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Abstract

This book provides detailed and comprehensive comments and explanations on all source code of the early Linux kernel
(V0.12), aiming to enable readers to gain a comprehensive and profound understanding of the working mechanism of Linux in a
shortest possible time and to lay a solid foundation for further study of modern Linux systems. Although the version of the analysis is
very low, the kernel has been able to compile and run, and it already includes the essence of the working principle of Linux.

The book first briefly introduced the development history of the Linux kernel, explained the main differences between the
various kernel versions and improvements, and gave the reasons for choosing the 0.12 kernel source code as the study object. Then it
gives the basic knowledge needed to read the source code, outlines the hardware structure of the PC running the Linux system, the
assembly language used by the kernel, the extends of C language, and focuses on the 80X86 processor in protected mode. Then we
introduced the kernel code overview, given the kernel source directory tree structure, and according to the organizational structure of
all kernel, programs and files are described in detail. In order to deepen the reader's understanding of the working principle of the
kernel, the last chapter gives a number of related operational debugging tests. All relevant information in the book can be
downloaded from the website www.oldlinux.org.

This book suits as the assistant and practical teaching material of university computer major student study operating system
course, also suitable for self-study reference book of Linux lovers as learning kernel operating principle, also can be used as the
reference book that the general technical personnel develops the embedded system.
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‘RTFSC - Read The F**king Source Code :)1”
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Preface

Preface

Under the general trend of intelligent manufacturing and networking direct control of objects, the Linux
operating system has become the most important basic platform for operation control in today's embedded
systems. This book is a primer on the basic workings of the Linux operating system kernel.

The main goal of this book

The main goal of this book is to use a minimal amount of space or within a limited space to dissect the
complete Linux kernel source code in order to obtain a full understanding of the basic functions and actual
implementation of the operating system. To achieve a complete and profound understanding of the Linux kernel,
a true understanding and introduction of the basic operating principles of the Linux operating system.

This book's readership is positioned to know the general use of Linux systems or has a certain
programming basis, but it lacks the basic knowledge to read the current new kernel code and is eager to
understand the working principle and actual code of the UNIX operating system kernel as soon as possible.

Features of this book

At the time of writing this book, there are books on the market that describe the Linux kernel that try to use
the newer Linux kernel version (such as version 2.6.24 used by Fedora 8) to describe the kernel working
mechanism. However, since the size of kernel source code is already very large (for example, 2.2.20 version has
2.68 million lines!), these books can only selectively explain and describe the Linux kernel source code, and
many system implementation details are ignore. Therefore, it is difficult to have a clear and complete
description of the Linux kernel.

The book “Linux Kernel Source Code Analysis” written by Scott Maxwell is basically oriented to the
advanced level readers of Linux. It needs a more comprehensive basic knowledge to fully understand. And may
be due to space limitations, the book does not comment on all the Linux kernel code, omitted a lot of kernel
implementation details, such as the various header files used in the kernel (*.h), the tool to generate the kernel
code image file The role of the program, each make file, and its implementation are not covered. Therefore,
reading the book is difficult for readers who are at entry level.

The book "Leon's UNIX source code analysis" written by John Lions is a good book for learning UNIX
source code of the operating system kernel, but because it uses the UNIX version V6, some of the code in the
system call is With the assembler language of the long-deprecated PDP-11 series machine, it is difficult to
conduct experiments when reading and understanding the source code related to the hardware part.

Andrew S. Tanenbaum's book "Operating Systems: Design and Implementation" is a good primer on
operating system kernel implementation, but the MINIX system described in this book is a message-based
kernel implementation mechanism, and Linux There are differences in the implementation of the kernel.
Therefore, after learning this book, it is not very easy to start working on the newer Linux kernel source code.

When using these books for learning, there will be a feeling of "blind people feel like elephants”. It is not
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easy to understand the overall concept of the specific implementation of the Linux kernel system, especially
when the Linux system beginners use those books to learn the principle of the kernel, the overall operating
structure of the kernel. It cannot be clearly formed in the mind. This has profound experience in my many years
of experience in the Linux kernel learning. In October 1991, Linux founder Linus Torvalds mentioned the same
problem in an article written during the development of Linux version 0.03. In this article titled "LINUX--a free
unix-386 kernel”, he said: "The development of Linux is for the use, learning and entertainment of those
operating system enthusiasts and computer science students.” Today's popular Linux systems have become
larger and more complex, so they are no longer suitable as a starting point for beginners learning the operating
system.

In order to fill this vacancy, this book uses a minimal amount of space or within a limited space to conduct
a complete dissection of the complete Linux kernel source code in order to obtain a full understanding of the
basic functions and actual implementation of the operating system. To achieve a complete and profound
understanding of the Linux kernel, a true understanding and introduction of the basic operating principles of the
Linux operating system.

Other benefits of reading early kernel code

At present, there have been many kernel versions developed specifically for embedded systems based on
Linux's early kernels, such as DJJ's x86 operating system, Uclinux, etc. Many people in the world also realize
the benefits of learning through the early Linux kernel source code. At present, people in China are already
organizing human annotations to publish books similar to this article. Therefore, by reading the source code of
the Linux kernel version earlier, it is indeed an effective way to learn the Linux system, and it is also very
helpful for the research and application of the Linux embedded system.

In commenting on early kernel source code, the author found that early kernel source code was almost a
condensed version of the newer kernels in use today. It already includes almost all the basic functional
principles of the current version. As Leland L. Beck, author of "System Software: An Introduction to System
Programming," introduced system programs and operating system design, he introduced an extremely
simplified Simple Instruction Computer (SIC) system to illustrate the design and implementation of all system
programs. The principle, which not only avoids the complexity of the actual computer system, but also a
thorough description of the problem. Here, select the early kernel version of Linux as a learning object, and its
guiding ideology is the same as that of Leland. This is one of the best choices for beginners of Linux kernel
learning. The basic working principle of the Linux kernel can be deeply understood in the shortest possible
time.

For those who are already familiar with the working principle of the kernel, it is necessary to read the
kernel source code in order to allow the actual operation mechanism of the system in the actual work to produce
no feeling of castle in the air.

Of course, using the early kernel as a learning object also has its disadvantages. The selected Linux early
kernel version does not include support for virtual file system VFS, support for network systems, support for
only a.out executable files, and description of complex subsystems in some other existing kernels. However,
since this book is an introductory textbook that is used as a working mechanism for the Linux kernel, this is one
of the advantages of choosing an earlier kernel version. By studying this book, you can lay a solid foundation
for further studying these advanced contents.
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The importance and necessity of reading the complete code

Just as the founder of the Linux system stated in a newsgroup submission, to understand the true operating
mechanism of a software system, be sure to read its source code (RTFSC — Read The F**king Source Code).
The system itself is a complete whole, with many seemingly unimportant details. However, ignoring these
details will make it difficult to understand the entire system and fail to truly understand the implementation
method and means of an actual system.

Although some classic books on operating system principles (such as Mr. MJBach's "UNIX Operating
System Design™) can be used to theoretically guide the working principle of the UNIX-like operating system,
the actual composition of the operating system is The understanding of the realization of internal relations is
still not very clear. As Andrew S. Tanenbaum said, "many operating system textbooks are theoretical and light
practice.” "Most books and courses consume a lot of time and space for scheduling algorithms and completely
ignore 1/0. In fact, the former is usually less than one page of code. The latter often has to account for one-third
of the total code of the entire system.” A large number of important details in the kernel are not mentioned.
Therefore, it does not allow readers to understand the true beauty of a real operating system. Only after reading
the complete kernel source code in detail will there be a sense of openness to the system and a deep
understanding of the entire system's operational process. When you choose the newest or newer kernel source
code to learn later, you will not encounter major problems and basically will be able to understand the new code
content smoothly.

How to select the kernel code version to read

So, how can we choose to meet the above requirements without being confused by too much content and
choose a suitable version of the Linux kernel to learn and improve the efficiency of learning? After comparing
and selecting a large number of kernel versions, the author finally chose the 0.12 kernel that is similar to the
current basic functions of the Linux kernel and is very short, as the best version for getting started. The
following figure shows the statistics for some major Linux kernel version lines.



Preface

100000 Number of lines of each versions of Linux kernel

10000 M/o

=
=
D-..
—
S 1000
T
=
[=]
L]
st
=]
o 100
=
=
10
e e T
s 8 8 & 8 8 &S & 2 &£ &2 2E N NN NN oW EE
[ B " = SN ¥ T ¥ v S ¥ T ¥ v S -~ TN - S SN ¥ NN -~ T NN U 5 & T = & T ¥ I = S )
e i i b W N B B R o ®
w MNDOOWw o D D ] =]

The current Linux kernel source code amount is in the number of millions of lines, the 2.6.0 version of the
kernel code line is about 5.92 million lines, and the 4.18.X version of the kernel code is extremely large, and it
has exceeded 25 million lines! So it is almost impossible to fully annotate and elaborate on these kernels. The
0.12 version of the kernel does not exceed 20,000 lines of code, so it can be explained and commented clearly
in a book. Small but complete. In order to have an inductive understanding of the system under study and to use
experiments to deepen the understanding of the principle, the author has also specifically rebuilt the Linux 0.12
system that is based on this kernel. Since it contains the GNU gcc compilation environment, using this system
can also do some simple development work.

In addition, the use of this version can avoid the use of existing newer kernel versions that have become
more and more complicated to study the various subsystems (such as virtual file system VFS, ext2, or ext3 file
systems, network subsystems, new complex Memory management mechanisms, etc.)

The basic knowledge required by the book

When reading this book, readers must have some basic C language knowledge and Intel CPU assembly
language knowledge. The best reference for C language is still the book "The C Programming Language"
written by Mr. Brain W. Kernighan and Mr. Dennis M. Ritchie. Assembler language data can refer to any
assembly language textbook that explains Intel CPU. Also need some embedded assembly language information.
The authoritative information about embedded assembly is contained in the GNU gcc compiler manual. We can
also search for some valuable essays about embedded assembly from the Internet. The book also contains some
basic syntax descriptions for inline assembly (Section 5.5).

In addition, | hope readers have the following basic knowledge or related reference books. One is
knowledge or information about 80x86 processor architecture and programming. For example, the 80x86
programming manual (INTEL 80386 Programmer's Reference Manual) can be downloaded from the Internet;
the second is about 80x86 hardware architecture and interface programming knowledge or information. There is
a lot of information in this regard; the third should also have the simple skills of using the Linux system at the
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beginning.

Since Linux kernel implementation was first developed according to the basic principles of the "UNIX
operating system design” book, many variables or function names in the source code come from the book.
Therefore, if you read this book properly, it will be easier to understand the kernel source code.

When Linus first developed the Linux operating system, he referred to the MINIX operating system. For
example, the original Linux kernel version completely copied the MINIX 1.0 file system. Therefore, when
reading this book, A.S. Tanenbaum's book "Operating System: Design and Implementation™ also has great
reference value.

Is reading an earlier version out of date?

On the surface, the book notes the contents of Linux's early kernel version as if the Linux operating system
has just been released. Tanenbaum thinks that it is outdated (Linux is obsolete). However, by studying the
content of this book, you will find that because of the small amount of early kernel source code and lean, using
this book to learn the Linux kernel will have a very high learning efficiency, can do more with less, and get
started quickly. And lay a solid foundation for continuing to further select the source code of the new kernel part.
After completing this book, you will have a very complete and practical concept of how the system works. This
complete concept makes it easy to further select and learn any part of the new kernel source code without
having to Read the complete source code in the new kernel with a large amount of code.

Ext file system and MINIX file system

The Ext3 file system currently used on Linux systems was developed after kernel 1.x. Its function is
detailed and its performance is also very complete and stable. It is the default standard file system on the current
Linux operating system. However, as part of the introductory learning of the full working principle of the Linux
operating system, in principle, the more streamlined the better. In order to achieve a complete understanding of
an operating system, and without being overwhelmed by the complex and excessive details of the various
subsystems, the principle of choosing the kernel version for learning is as simple as possible, as long as the
system code can explain the actual working principle. The Linux kernel version 0.12 contained only the
simplest MINIX 1.0 file system at the time, which is enough to understand the actual composition and working
principle of a file system in an operating system. This is one of the main reasons to choose the early Linux
kernel version for learning.

After reading this book in its entirety, | believe you will send this kind of sigh: "For the Linux kernel
system, I'm finally getting started!" At this point, you should have enough confidence to further study the
working principle and process of each part of the latest Linux kernel.

Dr. Zhao Jiong
Tongji University
2019.1






1.1 The birth and development of Linux

1 Overview

This chapter first reviews the process of the birth, development, and growth of the Linux operating system.
This can be used to understand why the book chose an earlier version of the Linux system as a learning object.
It then explains in detail the advantages and disadvantages of choosing an early version of the Linux kernel for
learning and how to begin further learning. Finally, we briefly introduced the contents of each chapter.

1.1 The birth and development of Linux

Linux is a clone system of the UNIX operating system. It was born on October 5, 1991 (this is the time for
the first official announcement). Since then, with the aid of the Internet, through the joint efforts of computer
enthusiasts all over the world, it has now become the most widely used type of UNIX operating system in the
world, and the number of users is still growing rapidly.

The birth, development, and growth of the Linux operating system depend on the following five pillars: the
UNIX operating system, the MINIX operating system, the GNU project, the POSIX standard, and the Internet
network. Based on these five basic clues, we follow the development history of Linux, its brewing process and
its initial development. First of all, | will introduce the four basic elements, and then follow Linux founder
Linus Torvalds to learn computer knowledge from her own interest in computers, start brewing her own
operating system, release to the initial release of the Linux kernel version 0.01, and how difficult it will be. Step
by step, with the help of hackers all over the world, the development of the more mature version 1.0 was finally
introduced. It also describes the history of Linux's early development in detail.

Of course, the current Linux kernel version has been developed to version 4.18.x. The kernel used in most
Linux systems is a stable 4.4.x-4.16.x kernel (where the second digit is an odd number, it means that it is being
developed and cannot guarantee system stability). For the general history of Linux development, many articles
and books have been introduced and will not be repeated here.

1.1.1 The birth of the UNIX operating system

The Linux operating system is a cloned version of the UNIX operating system. The UNIX operating
system is a time-sharing operating system developed by Bell Labs's Ken. Thompson and Dennis Ritchie on the
DEC PDP-7 minicomputer in the summer of 1969.

In order to be able to run his favorite Star Travel game on an idle PDP-7 computer, Ken Thompson
developed UNIX operations within a month in the summer of 1969 while his wife returned home to California.
The prototype of the system. At that time, the BCPL language (basic combination programming language) was
used. After being rewritten by Dennis Ritchie in 1972 with a highly portable C language, the UNIX system was
promoted in universities and colleges.

1.1.2 MINIX operating system

The MINIX system was developed by Andrew S. Tanenbaum (AST). AST is a mathematics and computer
science system at Vrije University in Amsterdam, the Netherlands. He is a senior member of ACM and IEEE
(only a few people in the world are senior members of the two associations). A total of more than 100 articles
and 5 computer books were published.
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Although AST was born in New York, it was a Dutch expatriate (his grandfather came to the United States
in 1914). He studied at a high school in New York, a university at M.I.T, and a doctorate at the Berkeley campus
of the University of California. Due to his postdoctoral studies, he came to his hometown of the Netherlands.
Since then, it has been with the hometown. Later, | started teaching and graduate school at Vrije University.
Amsterdam, the capital city of the Netherlands, is a year-round rainy city, but for the AST, this is best, because
in this environment he can often stay at home to play with his computer.

MINIX was created in 1987 and is mainly used by students to learn operating system principles. By 1991
the version was 1.5. There are currently two major versions in use: Version 1.5 and Version 2.0. At that time, the
operating system was free at university, but other uses were not. Of course, the current MINIX system is free
and can be downloaded from many FTP sites.

For the Linux system, he later expressed his compliments to the developer Linus. However, he believes
that the development of Linux is largely due to the fact that in order to keep MINIX small, he will be able to
complete the learning within one semester, thus failing to accept the expansion requirements of MINIX from
many people around the world. So under this premise inspired Linus to write a Linux system. Of course, Linus
also just caught this good time.

