the discussion gets pushed from “A is 
better than B” to “A finds some things, 
B finds some things” and does not help 
the case of A. 

Adding bugs can be a problem; los-
ing already inspected bugs is always a 
problem, even if you replace them with 
many more new errors. While users 
know in theory that the tool is “not a 
verifier,” it’s very different when the tool 
demonstrates this limitation, good and 
hard, by losing a few hundred known er-
rors after an upgrade. 

The easiest way to lose bugs is to add 
just one to your tool. A bug that causes 
false negatives is easy to miss. One such 
bug in how our early research tool’s 
internal representation handled array 
references meant the analysis ignored 
most array uses for more than nine 
months. In our commercial product, 
blatant situations like this are prevent-
ed through detailed unit testing, but un-
covering the effect of subtle bugs is still 
difficult because customer source code 
is complex and not available. 

Churn 
Users really want the same result from 
run to run. Even if they changed their 
code base. Even if they upgraded the tool. 
Their model of error messages? Compil-
er warnings. Classic determinism states: 
the same input + same function = same 

result. What users want: different input 
(modified code base) + different func-
tion (tool version) = same result. As a 
result, we find upgrades to be a constant 
headache. Analysis changes can easily 
cause the set of defects found to shift. 
The new-speak term we use internally is 
“churn.” A big change from academia is 
that we spend considerable time and en-
ergy worrying about churn when modify-
ing checkers. We try to cap churn at less 
than 5% per release. This goal means 
large classes of analysis tricks are disal-
lowed since they cannot obviously guar-
antee minimal effect on the bugs found. 
Randomization is verboten, a tragedy 
given that it provides simple, elegant so-
lutions to many of the exponential prob-
lems we encounter. Timeouts are also 
bad and sometimes used as a last resort 
but never encouraged. 

Myth: More analysis is always good. 
While nondeterministic analysis might 
cause problems, it seems that adding 
more deterministic analysis is always 
good. Bring on path sensitivity! Theorem 
proving! SAT solvers! Unfortunately, no. 

At the most basic level, errors found 
with little analysis are often better than 
errors found with deeper tricks. A good 
error is probable, a true error, easy to di-
agnose; best is difficult to misdiagnose. 
As the number of analysis steps increas-
es, so, too, does the chance of analysis 
mistake, user confusion, or the per-
ceived improbability of event sequence. 
No analysis equals no mistake. 

Further, explaining errors is often 
more difficult than finding them. A 
misunderstood explanation means the 
error is ignored or, worse, transmuted 
into a false positive. The heuristic we 
follow: Whenever a checker calls a com-
plicated analysis subroutine, we have to 
explain what that routine did to the user, 
and the user will then have to (correctly) 
manually replicate that tricky thing in 
his/her head. 

Sophisticated analysis is not easy to 
explain or redo manually. Compound-
ing the problem, users often lack a 
strong grasp on how compilers work. 
A representative user quote is “‘Static’ 
analysis’? What’s the performance over-
head?” 

The end result? Since the analysis 
that suppresses false positives is invis-
ible (it removes error messages rather 
than generates them) its sophistication 
has scaled far beyond what our research 

Figure 1. Bugs down over  
time = manager bonus. 

time

bad

time

bad

Figure 2. No bonus. 
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system did. On the other hand, the 
commercial Coverity product, despite 
its improvements, lags behind the re-
search system in some ways because it 
had to drop checkers or techniques that 
demand too much sophistication on 
the part of the user. As an example, for 
many years we gave up on checkers that 
flagged concurrency errors; while find-
ing such errors was not too difficult, ex-
plaining them to many users was. (The 
PREfix system also avoided reporting 
races for similar reasons though is now 
supported by Coverity.)

No bug is too foolish to check for. Giv-
en enough code, developers will write 
almost anything you can think of. Fur-
ther, completely foolish errors can be 
some of the most serious; it’s difficult to 
be extravagantly nonsensical in a harm-
less way. We’ve found many errors over 
the years. One of the absolute best was 
the following in the X Window System: 

if(getuid() != 0 && geteuid == 0) {
 ErrorF(“only root”);
 exit(1);

}

It allowed any local user to get root 
accessd and generated enormous press 
coverage, including a mention on Fox 
news (the Web site). The checker was 
written by Scott McPeak as a quick hack 
to get himself familiar with the system. It 
made it into the product not because of 
a perceived need but because there was 
no reason not to put it in. Fortunately. 

False Positives 
False positives do matter. In our experi-
ence, more than 30% easily cause prob-
lems. People ignore the tool. True bugs 
get lost in the false. A vicious cycle starts 
where low trust causes complex bugs 
to be labeled false positives, leading to 
yet lower trust. We have seen this cycle 
triggered even for true errors. If people 
don’t understand an error, they label it 
false. And done once, induction makes 
the (n+1)th time easier. We initially 
thought false positives could be elimi-
nated through technology. Because of 
this dynamic we no longer think so. 

We’ve spent considerable technical 

d	 The tautological check geteuid == 0 was in-
tended to be geteuid() == 0. In its current 
form, it compares the address of geteuid to 0; giv-
en that the function exists, its address is never 0.

perience covered here was the work of 
many. We thank all who helped build the 
tool and company to its current state, 
especially the sales engineers, support 
engineers, and services engineers who 
took the product into complex environ-
ments and were often the first to bear 
the brunt of problems. Without them 
there would be no company to docu-
ment. We especially thank all the cus-
tomers who tolerated the tool during 
its transition from research quality to 
production quality and the numerous 
champions whose insightful feedback 
helped us focus on what mattered. 	
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effort to achieve low false-positive rates 
in our static analysis product. We aim 
for below 20% for “stable” checkers. 
When forced to choose between more 
bugs or fewer false positives we typi-
cally choose the latter. 

Talking about “false positive rate” is 
simplistic since false positives are not 
all equal. The initial reports matter in-
ordinately; if the first N reports are false 
positives (N = 3?), people tend to utter 
variants on “This tool sucks.” Further-
more, you never want an embarrass-
ing false positive. A stupid false posi-
tive implies the tool is stupid. (“It’s not 
even smart enough to figure that out?”) 
This technical mistake can cause so-
cial problems. An expensive tool needs 
someone with power within a company 
or organization to champion it. Such 
people often have at least one enemy. 
You don’t want to provide ammunition 
that would embarrass the tool champi-
on internally; a false positive that fits in 
a punchline is really bad. 

Conclusion 
While we’ve focused on some of the 
less-pleasant experiences in the com-
mercialization of bug-finding prod-
ucts, two positive experiences trump 
them all. First, selling a static tool has 
become dramatically easier in recent 
years. There has been a seismic shift in 
terms of the average programmer “get-
ting it.” When you say you have a static 
bug-finding tool, the response is no lon-
ger “Huh?” or “Lint? Yuck.” This shift 
seems due to static bug finders being in 
wider use, giving rise to nice network-
ing effects. The person you talk to likely 
knows someone using such a tool, has a 
competitor that uses it, or has been in a 
company that used it. 

Moreover, while seemingly vacuous 
tautologies have had a negative effect 
on technical development, a nice bal-
ancing empirical tautology holds that 
bug finding is worthwhile for anyone 
with an effective tool. If you can find 
code, and the checked system is big 
enough, and you can compile (enough 
of) it, then you will always find serious 
errors. This appears to be a law. We en-
courage readers to exploit it. 
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Abstract 

Given an instruction set, the superoptimizer finds the shortest 
program to compute a function. Startling programs have been 
generated, many of them engaging in convoluted bit-fiddling bearing 
little resemblance to the source programs which defined the func- 
tions. The key idea in the superoptimizer is a probabilistic test that 
makes exhaustive searches practical for programs of useful size. The 
search space is defined by the processor's instruction set, which may 
include the whole set, but it is typically restricted to a subset. By 
constraining the instructions and observing the effect on the output 
program, one can gain insight into the design of instruction sets. In 
addition, superoptimized programs may be used by peephole op- 
timizers to improve the quality of generated code, or by assembly 
language programmers to improve manually written code. 

1. Introduction 
The search for the optimal algorithm to compute a function is one of 
the fundamental problems in computer science. In contrast to 
theoretical studies of optimal algorithms, practical applications 
motivated the design, implementation, and use of the superoptimizer. 
Instead of proving upper or lower bounds for abstract algorithms, the 
superoptimizcr finds the shortest program in the program space 
defined by the instruction set of commercial machines, such the 
Motorola 68000 or Intei 8086. 

The functions to be optimized are specified with programs written 
using the target machine's instruction set. Therefore, the input to the 
superoptimizer is a machine language program. The output is 
another program, which may be shorter. Since both programs run on 
the same processor, with a well-defined environment, we can estab- 
lish their equivalence. 

A probabilistie test and a method for pruning the search tree makes 
the superoptimizer a practical tool for programs of limited size 
(about 13 machine instructions). 

In section 2, we describe an interesting example to illustrate the su- 
peroptimizer approach. The design azd algorithms used in the super- 
optimizer are detailed in section 3. We discuss the applications and 
limitations of the superoptimizer in section 4. In section 5, we corn- 
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pare the superoptimizer with related work. The conclusion in section 
6 is followed by a list of interesting minimal programs in appendix I. 

2. An Interesting Example 
We begin with an example to show what superoptimized code looks 
like. The instruction set used here, as in most of the paper, is 
Motorola's 68020 instruction set. Our example is the signum func- 
tion, defined by the following program: 

signum (x) 
int x; 
{ 

if(x > 0) return I; 
else if(x < 0} return -I; 
else return 0; 

) 

This function compiles to 9 instructions occupying 18 bytes of 
memory on the SUN-3 C compiler. Most programmers when asked 
to write this function in assembly language would use comparison 
instructions and conditional jumps to decide in what range the ar- 
gument lies. Typically, this takes 8 68020 instructions, although 
clever programmers can do it in 6. 

It turns out that by exploiting various properties of two's comple- 
ment arithmetic one can write signum in four instructions[ This is 
what superoptimizer found when fed the compiled machine code for 
the signum function as input: 

(x in dO) 
add.l d0,d0 ladd dO to itself 
subx.l dl,dl lsubtract (dl + Carry) from dl 
negx.l dO Iput (0 - dO - Carry) into dO 
addx.l dl,dl ladd (dl + Carry) to dl 
(signum(x) in dl} (4 instructions} 

Like a typical superoptimized program, the logic is really con- 
voluted. One of the first things that comes to mind is "where are the 
conditional jumps?". As we will see later, many functions that 
would normally be written with conditional jumps are optimized into 
short programs without them. This can result in significant speedups 
for certain pipelined machines that execute conditional jumps slowly. 

Let us see how it works. The "add.l dO, dO" instruction doubles the 
contents of register dO, but more importandy, the sign bit is now in 
the carry flag. The "subx.l d l ,  dl"  instruction computes "d l -d l -  
carry --> dl".  Regardless of the initial value of d l ,  dl-dl-carry is 
-carry. Thus dl  is -1 if dO was negative and 0 otherwise. Besides 
negating, "negx.i dO" will set the carry flag if and only if  dO was 
nonzero. Finally, "addx.I dl ,  d l"  doubles dl  and adds the carry. Now 
if dO was negative, d l  is -1 and carry is set, so dl+dl+carry is -1, if  
dO was 0, dl  is 0 and carry is clear, so d0+d0+carry is 0, if  dO was 
positive, d l  is 0 and carry isset,  so dl+dl+carry is I. 
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3. S u p e r o p t i m i z e r  I n t e r n a l s  
Superoptimizer takes a program written in machine language as the 
input source. It finds the shortest program that computes the same 
function as the source program by doing an exhaustive search over 
all possible programs. The search space is defined by choosing a 
subset of the machine's instruction set, and the op-codes of these 
instructions are stored in a table. Superoptimizer consults this table 
and generates all combinations of these instructions, first of length 1, 
then of length 2, and so on. Each of these generated programs is 
tested, and if found to match the function of the source program, 
superoptimizer prints the program and halts. 

Two methods are used to reduce the search time. The first is a fast 
probabilistie test for determining the the equivalence of two 
programs. The second is a method for pruning the search space while 
maintaining the guarantee of optimality. These two methods will 
now be discussed, but first a boolean-logic equivalence test will be 
explained, which was the first test proceedure implemented, because 
it finds use in the tree pruning method. 

3.1. Boo lean  T e s t  
The most important part of superoptimizer is the routine that deter- 
mines whether two pieces of code computes the same function. The 
first version of superoptimizer used what we call the boolean 
program verifier. The idea was to express the function output in 
terms of boolean-logic operations on the input argument. Once this 
is done, two programs are equivalent if their boolean expressions 
matches minterm for minterm. 

In practice, some instructions such as add and mul have boolean ex- 
pressions with on the order of  2^31 minterms. Various methods had 
been devised to reduce the memory requirements, but it took too 
long to compute the boolean expressions for every program 
generated. The initial version of superoptimizer tested about 40 
programs per second, and this allowed programs of up to 3 instruc- 
tions to be generated in reasonable time. 

One problem introduced by the probabilistie execution test is 
machine dependency. The test works only if the instruction set being 
searched can be executed on the machine running the super- 
optimizer. In other words, if we wish to change the instruction set, 
we would have to port the superoptimizer tothe new machine. This 
port is not too difficult since the current version of superoptimizer is 
rather short (about 300 lines of 68020 assembly code), however it 
does require that one translate it into the target assembly code. 

3.3. P r u n i n g  
In order to further reduce the search time, we filter out instruction 
sequences that are known not to occur in any optimal program. Any 
sequence of instructions that has the same effect on the machine state 
as a shorter sequence cannot be part of an optimal program, because 
if it were, you can get a shorter program by substituting the shorter 
sequence, and therefore the program was not optimal. Typical se- 
quences include the obviously silly "move X,Y; move X,Y" and 
"move X,Y; move Y,X", "and X,Y; move Z,Y" in which the MOVE 
destroys the result of the AND, "and #0,X" which does the same 
thing as "clr X", and "and X,Y; <any> Z,W; and.l X,Y" where the 
second AND is superfluous. 

This filtering is done with N-dimensional bit tables, where N is the 
length of the longest sequence we wish to filter. Each instruction in 
the sequence we wish to test indexes one dimension of the bit table, 
and a lookup value o f '  1' causes the program to be rejected as non- 
optimal (and also as incorrect, since it is the same as a shorter 
program, and superoptimizer has already checked all shorter 
programs). 

There are two ways that these bit tables can be filled. A human can 
tell the bit table maker program to exclude all "move X,Y; move 
Y,X" sequences. The program then scans all instructions in all 
dimensions of the bit matrix and sets the values accordingly. One 
can also run superoptimizer with the boolean test, and have it find 
the equivalences on its own. 

3.2. P r o b a b i l i s t l c t  Tes t  
The idea behind the probabilistic test is simple: run the machine 
code for the program being tested a few times with some set of in- 
puts and check whether the outputs match those of the source 
program. The idea here is that most programs will fail this simple 
test, and a full program verification test will be done only for the few 
programs that this test fails to catch. Running thmugh a few care- 
fully chosen test vectors takes very little time. Currently, super- 
optimizer can test 50000 programs per second and the exhaustive 
search approach becomes practical. 

The test vectors are chosen (manually) to maximize the probability 
that a random program will fail on the first or second test. For ex- 
ample, the test vectors for the signum function included -1000, 0 and 
456 as the first three vectors. This quickly eliminates programs that 
return the same answer regardless of argument, answers of  the same 
sign, as well as programs that return their argument. Following these 
vectors, all the numbers from -1024 to 1024 were tested. 

It was found in practice that a program, has a very low probability of 
passing this execution test and failing the boolean verification test. 
This fact proves very useful since most programs of interest have 
boolean expressions that are too large to fit in memory. We can 
dispense with the boolean test and manually inspect the generated 
programs for correctness, without having to analyze a large number 
of wrong programs. This manual check is not difficult since the 
programs are small (about 4 to 13 instructions). Currently, super- 
optimizer runs without the boolean check, and the author has yet to 
find an incorrect program. 

4. A p p l i c a t i o n s  a n d  L i m i t a t i o n s  

4.1. C u r r e n t  L i mi t a t i o n s  
Even with the pmbabilistie test, the exhaustive search still grows ex- 
ponentially with the number of instructions in the generated 
program. The current version of superoptimizer has generated 
programs 12 instructions long in several hours running time on a 
16MHz 68020 computer. Therefore, the superoptimizer has limited 
usefulness as a code generator for a compiler. 

Another difficulty concerns pointers. A pointer can point anywhere 
in memory and so to model a pointer in terms of boolean expressions 
one needs to take all of memory into account. Even on a 256-byte 
machine, there are 2A(2^(256"8)) possible minterms, and these are 
just too many. We have explored the probabilistie test approach for 
pointers, but the results have heed inconclusive. 

Currently, we have only the 68020 version of the superoptimizer run- 
ning the probabilistic test, so the instruction sets are restricted to sub- 
sets of the 68020 set. The machine-independent version of super- 
optimizer is limited to very short programs. 

4.2. Appl ica t ions  
Because of the pointer problem, superr0pfimizer works best when the 
instruction set is constrained to register-register operations. Even so, 
it can be used to analyze instruction sets. Some of the programs in 
appendix I were tried on the Western Electric WE32000 
microprocessor and in every case the resulting program was longer 
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than the 68020 programs. The reason for this was found m be the 
lack of an add-with-carry instmction and the fact that the flags are 
set according to the 32 bit result, even for byte sized operands, The 
National Semiconductor NS32032 was also found to suffer from flag 
problems. Here the difficulty is that extra instructions are needed to 
test the outcome of an operation because few instructions set the 
flags. 

Another use would be in the design of RISC architectures. One can 
try various instruction sets simply by coding their function in terms 
of boolean expressions and seeing what superoptimizer comes up 
with. A particular instruction may be omitted if superoptimizer finds 
a short equivalent sequence of other instructions. 

The superoptimizer may be very useful in optimizing little tasks that 
often confront a compiler. An example is finding the optimal 
program that multiplies by a particular constant for use in accessing 
arrays and such. Some examples of  multiplication by constants can 
be found in 1.6. 

Another useful feature of superoptimizer is the identity tables con- 
taining the equivalent program sequences found. These programs 
may be extracted and used to increase the power of a conventional 
peephole optimizer. 

In practice, the best use of superoptimizer has been as an aid to the 
assembly language programmer. An experienced programmer can 
use superoptimizer to come up with nifty equivalent sequences for 
small sections of his code, while retaining the overall logical flow 
that makes a program maintainable. This method has been used by 
the author (along with another program that optimizes code emulat- 
ing state machines) to write the C library function prino ~ in only 500 
bytes. 

5. Comparison with Related Work 
The most commonly used optimization techniques are those that at- 
tempt to improve the code that a compiler produces. Examples are 
peephole optimizers and data-flow analysis. Peephole optimizers 
[2] are table driven pattern matchers that operate on the assembly 

language code produced by the compiler. Every time a sequence of 
instmctions is matched by one of the tables, a smaller and faster 
replacement sequence is used. 

Data-flow analysis [1] is a technique applied during the semantic and 
code generation phases of the compilation process. It improves code 
in several ways. First, it eliminates redundant computations 
(common sub-expression elimination). Second, it moves expressions 
within a loop whose values do not depend on the loop variable to 
outside the loop (loop invariance). Third, (also in a loop) it converts 
expressions of the form 'K * loop-index' into the equivalent arith- 
metic progression 'TMP ffi TMP + K'  (strength reduction). 

These methods are general. They work regardless of the machine- 
specific details such as the representation of an integer. However, 
usually the result is not optimal in either space or speed. Super- 
optimizer depends on the instruction set, however, the code is 
guaranteed to be optimal in space and it does a very good job in 
speed as well. 

Kmmme and Ackley [4] have written a code generator for the 
DEC-10 computer that is based on exhaustive search. Their method 
translates each interior node of an expression tree into several viable 
instruction sequences. These sequences are then pieced together to 
form a set of translations for the entire expression. This set is then 
searched to find the cheapest alternative. 

In their method, there is a one to one correspondence between the 
instructions in the translation and the original expression. For ex- 
ample, if  there's an add in the expression, there will also be an add 

somewhere in the generated code. Superoptimizer has a more global 
view of the problem. It 'translates' one sequence of instructions into 
another completely different sequence. On the other hand, super- 
optimizer can ' t  translate large programs. 

The two approaches can be seen as complementing each other. Su- 
peroptimizer can be used to prepare the code generation tables used 
m Krumme and Ackley's method. Their method can also be incor- 
porated into superoptimizer to increase the size of programs that can 
be handled. Superoptimizer can generate several short equivalent 
sequences for small fragments of the source program, and then 
Krumme and Aekley's method would be used to piece these together 
and find a short overall sequence. 

Kessler [3] has written a code optimization tool, which translates se- 
quences of instructions into one single instruction. The super- 
optimizer can be seen as a more general tool with broader applica- 
tions, since it can transform programs of many instructions to 
another one of several instructions. However, Kessler's optimizer 
works regardless of  program size, and therefore can be easily used to 
optimize compiled code. Another difference is that he uses template 
matching, while supemptimizer relies on exhaustive search. 

6. Conclusion 
We have taken a practical approach to the search for the optimal 
program. We have found that the shortest programs are surprising, 
often containing sequences of instructions that one would not expect 
to see side by side. The signum function is an example of this, and 
the min and max functions given in section 1.3 contain a beautiful 
combination of the logical and and the arithmetic add. 

Exhaustive search is justified by these results, and a probabilistic test 
allows programs of  practical size to be produced. Although results 
are limited to a dozen instructions, those found are already useful. 
Many examples of these can be found in Appendix I. 

One of the most interesting results is not the programs themselves, 
but a better understanding of  the interrelations between arithmetic 
and logical instructions. Similar ideas seem to come up consistently 
in the superoptimized programs, These include the sequence 'add.l 
d l ,d l ;  subx.l d l , d l '  that extracts the sign of a number in the signum 
and abs functions and the sequence 'sub.l dl,dO; and.1 d2,do; add.l 
d l  ,dO' that selects one of two values depending on a third in the rain 
and max functions. 

In the future, we hope to explore these ideas further, and compile a 
list of useful arithmetic-logical idioms that can be concatenated to 
form optimal or near-optimal programs. 

Appendix 

I. More  Interesting Results  

1.1. S I G N U M  Function 
The signum function has been defined in section 2. Given the 68000 
instruction set, four is the minimum number of instructions to com- 
pute signum. Interestingly, three suffice on the 8086. 

(x in ax) 
cwd (sign extends register ax into dx) 
neg ax 
adc dx, dx 
(slgnum(xl in dx} 
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Find the absolute value of  a number, excluding conditional jumps 
from the instruction set. 

(x in dO) 
move. 1 d0,dl 
add. 1 dl, dl 
subx. 1 dl, dl 
eor.1 dl,d0 
sub. 1 dl, dO 
(abs ix) i n  dO) 

Notice that although it is longer than the classical method (test; 
jump-if-positive; negate), it has no jumps! This might actually be 
faster than the classical method on some pipelined machines where 
jumps are expensive. 

1.3. M a x  a n d  M i n  
This program finds the maximum of the unsigned numbers in dO and 
dl and returns the answer in dO. The comments on the right show 
what's in the various registers during execution and is similar to the 
boolean expression checker's method of analysis. 

(d0-X, dl-Y) lFlag,ReglIf di>d0 lIf dl<md0 
sub.l dl,d0[ (C,d0) -I (I, X-Y) I (0, X-Y) 
subx.1 d2,d2l (C,d2) -1 (1,11..11) [ (0,0...0) 
or.1 d2,d01(C,d0) -I (1,11..11)I(0,X-Y) 
addx. 1 dl,d0ld0 - IY IX 
( d O  - max(X,  Y ) )  

This program finds the minimum of the unsigned numbers in d0'and 
dl and returns the answer in dO. 

(d0-X, dl-Y) lFlag,Regllf dl>d0 l iE  dl<-d0 
sub.1 dl,d0l (C,d0) -I (1, X-Y) I (0, X-Y} 
subx.l d2,d2ld2- 1111,..111 1000...000 
and.l d2, d01 d0 - IX-Y I0 
add.1 dl, d0ld0 - IX IY 
(dO - min (X, Y) ) 

Simultaneous min and max. 
(d0-X, dl-Y) lFlag, ReglIf dl>d0 lIf dl<-d0 
sub.1 dl,d0l (C,d0) -I (1, X-Y) [ C0, X-Y) 
subx.1 d2,d2ld2- 1111...111 1000...000 
and.1 d0, d2 ld2 - IX-Y l0 
eor.1 d2, d0l d0 - l0 [X-Y 
add.l dl,d0ld0 - IY IX 
add.l d2, dlldl - IX [Y 
(dO - max(X, Y), dl - rain(X, Y)) 

1.4. L o g i c a l  T e s t s  
Here are some logical tests that yield true/false answers. Sequences 
such as these have immediate application in a compiler to improve 
execution speed. Shown here are the tests for zero and non-zero. 

Suitable for BASIC Suitable for C, PASCAL 

dO = 0 if dO -- 0 dO - 0 if dO -- 0 
- -1 if dO l- 0 -1 if dO !- 0 

neg. 1 dO neg. 1 dO 
subx. 1 d0,d0 subx. 1 d0,d0 

neg.1 dO 

dO - -1 if dO -- 0 dO - 1 if dO ~- 0 
0 if dO !- 0 - 0 if dO !- 0 

neg. 1 dO neg. 1 dO 
subx. 1 d0, dO subx. 1 d0, dO 
not. 1 dO addq. 1 1, dO 

By prepending 'move.l A,d0; sub.l B,d0' to the abave one can con- 
struct tests for A == B and A l= B. 

1.5. D e c i m a l  to B i n a r y  
This piece converts a 8 digit BCD number stored in dO, one digit to a 
nibble, to binary with the result also in dO. It is the longest sequence 
ever generated by superoptimizer, and was actually done in three 

sequences to multiply by 10. At first I had superoptimizer compute 
the 2 digit BCD to binary conversion function '((dO & 0xF0) >> 4) * 
10 + (dO & OxOF)'. This came out surprisingly short: 

(2 dlgit BCD number In dO) 
move. b d0,dl 
and.b #$F0,dl 
isr.b #3,dl 
sob.b dl,d0 
sub.b dl,d0 
sub. b dl, dO 
(binary equivalent in dO} 

What is actually being computed is 
arts -- dO - 3 * ((dO & 0xF0)/8) 

Representing the contents of  dO as (H:L) whereH is the upper nibble 
and L is the lower nibble we get 

dO - 16 * H + L, dO & 0xF0 - 16"H 
ans - (16*H+L) - 3 * (16"H/8) 

- 16*H+L - 6*H 
- 10*H + L 

which is the 2 digit BCD to binary function. Encouraged by this 
result, superoptimizer was put to the task of  computing first the 4 
digit BCD to binary function and then the 8 digit BCD to binary 
function. Here is the 8 digit converter: 

(8 digit BCD number in dO) 
move. 1 d0,dl * 
and.l #$FOFOFOF0, 11 * 
isr.1 #3,dl * 
sub. 1 dl, dO * 
sub. 1 dl, dO * 
sub. 1 dl, dO * 
move. 1 d0, dl + 
and. 1 #$FF00FF00, dl + 
lsr.1 |1,dl + 
sub. 1 dl, dO + 
Isr.l #2,dl + 
sub. 1 dl, dO + 
lsr.l #3,dl + 
add. 1 dl, dO + 
move. 1 d0,dl 
swap dl 
mulu #$DSf0,dl 
sub. 1 dl, dO 
(binary equivalent in dO) 

What is most amazing is the first section (marked by * alongside the 
program) It looks exactly like the 2 digit BCD to binary function. 
This section computes 4 simultaneous 2 digit BCD to binary func- 
tions on adjacent pairs of  nibbles and deposits the answer back into 
the byte occupied by those nibbles. The second part (marked by +) 
computes two simultaneous 2-byte base 100 to binary conversion 
functions. Finally, the third part computes the function 'high-word- 
of-d0 * 10000 + low-word-of-d0' to complete the conversion. 

1.6. M u l t i p l i c a t i o n  b y  C o n s t a n t s  
During a two week period, superopdmizer Was used to find minimal 
programs that multiply by constants. A sampling of these programs 
is included in this section. 

An interesting observation is that the average program size increases 
as the multiplication constant increaseS, but it increases very slowly. 
The average size of programs that multiply by small numbers (less 
than 40) is 5 instructions, most programs that multiply by numbers in 
the hundreds are 6 to 7 instructions long, and programs that multiply 
by thousands are between 7 and 8 instructions long. 

dO * -  29 dO * -  39 
move. 1 dO, dl move. 1 d0, dl 
181.1 #4,d0 lsl.l #2,d0 
sub. 1 dl, dO add. 1 dl, dO 
add.l d0.d0 Isl.l #3,d0 
sub. 1 dl, dO sub. 1 dl. dO 
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dO *m 625 
move.l dO, dl 

dO *- 156 Isl.l #2,d0 
move.l dO,dl add.l dl,dO 
ls1.1 #2,dl ls1.1 #3,dO 
add.1 dl,dO sub.1 dl,dO 
lsl.l #5,dO ls1.1 #4,dO 
sub.1 dl,dO add.1 dl,dO 

1.7. Division by Constants 
Division turns out to be difficult to optimize. A general divide by 
constant that works for all 32-bit arguments is too long to realize any 
time gain over the divide instruction, and is certainly not shorter. 
Additionally, there doesn't seem to be any nifty arithmetic-logical 
operations that simplify the process. The generated programs just 
multiply by the reciprocal of the constant. Since we do an exhaus- 
tive search, this negative result can be seen as a confirmation of the 
inherent high cost of divisions for the instruction sets considered. 

The following programs were generated in an attempt to gain insight 
into binary to BCD algorithms, another area where superoptimizer 
has had little success. Note that even with the restricted argument 
range, these are much longer than the multiply programs. 

dO - trunc(dO/lO) for dO - 0..99 
move.b dO, d1 
add.b dO,dO IdO - 10 * x 
isr.b #1,dl Idl - .1 * x 

add.b dl,dO ldO - 10.1 * x 
Isr.b #3,dO [dO - .0101 * x 
add.b dl,dO IdO - .1101 * x 
lsr.b #3, dO IdO - .0001101 * x 

dO - trunc(dO/lO0) for dO - 0..9999 
move.w dO, d1 
lsr.w #1,dl Idl - .1 * x 

add.w dO, dO [dO - i0 * g 
add.w dO, d1 ldl - 10.1 * x 
lsr.w #5,dO ldO - .0001 * x 
add.w dl,dO ldO - 10.1001 * x 
isr.w #8,dl Jnote: you can't isr.w #10,dl 
Isr.w #2,dl [dl - .00000000101 * x 
sub.w dl,dO IdO - 10.10001111011 
isr.w #8, dO IdO - .0000001010001111011 * x 
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Abstract

Despite years of work on programming languages, pro-
gramming is still slow and error-prone. In this paper we
describe Macho, a system which combines a natural lan-
guage parser, a database of code, and an automated de-
bugger to write simple programs from natural language
and examples of their correct execution. Adding exam-
ples to natural language makes it easier for Macho to ac-
tually generate a correct program, because it can test its
candidate solutions and fix simple errors. Macho is able
to synthesize basic versions of six out of nine small core-
utils from short natural language descriptions based on
their man pages and sample runs.