As an operating system, MINIX is not an excellent one, but it also provides system source code written in
C and assembly language. This is the first time that aspiring programmers or hackers have been able to read the
operating system's source code. At the time, this source code was a secret that software vendors had been
carefully guarding.

1.1.3 GNU Project

The GNU Project and the Free Software Foundation were founded by Richard M. Stallman in 1984 to
develop a complete operating system similar to UNIX and free software: the GNU system (GNU is "GNU's
Not". Recursive abbreviation for Unix, which is pronounced "guh-NEW™). Various GNU operating systems
using Linux as the core are being widely used. Although these systems are often referred to as "Linux,"
Stallman believes that, strictly speaking, they should be referred to as GNU/Linux systems.

By the early 1990s, the GNU project had developed many high-quality free software, including the famous
emacs editing system, bash shell program, gcc series compiler, gdb debugger and so on. These softwares create
a suitable environment for the development of the Linux operating system. This is one of the foundations for the
birth of Linux, so that many people now refer to the Linux operating system as the "GNU/Linux™ operating
system.

1.1.4 POSIX standard

POSIX (Portable Operating System Interface for Computing Systems) is a cluster of standards developed
by IEEE and ISO/IEC. The standard is based on existing UNIX practices and experiences and describes the
operating system'’s call service interface. The applications used to ensure the compilation can be ported and run
on multiple operating systems at the source code level. It was based on the early work of a UNIX user group
(usr/group) in the early 1980s. The UNIX user group originally attempted to re-integrate the distinction between
AT&T's System V operating system and Berkeley CSRG's BSD operating system's call interface. In 1984, the
Jusr/group standard was customized.

In 1985, the IEEE Operating System Technical Committee Standards Subcommittee (TCOS-SS) began,
under the aegis of ANSI, instructing the IEEE Standards Committee to establish a formal standard for program
source code portability operating system service interfaces. In April 1986, the IEEE developed a trial standard.
The first formal standard was approved in September 1988 (IEEE 1003.1-1988), and also the POSIX.1 standard
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that is often mentioned later.

By 1989, POSIX's work was transferred to the ISO/IEC community and the 15 working group continued to
develop it as an ISO standard. By 1990, POSIX.1, in conjunction with the already adopted C language standard,
was formally approved as the IEEE 1003.1-1990 (also ANSI) and ISO/IEC 9945-1:1990 standards.

POSIX.1 only specifies system service application programming interfaces (APIs) and only summarizes
basic system service standards. Therefore, the working group expects to establish standards for other functions
of the system. So the work of IEEE POSIX began. Ten approval plans were in progress at the beginning, and
nearly 300 people participated in the quarterly one-week meeting. The work that started was command and tool
standard (POSIX.2), test method standard (POSIX.3), and real-time API (POSIX.4). In the first half of 1990, 25
plans were already in progress and 16 working groups were involved. At the same time, some organizations are
also developing similar standards such as X/Open, AT&T, and OSF.

In the early 1990s, the formulation of the POSIX standard was in the final stage of voting, which was
between 1991 and 1993. At this point, when Linux was just starting out, this UNIX standard provided extremely
important information for Linux, enabling Linux to be developed under the guidance of standards and
compatible with most UNIX operating systems. In the original Linux kernel source code (versions 0.1, 0.11, and
0.12) the Linux system was ready for compatibility with the POSIX standard. Several symbolic constants for
POSXI standard requirements have been defined in the /include/unistd.h file of the Linux version 0.01 kernel,
and Linus wrote in the comment: "OK, this may be a joke, but I'm working on it. It does.”

On July 3, 1991, Linus mentioned on the post posted on comp.os.minix that it is collecting POSIX data. It
revealed that he is working on the development of an operating system, and at the beginning of development, he
had thought of the problem of compatibility with POSIX.

1.1.5 The birth of the Linux operating system

In 1981, IBM introduced the world-renowned microcomputer IBM PC. Between 1981 and 1991, the
MS-DOS operating system was always the master of the microcomputer operating system. At this time,
although the price of computer hardware has decreased year by year, software prices have remained high. At
that time, Apple's MACs operating system can be said to be the best performance, but its price is so that no one
can easily get close.

Another computer technology camp at the time was the UNIX world. However, the UNIX operating
system is not only an expensive issue. In order to seek high profit margins, UNIX dealers have pushed prices
extremely high, and PC users can't get close to it. The UNIX source code that once received permission from
Bell Labs to be used for teaching in the university has also been carefully guarded against disclosure. For the
majority of PC users, large vendors in the software industry have never given effective solutions to this
problem.

At this time, the MINIX operating system appeared, and a book describing the principles of its design and
implementation was issued at the same time. Since this book written by AST was very detailed and
well-articulated, almost all computer enthusiasts around the world began to read this book in order to
understand how the operating system works. It also includes Linus Benedict Torvalds, the founder of the Linux
system. At that time (in 1991), he was a sophomore in the Department of Computer Science at the University of
Helsinki and a self-taught computer hacker. The 21-year-old Finnish young man likes to drum up his computer
and test the performance and limitations of the computer. But what he lacked at the time was a
professional-level operating system.

During the same year, the GNU program has developed a number of software tools. The most anticipated
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GNU C compiler has emerged, but the free GNU operating system has not yet been developed. Even the
MINIX operating system used in teaching has begun to have copyright, and it is necessary to purchase it to get
the source code. Although the GNU operating system HURD has been under development, it did not appear to
have been completed within a few years.

To better learn computer knowledge (perhaps just for interest), Linus purchased a 386-compatible
computer using Christmas lucky money and loans, and mailed a MINIX system software from the United States.
While waiting for the MINIX software, Linus learned the hardware knowledge of Intel 80386 seriously. In order
to be able to connect to the school's mainframe through a Modem dial-up, he uses assembly language and uses
the multitasking features of the 80386 CPU to create a terminal emulation program. Later, in order to copy his
own software on an old computer to a new computer, he also compiled drivers for floppy disk drives, keyboards,
and other hardware devices.

Through programming practice and recognizing the many limitations of the MINIX system during the
learning process (MINIX is good, but it is only a simple operating system for teaching purposes, rather than a
powerful and practical operating system), Linus already has something similar. The code for the operating
system device driver, so he began to have the idea of a new operating system. At this point, the GNU Project has
developed many tools and software, among which the most anticipated GNU C compiler has appeared.
Although GNU's free operating system HURD is under development. But Linus has waited for no hurry.

From April 1991, he began to develop his own operating system by modifying the terminal emulation
program and hardware drivers. At the beginning, his purpose was simple, just to learn the programming
techniques of the Intel 386 architecture protection mode operation. However, the development of Linux has
completely changed its original intention. According to Linus's news release on the comp.os.minix newsgroup,
we can see that he has gradually evolved from learning the MINIX system stage to developing his own Linux
system.

Linus delivered the message to comp.os.minix for the first time on March 29, 1991. The title of the posted
post is ""gcc on minix-386 doesn't optimize™. It is about the gcc compiler running optimized on the MINIX-386
system (MINIX-386 is an improvement from Bruce Evans using Intel 386 features 32 Bit MINIX system).
From this it can be seen that Linus had already begun to study the MINIX system in depth in early 1991, and
during this time there has been an improvement of the MINIX operating system. After further learning about the
MINIX system, this idea gradually evolved into the idea of redesigning a new operating system based on the
Intel 80386 architecture.

When he answered someone’s question on MINIX, the first sentence said was "Read the F**ing Source
Code :-)"). He thinks the answer lies in the source program. This also shows that for the learning system
software, we not only need to understand the basic working principles of the system, but also need to combine
the actual system to learn how to implement the actual system. After all, theory is a theory, in which many
branches are omitted. Although these branch problems do not have much theoretical content, they are a
necessary part of the system, just like a feather in a sparrow.

From April 1991, Linus spent almost all of his time researching the MINIX-386 system (Hacking the
kernel) and trying to port GNU software to the system (GNU gcc, bash, gdb, etc.). And announced on
comp.os.minix on April 13 that he had successfully ported bash to MINIX, and he could not afford to leave the
shell software.

The first Linux-related news was released on comp.os.minix on July 3, 1991. (Of course, there was no such
name as Linux at that time. Linus thought that the name might be FREAK |, FREAX. The English meaning is
grotesque, monsters, whimsical, etc.). It revealed that he is developing Linux system and he has already thought
of the problem of compatibility with POSIX.
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In another announcement by Linus (comp.os.minix, August 25, 1991), he asked all MINIX users "What do
you most want to see in the MINIX system?" ("What would you like to see?" In minix?”), in which he revealed
for the first time that a (free) 386(486) operating system is being developed, and that he is only interested in it.
The code will not be large and will not be as professional as GNU. | hope you will give us some feedback on
what features the MINIX system likes and dislikes, and explain that due to practical and other reasons, the
newly developed system is just like MINIX (and uses MINIX's file system). And it has successfully ported bash
(version 1.08) and gcc (version 1.40) to the new system and it will be practical in months.

Finally, Linus stated that the operating system he developed does not use a single line of MINIX source
code; because of the task switching feature of the 386, the operating system is not portable (no portability) and
only AT hard disks are used. Linus did not consider the issue of Linux portability. But at present, Linux can run
on almost any kind of hardware architecture.

On October 5th, 1991, Linus published a message on the comp.0s.minix newsgroup, officially announcing
the birth of the Linux kernel system (Free minix-like kernel sources for 386-AT). This news can be called the
birth declaration of Linux, and has been widely circulated. Therefore, October 5 was a special day for the Linux
community, and many later Linux versions had chosen this date. So RedHat chose this day to release its new
system is not accidental.

1.1.6 Linux operating system version changes

Since the birth of the Linux operating system to the 1.0 release, a number of major releases have been
released as shown in Table 1-1. Linus looked at all of the previous versions of 1.0 when he started learning to
use the version management tool BitKeeper in September 2003. In fact, the Linux system does not have this
version of 0.00, but since Linus' experiment on his own 80386 compatible machine succeeded in switching
between two tasks under the control of clock interruption, he further enhanced his idea of developing his
operating system to some extent. . Therefore we are also listed as a version. The Linux version of the kernel
version was completed on September 17, 1991. However, Linus has no copyright awareness at all, so only one
copy of copyright information appears in this version of the include/string.h file. The keyboard driver for this
version of the kernel is hard-coded only into Finnish code, so only the Finnish keyboard is supported. Only
8MB physical memory is supported. Due to a mistake by Linus, the subsequent 0.02, 0.03 version of the kernel
source code was destroyed and lost.

Table 1-1 Earlier major versions of the kernel

Version No. | Release date Description

The two processes display '‘AAA..." and 'BBB..." on the screen, respectively. (Note:
0.00 1991.2-4

No release)

The first official release of the Linux kernel version. Multi-threaded file system,
0.01 1991.9.17 segmentation, and paging memory management. Does not include floppy disk

drivers yet.

This version and version 0.03 is an internal version that is currently unavailable.
0.02 1991.10.5

Features the same as above.

The Linux kernel version released by Ted Ts’o. Added memory allocation library
0.10 1991.10 functions. The boot directory contains a script that converts as86 assembler syntax

to gas assembler syntax.
0.11 1991.12.8 Basically functioning kernel. Supports hard disk and floppy drive devices as well as
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serial communications.

The more stable version mainly increases the software simulation program of the
0.12 1992.1.15 math coprocessor. Added job control, virtual console, file symbolic links, and virtual

memory swapping capabilities.

Virtual file system support was added in this version, but it still contains only one

0.95 MINIX file system. Added login functionality. Improves the performance of floppy
.95.x

(i¢.0.13) 1992.3.8 disk drivers and file systems. Changed hard disk naming and numbering. The
ie 0.

original naming method is the same as that of the MINIX system. At this time, it is
the same as the current Linux system. Support CDROM.

Began to add UNIX Socket support. Added ext file system alpha tester. SCSI drivers
are officially added to the kernel. Floppy disk type is automatically recognized.
Improved serial driver, cache, memory management performance, support for
0.96.x 1992.5.12 S . _
dynamic link libraries, and the ability to run X-Windows programs. The keyboard
driver written in the original assembly language has been rewritten with C.

Compared with the 0.95 kernel code, there are great changes.

Added support for new SCSI drivers; dynamic caching; msdos and ext file system
0.97.x 1992.8.1 support; bus mouse drivers. The kernel is mapped to the beginning of the linear
address 3GB.

Improve support for TCP/IP (0.8.1) networks and correct extfs errors. Rewritten
memory management section (mm), each process has 4GB of logical address space
0.98.x 1992.9.28 (the kernel occupies 1GB). Starting from 0.98.4, each process can open 256 files at
the same time (originally 32), and the process's kernel stack uses a single memory
page independently.

Re-design the process of the use of memory allocation, each process has 4G linear
0.99.x 1992.12.13 ) )
space. Constantly improving the network code. NFS support.

1.0 1994.3.14 The first official version.

The existing 0.10 version of the kernel code is a version of Ted Ts'o that was preserved at the time, Linus's
own has also been lost. This version is a great improvement over the previous versions. On this version of the
kernel system, GNU gcc has been used to compile the kernel, and has begun to support the operation of
mounting/unmounting file systems. From this kernel version, Linus added copyright information for each file:
"(C) 1991 Linus Torvalds". Some other changes in this version include: the original boot program boot/boot.s
split into two programs boot/bootsect.s and boot/setup.s; 1 supports up to 16MB of physical memory; 2 drivers
and memory management procedures Created their own subdirectories separately; 3 Added floppy driver; 4
Supported file read-ahead operations; 5 Supported dev/port and dev/null devices; 6 Rewritten kernel/signal.c
code, added sigaction() Support etc.

Relative to the 0.10 version of the kernel, Linux 0.11 version of the changes are relatively small. However,
this version is also the first stable version, and other people are beginning to participate in kernel development.
The main additions in this version are: 1 load requirements for the execution program; 2 execute the /etc/rc
initial file at startup; 3 build the math coprocessor simulation program frame program structure; 4Ted Ts'o adds
a script program The processing code; 5 Galen Hunt added support for multiple display cards; 6John T Kohl
modified the kernel/console.c program to enable the console to support tweet and KILL characters; 7 provides
support for multilingual keyboards.

Linux 0.12 is a more satisfactory kernel version of Linus and a more stable kernel. During the Christmas
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season in 1991, he compiled the virtual memory management code so that "large” software like gcc could be
used on machines with only 2MB of memory. This version makes Linus feel that releasing the 1.0 kernel
version is not something that is out of sight, so he immediately upgraded the next version (0.13 version) to
version 0.95. Another implication of Linus's ability to do this is to make everyone not feel that they are still far
from version 1.0. However, due to the hasty release of the 0.95 version, which also contains more errors, so
when the 0.95 version was just released, there were more Linux enthusiasts encountered problems in use. At
that time, Linus felt like he had encountered a catastrophe. However, he has accepted this lesson since then.
Every time a new kernel version is released later, he will undergo more careful testing and let a few good
friends try it out before officially publishing it. The main changes in the 0.12 version of the kernel are: 1Ted
Ts'o adds support for terminal signal processing; 2 can change the screen ranks used when starting up; 3 corrects
a race condition caused by a file 10; 4 adds support for shared libraries Support, saving memory usage; 5
symbolic link handling; 6 deletion of directory system calls; 7 Peter MacDonald implements virtual terminal
support, making Linux even superior to certain commercial versions of UNIX at the time; Function support,
which was modified by Peter MacDonald based on patches provided by some people for MINIX, but MINIX
did not adopt these patches; 9 re-executable system calls; 10Linus compiled math coprocessor simulation code.

Version 0.95 was the first Linux kernel version to use the GNU GPL copyright. There are actually three
sub-versions of this version. Due to some problems encountered when the first 0.95 release was released on
March 8, 1992, another 0.95a version was immediately released in less than 10 days (March 17). And in a
month later (April 9th), 0.95c+ was released again. The biggest improvement in this version is the introduction
of the virtual file system VFS structure. Although only the MINIX file system was supported at the time, the
program structure has been extensively adjusted to support multiple file systems. The code for the MINIX file
system is put into a separate MINIX subdirectory. Some of the other changes in the 0.95 kernel include: 1
Added login interface; 2 Ross Biro added debugging code (ptrace); 3 Floppy disk drive track buffering; 4
Non-blocking pipeline file operations; 5 System restart (Ctrl-Alt-Del); Swapon() system call to select swap
devices in real time; 6 support for recursive symbolic links; 7 support for 4 serial ports; 8 support for hard disk
partitions; 9 support for more types of keyboards; 10James Wiegand compiles initial parallel port drivers, etc. .