1 Introduction

Programming is hard. Because computers can only exe-
cute simple instructions, the programmer must spell out
the application’s behavior in excruciating detail. Because
computers slavishly follow their instructions, any triv-
ial error will result in a crash or, worse, a security ex-
ploit. Together they make computer code difficult and
time consuming to write, read, and debug.

Programmers write software the same way they do ev-
erything else: by imitating other people. The first re-
sponse to a new problem is often to google it, and ide-
ally find code snippets or examples of library calls. The
programmer then combines these chunks of code, writes
some test cases, and makes small changes to the program
until its output is correct for the inputs he has considered.

Software engineering researchers have developed
techniques to help automate each of these parts of the
programming process. Code search tools scan through
databases of source code to find code samples related
to programmer queries. For example, SNIFF [2] uses
source code comments to help find snippets of code, and
Prospector [4] finds library calls that convert from one
language type to another. Automated debugging tools

not only help find problems [6], but sometimes even sug-
gest solutions [7]. For example, recent work by Weimer
et al. [5], describes how to use genetic programming
algorithms to modify buggy source code automatically
until the modified programs pass a set of test cases.

Although these techniques do save time, the program-
mer is still responsible for selecting code snippets, ar-
ranging them into a program, and debugging the result.
In this paper we describe Macho, a system that gener-
ates simple Java programs from a combination of natural
language, examples (unit tests), and a large repository of
Java source code (mostly from Sourceforge projects). It
contains four subsystems: a natural language parser that
maps English into database queries, a large database that
maps programmer abstractions to snippets of Java code,
a stitcher that combines code snippets in “reasonable”
ways, and an automated debugger that tests the result-
ing candidate programs against the examples and makes
simple fixes automatically.

Because database search and automated debugging are
still hard problems with immature tools, Macho’s abili-
ties are correspondingly basic. Our current version of
Macho was able to synthesize simple versions (no op-
tions, one or two arguments) of various Unix core utili-
ties from simple natural language specifications and ex-
amples of correct behavior, including versions of ls, pwd,
cat, cp, sort, and grep. Macho was unable to generate
correct solutions for wget, head, and uniq. Macho is still
under construction, but it has already provided us with
several interesting results.

Macho is a remarkably simple attack on an extraor-
dinarily difficult task. Natural language understanding is
considered one of the hardest problems in Artificial Intel-
ligence with a huge body of current research. Generaliz-
ing from examples is similarly difficult. And even once a
computer system “understands” the problem it still must
actually write suitable Java code.

Our key insight is that natural language and examples
have considerable synergy. Macho has a fighting chance
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to generate correct programs because each component
can partially correct for the mistakes of the others. For
example, a database query will return many possible re-
sults, most of which will be incorrect, but by leveraging
the type system the stitcher can eliminate many unlikely
solutions. Even more importantly, the test cases allow
Macho to partially detour around the difficult problem of
natural language processing. Modern machine learning
techniques provide probabilistic answers, whether the
question is the meaning of a piece of natural language or
the best sample function in the database to use. Backed
by its automated debugger, Macho can afford to try mul-
tiple solutions.

In addition, combining examples and natural language
greatly reduces their ambiguity: the set of programs that
satisfies both the natural language and the test cases is
much smaller than the sets that satisfy each input individ-
ually, although there are some exceptions: Macho found
it surprisingly easy to synthesize cat from a unit test us-
ing the empty files it used for generating ls. However, we
found that most of the time a program that passed even
one reasonable test case would be correct. Together nat-
ural language and examples form a fairly concrete spec-
ification.

2 Architecture

Macho’s workflow mirrors a human programmer. It
maps the natural language to implied computation, maps
those abstractions to concrete Java code, combines the
code chunks into a candidate solution, and finally de-
bugs the resulting program. The goal of each subsystem
is therefore to minimize the amount of brute force and
thereby synthesize the largest possible programs.

2.1 Natural Language Parser

Our natural language parsing subsystem attempts to ex-
tract implied chunks of computation and the data flow
between them from the words and phrases it receives,
and encode that knowledge for the database. Usually the
structure of the sentence can be directly transformed to
requested computation: verbs imply action, nouns im-
ply objects, and two nouns linked by a preposition imply
some sort of conversion code. This mapping is concep-
tually similar to previous work [1], but Macho’s database
“understands” a much larger number of concepts, includ-
ing abbreviations. In order to handle these more varied
sentences, we began with an off-the-shelf system pro-
vided by the University of Illinois Cognitive Compu-
tation group to tag individual words with their part of
speech (noun, verb, adjective, etc.) and to split sentences
apart into smaller phrases.

Our main problem was fixing the errors of the parser,
which was trained on a standard corpus of newspaper ar-
ticles, not jargon filled man pages. For example, ‘file’ is
usually a verb, like “the SEC filed charges against En-
ron today.” and print is often a noun, e.g., “Their foul
prints will not soon be cleansed from the financial sys-
tem.”. These kinds of errors were quite common.

To help detect what words were intended to act as ac-
tions, we build a graph of prepositions linking the objects
in a sentence together into a tree. A traversal of this tree
reveals the relationship between the nouns at its leaves.
When we find words that are not linked to the rest of
the sentence by this graph, we can guess that they are
misclassified verbs. The parser also provides some hints
as to likely control flow. For example, plural adjective
or adverbial phrases often imply a filter operation that is
implemented as an if statement. The description of grep
contains ‘lines matching a pattern’ which implies only
some lines will be used.

2.2 Database

As the subsystem that maps natural language abstrac-
tions to concrete Java code, the database is the engine
that powers Macho. When the database can suggest rea-
sonable code chunks, the stitching can usually find a cor-
rect solution, but when the database fails the space of
candidate programs is simply too large to succeed by
flailing randomly.

Our original plan was to use Google Code, but we al-
most immediately dismissed it as completely inadequate.
Google Code indexes a huge number of files, but it ap-
pears to only perform keyword search on the raw text of
the source files, which we found to be inadequate for our
problem. Instead, we developed our own database for
Macho.

Our first step was to obtain a data set of about 200,000
Java files from open source projects and compile them
using a special version of javac that we modified to emit
abstract syntax trees. We compiled rather than parsed be-
cause we wanted exact global locations for each function
call, and because we didn’t want to reuse broken code.
Since open source programmers are not exactly paragons
of code maintenance, only about half of our source files
compiled successfully.

Our database returns candidate methods based on in-
put and output variables, e.g. the query directory →
files would return all functions called with an input vari-
able named directory and assigned to a variable named
files. This nicely captured the different abstractions that
different programmers used to represent code, which is
important because functions have only one name. The
problem with this approach is that many things aren’t
usually implemented as functions. Higher level concepts
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Figure 1: Macho workflow

like ignore, first, or adjacent usually appear as operations
or even control flow. Often they have no input variables
or are only tagged in the comments.

2.3 Stitching
Macho’s stitching subsystem combines results from
database queries into candidate programs. Its main guide
is the type system; two expressions can be linked by a
variable if the output type of one matches the input type
of the other. If the types don’t match, the stitcher will
query the database for common chunks of code that were
used to convert between those types.

Macho also generates a small amount of control flow.
If statements are generated only from hints by the natu-
ral language parser and the synthesizer. Map loops are
generated when suggested by the type system. Macho
tries to limit control flow generation because it swiftly
increases the solution space; an upstream chunk may be
placed in any block above the downstream chunk.

The most difficult part of stitching is keeping track of
the data flow between expressions in the presence of con-
trol flow. The natural language gives a great deal of infor-
mation for how information is supposed to flow from one
chunk to another; previous natural language program-
ming systems generated code without any search at all.

2.4 Automated debugger
Macho’s automated debugging subsystem attempts to de-
bug candidate programs. This type of automated debug-
ging is potentially extremely difficult, but many of the
automatically generated candidate programs will have
utterly obvious errors that can be fixed easily. The pri-
mary difference between stitching and automated debug-
ging is that debugging is dynamic rather than static and
has access to the behavior of the program. Currently
the automated debugger runs the candidate in a sandbox

and performs a diff between the output of the candidate
and the unit test and classifies the candidate into one of
five simple cases: exception thrown (try to insert an if
block around the offending statement), a superset of cor-
rect output (insert if blocks around the offending print),
garbage (try the next program), a subset of correct out-
put (try adding a few prints), or, in the best case, correct
output (declare victory).

These components have synergy beyond simply cor-
recting mistakes. For example, our automated debug-
ger leverages the database to suggest changes to buggy
programs. When it is faced with a potential solution
for ls which incorrectly prints hidden files, the debug-
ger queries the database for commonly used functions
of java.io.File which could be used in an if statement to
restrict the obstreperous print. This simple probabilistic
model allows it to try the isHidden method even though
it is not used elsewhere in the candidate solution.

Although the automated debugging seems superfi-
cially simple, it actually solves a very difficult problem
of library combination. Macho’s database finds candi-
date functions entirely by name, which may be unrelated
to their purpose. Running the code allows the debugger
to eliminate these imposter functions.

3 Evaluation

Objectively evaluating Macho is very difficult. There is
no standard test suite where we can benchmark our re-
sults against other systems, and using the language from
the man pages directly is almost impossible. Consider
the byzantine man page description for wget:

GNU Wget is a free utility for non-interactive
download of files from the Web. It supports
HTTP, HTTPS, and FTP protocols, as well as
retrieval through HTTP proxies.
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Program Result Input Notes
pwd success Print the current working directory. Difficult as there is no input.
pwd success Print the user directory. CWD = “user.dir” in Java.
pwd success Print the current directory. Abbreviation!
pwd fail Print the working directory. Breaks NLP for arcane reasons.
pwd fail Show the current working directory. Database entries for show are mostly graphics.
cat success Print the lines of a file. Vanilla.
cat success Read a file. Print is synthesized.
cat fail Display the contents of a file. Database entries for contents are mostly graphics.
cat fail Print a file Solutions print the file name.
sort success Sort the lines of a file. Print is synthesized.
sort success Sort a file by line.
sort fail Sort a file. Insufficiently precise specification.
sort fail Sort the contents of a file Database entries for contents are mostly graphics.
grep success Print the lines in a file matching a pattern. Solutions using both JavaLib and GNU regexes.
grep fail Find a pattern in the lines of a file. Correct except for if statement linking test and print.
grep fail Search file for a pattern. Poor resiliency for function names.
ls success Print the names of files in a directory. Sort the names.
ls success Print the contents of a folder. Sort the names.
ls fail Print the names of the entries in a directory. Entries to names fails.
ls fail Print the files in a directory. Does not synthesize sort.
cp success Copy src file to dest file. Programmer abbreviation!
cp success Copy file to file. Ugly but Macho needs to know there are two inputs.
cp fail Duplicate file to file. No candidate in database.
wget fail Download file. Candidates have extra functionality.
wget fail Open network connection. Download file. Macho can’t create buffer transfer loop.
head fail Print the first ten lines of a file. ’First’ is incomprehensible.
uniq fail Print a file. Ignore adjacent lines. ’Ignore’ and ’adjacent’ don’t map to libraries.
perl fail The answer to life, the universe, and everything. Seems to work, but it’s still running.

Figure 2: Macho’s results for generating select core utils. This figure shows the results for pwd, cat, sort, grep, ls, cp,
wget, head, and uniq, and the natural language input we used for each of these programs.

Giving out partial credit is also difficult. Some of
Macho’s solutions are very close but not byte identical,
but automatically determining whether or not an output
is sufficiently close to the test case is approximately as
hard as generating the program, an artificial version of
the Dunning-Kruger effect. Under these circumstances
we decided to try to pick an interesting set of natural
language inputs right on the border of Macho’s capabili-
ties and use our best judgement when the test cases were
“close”.

Macho succeeded in generating simple versions of six
out of nine coreutils - pwd, cat, sort, grep, cp, and ls -
and failed to synthesize wget, head, and uniq. For each
core utility, we targeted its default behavior: no options
and the minimum number of arguments possible. Since
we had the programs available anyway, we used them to
generate our unit tests. All of the programs had only one
short test and the results are shown in Figure 2.

4 Lessons Learned

4.1 The Database is King
Although most of the programs Macho writes are 10-15
lines or less, there are a lot of potential 10-line Java pro-
grams. Brute force really does not get very far - the abil-

ity of the database to select reasonable pieces from the
natural language heuristics is absolutely critical. In gen-
eral, when the stitching failed, it was often reasonable to
think of a hack, or a simple fix, or just let it run a little
longer, but when the database failed Macho had no hope
of ever generating a correct solution. Improving Macho
will require a superior database above everything else.

4.2 Pure NLP is Bad

Programming with natural language is generally consid-
ered a bad idea because specifying details gradually mu-
tates the natural language into a wordy version of Visual
Basic. Consider a natural language spec for ls:

Take the path "/home/zerocool/"
If the path is a file, print
it. Otherwise get the list of
files in the directory. Sort the
result alphabetically. Go over
the result from the beginning to
the end: If the current element’s
filename does not begin with ".",
print it.

which is our best guess for the input required for Pe-
gasus [3]; it is obvious why most programmers would
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prefer to use Python instead. Instead, a Macho program-
mer can specify the basic task very simply:

Print the names of files in a
directory. Sort the names.

Even an almost trivial program like this leaves many
details unspecified: should the sort be alphabetically by
filename, size, file extension, or date? Should the pro-
gram print the full path, the relative path, or just the name
of the files? Does “files” include subdirectories or hid-
den files? All of these questions are easily cleared up by
an example of correct operation. Such examples not only
have a higher information density than tedious pages of
pseudocode or UML, but they also reduce the workload
of the programmer by allowing him to think about one
case at a time, rather than all possible cases. In other
words, examples allow a user to be concrete without be-
ing formal.

4.3 Interactive Programming is the An-
swer

A traditional programmer must write code that satisfies
all possible inputs his program will encounter, while a
Macho Programmer can consider each input individually.
Macho therefore not only saves the programmer the work
of writing code but also frees the programmer from dif-
ficult formal reasoning.

Ideally, however, the programmer would only be re-
quired to verify, not generate, concrete values. In this
rosy scenario the programmer would input natural lan-
guage and the system would offer a set of alternatives.
The programmer could then reject incorrect cases, or
suggest modifications, until eventually a correct program
is negotiated. This is important because programming is
not simply the act of transferring a mental vision into ma-
chine code. In reality, the requirements are fuzzy. Some
things are more important than others, and still others can
be waived or changed if they are difficult to implement.
Interactive programming allows the programmer to take
the path of least resistance to a satisfactory program.

Of course, this also requires considerably more accu-
rate program synthesis from pure natural language, as
well as much better understanding of general concepts,
which no one really knows how to do at the moment.

5 Conclusions

In this paper we have discussed Macho, a system that
synthesizes programs from a combination of natural lan-
guage, unit tests, and a large database of source code
samples. A few of our technical findings are that the nat-
ural language can give implicit hints about the control

flow in a program, variable names contain useful infor-
mation about the functionality of code, and the automatic
debugger can use the database to add new code to a can-
didate solution.