In addition, starting with the 0.95 release, many of the kernel's improvements (providing patches) were
dominated by others, and Linus's main task began to become the maintenance of the kernel and decide whether
to adopt a patch. Until now, the latest kernel version is version 4.16.16 released in June 2018. Its use of gz
compressed source code package also has about 152MB! The latest version of each major stable release is
shown in Table 1-2. Table 1-2

Table 1-2 New kernel source code size

Version number Release date Size (after gz compression)
2.0.40 2004.2.8 7.2 MB

2.2.26 2004.2.25 19 MB

2.6.25 2008.4.17 58 MB

3.0.10 2011.11.21 92MB

4.4.10 2016.5.11 127MB

4.16.16 2018.6.16 152MB

1.1.7 The reason for the Linux name

At the beginning of the Linux operating system, it was not called Linux. Linus named his operating system
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FREAK. Its English meaning is grotesque, monster, whimsical. When he uploaded the new operating system to
the ftp.funet.fi server, administrator Ari Lemke disliked the name very much. He believes that since it is Linus's
operating system, take its homonym Linux as the operating system's directory, so the name of Linux began to
pass down.

In Linus's autobiography "Just for Fun,” Linus explains:

“Honest: I didn't want to ever release it under the name Linux because it was too egotistical . What was the
name | reserved for any eventual release ? Freax. (Get it? Freaks with the requisite X.) In fact, some of the early
make files-the files that describe how to compile the sources-included the word "Freax" for about half a year.
But it really didn't matter. At that point I didn't need a name for it because | wasn't releasing it to anybody.”

“And Ari Lemke, who insured that it made its way to the ftp site, hated the name Freax. He preferred the
other working name | was using-Linux-and named my posting: pub/OS/Linux. | admit that | didn't put up much
of a fight. But it was his doing . So I can honestly say | wasn't egotistical, or half-honestly say | wasn't
egotistical . But I thought, okay, that's a good name, and | can always blame somebody else for it, which I'm

doing now.”

1.1.8 The main contributor to the development of early Linux systems

As can be seen from the early Linux source code, one of the most famous developers of the Linux system
in addition to Linus himself is Theodore Ts'o (Ted Ts'0). He graduated from MIT Computer Science in 1990. In
college time he actively participated in various student activities held in the school. He likes cooking, cycling,
and of course Hacking on Linux. Later he began to like the amateur radio telegram campaign. He currently
works at IBM on system programming and other important issues. He is also an IETF member of the
International Network Design, Operations, Sales and Research Open Group.

The popularity of Linux in the world also has his great credit. As early as when the Linux operating system
came out, he provided Maillist with great enthusiasm for the development of Linux. Almost since Linux was
first released, he has been contributing to Linux. He was also the first person to add programs to the Linux
kernel (the ramdisk.c virtual disk driver and the kernel memory allocation program kmalloc.c in the Linux
kernel version 0.10). Until now he is still engaged in Linux-related work. In North America, he first established
the Linux ftp site (tsx-11.mit.edu), and this site still provides services for the majority of Linux users. One of his
biggest contributions to Linux was to propose and implement the ext2 file system. The file system has now
become the de facto file system standard in the Linux world. Recently he introduced the ext3 file system. The
system greatly improves the stability and access efficiency of the file system. As his admiration, the Linux
Journal issue of the 97th issue (May 2002) used him as a cover character and interviewed him. He currently
works for the IBM Linux Technology Center and is working on the Linux Standard Base (LSB).

Another famous person in the Linux community is Alan Cox. He originally worked at Swansea University
College in Wales. At first, he particularly likes to play computer games, especially MUD (Multi-User Dungeon
or Dimension). In the posts of games.mud news group in the early 90s you can find a lot of posts he posted. He
even wrote a history of MUD development (rec.games.mud news group, March 9, 1992, A history of MUD). As
MUD games are closely related to the internet, he slowly became fascinated with computer networks. In order
to play the game and improve the speed of the computer running the game and the network transmission speed,
he needs to choose a most satisfactory operating platform. So he began to contact various types of operating
systems. Because of the lack of money, he could not afford even the MINIX system. When Linux 0.1x and
386BSD were released, he took a long time to purchase a 386SX computer. Since the 386BSD requires math
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coprocessor support and the computer with the Intel 386SX CPU does not have a math coprocessor, he installed
the Linux system. So he started to learn Linux with free source code and started to have interest in Linux
systems, especially with regard to networking. In the discussion of Linux single-user mode of operation, he
even praised Linux for being beautifully implemented.

After the release of Linux 0.95, he began writing patches (modification programs) for the Linux system
(remembering that his two earliest patches were not adopted by Linus) and became the earliest users of TCP/IP
network code on Linux systems. one. Later, he gradually joined the Linux development team and became one of
the main responsible for maintaining the Linux kernel source code. It can also be said to be the most important
figure in the Linux community after relaying Linus. Later Microsoft invited him to join, but he simply refused.
Since 2001, he is responsible for maintaining the Linux kernel 2.4.x code. Linus is mainly responsible for the
development of the latest development version of the kernel (odd version, such as 2.5.x version).

Michael K. Johnson, author of The Linux Kernel Hackers' Guide, was also one of the first people to
contact the Linux operating system (from version 0.97). He is also one of the initiators of the well-known Linux
Document Project (LDP). He once worked for Linux Journal and now works for RedHat.

The Linux system is not the only backbone that can develop into what it is today. There are many computer
experts who have made great contributions to Linux. We will not list them here. The specific list of major
contributors can be found in the CREDITS file in the Linux kernel, which lists in alphabetical order the list of
more than 400 people who contributed significantly to Linux, including their email address and mailing address,
home page, and major contributions. Deeds and other information.

Through the above explanation, we can sum up the above five pillars of Linux as follows:

B UNIX Operating System -- UNIX was born in Bell Labs in 1969. Linux is a UNIX clone system. The
importance of UNIX goes without saying.

B The MINIX operating system -- The MINIX operating system is also a UNIX clone system. It was
developed in 1987 by the famous computer professor Andrew S. Tanenbaum. Due to the emergence of
the MINIX system and the availability of source code (which can only be used free of charge in
universities), the whirlwind of learning the UNIX system was spurred by universities around the
world. Linux first started development in 1991 with reference to the MINIX system.

B The GNU Project -- The development of the Linux operating system, and most of the software used
on Linux is basically from the GNU program. Linux is only a kernel of the operating system. Without
the GNU software environment (such as the bash shell), Linux will be difficult to move.

B POSIX Standard -- This standard has played an important role in the development of the Linux
operating system after the formal development. It is the beacon of Linux's progress.

B Internet - If you don't have an Internet network and don't have the unselfish dedication of countless
computer hackers all over the world, then Linux can only grow to a level of 0.13 (0.95).

1.2 Content review

This book will mainly describe and comment on the early Linux kernel version 0.12. The Linux-0.12
version was released on January 15, 1992. Include the following files when publishing:

bootimage—0.12.7Z — a compressed boot image file with a U.S. keyboard code;
rootimage—0.12.7Z — 1200kB compressed root file system image file;
1inux—0. 12. tar.Z — Kernel source code file. The size is 130KB, and only 463KB after expansion;
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as86. tar. Z — Bruce Evans’ binary execution file. 16-bit assembler and loader;
INSTALL-0. 11 — Updated installation information file.

bootimage-0.12.Z and rootimage-0.12.Z are compressed floppy image files. Bootimage is the boot image
file, which mainly includes disk boot sector code, operating system loader, and kernel execution code. When the
PC starts, the program in the ROM BIOS reads the boot sector code and data from the default boot drive into
memory, and the boot sector code reads the operating system loader and kernel execution code into memory and
then controls It is up to the operating system loader to further prepare the kernel for initialization, and the final
loader will give control to the kernel code. Kernel code needs file system support to function properly.
Rootimage is the root file system used to provide the most basic support to the kernel, including the operating
system at least some configuration files and command execution procedures. For UNIX-based file system used
in Linux system, it mainly includes some specified directories, configuration files, device drivers, development
programs, and all other user data or text files. The combination of these two disks is equivalent to a bootable
DOS operating system disk.

as86.tar.Z is a 16-bit assembler linker package. linux-0.12.tar.Z is the compressed Linux 0.12 kernel source
code. INSTALL-0.11 is a simple installation documentation for the Linux 0.11 system. It also applies to Linux
systems that use the 0.12 kernel.

At present, in addition to the original rootimage-0.12.Z file, the other four files can be found. However, the
author has used the resources on the Internet to re-create a fully usable rootimage-0.12 root file system for
Linux 0.12. The gcc 1.40 compiler that can be used in the 0.12 environment is recompiled and the available
experimental development environment is configured. Currently, these files can be downloaded from the
oldlinux.org website. The specific download directory location is:

B http://oldlinux.org/Linux.old/images/ This directory contains the kernel image file bootimage and the

root file system image file rootimage that have been created.

W http://oldlinux.org/Linux.old/kernels/ This directory contains the kernel source code programs,

including the Linux 0.12 kernel source code program described in this book.

W http://oldlinux.org/Linux.old/bochs/ This directory contains Linux systems that have been set up to

run under the computer simulation system bochs.

B http://oldlinux.org/Linux.old/Linux-0.12/ This directory contains some of the other tools that can be

used in the Linux 0.12 system and some of the original installation instructions.

This book mainly analyzes all the source code programs in linux-0.12 kernel in detail, and makes detailed
comments on each source program file, including comments on Makefile files. The analysis process is mainly
carried out according to the computer startup process. Therefore, the consistency of the analysis until the end of
the initialization kernel starts calling the shell program. The rest of the programs are for their own analysis,
there is no coherence, so you can read according to their own needs. However, some application examples are
provided during the analysis.

In the process of analyzing all programs, if the author thinks it is difficult to understand the statement, it
will give a detailed description of the relevant knowledge. For example, when an input/output operation to the
interrupt controller is encountered, a detailed description of the Intel Interrupt Controller (8259A) chip will be
given and the used commands and methods will be listed. This will help deepen the understanding of the code,
but also better understand the use of the hardware used, the author believes that this method of interpretation
than a separate chapter to the overall introduction of hardware or other knowledge is much more efficient.

Taking the Linux 0.12 kernel to "dissect" is to increase the efficiency of our understanding of Linux's
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operating mechanism. Linux-0.12 version of the entire kernel source code is only about 463K bytes, including
the content is basically the essence of Linux. The latest kernel version 2.6.XX is very large, 200 megabytes.
Even if you spend a lifetime learning to read it may not be able to read all. Maybe you have to ask, "Since you
want to start with Jane, why not analyze the smaller version of the Linux kernel source code for version 0.01?
It's only about 240K bytes." The main reason is because the 0.01 version of the kernel code has too many
shortcomings, not even Including drivers for floppy disks also does not relate well to the use of math
coprocessors and instructions for login procedures. And the structure of the bootstrapping boot program is not
the same as the current version, and the 0.12 boot boot program structure is basically the same as now. Another
reason is that you can find the earlier version 1.22 of the already compiled and compiled kernel image file
(bootimage-0.12), which can be used for boot demonstrations. If you add a simple root file system image
(rootimage-0.12), it will be able to run normally.

There are also deficiencies in learning with Linux 0.12. For example, the kernel version does not include
some very important code related to special process waiting queues, TCP/IP networks, etc. The allocation and
use of memory is also different from the current kernel. Fortunately, the network code in Linux is basically
self-contained, and the relationship with the kernel mechanism is not very large, so you can analyze the code
after you understand the basic principles of Linux work.

This book describes all the code in the Linux kernel. In order to maintain the integrity of the structure, the
description of the code is based on the structure of the source code in the kernel. Basically, the contents of each
source code is a chapter. The order of the source files introduced can be found in the previous file list index. The
directory structure of the entire Linux kernel source code is shown in Listing 1-1. All directory structures are
based on Linux as the current directory.

List 1-1 Linux/ directory

Name Size Last modified date (GMT) Desc.
B boot/ 1992-01-16 14:37:00
a fs/ 1992-01-16 14:37:00
Ea include/ 1992-01-16 14:37:00
E} init/ 1992-01-16 14:37:00
B kernel/ 1992-01-16 14:37:00
a lib/ 1992-01-16 14:37:00
@ mm/ 1992-01-16 14:37:00
[~ tools/ 1992-01-16 14:37:00
% Makefile 3091 bytes 1992-01-13 03:48:56

The content of this book can be divided into five parts. Chapters 1 to 4 are basics. The operating system is
closely related to the hardware environment being run. If you want to thoroughly understand the entire
operation of the operating system, then you need to understand its hardware operating environment, especially
the processor multi-task operating mechanism. This part introduces in more detail the hardware composition of
the microcomputer, the programming language used to compile the Linux kernel program, and the programming
principle under Intel 80X86 protection mode; the second part includes chapters 5 through 7, describing the
kernel boot boot and 32-bit operation. The preparation phase of the method should be fully read as a beginner to
learn the kernel; the third part from Chapter 8 to Chapter 13 is the main part of the kernel code. The contents of
Chapter 8 can be used as the main clue to read the subsequent chapters of this section. Chapters 14 to 16 are the
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contents of the fourth section and can serve as reference for reading the third part of the source code. The last
part includes only Chapter 17, which describes how to use the PC simulation software system Bochs to conduct
various experimental activities on the Linux 0.12 kernel.

The second chapter is based on the hardware block diagram of the traditional microcomputer system. It
mainly introduces the components of the IBM PC/AT386 microcomputer running on the Linux kernel. Describe
the functions and relationships of each major section. At the same time, it is also compared with the block
diagram of the latest microcomputer. This will provide enough relevant information for readers who have not
learned the principles of computer composition.

Chapter 3 introduces the programming language, object file format, and compilation environment used in
the Linux 0.12 kernel. The main goal is to provide the assembly language and GNU C language extension
knowledge needed to read the Linux 0.12 kernel source code. This chapter first introduced the syntax and usage
of as86 and GNU as assembler in more detail, and then explained the common C language extensions such as
inline assembly, statement expressions, register variables, and inline functions in the GNU C language. The
mutual calling mechanism between C and assembly functions is described in detail. Finally, the use of the
Makefile is briefly described.

Chapter 4 describes the architecture of the 80X86 CPU and some basic knowledge of protected mode
programming. It lays a solid foundation for preparing to read the Linux kernel source code based on the 80X86
CPU. These include: 80X86 basics, protected mode memory management, interrupt and exception handling,
task management, and a simple multitasking kernel example.

Chapter 5 outlines the Linux operating system architecture, the organization of the kernel source code files,
and the general functionality of each file. It also introduces the use of Linux for physical memory allocation,
several stacks of the kernel, and how they are used, and the use of virtual linear addresses. Finally, it begins to
comment the first file seen in the Linux/ directory in the kernel package, which is the contents of the overall
Makefile of the kernel code. This file is the compilation management configuration file for all kernel source
programs and is used by the build management tool software make.

Chapter 6 will explain in detail the three assembly language programs in the boot/ directory, including the
bootdisk.ss of the disk boot program, the setup.s assembler that takes the parameters in the BIOS, and the 32-bit
run start code program head.s. The three assembler programs complete the bootloading of the kernel from the
block device into memory and detect system configuration parameters, completing all the work before entering
the 32-bit protected mode. Prepare for the kernel system to perform further initialization work.

Chapter 7 mainly introduces the initialization program main.c of the kernel system in the init/ directory. It
is a key point for the kernel to complete all initialization work and enter normal operation. After completing all
the initialization of the system, a process for the shell is created. In the introduction of the program will need to
see the other programs it calls, so the reading of the subsequent chapters can be performed in the order called
here. Since memory management program functions are widely used in the kernel, this chapter should be read
first. When you can really understand all the programs up to the main.c program, you should already have a
certain understanding of the Linux kernel. It can be said that half of them are already started, but you also need
to file systems, system calls, each Drivers, etc. for a deeper reading.

Chapter 8 mainly introduces all programs in the kernel/ directory. The most important part of the process is
the process scheduler(), sleep_on(), and program related system calls. At this point you should already know
some of the important programs. From the beginning of this chapter, we will encounter many assembly
language statements embedded in C language programs. The basic syntax for embedded assembly statements is
described in Chapter 3.

Chapter 9 explains the block device program in the kernel/blk_drv/ directory. This chapter mainly contains
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drivers for block devices such as hard disks and floppy disks. It is mainly used to deal with file systems and
high-speed buffers, and contains more hardware-related content. Therefore, you need to refer to some hardware
information when reading this chapter. It's best to first look at the sections of the file system.

Chapter 10 Annotates the character device drivers in the kernel/chr_drv/ directory. This chapter mainly
deals with serial line drivers, keyboard drivers, and monitor drivers. These drivers constitute the serial terminal
and console terminal devices supported by the 0.12 kernel. Therefore, this chapter also contains more
hardware-related content. Need to refer to related hardware books when reading.

Chapter 11 introduces the math coprocessor simulation program in the kernel/math/ directory. Due to the
version of the kernel annotated in this book, coprocessors have not really started to be supported yet, so the
content of this chapter is relatively small and relatively simple. Just have a general understanding.

The 12th chapter introduces the file system program in the fs/ directory of the kernel source code. When
reading this chapter, we recommend that you pause for a while to read about the MINIX file system in Andrew
S. Tanenbaum's book “Operating System Design and Implementation”. Chapters, because the original Linux
system only supports MINIX file system, Linux 0.12 version is no exception.

Chapter 13 explains the memory management program in the mm/ directory. To thoroughly understand this
aspect, we need to have a sufficient understanding of the protection mode operation mode of the Intel 80X86
microprocessor. Therefore, when reading this chapter of the program, you can refer to the overview of the
operation mode of the 80X86 protection mode included in the appropriate place in this chapter. In addition to
the description, you should also refer to Chapter 4 at the same time. Since this chapter explains the use of
examples in the source code as objects, you can better understand how memory management works.

Existing Linux kernel analysis books generally lack the description of the kernel header file, so for a
beginner, there are many obstacles to reading the kernel program. Chapter 14 of this book details all the header
files in the include/ directory. Basically, each definition, each constant, or data structure is commented in detail.
In order to facilitate reference during reading, this book also summarizes some important data structures and
variables that are frequently used in the appendix, but these contents can actually be found in the header files of
this chapter. Although the contents of this chapter are mainly used for reading the procedures in other chapters,
if you want to thoroughly understand the kernel's operating mechanism, you still need to understand many of
the details in these header files.

Chapter 15 describes all the files in the Linux 0.12 kernel source code lib/ directory. These library function
files mainly provide interface functions to the system programs such as the compilation system, which will help
the future understanding of the system software. Because of this lower version, there is not much here, so we
can read it quickly. This is one of the reasons why we chose the 0.12 version.

Chapter 16 introduces the build.c program in the tools/ directory. This program is not included in the
compiled and generated kernel image file. It is only used to connect the disk boot block in the kernel with other
major kernel modules into a complete kernel image file.

Chapter 17 introduces the experimental environment for learning the kernel source code and the methods
for hands-on experimentation. It mainly introduces the method of using and compiling Linux kernel under
Bochs simulation system and the method of making disk image files. It also explains how to modify the syntax
of the Linux 0.12 source code so that it can successfully compile the correct kernel under the RedHat 9 system.

The last is the appendix and index. The appendix gives some constant definitions and basic data structure
definitions in the Linux kernel, as well as a concise description of the protection mode operating mechanism.

For ease of reference, the information on PC hardware used in the kernel is also listed separately in the
appendix of this book. In the reference literature, we only provided books, articles, and other information that
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we can refer to when reading the source code. We did not provide all kinds of complicated and messy literature
lists. For example, when referring to a file in the LDP (Linux Document Project) of the Linux Documentation
Project, we will explicitly list which HOWTO article we need to refer to, and not just the LDP's website
address.

When Linus first developed the Linux operating system kernel, he mainly referred to three books. One is
"UNIX Operating System Design™ by M. J. Bach, which describes the working principle and data structure of
the UNIX System V kernel. Linus uses the algorithms for many of the functions in the book. The names of
many important functions in the Linux kernel source code are taken from the book. Therefore, when reading
this book, this is an essential reference book on the working principle of the kernel. The other is “Programming
the 80386” edited by John H. Crawford et al. and is a good book explaining the 80x86 protected mode
programming method. There is also a first edition of the book "MINIX Operating System Design and
Implementation™ by Andrew S. Tanenbaum. Linus mainly uses the MINIX file system version 1.0 described in
this book, and also supports only this file system in the early Linux kernel, so when reading this chapter about
the file system, the working principle of the file system It is fully available from Tanenbaum'’s book.

In the explanation of each program, we first briefly explain the main purpose and purpose of the program,
input and output parameters and the relationship with other programs, and then list the complete code of the
program and make detailed comments on the code, the original The program code or text is not altered or
deleted in any way, because C language is a kind of English language. The original small amount of English
comments in the program also provides a lot of useful information for constant symbols, variable names, and so
on. Behind the code is a more in-depth anatomy of the program and a description of some of the language or
hardware related knowledge that appears in the code. If you look back through the program after reading this
information, you will have a deeper understanding.

The introduction of some basic concept knowledge needed to read this book is scattered in the
corresponding parts of the various chapters. This is mainly for the convenience of finding, and when you
combine the source code reading, you can have a deeper understanding of some basic concepts.

The last thing to note is that when you have fully understood everything explained in this book, it does not
mean that you have become a Linux expert. You just embarked on the journey of Linux, with some initial
knowledge of becoming a Linux kernel master. At this point you should read more source code, preferably
incrementally from version 1.0 up to the latest odd-numbered version under development. The latest Linux
kernel at the time of revision of this book is version 4.16.16. When you can quickly understand the latest
versions of these developments and even come up with their own suggestions and patches, I'm willing to take a
plunge.

1.3 Summary

This chapter first elaborated on the indispensable pillars of the birth and development of Linux: UNIX's
initial open source version provided the basic principles and algorithms for Linux implementation, and Richard
Stallman's GNU program provided a variety of free and practical utilities for Linux systems. The emergence of
tools and POSIX standards provides Linux with reference guides for implementing standards-compliant systems.
AST's MINIX operating system has served as an indispensable reference for the birth of Linux, and the Internet
is a necessary environment for Linux to grow and grow. Finally, the chapter outlines the basic content of the
book.
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2 Microcomputer structure

Any system can be seen as a model consisting of four basic parts, as shown in Figure 2-1. The input part is
used to receive information or data entering the system; after being processed by the processing center, the output
part is sent out. The energy section provides the energy supply for the operation of the entire system, including the
input and output part of the energy required for operation.

The composition of the computer system is no exception, it is also mainly composed of these four parts.
Internally, however, the channels or interfaces between the processing center and the input/output portion of the
computer system can be used in common, and therefore (b) in Figure 2-1 should more appropriately abstractly
represent a computer system. Of course, for computers or many complex systems, each of them can be regarded
as a complete subsystem independently and can also be described using this model, and a complete computer
system is composed of these subsystems.

1 "

I::> Input :> Process :‘/’\ Output :} Process <:> Input/Output <:>

(a) (b)

Figure 2-1 The basic composition of a system

Computer systems can be divided into hardware and software, but they are interdependent. The hardware part
is the visible part of the computer system and is the platform for software operation and storage. Software is a
stream of instructions that control hardware operations and actions. Just as information and thoughts stored in the
human brain control the thoughts and actions of the human body, software can be seen as information and
thinking in the "brain™ of the computer. The theme described in this book is the operating mechanism of a
computer system. It mainly explains the hardware composition principle of the processing center and the
input/output part of the system and the realization of software control. On the hardware side, we outline the
hardware system of an IBM PC microcomputer based on the Intel 80X86 CPU (Central Processing Unit) and its
compatibles. The CPU chip of the computer can be regarded directly as the processing center of the system. The
bus interface is connected with other parts; for the software running on it, we specifically describe the
implementation of the Linux operating system kernel.

It can be seen that the operating system is closely related to the hardware environment being run. If you want
to thoroughly understand the entire operating system, you need to understand its operating hardware environment.
This chapter is based on the hardware block diagram of the traditional microcomputer system and introduces the
functions of each major part of the microcomputer. These contents have basically established the hardware basis
for reading the Linux 0.12 kernel. For ease of illustration, the term PC/AT will be used to refer to IBM PCs with
80386 or greater CPUs and their compatible microcomputers, while PCs are used generically to refer to all
microcomputers, including IBM PC/XTs and their compatible microcomputers.
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2.1 The Microcomputer Composition

From the perspective of overlooking, we illustrate the structure of a PC system with an 80386 or higher CPU.
The structure of a conventional microcomputer hardware is shown in Figure 2-2. Among them, the CPU
communicates with other parts of the system via a local bus (or internal bus) consisting of address lines, data lines,
and control signal lines. The address line is used to provide the address of a memory or I/O device, which
indicates the specific location where data needs to be read/written. Data lines are used to provide data transfer
channels between the CPU and memory or I/O devices, while control lines are responsible for directing specific
read/write operations. For PCs using the 80386 CPU, there are 32 internal address lines and data lines,
respectively, which are all 32-bit. Therefore, the address space has 2732 bytes, ranging from 0 to 4GB.

In the figure, the upper controller and memory interface are usually integrated on a computer motherboard.
These controllers are each a functional circuit composed mainly of a large-scale integrated circuit chip. For
example, the interrupt controller is composed of Intel 8259A or its compatible chips; the DMA controller is
usually composed of Intel 8237A chips; the timing counter is at the core of the Intel 8253/8254 timing chip; and
the keyboard controller is using Intel 8042 chip with the keyboard. The scanning circuit communicates.

CMOS Interrupt DMA Timer/ Keyboard
Memory Controller| [Controller Counter Controller
ANA VANAY Y VAVAY ANA /\j\“
CPU | : 5 35 35 — F x4 1 Address
. < ¥ . v ] Data
:,." 1 - ﬁ“ -jI“ j[‘ ﬂT Controls
/ \VAVA 4 AVAVA 4 N \/VY AVAVA 4 AVAY AV4
RAM Display Printer Serial Floppy disk|| Hard disk
Bus Interface Adapter Adapter Controller| |Controller||Controller

@& & O

Figure 2-2 A block diagram of a traditional IBM PC and its compatibles

The control card (or adapter) in the lower part of the figure is connected to the system bus on the
motherboard through an expansion slot. The bus slot is the standard connection interface to the extended device
controller of the system address bus, data bus, and control line. These bus interface standards generally include an
industry standard architecture ISA (Industry Standard Architecture) bus, an extended industrial standard
architecture bus (EISA), a Peripheral Component Interconnect (PCI) bus, and an Accelerated Graphics Port (AGP)
video. Bus and so on. The main difference between these bus interfaces is the data transfer rate and control
flexibility. With the development of computer hardware, bus interfaces with higher transmission rates and more
flexible control are still being introduced, such as the high-speed PCIE (PCI Express) bus using serial
communication point-to-point technology. The original 80386 machine had only the ISA bus, so the system and
external 1/0O devices can only use 16-bit data lines for data transfer.

With the development of computer technology, many functions (such as hard disk controller functions) that
were originally implemented using control cards have been integrated in a few VLSI chips on a computer main
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board. Several even one such chip is The main features and functions of the main board are determined, and the
bus structure has undergone great changes in order to allow the different parts of the system to reach their highest
transmission rates. The composition of modern PCs can often be described using Figure 2-3. In addition to the
CPU, modern PC motherboards mainly use two chipsets or chipsets composed of ultra-large-scale chips:
Northbridge chips and Southbridge chips. The Northbridge chip is used to interface with the CPU, memory, and
AGP video. These interfaces have very high transmission rates. The North Bridge chip also plays a role in
memory control. Therefore, Intel labels the chip as an MCH (Memory Controller Hub) chip. The South Bridge
chip is used to manage low- and medium-speed components such as PCI bus, IDE hard disk interface, USB port,
etc. Therefore, the name of the South Bridge chip is ICH (I/O Controller Hub). The reason for using the “South
and North” bridges to collectively refer to these two chips is that they are located on the typical PC motherboards
published by Intel Corporation. They are located at the lower and upper ends of the main version (that is, on the
south and north of the map), and plays the role of channel bridging with the CPU.

CPU Front—side bus

AGP or

PCI=E :II: Memory bus
Ilﬁ AGP . ¥ | Northbridge |4 /; Memory /

Controller N— (MCH) N\—| Interface

j E /PCI bus

Southbridge (ICH)

1
| BI0S ||Super I/0| | USB || SATA ||Ethernet| PCT slots

=0 [ W[

Figure 2-3 Modern PC chipset block diagram

Although the bus interface has undergone great changes, even the Northbridge and Southbridge will be
combined in the future, but for our programmers, these changes are still compatible with the traditional PC
architecture. Therefore, the program for the traditional PC hardware structure can still run on the current PC. This
can be confirmed by Intel's development manual. Therefore, in order to facilitate the entry learning, we still
discuss and study the composition and programming methods of the PC in the framework of the traditional PC
architecture. Of course, these methods are still suitable for the modern PC architecture. Below we outline the
working principle of each of the main controllers and control cards in Figure 2-2, and their actual programming
methods are postponed until the corresponding kernel source code is read.

2.2 1/0 Port addressing & access control

Before starting to transfer data between the CPU and the I/O adapter, it is necessary to first determine the 1/0
position of the communication adapter, that is, the port address. In the transmission of data between the CPU and
the 1/0O interface, there may be a variety of transmission control modes. Generally, program loop query, interrupt
processing, and DMA transfer may be used.
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2.2.1 1/0 ports and addressing

To access the data and status information on the 1/O interface controller or control card, the CPU needs to
specify their addresses first. This type of address is called an I/O port address or simply port. Usually an 1/0
controller includes a data port for accessing data, a command port for outputting commands, and a status port for
accessing controller execution status. There are two ways to set the port address: unified addressing and
independent addressing.

The principle of unified addressing of ports is to put the port address in the I/O controller into the memory
addressing address space. Therefore, this addressing method also becomes memory image addressing. The
operation of the CPU to access a port is the same as the operation of accessing the memory, and the instruction for
accessing the memory is also used. The method of port independent address is to treat the addressing space of 1/0
controller and control card as a separate address space, which is called 1/0 address space. Each port has an I/O
address corresponding to it and uses special 1/O instructions to access the port.

The IBM PC and its compatible microcomputers mainly use an independent addressing mode and use a
separate 1/0 address space to address and access the registers in the control device. Traditional PCs using the ISA
bus architecture have 1/0 address space ranging from 0x000 to Ox3FF with 1024 1/O port addresses available. The
default port address range used by each controller and control card is shown in Table 2-1. The use and
programming methods of these ports will be described in detail later when the relevant hardware is specifically
involved.

In addition, the IBM PC also partially uses the unified addressing mode. For example, the address of the
display memory on the CGA display card directly occupies the memory address space 0xB800 -- 0xBCOO range.
Therefore, if you want to display a character on the screen, you can directly use a memory operation instruction to
perform a write operation to this memory area.