Macho is a simple proof of concept system, not yet di-
rectly useful for most programmers, but it can still syn-
thesize basic versions of six small coreutils. By improv-
ing the source code database we believe that Macho can
be a practical system for helping programmers.
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Abstract. Imagine some program and a number of changes. If none of these
changes is applied (“yesterday”), the program works. If all changes are applied
(“today”), the program does not work. Which change is responsible for the fail-
ure? We present an efficient algorithm that determines the minimal set of failure-
inducing changes. Ourdelta debuggingprototype tracked down a single failure-
inducing change from 178,000 changed GDB lines within a few hours.

1 A True Story

The GDB people have done it again. The new release 4.17 of theGNU debugger [6]
brings several new features, languages, and platforms, but for some reason, it no longer
integrates properly with my graphical front-endDDD [10]: the arguments specified
within DDD are not passed to the debugged program. Something has changed within
GDB such that it no longer works for me. Something? Between the 4.16 and 4.17 re-
leases, no less than 178,000 lines have changed. How can I isolate the change that
caused the failure and makeGDB work again?

The GDB example is an instance of the “worked yesterday, not today” problem:
after applying a set of changes, the program no longer works as it should. In finding the
cause of the regression, thedifferencesbetween the old and the new configuration (that
is, the changes applied) can provide a good starting point. We call this techniquedelta
debugging—determining the causes for program behavior by looking at the differences
(thedeltas).

Delta debugging works the better thesmaller the differences are. Unfortunately,
already one programmer can produce so many changes in a day such that the differences
are too large for a human to trace—let alone differences between entire releases. In
general, conventional debugging strategies lead to faster results.

However, delta debugging becomes an alternative when the differences can benar-
rowed down automatically.Ness and Ngo [5] present a method used at Cray research
for compiler development. Their so-calledregression containmentis activated when the
automated regression test fails. The method takes ordered changes from a configuration
management archive and applies the changes, one after the other, to a configuration
until its regression test fails. This narrows the search space from a set of changes to a
single change, which can be isolated temporarily in order to continue development on
a working configuration.

0 To appear inProc. Joint 7th European Software Engineering Conference (ESEC) and 7th ACM
SIGSOFT International Symposium on the Foundations of Software Engineering (FSE-7),
Toulouse, France, September 1999. Copyrightc© 1999 Springer-Verlag.



Regression containment is an effective delta debugging technique in some settings,
including the one at Cray research. But there are several scenarios where linear search
is not sufficient:

Interference. There may be not one single change responsible for a failure, but acom-
bination of several changes:each individual change works fine on its own, but
applying the entire set causes a failure. This frequently happens when merging the
products of parallel development—and causes enormous debugging work.

Inconsistency. In parallel development, there may beinconsistent configurations—
combinations of changes that do not result in a testable program. Such configu-
rations must be identified and handled properly.

Granularity. A single logical change may affect several hundred or even thousand
lines of code, but only a few lines may be responsible for the failure. Thus, one
needs facilities tobreak changes into smaller chunks—a problem which becomes
evident in theGDB example.

In this paper, we present automated delta debugging techniques that generalize re-
gression containment such that interference, inconsistencies, and granularity problems
are dealt with in an effective and practical manner. In particular, ourdd+ algorithm

– detects arbitrary interferences of changes in linear time
– detects individual failure-inducing changes in logarithmic time
– handles inconsistencies effectively to support fine-granular changes.

We begin with a few definitions required to present the basicdd algorithm. We
show how its extensiondd+ handles inconsistencies from fine-granular changes. Two
real-life case studies using ourWYNOT prototype1 highlight the practical issues; in par-
ticular, we reveal how theGDB failure was eventually resolved automatically. We close
with discussions of future and related work, where we recommend delta debugging as
standard operating procedure after any failing regression test.

2 Configurations, Tests, and Failures

We first discuss what we mean by configurations, tests, and failures. Our view of a
configurationis the broadest possible:

Definition 1 (Configuration). Let C = {11, 12, . . . , 1n} be the set of all possible
changes1i . A change set c⊆ C is called aconfiguration.

A configuration is constructed by applying changes to abaseline.

Definition 2 (Baseline).An empty configuration c= ∅ is called abaseline.

Note that we do not impose any constraints on how changes may be combined; in
particular, we do not assume that changes are ordered. Thus, in the worst case, there are
2n possible configurations forn changes.

To determine whether a failure occurs in a configuration, we assume atesting func-
tion.According to thePOSIX1003.3 standard for testing frameworks [3], we distinguish
three outcomes:
1 WYNOT = “Worked Yesterday, NOt Today”



– The test succeeds (PASS, written here as✔)
– The test has produced the failure it was indented to capture (FAIL, ✘)
– The test produced indeterminate results (UNRESOLVED, ).2

Definition 3 (Test). The function test: 2C → {✘, ✔, } determines for a configura-
tion c ∈ C whether some given failure occurs (✘) or not (✔) or whether the test is
unresolved ().

In practice,testwould construct the configuration from the given changes, run a
regression test on it and return the test outcome.3

Let us now model our initial scenario. We have some configuration “yesterday” that
works fine and some configuration “today” that fails. For simplicity, we only consider
the changes present “today”, but not “yesterday”. Thus, we model the “yesterday” con-
figuration as baseline and the “today” configuration as set of all possible changes.

Axiom 1 (Worked yesterday, not today).test(∅) = ✔ (“yesterday”) and test(C) = ✘
(“today”) hold.

What do we mean by changes that cause a failure? We are looking for a specific
change set—those changes that make the program fail by including them in a configu-
ration. We call such changesfailure-inducing.

Definition 4 (Failure-inducing change set).A change set c⊆ C is failure-inducingif

∀c′ (
c ⊆ c′ ⊆ C → test(c′) 6= ✔

)

holds.

The set of all changesC is failure-inducing by definition. However, we are more
interested in finding theminimal failure-inducing subset ofC, such that removing any
of the changes will make the program work again:

Definition 5 (Minimal failure-inducing set). A failure-inducing change set B⊆ C is
minimal if

∀c ⊂ B
(
test(c) 6= ✘

)

holds.

And exactlythis is our goal:For a configurationC, to find a minimal failure-inducing
change set.

3 Configuration Properties

If every change combination produced arbitrary test results, we would have no choice
but to test all 2n configurations. In practice, this is almost never the case. Instead, con-
figurations fulfill one or more specificpropertiesthat allow us to devise much more
efficient search algorithms.

2 POSIX1003.3 also listsUNTESTEDandUNSUPPORTEDoutcomes, which are of no relevance here.
3 A single test case may take time. Recompilation and re-execution of a program may be a matter

of several minutes, if not hours. This time can be considerably reduced by smart recompilation
techniques [7] or caching derived objects [4].



The first useful property ismonotony:once a change causes a failure, any configu-
ration that includes this change fails as well.

Definition 6 (Monotony). A configurationC is monotoneif

∀c ⊆ C
(
test(c) = ✘ → ∀c′ ⊇ c (test(c′) 6= ✔)

)
(1)

holds.

Why is monotony so useful? Because once we know a change set doesnot cause a
failure, so do all subsets:

Corollary 1. LetC be a monotone configuration. Then,

∀c ⊆ C
(
test(c) = ✔ → ∀ c′ ⊆ c(test(c′) 6= ✘)

)
(2)

holds.

Proof. By contradiction. For all configurations c⊆ C with test(c) = ✔, assume that
∃c′ ⊆ c

(
test(c′) = ✘

)
holds. Then, definition 6 implies test(c) 6= ✔, which is not the

case.

Another useful property isunambiguity:a failure is caused by only one change
set (and not independently by two disjoint ones). This is mostly a matter of economy:
once we have detected a failure-inducing change set, we do not want to search the
complement for more failure-inducing change sets.

Definition 7 (Unambiguity). A configurationC is unambiguousif

∀c1, c2 ⊆ C
(
test(c1) = ✘ ∧ test(c2) = ✘ → test(c1 ∩ c2) 6= ✔

)
(3)

holds.

The third useful property isconsistency:every subset of a configuration returns an
determinate test result. This means that applying any combination of changes results in
a testable configuration.

Definition 8 (Consistency).A configurationC is consistentif

∀c ⊆ C
(
test(c) 6= )

holds.

If a configuration does not fulfill a specific property, there are chances that one of
its subsetsfulfills them. This is the basic idea of thedivide-and-conqueralgorithms
presented below.

4 Finding Failure-Inducing Changes

For presentation purposes, we begin with the simplest case: a configurationc that is
monotone, unambiguous, and consistent. (These constraints will be relaxed bit by bit in
the following sections.) For such a configuration, we can design an efficient algorithm



based onbinary searchto find a minimal set of failure-inducing changes. Ifc contains
only one change, this change is failure-inducing by definition. Otherwise, wepartitionc
into two subsetsc1 andc2 and test each of them. This gives us three possible outcomes:

Found in c1. The test ofc1 fails—c1 contains a failure-inducing change.
Found in c2. The test ofc2 fails—c2 contains a failure-inducing change.
Interference. Both tests pass. Since we know that testingc = c1 ∪ c2 fails, the failure

must be induced by the combination of some change set inc1 and some change set
in c2.

In the first two cases, we can simply continue the search in the failing subset, as
illustrated in Table 1. Each line of the diagram shows a configuration. A numberi
stands for an included change1i ; a dot stands for an excluded change. Change 7 is the
one that causes the failure—and it is found in just a few steps.

Step ci Configuration test
1 c1 1 2 3 4 . . . . ✔

2 c2 . . . . 5 6 7 8 ✘

3 c1 . . . . 5 6 . . ✔

4 c2 . . . . . . 7 8 ✘

5 c1 . . . . . . 7 . ✘ 7 is found
Result . . . . . . 7 .

Table 1.Searching a single failure-inducing change

But what happens in case of interference? In this case, we must search inboth
halves—with all changes in the other half remaining applied, respectively. This variant
is illustrated in Table 2. The failure occurs only if the two changes 3 and 6 are applied
together. Step 3 illustrates how changes 5–7 remain applied while searching through 1–
4; in step 6, changes 1–4 remain applied while searching in 5–7.4

Step ci Configuration test
1 c1 1 2 3 4 . . . . ✔

2 c2 . . . . 5 6 7 8 ✔

3 c1 1 2 . . 5 6 7 8 ✔

4 c2 . . 3 4 5 6 7 8 ✘

5 c1 . . 3 . 5 6 7 8 ✘ 3 is found
6 c1 1 2 3 4 5 6 . . ✘

7 c1 1 2 3 4 5 . . . ✔ 6 is found
Result . . 3 . . 6 . .

Table 2.Searching two failure-inducing changes

We can now formalize the search algorithm. The functiondd(c) returns all failure-
inducing changes inc; we use a setr to denote the changes that remain applied.

4 Delta debugging is not restricted to programs alone. On this LATEX document, 14 iterations of
manual delta debugging had to be applied until Table 2 eventually re-appeared on the same
page as its reference.



Algorithm 1 (Automated delta debugging). The automated delta debugging algo-
rithm dd(c) is

dd(c) = dd2(c, ∅) where

dd2(c, r ) = let c1, c2 ⊆ c with c1 ∪ c2 = c, c1 ∩ c2 = ∅, |c1| ≈ |c2| ≈ |c|/2

in




c if |c| = 1 (“found”)

dd2(c1, r ) else iftest(c1 ∪ r ) = ✘ (“in c1”)

dd2(c2, r ) else iftest(c2 ∪ r ) = ✘ (“in c2”)

dd2(c1, c2 ∪ r ) ∪ dd2(c2, c1 ∪ r ) otherwise (“interference”)

The recursion invariant (and thus precondition) fordd2 is test(r ) = ✔∧ test(c∪r ) = ✘.

The basic properties ofdd are discussed and proven in [9]. In particular, we show
thatdd(c) returns a minimal set of failure-inducing changes inc if c is monotone, un-
ambiguous, and consistent.

Sincedd is a divide-and-conquer algorithm with constant time requirement at each
invocation,dd’s time complexity is at worst linear. This is illustrated in Table 3, where
only the combination ofall changes is failure-inducing, and wheredd requires less than
two tests per change to find them. If there is only one failure-inducing change to be
found,dd even has logarithmic complexity, as illustrated in Table 1.

Step ci Configuration test
1 c1 1 2 3 4 . . . . ✔

2 c2 . . . . 5 6 7 8 ✔

3 c1 1 2 . . 5 6 7 8 ✔

4 c2 . . 3 4 5 6 7 8 ✔

5 c1 1 . 3 4 5 6 7 8 ✔ 2 is found
6 c2 . 2 3 4 5 6 7 8 ✔ 1 is found
7 c1 1 2 3 . 5 6 7 8 ✔ 4 is found
8 c2 1 2 . 4 5 6 7 8 ✔ 3 is found
9 c1 1 2 3 4 5 6 . . ✔

10 c2 1 2 3 4 . . 7 8 ✔

11 c1 1 2 3 4 5 . 7 8 ✔ 6 is found
12 c2 1 2 3 4 . 6 7 8 ✔ 5 is found
13 c1 1 2 3 4 5 6 7 . ✔ 8 is found
14 c2 1 2 3 4 5 6 . 8 ✔ 7 is found

Result 1 2 3 4 5 6 7 8

Table 3.Searching eight failure-inducing changes

Let us now recall the propertiesdd requires from configurations: monotony, unam-
biguity, and consistency. How doesdd behave whenc is not monotone or when it is
ambiguous? In case of interference,dd still returns a failure-inducing change set, al-
though it may not be minimal. But maybe surprisingly, a single failure-inducing change
(and hence a minimal set) is found even for non-monotone or ambiguous configura-
tions:

– If a configuration is ambiguous, multiple failure-inducing changes may occur;dd
returns one of them. (After undoing this change set, re-rundd to find the next one.)



– If a configuration is not monotone, then we can devise “undoing” changes that,
when applied to a previously failing configurationc, causec to pass the test again.
But still, today’s configuration is failing; hence, there must beanotherfailure-
inducing change that is not undone and that can be found bydd.

5 Handling Inconsistency

The most important practical problem in delta debugging isinconsistent configurations.
When combining changes in an arbitrary way, such as done bydd, it is likely that several
resulting configurations are inconsistent—the outcome of the test cannot be determined.
Here are some of the reasons why this may happen:

Integration failure. A change cannot be applied. It may require earlier changes that
are not included in the configuration. It may also be in conflict with another change
and a third conflict-resolving change is missing.

Construction failure. Although all changes can be applied, the resulting program has
syntactical or semantical errors, such that construction fails.

Execution failure. The program does not execute correctly; the test outcome is unre-
solved.

Since it is improbable that all configurations tested bydd have been checked for
inconsistencies beforehand, tests may well outcome unresolved during add run. Thus,
dd must be extended to deal with inconsistent configurations.

Let us begin with the worst case: after splitting upc into subsets, all tests are
unresolved—ignorance is complete. How we increase our chances to get a resolved
test? We know two configurations that are consistent:∅ (“yesterday”) andC (“today”).
By applyinglesschanges to “yesterday’s” configuration, we increase the chances that
the resulting configuration is consistent—the difference to “yesterday” is smaller. Like-
wise, we can remove less changes from “today’s” configuration and decrease the differ-
ence to “today”.

In order to apply less changes, we can partitionc into a larger number of subsets.
The more subsets we have, the smaller they are, and the bigger are our chances to get
a consistent configuration—until each subset contains only one change, which gives us
the best chance to get a consistent configuration. The disadvantage, of course, is that
more subsets means more testing.

To extend the basicdd algorithm to work on an arbitrary numbern of subsets
c1, . . . , cn, we must distinguish the following cases:

Found. If testing anyci fails, thenci contains a failure-inducing subset. This is just as
in dd.