Table 2-1 1/O port address assignment

Address range Allocation description

0x000 -- 0x01F 8237A DMA controller 1

0x020 -- 0x03F 8259A Programmable Interrupt Controller 1
0x040 -- 0x05F 8253/8254A Timer Counter

0x060 -- 0x06F 8042 Keyboard Controller

0x070 -- Ox07F Access CMOS RAM/Real-Time Clock RTC Port
0x080 -- 0x09F DMA page register access port

0x0AO0 -- 0XOBF 8259A Programmable Interrupt Controller 2
0x0CO -- 0xODF 8237A DMA Controller 2

0x0FO0 -- OXOFF Coprocessor access port

0x170 -- 0x177 IDE hard disk controller 1

0x1FO0 -- Ox1F7 IDE hard disk controller 0

0x278 -- Ox27F Parallel printer port 2

0x2F8 -- Ox2FF Serial Controller 2

0x378 -- 0x37F Parallel printer port 1

0x3B0 -- 0x3BF Monochrome MDA display controller
0x3CO0 -- 0x3CF Color CGA display controller

0x3DO0 -- 0x3DF Color EGA/VGA display controller
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0x3FO0 -- 0x3F7 Floppy drive controller
0x3F8 -- Ox3FF Serial Controller 1

For modern PCs using bus architectures such as EISA or PCI, 64 KB of 1/O address space is available. The
range of 1/O addresses used by related controllers or settings can be obtained by looking at the /proc/ioports file
under normal Linux systems. See the following:

[root@plinux root]# cat /proc/ioports

0000-001f : dmal

0020-003f : picl

0040-005f : timer

0060-006f : keyboard

0070-007f : rtc

0080-008f : dma page reg

00a0-00bf : pic2

00c0-00df : dma2

00f0-00ff : fpu

0170-0177 : idel

01f0-01f7 : ide0

02f8-02ff : serial (auto)

0376-0376 : idel

03c0-03df : vgat

03f6-03f6 : ideO

03f8-03ff : serial (auto)

0500-051f : PCI device 8086:24d3 (Intel Corp.)

0cf8-0cff : PCI confl

da00—-daff : VIA Technologies, Inc. VT6102 [Rhine-II]
da00-daff : via-rhine

e000-e01f : PCI device 8086:24d4 (Intel Corp.)
e000—e01f : usb-uhci

e100-ellf : PCI device 8086:24d7 (Intel Corp.)
el00—ellf : usb-uhci

e200-e21f : PCI device 8086:24de (Intel Corp.)
e200-e21f : usb-uhci

e300-e31f : PCI device 8086:24d2 (Intel Corp.)
e300-e31f : usb-uhci

f000-f00f : PCI device 8086:24db (Intel Corp.)
f000-f007 : ide0
f008-f00f : idel

[root@linux root]#

2.2.2 Interface access control

The PC 1/O interface data transmission control mode can generally adopt program loop inquiry mode,
interrupt processing mode and DMA transmission mode. As the name suggests, the cycle inquiry mode means that
the CPU judges whether it can exchange data with the device by looping through the program to query the status
in the specified device controller. This approach does not require excessive hardware support, and is relatively
simple to use and program, but it consumes valuable CPU time. Therefore, this method should not be used in
multitasking operating systems unless the waiting time is extremely short or necessary. In the Linux operating
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system, this method is only used in a few places when the device or controller can immediately return
information.

The interrupt handling control method needs the support of the interrupt controller. In this control mode, only
when the 1/O device requests a processing request from the CPU by interrupting, the CPU temporarily interrupts
the currently executed program and executes the corresponding 1/O interrupt processing service process. After
executing the interrupt handling service process, the CPU will continue to execute the program that was just
interrupted. When an 1/0 controller or device issues an interrupt request, the CPU addresses the entry address of
the corresponding interrupt handling service process by using an interrupt vector table (or an interrupt descriptor
table). Therefore, when using the interrupt control mode, it is necessary to first set the interrupt vector table and
compile the corresponding interrupt processing service process. Most device I/O controls in the Linux operating
system use interrupt handling.

The direct memory access (DMA) method is used for batch data transfer between the 1/0O device and the
system memory. The entire operation process requires the use of a dedicated DMA controller without CPU
intervention. Since there is no need for software intervention during the transmission, the operation is very
efficient. In the Linux operating system, floppy disk drivers use interrupts and DMA methods to achieve data
transfer.

2.3 Main memory, BIOS and CMOS memory

A typical PC often contain three types of memory, one is the main memory RAM (Random Access Memory)
used to run programs and temporarily save data; the other is ROM (Read Only Memory) memory, stores the
system boot diagnostics and Initialize the hardware program; the third is a small amount of CMOS memory used
to store the computer's real-time clock information and system hardware configuration information.

2.3.1 Main memory

When the IBM PC was first introduced in 1981, the system only had 640 KB of RAM main memory
(referred to as memory). Since the 8088/8086 CPU used has only 20 address lines, the memory address range is
up to 1024KB (1MB). At the time of the popular DOS operating system, the 640K or 1IMB memory capacity was
basically sufficient for ordinary applications. With the rapid development of computer software and hardware
technology, current computers are usually configured with 512 MB or more of physical memory capacity, and all
use Intel 32-bit CPUs, that is, PC/AT computers. Therefore, the CPU's physical memory addressing range has
been up to 4GB (by using the new features of the CPU, the system can even address 64GB of physical memory
capacity). However, in order to be compatible with the original PC in software, the allocation of physical memory
below the system 1MB still remains basically the same as the original PC, but the BIOS of the original system
ROM has always been the highest in the memory that the CPU can address. At the end location, the original
location of the BIOS will be used as the shadow area of the BIOS when the computer is initially initialized, ie the
BI1OS code will still be copied to this area. See Figure 2-4.

When the computer is powered on, physical memory is set to a contiguous area starting at address 0. All
memory except the range of addresses 0XA0000 to OxFFFFF (384K to 1M total 384K) and OxFFFEOQO0O to
OXFFFFFFFF (the last 64K at 4G) can be used as system memory. These two specific ranges are used for 1/0
devices and BIOS programs. If we have 16MB of physical memory in our computer, 0-640K will be used to hold
kernel code and data on Linux 0.1x systems. The Linux kernel does not use BIOS functions nor does it use the
interrupt vector table set by the BIOS. The 384K between 640K and 1M is still reserved for the use indicated in
the figure. Among them, the 128K starting from address 0xA0000 is used as the display memory buffer, and then
the part is used for the ROM BIOS of other control cards or its mapping area, and 0xF0000 to 1M range is used
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for the mapping area of the high-end system ROM BIOS. 1M-16M will be used by the kernel as an assignable
main memory area. In addition, high-speed buffers and memory virtual disks also occupy a part of the memory
area behind the kernel code and data. This area usually spans 640K to 1M.

O0xFFFFFFFF ROM BI0S 4G
I —
16M
]
0x100000 M
ROM BIOS map area
0xF0000
Others map area
0xE0000
Cards ROM BIOS
0xC7FFF
0xC0000 | VGA ROM BIOS | 76ex
Display buffer
0xA0000 640K
———————
0x00500
BIOS data
0x00400
Interrupt table
0x00000 0

Figure 2-4 PC/AT machine memory area usage map

2.3.2 Basic input/output program BIOS

The system BIOS program stored in the ROM is mainly used to execute the self-check of various parts of the
system when the computer is turned on, and various configuration tables that the operating system needs to use,
such as an interrupt vector table and a hard disk parameter table, are established. It also initializes the processor
and the rest of the system to a known state, and also provides hardware device interface services for operating
systems such as DOS. However, since these services provided by the BIOS are not reentrancy (ie, the programs
cannot be run concurrently), and considering the access efficiency, the Linux operating system runs at the same
time, except that it uses the BIOS to provide some system parameters during initialization. Do not use the features
in the BIOS.

When the computer system is powered on or a reset button on the chassis is pressed, the CPU automatically
sets the code segment register CS to 0xXF0O00, its segment base address is set to OxFFFF0000, and the segment
length is set to 64 KB. The IP is set to 0xFFFO0, so the CPU code pointer now points to OxFFFFFFFO, which is the
last 16 bytes of the last 64K in 4G space. From the above figure, this is where the system ROM BIOS is stored.
And the BIOS will store here a jump instruction JMP to jump to an instruction in the 64KB range in the BIOS
code to start execution. Since the BIOS capacity of PC/AT microcomputers is mostly 1IMB to 2MB, and is stored
in the Flash Memory ROM, it is far from the 0--1M address space in order to be able to execute or access the
BI1OS in more than 64 KB range. Other BIOS code or data, the BIOS program will first use 32-bit access to set the
data segment register access range to 4G (rather than the original 64K), so that the CPU can execute and
manipulate data in the range of 0 to 4G. After that, after the BIOS performs some column hardware detection and
initialization operations, it will copy the 64 KB BIOS code and data compatible with the original PC to the 64K at
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the low end of the 1M memory, and then jump to this place and let the CPU be real. Run in real address mode, as
shown in Figure 2-5. Finally, the BIOS will load the operating system boot program from the hard disk or other
block device into memory at 0x7c00 and jump to this location to continue the boot process.

4G ___

0xFFFFFFF(Q, JMP instrction
Jump C 64K

3N Flash ROM BIOS,
Size: 256KB - 2MB

64K

Copy

IM

Copied BIOS
(BIOS Shadow) 64K

0xF0000

Figure 2-5 Flash ROM BIOS location and copy mapping area

2.3.3 CMOS memory

In PC/AT machines, in addition to the need to use memory and ROM BIOS, CMOS memory with little
storage capacity (64 or 128 bytes) is used to store the real-time clock information and system hardware
configuration information of the computer. This part of the memory is usually in an integrated block with the Real
Time Chip. The address space of the CMOS memory is outside the basic memory address space and needs to be
accessed using /O instructions.

2.4 Controllers and Control Cards

As can be seen from Figure 2-2, a PC contains a variety of control cards and controllers used to transfer data
and control computer operations. These controllers and control cards mainly include interrupt controllers, DMA
controllers, keyboard controllers, floppy/hard disk control cards, serial communication control cards, and display
control cards. Here the term “controller" refers to a control component that is integrated on a computer
motherboard, and "control card"” refers to a control card component that is inserted into the computer through an
expansion slot. Because the control device can exist in the form of an independent control card, or it can be
integrated into the main board with the increase in the degree of computer integration, there is no substantial
difference between the controller and the control card. Below we describe these control devices in detail.
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2.4.1 Interrupt controller

The IBM PC/AT 80X86-compatible microcomputer uses two cascaded 8259A programmable interrupt
control chips to form an interrupt controller for I/O device interrupt control data access, and can provide
independent interrupts for 15 devices. The control function is shown in Figure 2-6. During the initial boot-up of
the computer, the ROM BIOS initializes two 8259A chips and assigns 15 levels of interrupt priority to the clock
timer, keyboard, serial port, print port, floppy disk controller, coprocessor, and hard disk. Use equipment or
controllers. At the same time, an interrupt vector table is created in the 0x000-OxFFF area at the beginning of the
memory, and these interrupt requests are mapped to the interrupt vector number starting from 0x08, as shown in
Table 2-2.

Timer TRQO —>IR0O
Keyboard TRQL —> ng INT >{INTR
Casecade Int IRQ2 — —>—>
Serial 2 IRQ3 ——>{IR3  8259A CPU
Serial 1 TRQ4 —>|IR4  Master
Parallel 2  IRQ5 —JIR5 Data D7-DO
Floppy disk TRQ6 —>|[R6 |
Parallel 1  IRQ7 —>|IR7
Address 0x20-0x3f ;[IE:)é(S)

CAS2-0

<7
Real Clock IRQS —>{[R0 CAS2-0
INTOAH IRQ9 >|IR1 INT
Reserved TRQ10 —|IR2
Reserved IRQ11 —)%Ez 2%591\
PS2 mouse  IRQ12 —> ave
Coprocessor IRQ13 —]IR5 | —
Harddisk  IRQl4 —>|IR6
Reserved IRQ15 —|IR7
Address 0xA0-Oxbf ,}ég

Figure 2-6 PC/AT microcomputer connected 8259 control system

However, since the interrupt number 0x00--Ox1F belongs to Intel specifically reserved for the CPU, these
BIOS settings conflict with Intel's requirements. To solve this problem, the Linux operating system does not
directly use these interrupt numbers set by the BIOS. At power-on startup, the Linux operating system will re-set
the 8259A during kernel initialization, mapping all system hardware interrupt request numbers to 0X20 and above
interrupt numbers. See the subsequent sections for a detailed description of how the interrupt controller works and
how to program it.

Table 2-2 Hardware request interrupt number set by ROM BIOS at power on

Interrupt number o
IRQ number Usage description
Set by the BIOS
IRQO 0x08 (8) 8250 issued 100HZ clock interrupt
IRQ1 0x09 (9) Keyboard interrupt
IRQ2 0x0A (10) The slave chip's interrupt
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IRQ3 0x0B (11) Serial port 2

IRQ4 0x0C (12> Serial port 1

IRQ5 0x0D (13) Parallel port 2

IRQ6 Ox0E (14) Floppy disk drive

IRQ7 OxOF (15) Parallel port 1

IRQ8 0x70 (112> Real-time clock interrupt
IRQ9 0x71 (113) Change to INT 0x0A

IRQ10 0x72 (114) Reserved

IRQ11 0x73 (115) Reserved (network interface)
IRQ12 0x74 (116) PS/2 mouse port interrupt
IRQ13 0x75 (117) Math coprocessor interrupt
IRQ14 0x76 (118) Hard disk controller interrupt
IRQ15 0x77 (119 Reserved

2.4.2 DMA controller

As mentioned earlier, the main function of the DMA controller is to enhance the performance of the system
by letting external devices transfer data directly to memory. Usually it is implemented by the Intel 8237 chip or its
compatible chip on the machine. By programming the DMA controller, data transfer between peripherals and
memory can be performed without CPU control. So during data transfer, the CPU can do other things.

In the PC/AT machine, two 8237 chips are used, so the DMA controller has 8 independent channels available.
The last four of these are 16-bit channels. The floppy disk controller is specifically designated to use DMA
channel 2. You must first set it before using a channel. This involves operations on three ports, the page register
port, the (offset) address register port, and the data count register port. Since the DMA register is 8-bit, and the
address and count value are 16-bit values, each needs to be sent twice.

2.4.3 Timer/counter

The Intel 8253/8254 is a Programmable Interval Timer (PIT) chip designed to handle precise time delays in
computers. The chip provides three independent 16-bit counter channels. Each channel can work in different
modes of operation, and these modes of operation can all be set using software. One way to perform a delay in
software is to execute a loop operation statement, but doing so consumes CPU time. If the 8253/8254 chip is used
in the machine, the programmer can configure the 8253 to meet its own requirements and use one of the counter
channels to achieve the desired delay. After the time delay expires, 8253/8254 will send an interrupt signal to the
CPU.

For the PC/AT and its compatible microcomputer system, the 8254 chip is used. The three timer/counter
channels are used for time-of-day clocked interrupts, dynamic memory DRAM refresh timing circuits, and host
speaker tone synthesis. The Linux 0.12 operating system only resets channel 0 so that the counter operates in
mode 3 and sends a signal every 10 milliseconds to generate an interrupt request signal (IRQO). The interrupt
request generated at this interval is the pulse of the Linux 0.12 kernel. It is used to periodically switch the
currently executed task and count the amount of system resources (time) used by each task.

2.4.4 Keyboard controller

The keyboard we are using now is a PC/AT compatible keyboard from IBM in 1984. It is usually called an
AT-PS/2 compatible keyboard and has 101 to 104 buttons. There is a processor (Intel 8048 or compatible chip) on
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the keyboard, which is called a keyboard encoder. It is used to scan and collect the status information (ie scan
code) of all key presses and release, and sends it to the keyboard controller on the main board of the host
computer. . When a key is pressed, the scan code sent by the keyboard is called Make code, or simply called the
connect code; the scan code sent when a pressed key is released is called disconnected. Break code, or simply
break code.

The host keyboard controller is specifically designed to decode the received keyboard scan code and send the
decoded data to the operating system's keyboard data queue. Because the on and off codes of each key are
different, the keyboard controller can determine which key the user is operating based on the scan code. The on
and off codes of all the keys on the entire keyboard form a scan code set of the keyboard. According to the
development of computers, there are currently three sets of scan codes available. They are:

B The first set of scan codes -- The original XT keyboard scan code set. The current keyboard has rarely

sent such scan codes;

B The second set of scan codes -- The default scan code set used by modern keyboards, commonly

referred to as the AT keyboard scan code set;

B The third set of scan codes -- PS/2 keyboard scan code set. The scan code set used by the original IBM

launch of the PS/2 microcomputer has rarely been used.

The AT keyboard sends the second set of scan codes by default. In spite of this, the host keyboard controller
will still convert all received second keyboard scan codes into the first scan code for compatibility with PC/XT
software, as shown in Figure 2-7. Therefore, we usually only need to know the first set of scan codes when
programming keyboard controllers. This is also the reason why only the XT keyboard scan code set is given when
it comes to keyboard programming.

First set scan codes Seconde set scan codes

/ PC Keyboard /

Interface <: Control lor [€—— (LI

Figure 2-7 Keyboard controller conversion of scan code set

Keyboard controllers typically use Intel 8042 single-chip microprocessor chips or their compatible circuits.
Today's PCs have integrated the keyboard controller in the motherboard chipset, but the functionality is still
compatible with controllers that use the 8042 chip. The keyboard controller receives the 11-bit serial format data
sent from the keyboard. The first bit is the start bit, the second 2-9 bits are the 8-bit keyboard scan code, the 10th
bit is the parity check bit, and the 11th bit is the stop bit. See the description of the serial control card in the next
section. After receiving the 11-bit serial data, the keyboard controller converts the keyboard scan code into a
PC/XT standard keyboard-compatible system scan code, and then sends an interrupt request to the CPU through
the IRQ1 pin of the interrupt controller. When the CPU responds to the interrupt request, the keyboard interrupt
handler is invoked to read the XT keyboard scan code in the controller.

When a key is pressed, we can receive an XT keypad access code from the keyboard controller port. This
scan code only indicates that the key at a location on the keyboard was pressed, but it has not yet been mapped to
a character code. The connection code is usually one byte wide. For example, the key-on code for the key "A" is
30 (OX1E). When a pressed key is released, a break code is received from the keyboard controller port. For the XT
keyboard (the scan code received by the keyboard controller programming port), the disconnection code is the
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connection code when its connection code plus 0x80, that is, the most significant bit (bit 7) is set. For example,
the break code for the above "A" key is 0x80 + Ox1E = Ox9E.

But for those newly added (“extended™) AT keyboard keys (such as the right Ctrl key and the right Alt key,
etc.) for PC/XT standard 83-key keyboards, their on and off scan codes usually have 2 to 4 bytes, and the first
byte must be OXEQ. For example, pressing the non-extended Ctrl key on the left produces a 1-byte passcode 0x1D,
and pressing the Ctrl key on the right produces an extended 2-byte pass code 0XEQ, 0x1D. Corresponding break
codes are OxEQ, 0x9D. Table 2-3 shows several examples of turning on and off scan codes. In addition, the
complete first set of scan codes is also given in the appendix.

Table 2-3 Example of the first scan code set received on the keyboard controller port

Pressed key Connect scan code Break scan code Description
A Ox1E 0x9E Non-expanding ordinary keys
9 O0x0A 0x8A Non-expanding ordinary keys
Function key F9 0x43 0xC3 Non-expanding ordinary keys
Arrow key right 0xe0, 0x4D 0xe0, 0XCD Extended keys
Right Ctrl key 0xe0, 0x1D 0xe0, 0x9D Extended keys
Left Shift + G 0x2A, 0x22 OxAA, 0xA2 Press and release Shift first

In addition, the output port P2 of the keyboard controller 8042 is used for other purposes. The P20 pin is used
to implement the reset operation of the CPU, and the P21 pin is used to control the opening of the A20 signal line.
When the output port bit 1 (P21) is 1, it turns on (gates) the A20 signal line, and 0 disables the A20 signal line.
Today's motherboards no longer include a separate 8042 chip, but other integrated circuits on the motherboard
will emulate the functionality of the 8042 chip for compatibility purposes. So now the keyboard programming is
still using the 8042 programming method.

2.45 Serial control card

1. Asynchronous serial communication principle

Two computers/equipment exchange data, ie communication, must use the same language as people talk. In
computer communication terminology, we refer to the "language" between a computer/device and a
computer/device as a communication protocol. The communication protocol specifies the format for transmitting
a unit of valid data length. Usually we use the term "frame" to describe this format. In order to allow the
communication parties to determine the order of sending/sending and to perform some error detection operations,
in addition to the necessary data, other information used for synchronization and error detection is also included in
the transmitted one frame of information, for example, before the start of transmission of the data information.
Send the start/synchronization or communication control information first, and then transmit some verification
information after sending the required data information, as shown in Figure 2-8.

Sync info Data payload Check info .

Figure 2-8 The general structure of communication frames
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Serial communication refers to a communication method in which bit-bit data streams are transmitted one bit
at a time on a line. Serial communication can be classified into asynchronous and synchronous serial
communication. The main difference between them is the difference in the length of the communication units or
frames that are synchronized during transmission. Asynchronous serial communication transmits a character as a
communication unit or a frame, and synchronous serial communication transmits a sequence of a plurality of
characters or bytes as one frame of data. If we use the dialogue between people as an analogy, then asynchronous
communication is like the slow speed of conversation between the two parties. When speaking, a word is “worded
out” and it can be paused for any length of time after each word is spoken. Synchronous communications, on the
other hand, are like conversations between two parties in a consistent sentence. It can be seen that if we actually
reduce the transmission unit to one bit (with letters!), then one-character asynchronous serial communication can
also be regarded as a synchronous transmission of simultaneous transmission clock signals. way of
communication.

2. Asynchronous serial transmission format

The frame format of asynchronous serial communication transmission is shown in Figure 2-9. Transmission
of a character consists of a start bit, a data bit, a parity bit, and a stop bit. The start bit plays a role of
synchronization and the value is always 0. The data bits are the actual data transmitted, ie a one-character code. Its
length can be 5-8 bits. Parity bit is optional, set by the program. The stop bit is always 1, which can be set by the
program to 1, 1.5, or 2 bits. Both parties must be set to the same format before communications begin sending
information. If it has the same number of data bits and stop bits. In the asynchronous communication specification,
the transmission 1 is called a MARK and the transmission 0 is called a SPACE. So we use these two terms in the
following description.

A character frame

r A
DO D1 D2 D3 D4 D5 D6 D7

MARK
1 11]0 [o/tjo/1]0/1{0/1)0/1|0/1|0/1|0/1]0/1} 1 1 1 1]0
SPACE
— _/
/ ~ / —~—
Start bit Data bits Parity bit Stop bits

Figure 2-9 Asynchronous serial communication character transmission format

When there is no data transmission, the sender is in the MARK state, and sends 1 continuously. If it is
necessary to send data, the sender needs to first send a space start bit of the bit interval. After receiving the space
number, the receiver starts to synchronize with the sender and then receives the subsequent data. If the parity bit is
set in the program, the parity bit needs to be received after the data transmission. Last is the stop bit. After a
character frame is sent, the next character frame may be sent immediately, or the password may be temporarily
sent, and the character frame may be sent after a moment.

When receiving a character frame, the receiver may detect one of three errors: (1) Parity error. At this point,
the program should ask the other party to resend the character; (2) An overspeed error. This error occurs because
the program fetches characters at a slower rate than the receiving speed. At this point you should modify the
program to speed up the fetching of the character frequency; (3) The frame format is incorrect. This error occurs
when the format information requested to be received is incorrect. For example, the empty number was received
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when the stop bit should be received. Usually this kind of error is caused by the difference in frame format
between the two parties except the line interference.
3. Serial controller

To achieve serial communication, PCs are usually equipped with two RS-232C-compliant serial interfaces
and are processed using a serial controller consisting of a Universal Asynchronous Receiver/Transmitter (UART).
Send and receive serial data. The serial interface on the PC usually uses a 25-pin or 9-pin DB-25 or DB-9
connector, which is mainly used to connect MODEM devices to work. Therefore, the RS-232C standard specifies
many MODEM dedicated interface pins.

Previous PCs all use National Semiconductor's NS8250 or NS16450 UART chips. Today's PCs use the
16650A and its compatible chips, but are compatible with the NS8250/16450 chips. The main difference between
the NS8250/16450 and the 16650A is that the 16650A chip also supports FIFO transfer. In this mode, the UART
can cause an interrupt only after it has received or transmitted a maximum of 16 characters, which can relieve the
system and CPU. When the PC is powered on, the RESET signal passes through the MR pin of the NS8250 to
reset the UART internal registers and control logic. If you want to use the UART afterwards, you need to perform
initial programming operations to set the UART's operating baud rate, data bits, and operating mode.

2.4.6 Display control

IBM PC/AT and its compatible computers can use color and monochrome video cards. IBM s
earliest PC video system standards include monochrome MDA and color CGA standards, as well as
EGA and VGA standards. All of the later advanced graphics cards (including today’ s AGP graphics
cards) have extremely high graphics processing speeds and smart acceleration processing
capabilities, but they all support these initial standards. The Linux 0. 1x operating system uses
only the text display methods supported by these standards.

1. MDA display standard

The monochrome display adapter MDA (Monochrome Display Adapter) only supports black and white
display. And only supports the unique text character display mode (BIOS display mode 7). Its
screen display specifications are 80 columns x 25 lines (column number x = 0..79; line number
y =0..24), and a total of 2000 characters can be displayed. Each character also has 1 attribute
byte, so it takes 4 KB to display one screen (one frame). The even address byte stores the character
code, and the odd address byte stores the display attribute. The MDA card is configured with
S8KB of display memory. 8 KB space (0xb0000 —— 0xb2000) starting from 0xb0000 is occupied in the
memory address range of the PC. If the display screen number is video num lines = 25; the number
of columns is video num colums = 80, then the position of the characters and attributes located

at the screen column row values x, y in memory is:

Character byte position = 0xb0000 + video num colums * 2 * y + x * 2;
Attribute byte position = Character byte position + 1;

In the MDA monochrome text display mode, the attribute byte format of each character is shown
in Table 2-4. Among them, D7 is set to 1 will cause the character to flash; D3 is set to 1 to
highlight the character. It is basically the same as the attribute byte of the color text character
in Figure 2-10, but with only two colors: white (0x111) and black (0x000). Their combined effect

is shown in the table.
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Table 2-4 Monochrome display character attribute byte settings

Background | Foreground .
Attribute value )
color color display effect example
No flash low
D6D5D4 D2D1D0
0 0O 0 0O 0x00 Characters are not visible.
White characters displayed on a black
0 0O 111 0x07 . Normal
background (normal display).
White underlined characters displayed on a .
0 0O 0 0 1 0x01 Underline
black background.
Black characters displayed on a white
111 0 0 O 0x70 . Reverse
background (inverse).
111 111 0x77 Show white squares. |

2. CGA display standard

The color graphics adapter CGA (Color Graphics Adapter) supports seven kinds of color and
graphics display (BIOS display 0——6). In the 80 column X 25 column text character display mode,
there are two monochrome and 16 color display modes (BIOS display mode 2——3). The CGA card comes
standard with 16KB of display memory (occupying the memory address range 0xb8000 —— 0xbc000),
so a total of 4 frames of display information can be stored therein. Similarly, in the 4KB display
memory per frame, the even address byte stores the character code, and the odd address byte stores
the character display attribute. However, only SKB of display memory (0xb8000 —— 0xba000) is
used in the console. ¢ program. In the CGA color text display mode, the definition of the attribute

byte format for each display character is shown in Figure 2-10.

Attribute byte

D7 D6 D5 D4 D3 D2 D1 DO

Blink Highlight

B|I.G|B|

——

Background | Foreground Underlined
for mono card

As with the monochrome display, D7 is set to 1 to flash the display character; D3 is set
to 1 to highlight the character; bits D6, D5, D4 and D2, D1, and DO can be combined to create

8 colors. The combination of foreground and high-brightness bits can display the other 8 character

Figure 2-10 Character attribute format definition

colors. The color of these combinations is shown in Table 2-5.

Table 2-5 Foreground color and background color (left half)

IRGB Value Color name IRGB Value Color name
0000 0x00 Black 1000 0x08 Dark grey
0001 0x01 Blue 1001 0x09 Light blue
0010 0x02 Green 1010 0x0a Light green
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0011 0x03 Cyan 1011 0x0b Light cyan
0100 0x04 Red 1100 0x0c Light red
0101 0x05 Magenta 1101 0x0d Light magenta
0110 0x05 Brown 1110 0x0e Yellow
0111 0x07 Light grey 1111 oxof White

3. EGA/VGA display standard

Enhanced Graphics Adapters (EGAs) and Video Graphics Adapters (VGAs) also support other
display enhancements in graphics, in addition to or in addition to MDA and CGA support. In the
MDA and CGA compatible display mode, the starting position and range of the occupied memory address
are the same. However, EGA/VGA comes standard with at least 32KB of display memory. The physical

memory address space starting from 0xa0000 is occupied graphically.

2.4.7 Floppy disk and hard disk controller

The floppy disk control subsystem of the PC consists of a floppy disk and a floppy disk drive. Because
floppy disks can store programs and data and are easy to carry, floppy disk drives have long been one of the
standard configuration devices on PCs. The hard disk also consists of a disk and a drive, but usually the hard
disk's metal disk is fixed in the drive and cannot be removed. Because the hard disk has a large storage capacity,
and read and write speed is very fast, it is the largest external storage device in the PC, usually also called external
storage. Both floppy disks and hard disks use magnetic media to store information and have a similar storage
operation. So here we use the hard disk as an example to briefly explain how they work.

The basic way to store data on a disc is to use a layer of magnetic media on the surface of the disc after
magnetization. Floppy disks usually use polyester film as the substrate, while hard disk disks usually use metal
aluminum alloy as the substrate. A floppy disk contains a polyester film disc. The upper and lower heads are used
to read and write data on both sides of the disc. The disc rotation speed is about 300 rpm. For a floppy disk with a
capacity of 1.44MB, the two sides of the disk are divided into 80 tracks, each track can store 18 sectors of data, so
there are 2 X 80 X 18 = 2880 sectors. Table 2-6 shows the basic parameters of several common types of floppy
disks.

Table 2-6 Common floppy disk basic parameters

Disk type and Total Rotate speed | Data transmission rate
] tracks/face Sectors/tracks .
capacity sectors (r/min) (Kbps)
5% inch 360KB 40 9 720 300 250
3% inch 720KB 80 9 1440 360 250
5% inch 1.2MB 80 15 2400 360 500
3% inch 1.44MB 80 18 2880 360 500
3% inch 2.88MB 80 36 5760 360 1000

The hard disk usually includes at least two or more metal disks, and thus has more than two read/write heads.
For example, there are four physical heads for a hard disk that contains two disks, and eight read and write heads
for a disk that contains four disks. See Figure 2-11. The hard disk rotation speed is usually fast at 4500 rpm to
10,000 rpm, so the hard disk data transfer speed is usually up to several megabits/second.
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1 sector

1 track

head

Figure 2-11 Typical hard disk internal structure with 2 disks

The magnetic head on the disk surface has a read coil and a write coil, respectively. During the read data
operation, the head is first moved to a position on the rotating disk. Since the magnetic disk rotates, the magnetic
medium moves at a uniform speed with respect to the magnetic head, so the magnetic head actually cuts magnetic
lines of force on the magnetic medium. As a result, current is generated in the reading coil due to induction.
Depending on the direction of the remanent state of the disk surface, the direction of the current induced in the
coil is also different, so that 0 and 1 data recorded on the disk are read out, so that the bit stream can be
sequentially read out from the disk. Since each track read by the head has a specific format for storing information,
the disk circuit can discriminate and read the data in each sector on the track by recognizing the format in the read
bit stream. See Figure 2- 12 shows. Among them, GAP is an interval field used for isolation. Usually GAP is 12
bytes of 0. The address field of each sector address field stores the cylinder number, head number (face number),
and sector number of the relevant sector, so a sector can be uniquely determined by reading the address
information in the address field.

»
»

one track

GAP | Sector 1 | Sector 2 =ax [Sector n—1| Sector n | GAP

| syn | Addr [chk] cap | syn | 512 bytes data | chk | P |
(N ~ v \ ~ /
Address field Data field

Figure 2-12 Disc track format

To read and write data on disks, you must use a disk controller. The disk controller is a logical interface
circuit between the CPU and the driver. It receives request commands from the CPU, sends seeks, read/write, and
control signals to the driver and controls and converts the data flow patterns. The data transferred between
controller and driver includes the sector address information and timing and clock information in Figure 2-12. The
controller must separate these address information and some encoding, decoding and other control information
from the actual read/write data. In addition, the data transfer with the driver is a serial bit stream, so the controller
needs to convert between parallel byte data and serial bit stream data.