Interference. If testing anyci passes and itscomplementc̄i passes as well, then the
change setsci andc̄i form an interference, just as indd.

Preference. If testing anyci is unresolved, and testinḡci passes, thenci contains a
failure-inducing subset and ispreferred. In the following test cases,c̄i must remain
applied to promote consistency.



As a preference example, consider Table 4. In Step 1, testingc1 turns out unre-
solved, but its complementc̄1 = c2 passes the test in Step 2. Consequently,c2 can-
not contain a bug-inducing change set, butc1 can—possibly in interference withc2,
which is whyc2 remains applied in the following test cases.

Step ci Configuration test
1 c1 1 2 3 4 . . . . Testingc1, c2
2 c2 . . . . 5 6 7 8 ✔ ⇒ Preferc1
3 c1 1 2 . . 5 6 7 8 . . .

Table 4.Preference

Try again. In all other cases, we repeat the process with 2n subsets—resulting with
twice as many tests, but increased chances for consistency.
As a “try again” example, consider Table 5. Change 8 is failure-inducing, and
changes 2, 3 and 7 imply each other—that is, they only can be applied as a whole.
Note how the test is repeated first withn = 2, then withn = 4 subsets.

Step ci Configuration test
1 c1 = c̄2 1 2 3 4 . . . . Testingc1, c2
2 c2 = c̄1 . . . . 5 6 7 8 ⇒ Try again
3 c1 1 2 . . . . . . Testingc1, . . . , c4
4 c2 . . 3 4 . . . .
5 c3 . . . . 5 6 . . ✔

6 c4 . . . . . . 7 8
7 c̄1 . . 3 4 5 6 7 8 Testing complements
8 c̄2 1 2 . . 5 6 7 8
9 c̄3 1 2 3 4 . . 7 8 ✘

10 c̄4 1 2 3 4 5 6 . . ⇒ Try again

Table 5.Searching failure-inducing changes with inconsistencies

In each new run, we can do a littleoptimizing: all ci that passed the test can be ex-
cluded fromc, since they cannot be failure-inducing. Likewise, allci whose com-
plementsc̄i failed the test can remain applied in following tests. In our example,
this applies to changes 5 and 6, such that we can continue withn = 6 subsets.
After testing each change individually, we finally find the failure-inducing change,
as shown in Table 6.

Step ci Configuration test
11 c1 1 . . . 5 6 . . ✔ Testingc1, . . . , c6
12 c2 . 2 . . 5 6 . .
13 c3 . . 3 . 5 6 . .
14 c4 . . . 4 5 6 . . ✔

15 c5 . . . . 5 6 7 .
16 c6 . . . . 5 6 . 8 ✘ 8 is found

Result . . . . . . . 8

Table 6.Searching failure-inducing changes with inconsistencies (continued)



Note that at this stage, changes 1, 4, 5 and 6 have already been identified asnot
failure-inducing, since their respective tests passed. If the failure had not been in-
duced by change 8, but by 2, 3, or 7, we would have found it simply by excluding
all other changes.

To summarize, here is the formal definition of the extendeddd+ algorithm:

Algorithm 2 (Delta debugging with unresolved test cases).
Theextended delta debugging algorithmdd+(c) is

dd+(c) = dd3(c, ∅, 2) where

dd3(c, r, n) =
let c1, . . . , cn ⊆ c such that

⋃
ci = c, all ci are pairwise disjoint,

and∀ci (|ci | ≈ |c|/n);

let c̄i = c − (ci ∪ r ), ti = test(ci ∪ r ), t̄i = test(c̄i ∪ r ),

c′ = c ∩ ⋂{c̄i | t̄i = ✘}, r ′ = r ∪ ⋃{ci | ti = ✔}, n′ = min(|c′|, 2n),

di = dd3(ci , c̄i ∪ r, 2), andd̄i = dd3(c̄i , ci ∪ r, 2)

in




c if |c| = 1 (“found”)

dd3(ci , r, 2) else ifti = ✘ for somei (“found in ci ”)

di ∪ d̄i else ifti = ✔ ∧ t̄i = ✔ for somei (“interference”)

di else ifti = ∧ t̄i = ✔ for somei (“preference”)

dd3(c′, r ′, n′) else ifn < |c| (“try again”)

c′ otherwise (“nothing left”)

The recursion invariant fordd3 is test(r ) 6= ✘ ∧ test(c ∪ r ) 6= ✔ ∧ n ≤ |c|.
Apart its extensions for unresolved test cases, thedd3 function is identical todd2

with an initial value ofn = 2. Like dd, dd+ has linear time complexity (but requires
twice as many tests).

Eventually,dd+ finds a minimal set of failure-inducing changes, provided that they
aresafe—that is, they can either be applied to the baseline or removed from today’s
configuration without causing an inconsistency. If this condition is not met, the set
returned bydd+ may not be minimal, depending on the nature of inconsistencies en-
countered. But at least, all changes that are safe and not failure-inducing are guaranteed
to be excluded.5

6 Avoiding Inconsistency

In practice, we can significantly reduce the risk of inconsistencies by relying on spe-
cific knowledgeabout the nature of the changes. There are two ways to influence the
dd+ algorithm:

5 True minimality can only be achieved by testing all 2n configurations. Consider a hypothetic
set of changes where only three configurations are consistent: yesterday’s, today’s, and one
arbitrary configuration. Only by trying all combinations can we find this third configuration;
inconsistency has no specific properties like monotony that allow for more effective methods.



Grouping Related Changes.Reconsider the changes 2, 3, and 7 of Table 5. If we
had some indication that the changes imply each other, we could keep them in a
common subset as long as possible, thereby reducing the number of unresolved test
cases. To determine whether changes are related, one can use

– process criteria,such as common change dates or sources,
– location criteria,such as the affected file or directory,
– lexical criteria,such as common referencing of identifiers,
– syntactic criteria,such as common syntactic entities (functions, modules) af-

fected by the change,
– semantic criteria,such as common program statements affected by the changed

control flow or changed data flow.
For instance, it may prove useful to group changes together that all affect a specific
function (syntactic criteria) or that occurred at a common date (process criteria).

Predicting Test Outcomes.If we haveevidencethat specific configurations will be
inconsistent, we canpredict their test outcomes as unresolved instead of carrying
out the test. In Table 5, if we knew about the implications, then only 5 out of 16
tests would actually be carried out.
Predicting test outcomes is especially useful if we can impose anorderingon the
changes. Consider Table 7, where each change1i implies all “earlier” changes
11, . . . , 1i −1. Given this knowledge, we can predict the test outcomes of steps
2 and 4; only three tests would actually carried out to find the failure-inducing
change.

Step ci Configuration test
1 c1 1 2 3 4 . . . . ✔

2 c2 . . . . 5 6 7 8 ( ) predicted outcome
3 c1 1 2 3 4 5 6 . . ✔

4 c2 1 2 3 4 . . 7 8 ( ) predicted outcome
5 c1 1 2 3 4 5 6 7 . ✘ 7 is found

Result . . . . . . 7 .

Table 7.Searching failure-inducing changes in a total order

We see that when changes can be ordered, predicting test outcomes makesdd+ act
like a binary search algorithm.

Both grouping and predicting will be used in two case studies, presented below.

7 First Case Study: DDD 3.1.2 Dumps Core

DDD 3.1.2, released in December, 1998, exhibited a nasty behavioral change: When
invoked with a the name of a non-existing file,DDD 3.1.2 dumped core, while its pre-
decessorDDD 3.1.1 simply gave an error message. We wanted to find the cause of this
failure by usingWYNOT.

TheDDD configuration management archive lists 116 logical changes between the
3.1.1 and 3.1.2 releases. These changes were split into 344 textual changes to theDDD
source.
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Table 8.Searching a failure-inducing change in DDD

In a first attempt, we ignored any knowledge about the nature or ordering of the
changes; changes were ordered and partitioned at random. Table 8(a) shows the re-
sult of the resultingWYNOT run. After test #4,WYNOT has reduced the number of
remaining changes to 172. The next tests turn out unresolved, soWYNOT gradually
increases the number of subsets; at test #16,WYNOT starts using 8 subsets, each con-
taining 16 changes. At test #23, the 7th subset fails, and only its 16 changes remain.
Eventually, test #31 determines the failure-inducing change.

We then wanted to know whether knowledge from the configuration management
archive would improve performance. We used the followingprocess criteria:

1. Changes were grouped according to the date they were applied.
2. Each change implied all earlier changes. If a configuration would not satisfy this

requirement, its test outcome would be predicted as unresolved.

As shown in Table 8(b), this resulted in a binary search with very few inconsisten-
cies. After only 12 test runs and 58 minutes6, the failure-inducing change was found:

diff -r1.30 -r1.30.4.1 ddd/gdbinit.C
295,296c296
< string classpath =
< getenv("CLASSPATH") ! = 0 ? getenv("CLASSPATH") : ".";
---
> string classpath = source view->class path();

When called with an argument that is not a file name,DDD 3.1.1 checks whether
it is a Java class; soDDD consults its environment for the class lookup path. As an
“improvement”,DDD 3.1.2 uses a dedicated method for this purpose. Unfortunately,
thesource view pointer used is initialized only later, resulting in a core dump. This
problem has been fixed in the currentDDD release.

8 Second Case Study: GDB 4.17 does not Integrate

Let us now face greater challenges. As motivated in Section 1, we wanted to track
down a failure in 178,000 changedGDB lines. In contrast to theDDD setting from

6 All times were measured on a Linux PC with a 200 MHz AMD K6 processor.



Section 7, we had no configuration management archive from which to take ordered
logical changes.

The 178,000 lines were automatically grouped into 8721 textual changes in the
GDB source, with any two textual changes separated by at least two unchanged lines
(“context”). The average reconstruction time after applying a change turned out to be
370 seconds. This means that we could run 233 tests in 24 hours or 8721 changes
individually in 37 days.

Again, we first ignored any knowledge about the nature of the changes. The result
of this WYNOT run is shown in Table 9(a). Most of the first 457 tests turn out unre-
solved, soWYNOT gradually increases the number of subsets, reducing the number of
remaining changes. At test #458, each subset contains only 36 changes, and it is one of
these subsets that turns out to be failure-inducing. After this breakthrough, the remain-
ing 12 tests determine a single failure-inducing change.

Running the 470 tests still took 48 hours. Once more, we decided to improve perfor-
mance. Since process criteria were not available, we usedlocation criteriaandlexical
criteria to group changes:

1. At top-level, changes were grouped according to directories. This was motivated
by the observation that severalGDB directories contain a separate library whose
interface remains more or less consistent across changes.

2. Within one directory, changes were grouped according to common files. The idea
was to identify compilation units whose interface was consistent with both “yester-
day’s” and “today’s” version.

3. Within a file, changes were grouped according to common usage of identifiers.
This way, we could keep changes together that operated on common variables or
functions.

Finally, we added afailure resolution loop:After a failing construction,WYNOT
scans the error messages for identifiers, adds all changes that reference these identifiers
and tries again. This is repeated until construction is possible, or until there are no more
changes to add.

The result of thisWYNOT run is shown in Table 9(b). At first,WYNOT split the
changes according to their directories. After 9 tests with various directory combinations,
WYNOT has a breakthrough: the failure-inducing change is to be found in one specific
directory. Only 2547 changes are left.

A long period without significant success follows;WYNOT partitions changes into
an increasing number of subsets. The second breakthrough occurs at test #280, where
each subset contains only 18 changes and whereWYNOT narrows down the number
of changes to a subset of two files only. The end comes at test #289, after a total of
20 hours. We see that the lexical criteria reduced the number of tests by 38% and the
total running time by more than 50%.

In both cases,WYNOT broke down the 178,000 lines down to the same one-line
change line that, being applied, causesDDD to malfunction:

diff -r gdb-4.16/gdb/infcmd.c gdb-4.17/gdb/infcmd.c
1239c1278
< "Set arguments to give program being debugged when it is started. \n\
---
> "Set argument list to give program being debugged when it is started. \n\
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Table 9.Searching a failure-inducing change in GDB

This change in a string constant fromarguments to argument list was
responsible forGDB 4.17 not interoperating withDDD. Given the commandshow
args , GDB 4.16 replies

Arguments to give program being debugged when it is started is "a b c"

but GDB 4.17 issues a slightly different (and grammatically correct) text:

Argument list to give program being debugged when it is started is "a b c"

which could not be parsed byDDD! To solve the problem here and now, we simply
reversed theGDB change; eventually,DDD was upgraded to make it work with the new
GDB version, too.

9 Related Work

There is only one other work on automated delta debugging we have found: the paper on
regression containmentby Ness and Ngo [5], presented in Section 1.7 Ness and Ngo use
simple linear and binary search to identify a single failure-inducing change. Their goal,
however, lies not in debugging, but inisolating (i.e. removing) the failure-inducing

7 Ness and Ngo cite no related work, so we assume they found none either.



change such that development of the product is not delayed by resolving the failure.
The existence of a configuration management archive with totally ordered changes is
assumed; issues like interference, inconsistencies, granularity, or non-monotony are nei-
ther handled nor discussed.

Consequently, the failure-inducing change inGDB from Section 8 would not be
found at all since there is no configuration management archive from which to take
logical changes; in theDDD setting from Section 7, the logical change would be found,
but could not have been broken down into this small chunk.

10 Conclusions and Future Work

Delta debugging resolves regression causes automatically and effectively. If configu-
ration information is available, delta debugging is easy; otherwise, there are effective
techniques that indicate change dependencies. Although resource-intensive, delta de-
bugging requires no manual intervention and thus saves valuable developer time.

We recommend that delta debugging be an integrated part of regression testing;
each time a regression test fails, a delta debugging program should be started to resolve
the regression cause. The algorithms presented in this paper provide successful delta
debugging solutions that handle difficult details such as interferences, inconsistencies,
and granularity.

Our future work will concentrate on avoiding inconsistencies by exploiting domain
knowledge. Most simple configuration management archives enforce that each change
implies all earlier changes; we want to use full-fledged constraint systems instead [11].
Another issue is to usesyntactic criteriain order to group changes by affected func-
tions and modules. The most complicated, but most promising approach aresemantic
criteria: Given a change and a program, we can determine aslice of the program where
program execution may be altered by applying the change. Such slices have been suc-
cessfully used for semantics-preserving program integration [2] as well as for determin-
ing whether a regression test is required after applying a specific change [1]. The basic
idea is to determine twoprogram dependency graphs(PDGs)—one for “yesterday’s”
and one for “today’s” configuration. Then, for each changec and eachPDG, we deter-
mine the forward slice from the nodes affected byc. We can then group changes by the
common nodescontained in their respective slices; two changes with disjoint slices end
up in different partitions.

Besides consistency issues, we want to usecode coveragetools in order to exclude
changes to code that is never executed. The intertwining of changes to construction
commands, system models, and actual source code must be handled, possibly by multi-
version system models [8]. Further case studies will validate the effectiveness of all
these measures, as of delta debugging in general.

Acknowledgments.Carsten Schulz contributed significantly to the currentWYNOT
implementation. The first delta debugging prototype was implemented by Ulrike Heuer.
Jens Krinke, Christian Lindig, Kerstin Reese, Torsten Robschink, Gregor Snelting, and
Paul Strooper provided valuable comments on earlier revisions of this paper.

Further information on delta debugging, including the fullWYNOT implementation,
is available athttp://www.fmi.uni-passau.de/st/wynot/ .
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ABSTRACT
The problem of enforcing correct usage of array and pointer
references in C and C++ programs remains unsolved. The
approach proposed by Jones and Kelly (extended by Ruwase
and Lam) is the only one we know of that does not require
significant manual changes to programs, but it has extremely
high overheads of 5x-6x and 11x–12x in the two versions. In
this paper, we describe a collection of techniques that dra-
matically reduce the overhead of this approach, by exploit-
ing a fine-grain partitioning of memory called Automatic
Pool Allocation. Together, these techniques bring the aver-
age overhead checks down to only 12% for a set of bench-
marks (but 69% for one case). We show that the memory
partitioning is key to bringing down this overhead. We also
show that our technique successfully detects all buffer over-
run violations in a test suite modeling reported violations in
some important real-world programs.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.2.5 [Software]:
Software Engineering—Testing and Debugging

General Terms
Reliability, Security, Languages

Keywords
compilers, array bounds checking, programming languages,
region management, automatic pool allocation.

1. INTRODUCTION
This paper addresses the problem of enforcing correct us-

age of array and pointer references in C and C++ programs.
This remains an unsolved problem despite a long history of
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work on detecting array bounds violations or buffer over-
runs, because the best existing solutions to date are either
far too expensive for use in deployed production code or
raise serious practical difficulties for use in real-world devel-
opment situations.

The fundamental difficulty of bounds checking in C and
C++ is the need to track, at run-time, the intended tar-
get object of each pointer value (called the intended referent
by Jones and Kelly [10]). Unlike safe languages like Java,
pointer arithmetic in C and C++ allows a pointer to be com-
puted into the middle of an array or string object and used
later to further index into the object. Because such interme-
diate pointers can be saved into arbitrary data structures in
memory and passed via function calls, checking the later in-
dexing operations requires tracking the intended referent of
the pointer through in-memory data structures and function
calls. The compiler must transform the program to perform
this tracking, and this has proved a very difficult problem.

More specifically, there are three broad classes of solu-
tions:

• Use an expanded pointer representation (“fat point-
ers”) to record information about the intended referent
with each pointer : This approach allows efficient look-
up of the pointer but the non-standard pointer rep-
resentation is incompatible with external, unchecked
code, e.g. precompiled libraries. The difficulties of
solving this problem in existing legacy code makes this
approach largely impractical by itself. The challenges
involved are described in more detail in Section 6.

• Store the metadata separately from the pointer but use
a map (e.g., a hash table) from pointers to metadata:
This reduces but does not eliminate the compatibility
problems of fat pointers, because checked pointers pos-
sibly modified by an external library must have their
metadata updated at a library call. Furthermore, this
adds a potentially high cost for searching the maps for
the referent on loads and stores through pointers.

• Store only the address ranges of live objects and en-
sure that intermediate pointer arithmetic never crosses
out of the original object into another valid object [10]:
This approach, attributed to Jones and Kelly, stores
the address ranges in a global table (organized as a
splay tree) and looks up the table (or the splay tree)
for the intended referent before every pointer arith-
metic operation. This eliminates the incompatibilities



caused by associating metadata with pointers them-
selves, but current solutions based on this approach
have even higher overhead than the previous two ap-
proaches. Jones and Kelly [10] report overheads of
5x-6x for most programs. Ruwase and Lam [17] ex-
tend the Jones and Kelly approach to support a larger
class of C programs, but report slowdowns of a factor
of 11x–12x if enforcing bounds for all objects, and of
1.6x–2x for several significant programs even if only en-
forcing bounds for strings. These overheads are far too
high for use in “production code” (i.e., finished code
deployed to end-users), which is important if bounds
checks are to be used as a security mechanism (not
just for debugging). For brevity, we refer to these two
approaches as JK and JKRL in this paper.

Note that compile-time checking of array bounds viola-
tions via static analysis is not sufficient by itself because it
is usually only successful at proving correctness of a frac-
tion (usually small) of array and pointer references [2, 6, 7,
8, 19]. Therefore, such static checking techniques are pri-
marily useful to reduce the number of run-time checks.

An acceptable solution for production code would be one
that has no compatibility problems (like the Jones-Kelly ap-
proach and its extension), but has overhead low enough for
production use. A state-of-the-art static checking algorithm
can and should be used to reduce the overhead but we view
that as reducing overhead by some constant fraction, for
any of the run-time techniques. The discussion above shows
that none of the three current run-time checking approaches
come close to providing such an acceptable solution, with or
without static checking.

In this paper, we describe a method that dramatically
reduces the run-time overhead of Jones and Kelly’s “refer-
ent table” method with the Ruwase-Lam extension, to the
point that we believe it can be used in production code (and
static checking and other static optimizations could reduce
the overhead even further). We propose two key improve-
ments to the approach:

1. We exploit a compile-time transformation called Au-
tomatic Pool Allocation to greatly reduce the cost of
the referent lookups by partitioning the global splay
tree into many small trees, while ensuring that the
tree to search is known at compile-time. The transfor-
mation also safely eliminates many scalar objects from
the splay trees, making the trees even smaller.

2. We exploit a common feature of modern operating sys-
tems to eliminate explicit run-time checks on loads and
stores (which are a major source of additional over-
head in the Ruwase-Lam extension). This technique
also eliminates a practical complication of Jones and
Kelly, namely, the need for one byte of padding on ob-
jects and on function parameters, which compromises
compatibility with external libraries.

We also describe a few compile-time optimizations (some
novel and some obvious) that reduce the sizes of the splay
trees, sometimes greatly, or reduce the number of referent
lookups. As discussed in Section 3.4, our approach preserves
compatibility with external libraries (the main benefits of
the JK and JKRL methods) and detects all errors detected
by those methods except for references that use pointers cast
from integers.

Automatic Pool Allocation uses a pointer analysis to cre-
ate fine-grain, often short-lived, logical partitions (“pools”)
of memory objects [13]. By maintaining a separate splay
tree for each pool, we greatly reduce the typical size of
the trees at each query, and hence the expected cost of
the tree lookup. Furthermore, unlike some arbitrary parti-
tioning of memory objects, the properties of pool allocation
provide three additional benefits. First, the target pool for
each pointer variable or pointer field is unique and known
at compile-time, and therefore does not have to be found
(tracked or searched for) at run-time. Second, because pool
allocation often creates type-homogeneous pools, it is pos-
sible at run-time to check whether a particular allocation
is a single element and avoid entering those objects in the
search trees. Finally, we believe that segregating objects
by data structure has a tendency to separate frequently
searched data from other data, making search trees more
efficient (we have not evaluated this hypothesis but it would
be interesting to do so).

We evaluate the net overhead of our approach for a col-
lection of benchmarks and three operating system daemons.
Our technique works “out-of-the-box” for all these pro-
grams, with no manual changes. We find that the average
overhead is only about 12% across the benchmarks (and neg-
ligible for the daemons), although it is 69% in one case. We
also used the Zitser’s [23] suite of programs modeling buffer
overrun violations reported in several widely used programs
— 4 in sendmail, 3 in wu-ftpd, and 4 in bind — and found
that our technique successfully detects all these violations.
Overall, we believe we have achieved the twin goals that are
needed for practical use of array bounds checking in produc-
tion runs, even for legacy applications: overhead typically
low enough for production use, and a fully automatic tech-
nique requiring no manual changes.

The next section provides a brief summary of Automatic
Pool Allocation and the pointer analysis on which it is
based. Section 3 briefly describes the Jones-Kelly algorithm
with the Ruwase-Lam extension, and then describes how we
maintain and query the referent object maps on a per-pool
basis. It also describes three optimizations to reduce the
number or cost of referent object queries. Section 5 describes
our experimental evaluation and results. Section 6 compares
our work with previous work on array bounds checking, and
Section 7 concludes with a summary and a brief discussion
of possible future work.

2. BACKGROUND: AUTOMATIC POOL AL-
LOCATION

Automatic Pool Allocation [13] is a fully automatic compile-
time transformation that partitions memory into pools cor-
responding to a compile-time partitioning of objects com-
puted by a pointer analysis. It tries to create pools that are
as fine-grained and short-lived as possible. It merges all the
target objects of a pointer into a single pool, thus ensuring
that there is a unique pool corresponding to each pointer.

We assume that the results of the pointer analysis are
represented as a points-to graph. Each node in this graph
represents a set of memory objects created at run-time, and
two distinct nodes represent disjoint sets of objects. We
associate additional attributes with each node; the ones rel-
evant to this work are a type, τ , a flag A indicating whether
any of the objects at the node are ever indexed as an array,



and an array of fields, F , one for each possible field of the
type τ . τ is either a (program-defined) scalar, array, record
or function type, or ⊥ representing an unknown type. ⊥ is
used when the objects represented by a node are of multi-
ple incompatible types, which most often happens because
a pointer value is actually used as two different types (cast
operations are ignored), but can also happen due to impre-
cision in pointer analysis. Scalar types and ⊥ have a single
field, record types have a field for each element of the record,
array types are treated as their element type (i.e. array in-
dexing is ignored), and functions do not have fields.

We also assume that the compiler has computed a call
graph for the program. In our work, we use the call graph
implicitly provided by the pointer analysis, via the targets
of each function pointer variable.

Given a program containing explicit malloc and free op-
erations and a points-to graph for the program, Automatic
Pool Allocation transforms the program to segregate heap
objects into distinct pools. Pools are represented in the code
by pool descriptor variables. Calls to malloc and free are
rewritten to call new functions poolalloc and poolfree,
passing in the appropriate pool descriptor. By default, pool
allocation creates a distinct pool for each points-to graph
node representing heap objects in the program; this choice
is necessary for the current work as explained later. For a
points-to graph node with τ 6= ⊥, the pool created will only
hold objects of type τ (or arrays thereof), i.e., the pools will
be type homogeneous with a known type.

In order to minimize the lifetime of pool instances at run-
time, pool allocation examines each function and identifies
points-to graph nodes whose lifetime is contained within the
function, i.e., the objects are not reachable via pointers af-
ter the function returns. This is a simple escape analysis
on the points-to graph. The pool descriptor for such a node
is created on function entry and destroyed on function exit
so that a new pool instance is created every time the func-
tion is called. For other nodes, the pool descriptor must
outlive the current function so pool allocation adds new ar-
guments to the function to pass in the pool descriptor from
the caller. Finally, pool allocation rewrites each function call
to pass any pool descriptors needed by any of the potential
callees. Ensuring backwards-compatibility of the pool allo-
cation transformation in the presence of external libraries is
discussed later in Section 3.4.

We have shown previously that Automatic Pool Allo-
cation can significantly improve memory hierarchy perfor-
mance for a wide range of programs and does not noticeably
hurt performance in other cases [13]. It’s compilation times
are quite low (less than 3 seconds for programs up to 200K
lines of code), and are a small fraction of the time taken by
GCC to compile the same programs.

3. RUNTIME CHECKING WITH EFFICIENT
REFERENT LOOKUP

3.1 The Jones-Kelly Algorithm and Ruwase-
Lam Extension

Jones and Kelly rely on, and strictly enforce, three prop-
erties of ANSI C in their approach: (1) Every pointer value
at run-time is derived from the address of a unique object,
which may be a declared variable or memory returned by
a single heap allocation, and must only be used to access

that object. Jones and Kelly refer to this as the intended
referent of a pointer. (2) Any arithmetic on a pointer value
must ensure that the source and result pointers point into
the same object, or at most one byte past the end of the
object (the latter value may be used for comparisions, e.g.,
in loop termination, but not for loads and stores). (3) Be-
cause of the potential for type-converting pointer casts, it is
not feasible in general to distinguish distinct arrays within
a single allocated object defined above, e.g., two array fields
in a struct type, and the Jones-Kelly technique does not
attempt to do so.

Jones and Kelly maintain a table describing all allo-
cated objects in the program and update this table on
malloc/free operations and on function entry/exit. To
avoid recording the intended referent for each pointer (this
is the key to backwards compatibility), they check property
(2) strictly on every pointer arithmetic operation, which en-
sures that a computed pointer value always points within
the range of its intended referent. Therefore, the intended
referent can be found by searching the table of allocated
objects.

More specifically, they insert the following checks (ignor-
ing any later optimization) on each arithmetic operation in-
volving a pointer value:

JK1. check the source pointer is not the invalid value (-2);

JK2. find the referent object for the source pointer value
using the table;

JK3. check that the result pointer value is within the bounds
of this referent object plus the extra byte. If the result
pointer exceeds the bounds, the result -2 is returned
to mark the pointer value as invalid.

JK4. Finally, on any load or store, perform checks [JK1-JK3]
but JK3 checks the source pointer itself.

Assuming any dereference of the invalid value (-2) is dis-
allowed by the operating system, the last run-time check
(JK4) before loads and stores is strictly not necessary for
bounds checking. It is, however, a useful check to detect
some (but not all) dereferences of pointers to freed memory
and pointer cast errors. The most expensive part of these
checks is step (JK2), finding the referent object by search-
ing the table. They use a data structure called a splay tree
to record the valid object ranges (which must be disjoint).
Given a pointer value, they search this tree to find an object
whose range contains that value.

If no valid range is found for a given pointer value, the
pointer must have been derived from an object allocated by
some uninstrumented part of the program, e.g., an exter-
nal library, or by pointer arithmetic in such a part of the
program (since no legal pointer can ever be used to com-
pute an illegal one). Such pointers values cannot be checked
and therefore step (JK3) is skipped, i.e., any array bound
violations may not be detected.

One complication in their work is that, because a com-
puted pointer may point to the byte after the end of its
referent object, the compiler must insert padding of one-
byte (or more) between any two objects to distinguish a
pointer to the “extra” byte of the first object from a pointer
to the second object. They modify the compiler and the
malloc library to add this extra byte on all allocated ob-
jects. Objects can also be passed as function parameters,



however, and inserting padding between two adjacent pa-
rameters could cause the memory layout of parameters to
differ in checked and unchecked code. To avoid this potential
incompatibility, they do not pad parameters to any function
call if the call may invoke an unchecked function and do not
pad formal parameters in any function that may be called
from unchecked code. In the presence of indirect calls via
function pointers, the compiler must be conservative about
identifying such functions.

A more serious difficulty observed by Ruwase and Lam is
that rule (2) above is violated by many C programs (60% of
the programs in their experiments), and hence is too strict
for practical use. The key problem is that some programs
may compute illegal intermediate values via pointer arith-
metic but never use them. For example, in the sequence
{q = p+12; r = q-8; N = *r;}, the value q may be out-
of-bounds while r is within bounds for the same object as
∗p. Jones and Kelly would reject such a program at q =

p+12 because the correct referent cannot be identified later
(q may point into an arbitrary neighboring object).

Ruwase and Lam extend the JK algorithm essentially by
tracking the intended referent of pointers explicitly but only
in the case where a pointer moves out of bounds of its in-
tended referent. For every such out-of-bounds pointer, they
allocate an object called the OOB (Out-Of-Bounds) object
to hold some metadata for the pointer. The pointer itself is
modified to point to the OOB object, and the addresses of
live OOB objects are also entered into a hash table. This
hash table is checked only before accessing the OOB object
to ensure it is a valid OOB object address. The OOB ob-
ject includes the actual pointer value itself plus the address
of the intended referent (saved when the pointer first goes
out of bounds). All further arithmetic on the pointer is per-
formed on the value in the OOB object. If the pointer value
comes back within bounds, the original pointer is restored
to its current value and the OOB object is deallocated.

The extra operations required in the Ruwase-Lam exten-
sion are: (1) to allocate and initialize an OOB object when
a pointer first goes out-of-bounds; (2) on any pointer arith-
metic operation, if the pointer value does not have a valid
referent and cannot be identified as an unchecked object,
search the OOB hash table to see if it points to an OOB
object, and if so, perform the operation on the value in the
OOB object; (3) When an object is deallocated (implicitly
at the end of a program scope or explicitly via free oper-
ation), scan the OOB object hash table to deallocate any
OOB objects corresponding to the referent object that is
being deallocated.