The FDC (Floppy Disk Controller) in the PC/AT machine uses the NEC pPD765 or its compatible chip. It is
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mainly used to receive commands issued by the CPU and output various hardware control signals to the driver
according to the command requirements, as shown in Figure 2-13. When performing a read/write operation, it
needs to perform data conversion (string-parallel), encoding and verify operations, and constantly monitor the
operating state of the drive.

- - Internal bus
Main status Register P

Command Register
Parameters Register <::>
Data Register

Control Register C::>Interface
Control <:::>iifffi]
<::>| Data buffer K::>

Read/Write
<::> Control logic : :

Drive

To system bus

Figure 2-13 Disk controller internals

The programming process for the disk controller is to set the contents of the relevant registers in the
controller through the 1/0 port and obtain the result information of the operation through the register. As for the
transmission of sector data, the floppy disk controller is different from the PC/AT hard disk controller. The floppy
disk controller circuit uses DMA signals and therefore requires the use of a DMA controller for data transfer. The
AT hard disk controller uses high-speed data blocks for transmission without the intervention of a DMA controller.
Because floppy disks are relatively vulnerable to damage (mould or scratches), floppy disk drives have not been
deployed in computers at present. Instead, they use larger-capacity and more portable USB flash drives.

2.5 Summary

Hardware is the basic platform for operating systems. Understanding the hardware environment in which the
operating system runs is a necessary condition for an in-depth understanding of the operating system on which it
is running. This chapter briefly introduces each major part of the microcomputer based on the hardware
composition of traditional microcomputers. In the next chapter, we describe the two assembly language syntaxes
and related compilers used by the Linux kernel from a software perspective, and also introduce the contents of the
GNU gcc syntax extensions used by the kernel.
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3 Kernel programming language and environment

The language compilation process is the process of converting high-level languages that humans can
understand into binary machine instructions that computer hardware can understand and execute. This conversion
process usually generates some code that is not very efficient, so some of the code that requires high operating
efficiency or has a large impact on performance is usually written directly in low-level assembly language, or the
assembler generated by high-level language compilation. Then manually modify the optimization process. This
chapter describes the programming language, object file format, and compilation environment used in the Linux
0.12 kernel. The main goal is to provide the assembly language and GNU C language extension knowledge
needed to read the Linux 0.12 kernel source code. First of all, it introduces the syntax and usage of as86 and GNU
as assembler in more detail. Then it uses C language extensions in kernel source code such as inline assembly;,
statement expressions, register variables, and inline functions in GNU C language. Introduced, and detailed
description of the mutual calling mechanism between C and assembly functions. Because understanding the object
file format is one of the most important prerequisites for understanding how the assembler works, when
introducing two assembly languages, the basic format of the target file will be briefly described first, and Linux
0.12 will be given in more detail later in this chapter. The a.out object file format used in the system. Finally, the
use of the Makefile is briefly described.

The content of this chapter is reference information when reading the Linux kernel source code. So you can
take a brief look at the contents of this chapter, and then read the next section, and then refer back to this chapter
when you encounter problems.

3.1 as86 Assembler

Two assemblers are used in Linux 0.1x systems. One is an as86 assembler that produces 16-bit code, using
the companion 1d86 linker; the other is the GNU assembler gas(as), which uses the GNU Id linker to link the
resulting object files. Here we first describe how to use the as86 assembler, and the use of the assembler is
described in the next section.

as86 and 1d86 are Intel 8086, 80386 assembler compilers and linkers written by Bruce Evans, one of the main
developers of MINIX-386. Linus already ported it to a Linux system when he first started developing the Linux
kernel. Although it can compile 32-bit code for the 80386 processor, the Linux system uses it only to create the
16-bit boot boot sector program boot/bootsect.s and the binary setup code for the initial setup program
boot/setup.s in real mode. The compiler is fast and compact, and has some features that GNU gas does not have,
such as macros and more error detection methods. However, the compiler's syntax is incompatible with the syntax
of the GNU as assembly compiler and more closely resembles the syntax of assemblers such as Microsoft's
MASM, Borland's Turbo ASM, and NASM. These assemblers all use Intel's assembly language syntax (eg, the
order of the operands is the opposite of GNU as, etc.).

The syntax of as86 is based on the assembly language syntax of the MINIX system, while the assembly
syntax of the MINIX system is based on the assembler syntax of the PC/IX system. PC/IX was a UN*X operating
system that was running on an Intel 8086 CPU long ago. Andrew S. Tanenbaum developed the MINIX system on
a PC/IX system.
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Bruce Evans is one of the major revision programmers for the 32-bit version of the MINIX operating system.
He is a close friend of Linux founder Linus Torvalds. In the early days of Linux kernel development, Linus
learned a lot from Bruce Evans about UNIX-like operating systems. The inadequacy of the MINIX operating
system is also the result of two good friends discussing each other. These disadvantages of MINIX are just one of
the main drivers that inspired Linus to develop a new concept operating system on the Intel 80386 architecture.
Linus once said: "Bruce is my hero", so we can say that the birth of the Linux operating system and Bruce Evans
also have a close relationship.

The source code for this compiler and linker can be downloaded from the FTP server ftp.funet.fi or from the
website www.oldlinux.org. On modern Linux systems, RPM packages containing as86/1d86 can be installed
directly, for example dev86-0.16.3-8.i386.rpm. Since the Linux system only uses as86 and 1d86 to compile and
link the two 16-bit assemblers bootsect.s and setup.s mentioned above, only the assembler syntax and assembly
commands (assembler) used in these two programs are described here. The role and use of indicator).

3.1.1 as86 assembly language syntax

The assembler is designed to compile low-level assembly language programs into binary programs or object
files containing machine code. The assembler will compile an input assembly language program (such as srcfile)
into an object file (objfile). The basic format of the command line for assembly is:

as [options] —o objfile srcfile

The options are used to control the compilation process to produce the target file with the specified format
and settings. The input assembly language program srcfile is a text file. The contents of the file must consist of a
series of lines of text that end with a newline character. Although GNU as can use semicolons to include multiple
statements on a single line, it is common to include only one statement per line when programming assembly
language programs.

Statements can be empty lines that contain only spaces, tabs, and line breaks, as well as assignment
statements (or definition statements), pseudo-operator statements, and machine instruction statements. Assignment
statements are used to assign a value to a symbol or identifier. It consists of an identifier followed by an equal sign
followed by an expression, for example: "BOOTSEG = 0x07C0". Pseudo-operator statements are indicators used
by the assembler and usually do not generate any code. It consists of pseudo-opcodes and zero or more operands.
Each opcode begins with a dot character .. The dot character "' itself is a special symbol that represents the
position counter during compilation. The value is the address of the first byte of the machine instruction where the
dot symbol appears.

The machine instruction statement is a mnemonic of an executable machine instruction and consists of an
operation code and O or more operands. In addition, any statement can be preceded by a label. The label consists
of an identifier followed by a colon ":'. During compilation, when the assembler encounters a label, the current
position counter value is assigned to this label. Therefore, an assembly statement usually consists of three fields:
label (optional), instruction mnemonic (instruction name), and operand. The label is located in the first field of an
instruction. It represents the address of its location and usually indicates the destination of a jump instruction.
Finally, you can also follow the comment section that starts with the comment.

The object file objfile generated by the assembler compilation usually contains at least three segments or
sections, namely, a text segment (.text), a data segment (.data), and an uninitialized data segment (.bss). A text
segment (or a code segment) is an initialized segment that usually contains program execution code and read-only
data. The data segment is also an initialized segment that contains read/write data. The uninitialized data segment
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is an uninitialized segment. Usually the output object file generated by the assembler will not reserve space for the
segment, but the operating system will initialize the contents of the segment to 0 when the object file is linked into
the execution program. During compilation, statements that generate code or data in assembly language programs
generate code or data in one of these three segments. Compiled bytes are stored starting from the ".text' section.
We can use segment control pseudo operators to change the written segment. The target file format will be
described in detail in the section "Linux 0.12 Object File Format" below.

3.1.2 as86 assembly programs

Below we use a simple framework sample program boot.s to illustrate the structure of the as86 assembler and
the syntax of the statements in the program, and then give a compilation link and run method. Finally, use the as86
and 1d86 usage methods and compilation options. The sample program is shown below. This example is a
framework program for bootsect.s that compiles and generates the boot sector code. In order to demonstrate the

use of certain statements, deliberately added a meaningless line 20 statements.

el el el el el
|® |Cﬂ |>-l> |CAD|N|>—‘|OI©IOOI\IIG)ICTIl%lCOlNl»—‘

!

! boot.s —

bootsect. s framework program. Replace 1 character in the string msgl

! with code 0x07 and display it on the first line of the screen.

.globl begtext, begdata, begbss,
. text

endtext

enddata, endbss ! Global id used for 1d86 links

I Text segment

begtext:

.data ! Data segment

begdata:

. bss ! Uninitialized data segment
begbss:

. text I Text segment

BOOTSEG = 0x07c0

entry start

! Original segment address for the loaded bootsect code

Inform the linker the program starts executing from here

start:
Jjmpi go, BOOTSEG ! Jump between segments. INITSEG indicates the jump
! section address, the label go is the offset address.

17 go: mov ax, cs ! The value of the segment register cs ——>ax is used
18 mov ds, ax ! to initialize the data segment registers ds and es.
19 mov es, ax
20 mov [msgl+17], ah ! 0x07-> Replaces 1 dot in the string and beep once
21 mov cx, #20 ! 20 chars displayed, including cr & 1If
22 mov dx, #0x1004 ! String displayed on screen at line 17, column 5.
23 mov bx, #0x000c | Character display attribute (red)
24 mov bp, #msgl ! Point to a string (required by interrupt call).
25 mov ax, #0x1301 ! Write string and move cursor to the end of the string.
26 int 0x10 ! The BIOS interrupt call 0x10, function 0x13, subfunc 01.
27 loopl: jmp loopl I Dead cycle
28 msgl: .ascii “Loading system ...”! Message to be displayed, total of 20 ASCII characters.
29 .byte 13,10
30 .org 510 ! Indicates statement is stored from address 510 (0x1FE)
31 .word OxAA55 ! Active boot sector flag, used by the BIOS.
32 . text
33 endtext:
34 .data
35 enddata:
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36 .bss
37 endbss:

We first introduce the function of the program, and then explain in detail the role of each statement. This
program is a simple boot sector program. Compile and link the generated executable program can be placed in the
first sector of the floppy disk directly used to boot the computer. After starting, the red string "Loading system .."
is displayed at line 17 and column 5 of the screen, and the cursor moves down one line. Then the program loops
endlessly on code line 27.

The first three lines of the program are comment statements. In an as86 assembly language program,
statements beginning with an exclamation mark " or a semicolon *;" are followed by comment text. The comment
statement can be placed after any statement, or it can start with a new line.

".globl" on line 4 is an assembly directive (or assembly directive, pseudo-operator). Assembler indicators
start with a single character '.' and do not generate any code at compile time. Assembler directives consist of a
pseudo opcode followed by zero or more operands. For example, 'globl' on the 4th line is a pseudo-opcode, and
the labels following it 'begtext, begdata, begbss' and so on are its operands. The label is an identifier followed by a
colon, for example 'begtext:' on line 6. However, there is no need to take a colon when referring to a label.

Usually an assembler supports many different pseudo-operators, but the following only describes the
commonly used as86 pseudo-operators used in the Linux system bootsect.s and setup.s assembly language
programs.

The *. globl’ pseudo-operator is used to define that subsequent label identifiers are external
or global and are mandatory to introduce even if they are not used

In addition to the three labels defined on lines 5 to 11, three pseudo operators are defined: ".text', .data’, and
"bbs'. They respectively correspond to the assembler program to generate 3 segments in the target file, namely the
text segment, the data segment, and the uninitialized data segment. ".text' is used to identify the start position of
the text segment and switch to the text segment; '.data’ is used to identify the starting position of the data segment,
and the current segment is switched to the data segment; and "bbs' is used Identifies the beginning of an
uninitialized data segment and changes the current segment to the bbs segment. So lines 5--11 are used to define a
label in each segment, and then switch to the text segment to start writing the following code. Here, all three
segments are defined in the same overlapping address range, so the sample program is not actually segmented.

Line 12 defines an assignment statement “BOOTSEG = 0x07c0”. The equal sign = (or the symbol
"EQU’) is used to define the value represented by the identifier BOOTSEG, so this identifier
can be referred to as a symbolic constant. This value, like the wording in C, can be used in
decimal, octal, and hexadecimal.

The identifier 'entry' on the 14th line is a reserved key for forcing the linker 1d86 to include in the generated
executable file a label 'start' designated thereafter. Usually when linking multiple object files to generate an
executable file, you should specify an entry label in the assembler with the keyword entry for debugging purposes.
But in our example and in the Linux kernel boot/bootsect.s and boot/setup.s assembler we can omit this keyword
because we don't want to include any symbol information in the generated pure binary executable file.

On line 16 is an inter—segment far jump statement, which jumps to the next instruction. When
the BIOS loads the program into physical memory at 0x7c00 and jumps to it, the default value
of all segment registers (including CS) is 0, that is, CS:IP=0x0000:0x7c00. Therefore, the
inter—segment jump statement is used here to assign the segment value 0x7c0 to CS. After the
statement is executed, CS:IP = 0x07C0:0x0005. The next two statements assign values to the DS
and ES segment registers, respectively, so that they point to the 0x7c0O segment. This makes it

easy to address data (strings) in the program.
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The MOV instruction on line 20 is used to store the high byte (0x07) of the 0x7cO segment value in the ah
register to the last "' position in the memory string msgl. This character will cause the BIOS interrupt to beep
when the string is displayed. This statement is mainly used to illustrate the use of indirect operands. In as86,
indirect operands require square bracket pairs. Some other addressing methods have the following:

! Direct register addressing. Jump to the address specified by bx, that is, copy bx to the IP.

mov bx, ax
jmp bx
! Indirect register addressing. The bx specifies the memory location as the address of the jump.
mov [bx], ax
jmp [bx]

! Put the immediate number 1234 into ax. Put the msgl address value in ax.
mov ax, #1234

mov ax, #msgl
! Absolute addressing. Put the contents of the memory address 1234 (msgl) into ax.
mov  ax, 1234

mov  ax,msgl
mov  ax, [msgl]
! Index addressing. Put the value at the memory location indicated by the second operand into ax.
mov  ax, msgl[bx]
mov  ax, mgsl[bx*4+si]

The statements on lines 21-25 are used to put immediate data in the appropriate registers. The # must be
preceded by an immediate number, otherwise it will be used as a memory address to make the statement an
absolute addressing statement. See the example above. In addition, when putting the address value of a label (such
as msgl) into a register, it must be preceded by a '#, otherwise it will become the register at the address of msg1!

Line 26 is the BIOS screen display interrupt call int 0x10. Its function 19, sub-function 1 is used here. The
purpose of this interrupt is to write a string (msg1) to the screen at the specified location. The register cx is a string
length value, dx is a display position value, bx is a display used character attribute, and es:bp points to a character
string.

Line 27 is a jump statement that jumps to the current instruction. So this is an endless loop statement. The
endless loop statement is used here to allow the displayed content to stay on the screen without being deleted.
Dead-loop statements are commonly used when debugging assembler programs.

Lines 28-29 define the string msgl. Defining a string requires the use of the pseudo-operator ".ascii* and
enclosing the string in double quotes. The pseudo operator ".asciiz' also automatically adds a NULL(0) character
after the string. In addition, line 29 defines carriage return and line feed (13, 10) characters. Defining characters
requires the use of the pseudo-operator '.byte' and enclosing characters in single quotes. For example: "'D™. Of
course, we can write the ASCII code of characters directly as in the example.

The pseudo-operator statement ".org" on line 30 defines the location of the current assembling. This statement
will adjust the position counter value of the current segment during compilation of the assembler to the value
given on the pseudo-operator statement. For this example program, this statement sets the location counter to 510
and places a valid boot sector flag word OXAA55 here (line 31). The pseudo-operator .word' is used to define a
double-byte memory object (variable) at the current location, which can be followed by a number or an expression.
Since there is no code or data, we can determine from this that the executable compiled by boot.s should be
exactly 512 bytes.