The first two operations add extra overhead only for out-
of-bounds pointers (which would have caused the program
to halt with a run-time error in the JK scheme). The third
operation is required even in the case of strictly correct pro-
gram behavior allowed by J-K. Perhaps more importantly,
step JK4 of Jones-Kelley, is now necessary for bounds check-
ing since dereferencing OOB objects is disallowed. In par-
ticular, if we wish to combine this approach with other tech-
niques for detecting all dereferences to freed memory ([20,
4]) or all pointer cast errors ([15, 5]), we would still need to
perform JK4 (or a variant which checks that OOB objects
are never dereferenced).

3.2 Our Approach
Our approach is based on the Jones-Kelley algorithm with

the RL extension, but with two key improvements that
greatly reduce the run-time overhead in practice and makes
the approach useful in production level systems. In fact, the
improvements are dramatic enough that we are even able to
use our system for checking all array operations (not just
strings), and still achieve much lower overheads than the JK
or RL approaches (even compared with the RL approach
applied only to strings). The two improvements are: (1)
Exploiting Automatic Pool Allocation [13] for much faster
searches for referent objects; and (2) An extra level of indi-
rection in the RL approach for OOB pointers that eliminates
the need for run-time checks on most loads and stores.

The Jones-Kelley approach, and in turn Ruwase-Lam ex-
tension, rely on one splay data structure for the entire heap.
Every memory object (except for a few stack objects whose
address is not taken) is entered in this big data structure.
This data structure is looked up for almost every access to
memory or pointer arithmetic operation. For a program
with large number of memory objects, the size of the data
structure could be very large, making the lookups quite ex-
pensive.

The main idea behind our first improvement is to exploit
the partitioning of memory created by Automatic Pool Al-
location to reduce the size of the splay tree data structures
used for each search operation. Instead of using one large
splay tree for the entire program, we maintain one splay tree
per pool. The size of each individual splay tree is likely to be
much smaller than the combined one. Since the complexity
of searching the splay tree for uniform accesses is amortized
O(log2n) (and better for non-uniform accesses), the lookup
for each pointer access is likely to be much faster than in
the JK or RL approaches.

A key property that makes this approach feasible is that
the pool descriptor for each pointer is known at compile-
time. Without this, we would have to maintain a run-
time mapping from pointers to pools, which would introduce
a significant extra cost as well as the same compatibility
problems as previous techniques that maintain metadata on
pointers.

3.2.1 Algorithm
The steps taken by the compiler in our approach are as

follows:

1. First, pool-allocate the program. Let Pools be the
map computed by the transformation giving the pool
descriptor for each pointer variable.

2. For every pointer arithmetic operation in the original
program, p = q + c, insert a run-time check to test
that p and q have the same referent. We use the func-
tion getreferent(PoolDescriptor *PD, void *p) to
look up the intended referent of a pointer, p. The pool
descriptor, PD, identifies which splay tree to lookup.
For the instruction p = q + c, we compute p, then
invoke getreferent(Pools[q], q), and finally check that
p has the same referent as q using the function call
boundscheck(Referrent *r, void *p).

3. The correct pool descriptor for a pointer q may not
be known either if the value q is obtained from an
integer-to-pointer cast or from unchecked code (e.g,
as a result of a call to an external function). The
latter case is discussed in Section 3.4, below. The two



f() {

A = malloc(...)

...

while(..) {

...

A[i] = ...

}

}

f() {

PoolDescriptor PD

A = poolalloc(&PD,...)

...

while(..) {

...

Atmp = getreferent(&PD, A);

boundscheck(Atmp, A+i);

}

}

Figure 1: Sample code before and after bounds checking instrumentation

cases can be distinguished via the flags on the target
points-to graph node: the former case results in a U

(Unknown) flag while the latter results in a missing C

(complete) flag, i.e., the node is marked incomplete.
In the former case, the pointer may actually point to
an object allocated in the main program, i.e., which
has a valid entry in the splay tree of some pool, but
we do not know which pool at compile-time. We do
not check pointer arithmetic on such pointers. This
is weaker than Jones-Kelly as it might allow bound
violations on such pointers to go undetected.

3.2.2 Handling Non-Heap Data
The original pool allocation transformation only created

pools to hold heap-allocated data. We would like to create
partitions of globals and stack objects as well, to avoid using
large, combined splay trees for those objects. The pointer
analysis underlying pool allocation includes points-to graph
nodes for all memory objects, including global and stack
objects. In our previous work on memory safety, we have
extended pool allocation so that it assigns pool descriptors
to all global and stack objects as well, without changing how
the objects are allocated. Pool allocation already created
pool descriptors for points-to graph nodes that include heap
objects as well as global or stack objects. We only had to
modify it to also create “dummy” pool descriptors for nodes
that included only global or stack objects. The transforma-
tion automatically ensures that the objects are created in
the appropriate function (e.g., in main if the node includes
any globals). We call these “dummy” pool descriptors be-
cause no heap allocation actually occurs using them: they
simply provide a logical handle to a compiler-chosen subset
of memory objects.

For the current work, we have to record each object in the
splay tree for the corresponding pool. We do this in main

for global objects and in the appropriate function for stack-
allocated variables (many local variables are promoted to
registers and do not need to be stack-allocated or recorded).
The bounds checks for operations on pointers to such pools
are unchanged.

3.3 Handling Out-Of-Bounds Pointers
The Ruwase-Lam extension to handle OOB pointers re-

quires expensive checks on all loads/stores in the program
(before any elimination of redundant checks). In this work,
we propose a novel approach to handle out of bounds val-
ues (in user-level programs) without requiring checks on any
individual loads or stores.

Whenever any pointer arithmetic computes an address
outside of the intended referent, we create a new OOB ob-
ject and enter it into a hash-table recording the OOB object

address (just like Ruwase-Lam). We use a separate OOB
hash-table per pool, for reasons described below. The key
difference is that, instead of returning the address of the
newly created OOB object and recording that in the out-of-
bounds pointer variable, we return an address from a part
of the address space of the program reserved for the ker-
nel (e.g., addresses greater than 0xbfffffff in standard Linux
implemenations on 32-bit machines). Any access to this ad-
dress by a user level programs will cause a hardware trap1.
Within each pool, we maintain a second hash table, map-
ping the returned value and the OOB object. Note that we
can reuse the high address space for different pools and so
we have a gigabyte of address space (on 32 bit linux systems)
for each pool for mapping the OOB objects.

A load/store using out of bounds values will immediately
result in a hardware trap and we can safely abort the pro-
gram. However all pointer arithmetic on such values needs
to be done on the actual out of bounds value. So on every
pointer arithmetic, we first check if the source pointer lies in
the high gigabyte. If it is, we lookup the OOB hash map of
the pool to get the corresponding OOB object. This OOB
object contains the actual out of bounds value. We perform
the pointer arithmetic on the actual out of bounds value.
If the result after arithmetic goes back in to the bounds of
the referent then we return that result. If the result after
arithmetic is still out of bounds, we create a new OOB ob-
ject and store the result in the new OOB. We then map this
new OOB to an unused value in the high gigabyte, store the
value along with the OOB object in the OOB hash map for
the pool and return the value. Note that just like Ruwase-
Lam, we need to change all pointer comparisons to take in
to account the new out of bound values.

Step 2 in our approach is now modified as follows:
For every pointer arithmetic operation in the original pro-
gram, p = q + c, we first check if q is a value in the high
gigabyte. This is an inexpensive check and involves one
comparison. There are two possibilities.

• Case 1: q is not in the high giga byte.
Here we do the bounds check as before but with one
key differnce. If the result p is out of bounds of the
referent of q, then instead of flagging it as an error, we
create a new OOB object to store the out of bounds
value just like Ruwase-Lam extension. Now we map
this OOB object to a value in the high address space
and assign this high address space value to p.

1If no such reserved range is available, e.g. we are doing
bounds-checking for kernel modules, then we will need to
insert checks on individual loads and stores just like the
Ruwase-Lam extension.



• Case 2: q is a value in the high address space.
We do the following new check (from the discussion
above): We first get the corresponding OOB object
for that address using the hash map in the pool. We
then retrieve the actual out of bounds value from the
OOB object and do the arithmetic. If the result is
within the bounds of the referent then we assign the
result to p and proceed. If the result is still outside
the bounds of the referent, then we create a new OOB
object just like in Case 1.

3.4 Compatibility and Error Detection with
External Libraries

Although Automatic Pool Allocation modifies function in-
terfaces and function calls to add pool descriptors, both that
transformation and our bounds checking algorithm can be
implemented to work correctly and fully automatically with
uninstrumented external code (e.g., external libraries), al-
though some out-of-bound accesses may not be detected.
First, to preserve compatibility, calls to external functions
are left unmodified. Second, in any points-to graph node
reachable from an external function (such nodes are marked
as “incomplete” by omitting a C (Complete) flag), the
poolfree for the corresponding pool must determine if it
is passed a pointer not within its memory blocks (this is a
fast search we call it poolcheck [5]), and simply pass the
pointer through to free. Third, if an internal function may
be called from external code, we must ensure that the exter-
nal code calls the original function, not the pool-allocated
version. This ensures backwards-compatibility but makes it
possible to miss bounds errors in the corresponding func-
tion. In most cases, we can directly transform the program
to pass in the original function and not the pool-allocated
version (this change can be made at compile-time if it passes
the function name but may have to be done at run-time if it
passes the function pointer in a scalar variable). In the gen-
eral case (which we have not encountered so far), the func-
tion pointer may be embedded inside another data structure.
Even for most such functions, the compiler can automati-
cally generate a “varargs” wrapper designed to distinguish
transformed internal calls from external calls. When this is
not possible, we must leave the callback function (and all
internal calls to it), completely unmodified.

Except in call-back functions, bounds checks can still
be performed within the available program for all heap-
allocated objects (internal or external). Like JK, we in-
tercept all direct calls to malloc and record the objects in
a separate global splay tree. For pointer arithmetic on a
pointer to an incomplete node, we check both the splay tree
of the recorded pool for that node and the global splay tree.
All heap objects must be in one of those trees, allowing us
to detect bounds violations on all such objects.

Internal global and stack objects will be recorded in the
splay tree for the pool and hence arithmetic on pointers to
them can be checked. We cannot check any static or stack
objects allocated in external code since we do not know the
size of the objects. The JK and JKRL techniques have the
same limitation.

3.5 Errors in Calling Standard Library Func-
tions and System Calls

More powerful error checking is possible for uses of rec-
ognized standard library functions and system calls. Many

bugs triggered inside such functions are due to incorrect us-
age of library interfaces and not bugs within the library it-
self. We can guard against these interface bugs by generat-
ing wrappers for each potentially unsafe library routine; the
wrappers first check the necessary preconditions on buffers
passed to the library call and then invoke the actual library
call. For example, for a library call like memcpy(void *s1,

const void *s2, size t n), we can generate a wrapper
that checks (1) n > 0, (2) the object pointed to by s2 has
atleast n more bytes starting from s2 and (2) the object
pointed to by s3 has atleast n more bytes starting from s3.
These checks can be done using the same getreferent and
boundscheck functions as before.

Note that the wrappers referred to here are not for com-
patibility between checked code and library code, and are
only needed if extra bug detection is desired. We have
written the wrappers for many of the standard C library
functions because our compiler does not yet generate them
automatically.

3.6 Optimizations
There are a number of ways to reduce the overheads of

our run-time checks further. We briefly describe three opti-
mizations that we have implemented. The first optimization
below is specific to our approach because it requires a key
property of pool allocation. The other two are orthogonal
to the approach for finding referents and can also be used
with the Jones-Kelly or Ruwase-Lam approaches.

First, we observe that a very large number of single-
element objects (which may be scalars or single-element ar-
rays) are entered into the splay trees in all three approaches.
Since a pointer to any such object can be cast and then in-
dexed as a pointer to an array (e.g., an array of bytes),
references to all such objects (even scalars) must be checked
for bounds violations. While many local scalars of integer
or floating point type are promoted to registers, many other
local and all global scalars may still stay memory-resident.
Entering all such scalars into the search trees is extremely
wasteful since few programs ever index into such scalars,
legally or illegally. We propose a technique to avoid entering
single-element objects into search trees while still detecting
bounds violations for such objects.

To achieve this goal, two challenges must be solved: (1) to
identify single-element object allocations, and (2) to detect
bounds violations even if such objects are not in the splay
trees. For the former, we observe that most pools even in
C and C++ programs are type-homogeneous [13], i.e., all
objects in the pool are of a single type or are arrays of that
type. For non-type-homogeneous pools, the pool element
type is simply a byte. Furthermore, all objects in such a
pool are aligned on a boundary that is an exact multiple of
the element size. The size of the element type is already
recorded in each pool at pool creation time. This means
that the run-time can detect allocations of scalars or single-
element arrays: these are objects whose size is exactly the
size of the pool element type. We simply do not enter such
objects into the splay tree in the pool.

For the latter problem, the specific issue is that a referent
look-up using a valid pool descriptor will not find the refer-
ent object in the splay tree. This can only happen for two
reasons: (i) the object was a one-element object, or (ii) the
object was an unchecked object or a non-existent object but
the pointer being dereferenced was assigned the same pool



during pool allocation. The latter can happen, for example,
with code of the form:

T* p = some_cond? malloc(..) : external_func(..);

Here, the pointer p is assigned a valid pool because of the
possible malloc, but if it points to an object returned by the
external function external func, the referent lookup will
not find a valid referent. The same situation arises if the
pointer p were assigned an illegal value, e.g., from an unini-
tialized pointer or by casting an integer. To distinguish the
first case from the second, we simply use the pool metadata
to check if the object is part of the pool. This check, which
we call a poolcheck, is a key runtime operation in our pre-
vious work on memory safety [5], and the pool run-time has
been optimized to make it very efficient. Combining these
techniques, we can successfully identify and omit single ele-
ment arrays from the splay trees, and yet detect when they
are indexed illegally.

The next two optimizations are far simpler and not spe-
cific to our approach. They both exploit the fact that it is
very common for a loop nest or recursion to access very few
arrays (often one or two) repeatedly. Since all accesses to
the same array have the same referrent, we can exploit this
locality by using a small lookup cache before each splay tree.
We use a two-element cache to record the last two distinct
referents accessed in each pool. When an access finds the
referent in the cache, it reduces overhead because it avoids
the cost of searching the splay tree to find the referrent (we
found this to be more expensive even if the search succeeeds
at the root), and also of rotating the root node when suc-
cessive references to the same pool access distinct arrays. It
increases the overhead on a cache miss, however, because all
cache elements must be compared before searching the splay
tree. We experimented with the cache size and found that
a two-element cache provided a good balance between these
tradeoffs, and improved performance very significantly over
no cache or a one-element cache.

The third optimization attempts to achieve the same effect
via a compile-time optimization, viz., loop-invariant code
motion (LICM) of the referent lookup. (We find that the
two-element cache is important even with this optimization
because LICM sometimes fails, e.g., with recursion, or if the
loop nest is spread across multiple functions, or the refer-
ent lookup does not dominate all loop exits. Implementing
this optimization is easy because the referent lookup is a
pure function: the same pointer argument always returns
the same referent object (or none). Therefore, the lookup is
loop-invariant if and only if the pointer is loop-invariant.

4. COMPILER IMPLEMENTATION
We have implemented our approach using the LLVM com-

piler infrastructure [12]. LLVM already includes the imple-
mentation of Automatic Pool Allocation, using a context-
sensitive pointer analysis called Data Structure Analysis
(DSA). We implemented the compiler instrumentation as an
additional pass after pool allocation. We also run a standard
set of scalar optimizations needed to clean up the output of
pool allocation [13]. Because DSA and pool allocation are
interprocedural passes, this entire sequence of passes is run
at link-time so that they can be applied to as complete a
program as possible, excluding libraries available only in bi-
nary form. Doing cross-module transformations at link-time
is standard in commercial compilers today because it pre-
serves the benefits of separate compilation.

Our implementation includes three optimizations described
earlier: leaving out single-element objects from the splay
tree in each pool, the two-element cache to reduce searches
of the splay tree, and moving loop-invariant referent lookups
out of loops. In previous work, we have also implemented an
aggressive interprocedural static array bounds checking al-
gorithm, which can optionally be used to eliminate a subset
of run-time checks [6].

We compile each application source file to the LLVM com-
piler IR with standard intra-module optimizations, link the
LLVM IR files into a single LLVM module, perform our anal-
yses and insert run-time checks, then translate LLVM back
to ANSI C and compile the resulting code using GCC 3.4.4
at -O3 level of optimization. The final code is linked with
any external (pre-compiled) libraries.

In terms of compilation time, DSA and Automatic Pool
Allocation are both very fast, requiring less than 3 seconds
combined for programs up to 130K lines of code that we have
tested. This time is in fact a small fraction of the time taken
by gcc or g++ at -O3 for the same programs) [13]. The ad-
ditional compiler techniques for bounds checking described
and implemented in this work add negligible additional com-
pile time.

5. EXPERIMENTS
We present an experimental evaluation of our bounds

checking technique, with the following goals:

• To measure the net overhead incurred by our approach.

• To isolate the effect of using multiple distinct splay
trees and the associated optimizations, which is our
key technical improvement over the Ruwase-Lam (and
so Jones-Kelley) approaches.

• To evaluate the effectiveness of our approach in de-
tecting known vulnerabilities. For this purpose, we
use Zitser’s suite of programs modeling vulnerabilities
found in real-world software [23].

It is also interesting to confirm the backwards-compatibility
of our approach. In our experience so far, we have re-
quired no changes to any of the programs we have evaluated,
i.e., our compiler works on these programs “out-of-the-box.”
This is similar to Jones-Kelly and Ruwase-Lam but signifi-
cantly better than other previous techniques that use meta-
data on pointers, applied to the same programs, discussed
in Section 5.3 below.

5.1 Overheads
We have evaluated the run-time overheads of our approach

using the Olden [3] suite of benchmarks, and the unix dae-
mons, ghttpd, bsd-fingerd, and wu-ftpd-2.6.2. We use the
Olden benchmarks because they are pointer-intensive pro-
grams that have been used in a few previous studies of
memory error detection tools [20, 15, 21]. We compare our
overheads with these and other reported overheads in Sec-
tion 5.3. The benchmarks and their characteristics are listed
in Table 2. The programs are compiled via LLVM and GCC,
as described in the previous section. For the benchmarks we
used a large input size to obtain reliable measurements. For
the daemon programs we ran the server and the client on
the same machine to avoid network overhead and measured
the response times for client requests.



The “LLVM (base)” column in the table represents exe-
cution time when the program is compiled to the LLVM IR
with all standard LLVM optimizations (including the stan-
dard optimizations used to clean up after pool allocation,
but not pool allocation itself), translated back to C code,
and the resultant code is compiled directly with GCC -03.
The “PA” column shows the time when we run the above
passes as well as the pool allocator but do not insert any
run-time checks. Notice that in a few cases, pool allocation
speeds up the program slightly but doesn’t significantly de-
grade the performance in any of these cases. We use the
LLVM(base) column as the baseline for our experiments
in calculating the net overhead of our bounds checking ap-
proach because we believe that gives the most meaningful
comparisons to previous techniques. Since Automatic Pool
Allocation can be used as a separate optimization, the PA
column could be used as a baseline instead of LLVM(base),
but the two are close enough for the benchmarks in the table
that we do not expect this choice to affect our conclusions.

The “BoundsCheck” column shows the execution times
with bounds checking. Here, we have turned on the three
optimizations that we have discussed in Section 3.6: caching
on top of the the splay tree, loop invariant code motion, and
not storing single-element objects in the splay tree. The
“Slowdown” ratio shows the net overhead of our approach
relative to the base LLVM. In almost half of the benchmarks,
we found that overheads are within 3%. Only two programs
(em3d, health) have overheads greater than 25%.

In order to isolate the benefits of smaller splay data struc-
tures, we conducted another experiment. The pool allocator
pass provides an option to force it to merge all the pools in
the program in to one single global pool. This pool uses the
same memory allocation algorithm as before but puts all
tracked objects into a single splay tree. This allowed us to
isolate the effect of using multiple splay trees instead of the
single splay tree used by JK and JKRL. Note that we can-
not use optimization 1 (leaving singleton objects out of the
splay tree) because after merging pools, type information for
the pool is lost and we cannot identify singleton object al-
locations. The other two optimizations – caching splay tree
results and LICM for referent lookups – are used, which
is again appropriate because they can also be used with
the previous approaches. Columns “PA with one pool” and
“PA with one pool + bounds checking” show the execution
times of this single-global-pool program without and with
our run-time checks, and the last column shows the ratio of
these. The benchmark health used up all system memory
and started thrashing. The main reason is because we could
not eliminate singleton objects from the splay tree, making
the single global splay tree much larger than the combined
splay trees in the original code. Comparing the last column
with the column labelled “Our Slowdown Ratio” shows that
in atleast three cases (health, mst, perimeter) the overheads
when using multiple search data structures is dramatically
better (more than 100%) than using a single datastructure
for the entire heap. The benefits are also significant in tsp
and bisort. The remaining programs show little difference
in overheads for the two cases.

5.2 Effectiveness in detecting known attacks
We used Zitser’s suite of programs modeling real-world

vulnerabilities [23] to evaluate the effectiveness of our ap-
proach in detecting buffer overrun violations in real software.

The suite consists of 14 model programs, each program con-
taining a real world vulnerability reported in bugtraq. 7 of
these vulnerabilties were in sendmail, 3 were in wu-ftpd,
and 4 were in bind. This suite has been used previously to
compare dynamic buffer overflow detection approaches [22].

The results of our experiments are reported in Figure 5.2.
We are able to detect all the vulnerabilities in all three pro-
grams out of the box. In each case, the illegal memory
reference was detected and the program was halted with
a run-time error. The four bugs in bind are not triggered
in the main program but in a library routine (e.g. due to
passing a negative argument to memcpy). These bugs are
automatically detected by our approach using the wrappers
described earlier because they are due to incorrect usage of
the library functions (and not bugs within the library).

5.3 Performance comparison with previous
approaches

Finally, we briefly compare the overheads observed in our
work with those reported by other work, to the extent pos-
sible. We can make direct comparisons in cases where there
are published results for Olden suite of benchmarks. When
such numbers are not available, only a rough comparison is
possible, and then only in cases where the differences are
obviously large. Note also that some previous techniques
including [20, 16] detect a wider range of bugs than we do
in the current work. Where possible, we try to compare the
overheads they incur due to bounds checking alone.

The two previous approaches with no compatibility prob-
lems, JK and JKRL, have both reported far higher over-
heads than ours, as noted in the Introduction. Jones and
Kelly say that in practice, most programs showed overheads
of 5x-6x. Ruwase and Lam report slowdowns up to a fac-
tor of 11x–12x if enforcing bounds for all objects, and up
to a factor of 1.6x–2x for several significant programs even
if only enforcing bounds for strings. Their overheads are
even higher than those of Jones and Kelly because of the
additional cost of checking all loads and stores and also of
checking for OOB objects that may have to be deallocated
as they go out of bounds. While two of our optimizations
(the two-element cache and LICM for loop-invariant refer-
ent lookups) might reduce these reported overheads, it seems
unlikely that they would come close to our reported over-
heads. Our overheads are dramatically lower than these pre-
vious techniques because of a combination of using multiple
splay trees (whose benefit was shown earlier), not requiring
checks on loads and stores, and the additional optimizations.

Xu. et al [20] have proposed to use metadata for pointer
variables that is held in a separate data structure that mir-
rors the program data in terms of connectivity. They use
the metadata to identify both spatial errors (array bounds,
uninitialized pointers) and temporal errors (dangling pointer
errors). Their average overheads for Olden benchmarks for
just the spatial errors are 1.63 while ours are far less at
1.12. Moreover, their approach incurs some difficulties with
backwards compatibility, as described in Section 6.

CCured [15] divides the pointers of the program into safe,
seq pointers (for arrays) and wild (potentially unsafe) point-
ers at compile-time. At run-time CCured checks that seq
pointers never go out of bounds and wild pointers do not
clobber the memory of other objects. While CCured check-
ing for WILD pointers is more extensive than ours, in the
case of Olden benchmarks, they did not encounter any wild



Benchmark LOC Base LLVM PA BoundsCheck Our slowdown PA with PA with one pool One-pool

ratio one pool + boundschecks ratio

bh 2053 9.146 9.156 9.138 1.00 9.175 10.062 1.10

bisort 707 12.982 12.454 12.443 0.96 12.425 14.172 1.14

em3d 557 6.753 6.785 11.388 1.69 6.803 11.419 1.68

health 725 14.305 13.822 19.902 1.39 13.618 - -

mst 617 12.952 12.017 15.137 1.17 12.203 28.925 2.37

perimeter 395 2.963 2.601 2.587 0.87 2.547 6.306 2.48

power 763 2.943 2.920 2.928 0.99 2.925 2.931 1.00

treeadd 385 17.704 17.729 17.310 0.98 17.706 21.063 1.19

tsp 561 7.086 6.989 7.219 1.02 6.978 8.897 1.27

AVG 1.12

Applications
fingerd 336 2.379 2.384 2.475 1.04 2.510 2.607 1.04

ghttpd 837 11.405 9.423 9.466 0.83 11.737 12.182 1.03

ftpd 23033 1.551 1.539 1.542 0.99 1.551 1.546 1.00

Figure 2: Benchmarks and Run-time Overheads. The One-Pool Ratio compared with Our Slowdown Ratio isolates the benefit
of partitioning the splay-tree.

Program No. of vulnerabilities No. of vulnerabilties No. of vulnerabilties
detected detected with std. lib. check

sendmail 7 7 7
bind 4 0 4

wu-ftpd 3 3 3

Figure 3: Effectiveness of our approach in detecting known attacks/vulnerabilities

pointers [15]. It is important to note, however, that CCured
uses garbage collection for dynamic memory management
and the overhead due to garbage collection is unknown. The
reported average overheads for Olden are 1.28, which is only
slightly higher than our observed overheads. However, they
needed to change 1287 lines of code in total to achieve these
results while our technique works out of the box.

Yong et al [21] describe a technique to identify many il-
legal write references and free operations via pointers, by
identifying a set of pointers that might be unsafe using a
pointer-analysis and tagging the memory corresponding to
the objects those pointers may point to. They use a shadow
memory with 1 tag bit per byte of memory, setting this tag
bit on allocations and clearing them on deallocations. They
check these tag bits on every write or free of a potentially
unsafe pointer, allowing them to detect a number of poten-
tial security attacks and some errors such as accesses to a
freed memory that has not been reallocated. They report
an average overhead of 1.37x for the Olden benchmarks (the
fraction of overhead due to array references is unknown).
Unlike our work and the previous papers described above,
they do not perform any checks on read operations and read
operations are far more frequent than writes.

6. RELATED WORK
We focus our comparisons on techniques for run-time

bounds checking, and any optimizations directly related to
those techniques. We do not discuss existing compile-time
techniques for bounds checking here (including our own), be-
cause these techniques are complementary and can be used
to eliminate some run-time checks in any of the approaches
discussed here.

There are a number of debugging tools like purify and
valgrind that use binary instrumentation to detect a wide
range of memory referencing errors. Using binary instru-

mentation allows these tools to add arbitrary metadata to
pointers without the compatibility problems of other ap-
proaches. These tools, however, incur very high run-time
overheads, e.g., often greater than a factor of 10x for purify
and valgrind. Also, in case of purify it does not catch
some pointer arithmetic violations if the arithmetic arith-
metic yields a pointer to a valid region [10].

A number of other approaches target debugging but work
at the source level. These include Loginov’s work on runtime
type checking [14], Kendall’s bcc [11], Steffens’ rtcc [18]. All
of these approaches focus on debugging and usually per-
formance is not a serious consideration. For instance, the
reported overheads for Loginov’s work are up to 900%.

Some tools including SafeC [1] and Cyclone [9] use an aug-
mented pointer representation that includes the object base
and size of the legal target object for every pointer value.
Such “fat pointers” require significant changes to programs
to allow the use of external libraries, typically introducing
wrappers around library calls to convert pointer representa-
tions. Furthermore, writing such wrappers may be imprac-
tical for indirect function calls, and for functions that access
global variables or other pointers in memory. Unlike the re-
maining techniques, below, however, fat pointers have the
major advantage that there is no cost to find the metadata
for each pointer value.

To reduce the compatibility problems caused by fat point-
ers, several recent systems store pointer metadata separately
from the pointer variables themselves, at the cost of signifi-
cantly greater overhead for finding the metadata associated
with each pointer. This approach was used by Patil and
Fisher [16], CCured [15], and Xu et al. [20]. Separating the
metadata eliminates the potential for program failures men-
tioned above, and reduces the need for wrappers on library
calls. This technique does not require wrappers for point-
ers passed to library functions or pointer values explicitly



returned by such functions. Wrappers are still needed for
checked pointers that may be modified indirectly as a side-
effect of a library call, because the metadata before the call
would be invalid if the call overwrites the pointer. Such
wrappers are likely to be needed less often but, if needed,
may be impractical to write for the same reasons as with
fat pointers, described above. The work of Xu et al. is also
more restrictive than ours because they restrict pointer casts
between structures of incompatible types. Finally, and most
important from a practical viewpoint, all these techniques
have significantly higher overhead than ours, as discussed in
more detail in Section 5.3.

As noted in the Introduction, the compatibility problems
of both fat pointers and pointers with separately stored
metadata occur because the metadata is associated with
the pointer itself, and not the object that is the target of
a pointer. The work of Jones and Kelly [10] and Ruwase
and Lam [17] associate metadata with objects instead of
pointers, which greatly reduces the compatibility problem.
However, the overheads of these two approaches are quite
high. As the comparison in Section 5.3 shows, our approach
is able to reduce these overheads greatly, sufficient (we be-
lieve) for the technique to be used in production code.

7. SUMMARY AND FUTURE WORK
We have described a collection of techniques that dramat-

ically reduce the overhead of an attractive, fully automatic
approach for run-time bounds checking of arrays and strings
in C and C++ programs. Our techniques are essentially
based on a fine-grain partitioning of memory. They bring
the average overhead of run-time checks down to only 12%
for a set of benchmarks we have evaluated. Thus, we believe
we have achieved the twin goals that have not been simulta-
neously achieved so far: overhead low enough for production
use, and fully automatic checking, i.e., not requiring manual
effort to circumvent compatibility problems or to assist the
compiler’s checking techniques.

We have two goals for the future. First, we aim to evaluate
our overheads for a wider range of real-world application
programs in the future. Second, we aim to integrate our
array bounds checks into the SAFECode system [5, 4], which
detects pointer cast errors and dangling pointer errors but
not all array bounds errors.
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