Lines 32--37 place three more labels in each of the three segments. Used to indicate the end position of three
segments. This setting can be used to distinguish between the start and end of each segment in each module when
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linking multiple target modules. Because both the bootsec.s and setup.s programs in the kernel are separately
compiled and linked, each expecting to generate a pure binary file does not link with other object module files.
Therefore, the pseudo program for each segment is declared in the sample program. The characters (.text, .data,
and .bss) can all be omitted. That is, the lines 4 - 11 and 32 - 37 of the program can all be deleted and the link can
be compiled to produce the correct result.

3.1.3 as86 assembly language program compilation and link

Now we show how to compile the link sample program boot.s to generate the boot sector program we need to
boot. Compiling and linking the above example program requires the following first two commands:

[/root]# as86 -0 —a —o boot.o boot. s // Compile. Generate the target file
[/root]# 1d86 -0 —s —o boot boot. o // link. Remove symbol information.
[/root]# 1s -1 boot*

“TWX——X——X 1 root root 544 May 17 00:44 boot

“Tw——————— 1 root root 249 May 17 00:43 boot.o

“Tw——————— 1 root root 767 May 16 23:27 boot. s

[/root]# dd bs=32 if=boot of=/dev/fd0 skip=1 // Write to a floppy disk or Image file

16+0 records in
16+0 records out
[/root]# _

Among them, the first one uses the as86 assembler to compile the boot.s program to generate the boot.o object file.
The second command uses a linker 1d86 to perform a link operation on the target file, and finally generates a
MINIX structure executable file boot. The option '-0' is used to generate the 8086 16-bit target program; '-a' is
used to specify that code that is compatible with the GNU as and Id parts is generated. The '-s' option is used to
tell the linker to remove the symbol information from the last generated executable. '-0' specifies the name of the
generated executable file.

As can be seen from the filenames listed above using the Is command, the last generated boot program is not
exactly 512 bytes as stated earlier, but is 32 bytes long. These 32 bytes are the structure of the MINIX executable's
header (see the "Creating a Kernel Component” chapter for a detailed structure description). In order to use this
program to boot the machine, we need to manually remove the 32 bytes. There are several ways to remove this
header structure:

B Use the binary editor to delete the first 32 bytes of the boot program and save it;

B Using the as86 compile linker on current Linux systems (eg RedHat 9), which have the option of
generating a pure binary executable without the MINIX header structure, please refer to the online user
manual (man as86) of the relevant system.

B Use the Linux system's dd command.

The third command listed above is to use the dd command to remove the first 32 bytes of the boot, and write
the output directly to the floppy disk image file of the floppy disk or Bochs simulation system. (Please use the
Bochs PC analog system. Refer to the last chapter). If we run this program in the Bochs simulation system, we can
get the screen shown in Figure 3-1.

44



3.1 as86 Assembler

Reset | Pover

Tl

» 1 cpu, SRevision: 1.131 $ SDate: 2005,04,06 18:01:14 §

ta® master: Generic 1234 ATA-2Z2 Hard-Disk (59 MBytes)

| CTRL + Lbutton + Rbutton enables mouse

Figure 3-1 Running the boot program in the Bochs simulation system

3.1.4 as86 and |d86 usage methods and options

The usage methods and options of as86 and 1d86 are as follows:

Usage and options of as:

as [-03agjuw] [-b [binl] [-1m [list]] [-n name] [-o objfile] [-s sym] srcfile

Default settings (Other than the defaults below, other options default to off or none; if you do not
specify the a flag, there will be no output):

-3 Use the 80386 32-bit output;

list Display on standard output;

name The basic name of the source file (that is, does not include the extension after .’ );

The meaning of each option:

-0 Use 16-bit code segments;

-3 Use 32-bit code segments;

-a Open some compatibility options with GNU as, 1d;
-b Generate binary files, followed by the file name;
-g Only global symbols are stored in the object file;

—j Make all jump statements long jumps;

-1 Generate a list file, followed by the list file name;

-m Extend the macro definition in the list;

-n Followed by the module name (in place of the source file name into the target file):
-0 Produce the target file, followed by the target file name (objfile):

-s Produce a symbol file followed by a symbol file name;

-u The undefined symbol as the symbol of the input unspecified segment;

-Ww No warning message is displayed;
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1d linker usage syntax and options:

For version of generating Minix a.out format:
1d [-03Mims[-]] [-T textaddr] [-1lib_extension] [-o outfile] infile..

For version of generating GNU-Minix a.out format:
1d [-03Mimrs[-]] [-T textaddr] [-1lib_extension] [-o outfile] infile..

Default settings (except for the defaults below, other options are off or none by default):
-03 32-bit output;
outfile a.out format output;

-0  Generate a header structure with 16-bit magic numbers, use i86 subdirectory for —1lx option;
-3 Generate a header structure with a 32-bit magic number, use 1386 subdirectory for —1x option;
-M  Display linked symbols on standard output devices

-T  Followed by the text base address (using the format suitable for strtoul);

-i Separate instruction and data segment (I&D) output;

-1x Add the library /local/lib/subdir/libx.a to the linked file list;

-m  Display linked modules on standard output devices

-0 Specify the output file name;

-r  Generate output suitable for further relocations;

-s  Remove all symbols in the target file

3.2 GNU as assembler

The as86 assembler introduced in the previous section is only used to compile the boot/bootsect.s boot sector
program in the kernel and the boot/setup.s setup program in real mode. All other assembly language programs in
the kernel (including those generated by the C language) are compiled with gas and linked with the modules
generated by the C language program. This section describes the use of the assembler syntax and the GNU as
assembler (as assembler) in the Linux kernel based on the 80X86 CPU hardware platform. We first introduce the
syntax of as assembly language programs, and then give the meaning and use of common assembly directives
(indicators). As assembly language program examples with detailed instructions will be given at the end of the
next chapter.

Because many key code requirements of the operating system require high execution speed and efficiency,
about 10% of the key assembly language programs are usually included in an operating system source code. The
Linux operating system is no exception. Its 32-bit initialization code, all interrupt and exception handling interface
programs, and many macro definitions all use as assembly language programs or extended embedded assembly
statements. Whether or not you can understand the functions of these assembly language programs will
undoubtedly become one of the key points for understanding the concrete implementation of an operating system.

When compiling a C program, the GNU gcc compiler first outputs an as assembly language file as an
intermediate result, and then gcc calls the as assembler to compile the temporary assembly language program into
a target file. That is, as the assembler was originally designed to assemble the intermediate assembly language
program generated by gcc, rather than being used as a standalone assembler. Therefore, as assembler also supports
many C language features, including characters, numbers, and constant representation methods as well as
expression forms.

The GNU as assembler was originally developed following the assembler of BSD 4.2. The current as
assembler can be configured to generate many different formats of object files. Although the compiled assembly
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language program is not related to the target file that is used or generated in any format, if the target file format is
involved in the following description, we will describe the a.out target file format adopted in the Linux 0.12
system. .

3.2.1 Compiling as assembly language program

The basic command line format for compiling an assembler program using the as assembler is as follows:

as [ options ] [ —o objfile ] [ srcfile.s ...]

Where objfile is the target file name for the as compile output, and srcfile.s is the input assembly language
program name for as. If you do not use the output file name, then as compiles the default destination file named
a.out. After the as program name, the command line can include compilation options and file names. All options
are free to place, but the result of compiling the filenames is closely related.

A program'’s source code can be placed in one or more files. How the program's source code is split across
several files does not change the program's semantics. The source code of the program is the combined result of
all these files in order. Every time you run the as compiler, it compiles only one source program. But a source
program can consist of multiple text files (the terminal's standard input is also a file).

We can give zero or more input file names on the as command line. As will read the contents of these input
files from left to right. If the parameters at any position on the command line do not have a specific meaning, they
will be treated as an input file name. If no filename is given on the command line, as will attempt to read the input
file content from the terminal or console standard input. In this case, if there is no content to input, you need to
manually type Ctrl-D key combination to tell the as assembler. If you want to explicitly specify the standard input
as an input file on the command line, you need to use the parameter '--',

The output file of as is the binary data file compiled by the input assembly language program, ie the target
file. Unless we specify the name of the output file with the option '-0', as will produce an output file named a.out.
The target file is mainly used as an input file for the linker Id. The object file contains compiled program code,
information that assists Id in producing an executable program, and possibly debugging symbol information. The
a.out object file format used in the Linux 0.12 system will be described later in this chapter.

If we want to compile the boot/head.s assembler separately, we can type the following command on the
command line:

[/usr/src/linux/boot]# as —o head.o head. s
[/usr/src/linux/boot]# 1s —1 head*

-rw-rwxr-x 1 root root 26449 May 19 22:04 head. o
-rw—rwxr—-x 1 root root 5938 Nov 18 1991 head. s
[/usr/src/linux/boot]#

3.2.2 as assembly syntax

In order to maintain compatibility with the gcc output assembler, the assembler uses the AT&T System V
assembler syntax (hereinafter referred to as AT&T syntax). This syntax is very different from the syntax used by
the Intel assembler (Intel syntax for short), and there are several major differences between them:

B In the AT&T syntax, an immediate value is preceded by a character '$'; the register operand name is

preceded by the character percent sign '%'; absolute jump/invoke (relative to the program counter's
jump/invoke) operands To add asterisk *'. Intel assembly syntax does not have these limitations.
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B The order of the source and destination operands used by AT&T syntax and Intel syntax is exactly the
opposite. AT&T's source and destination operands are "source, destination” from left to right. For
example Intel's statement 'add eax, 4' corresponds to AT&T's ‘addl $4, %eax'.

B The length (width) of the memory operand in AT&T syntax is determined by the last character of the
opcode. The operand suffixes 'b', 'w', and 'I' indicate that the memory reference width is 8 bits byte,
16-bit words, and 32-bit long words, respectively. Intel syntax achieves the same purpose by using the
prefixes ‘byte prt', ‘word ptr', and 'dword ptr' before the memory operands. Therefore, Intel's statement
'mov al, byte ptr foo' corresponds to AT&T's statement 'movb $foo, %al'.

B In the AT&T syntax, immediate and far-form calls in the immediate form are 'ljmp/icall $section,
$offset’, while Intel's is 'jmp/call far section:offset'. Similarly, in the AT&T syntax, the far return
instruction 'lret $stack-adjust' corresponds to Intel's 'ret far stack-adjust'.

B The AT&T assembler does not provide support for multi-segment programs because UNIX-like
operating systems require that all code be in one segment.

3.2.2.1 Assembler preprocessing

as assembler has a built-in simple preprocessing function for assembly language programs. This
preprocessing function adjusts and removes extra space characters and tabs; removes all comment statements and
replaces them with a single space or some newline character; converts character constants to their corresponding
values. However, this preprocessing function does not process the macro definition nor handle the function of the
include file. If this function is needed, then the assembly language program can use the uppercase suffix '.S' to
make asc use the gcc CPP preprocessing function.

Since the as assembly language program uses C comment statements (that is, '/*' and "*/"), it also uses the
hash symbol '# as a single-line comment start character, so if the program is not preprocessed before assembly,
then All indicators or commands included in the program that begin with the hash sign '#* are treated as part of the
comment.
3.2.2.2 Symbols, Statements, and Constants

Symbols are identifiers composed of characters, and the valid characters that make up the symbol are taken
from the uppercase and lowercase character sets, numbers, and the three characters '_.$'. Symbols are not allowed
to start with numeric characters and the capitalization is different. There is no limit to the symbol length in as
assembler, and all characters in the symbol are valid. Symbols use other characters (such as spaces, line breaks) or
the beginning of the file to define the beginning and ending points.

The statement ends with a line break or a line break character (';"). The final statement of the file must end
with a newline character.

If you use the backslash character '\' (before the newline) at the end of a line, you can use multiple lines for a
statement. When as reads a backslash plus a newline, it ignores the two characters.

Statements start with zero or more labels, followed by a key symbol that determines the type of statement.
The label consists of a symbol followed by a colon (:"). The key symbols determine the semantics of the rest of
the statement. If the key symbol begins with a "', the current statement is an assembly command (or directive,
indicator). If the key symbol begins with a letter, the current statement is an assembly language instruction
statement. So the general format of a statement is:

label: .directive followed by optional some comments
another label: # This is an empty statement.
instruction operand 1, operand 2,

A constant is a number that can be divided into character constants and numeric constants. Character
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constants can also be divided into strings and single characters; numeric constants can be divided into integers,
large numbers, and floating-point numbers.

Strings must be enclosed in double quotes, and they can be escaped with special characters by using a
backslash '\'. For example, "\\' indicates a backslash character. The first backslash is an escape indicator, which
indicates that the second character is treated as a normal backslash character. The common escape sequences are
shown in Table 3-1. If the backslash is followed by another character, the backslash will not work and the
assembler will issue a warning message.

When using a single character constant in the assembler, you can write a single quotation mark before the
character. For example, ™A' indicates the value 65, and"C" indicates the value 67. The escape codes in Table 3-1
can also be used for single character constants. For example, "\\" indicates a common backslash character
constant.

Table 3-1 As assembler supports escaped character sequences

Escape code Description

\b Backspace, value is 0x08

\f Formfeed, value 0x0C

\n Newline, value 0x0A

\r Carriage-Return value is 0x0D

\NNN Character code represented by 3 octal numbers
\XNN... Hexadecimal number character code

\\ Represents a backslash character

\" Represents a double quote in a string "

Integer numeric constants are represented in four ways, ie binary numbers starting with '0b’ or '0B' ('0-19;
octal numbers starting with '0' ('0-7"); non-zero The decimal number starting with the digit ('0-9") and the
hexadecimal number starting with '0x' or '0X"' ('0-9a-fA-F'). To represent a negative number, just precede the
negative '-'.

A Bignum is a number of bits more than 32 bits, which means that the method is the same as the integer. The
representation of floating-point constants in assembler is basically the same as in C language. Since almost no
floating point numbers are used in the kernel code, it is not described here.

3.2.3 Instruction statements, operands, and addressing

The instruction is the operation performed by the CPU. Usually the instruction is also called the opcode. The
operand is the object of the instruction operation. The address is the position of the specified data in the memory.
An instruction statement is a statement executed at the execution time of a program. It can usually consist of four
components:

B Label (optional);

B Opcode (instruction mnemonic);

B Operands (specified by specific instructions);

B Comments

An instruction statement can contain zero or up to three comma separated operands. For an instruction
statement with two operands, the first is the source operand and the second is the destination operand, ie the result
of the instruction operation is stored in the second operand.
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The operand can be an immediate value (that is, an expression whose value is a constant value), a register
(value in the CPU's register), or memory (value in memory). An indirect operand (Indirect operand) contains the
address value of the actual operand value. The AT&T syntax specifies an indirect operand by prepending the
operand with a '*' character. Indirect operands can only be used by redirection/call instructions. See description of
jump instructions below.

B A'$ character prefix is required before immediate operands;

B A'%' character prefix needs to be preceded by a register name;

B The memory operand is specified by a variable name or a register containing the address of the variable.

The variable name implicitly indicates the address of the variable and instructs the CPU to reference the
contents of the memory at that address.
3.2.3.1 Name the instruction opcode

The last character of the instruction opcode name (ie, the instruction mnemonic) in AT&T syntax is used to
indicate the width of the operand. The characters 'b', ‘w', and 'I' specify byte, word, and long operands, respectively.
If the instruction name does not have such a character suffix and the instruction statement does not contain a
memory operand, as will try to determine the operand width based on the destination register operand. For
example, the instruction statement ‘'mov %ax, %bx' is equivalent to ‘'movw %ax, %bx'. Similarly, the statement
'mov $1, %bx' is equivalent to 'movw $1, %bx'.

The names of almost all instruction opcodes in AT&T and Intel syntax are the same, but there are still a few
exceptions. Both symbolic extensions and zero-extend instructions require two widths to indicate that the width
needs to be specified for the source and destination operands. AT&T syntax is done by using two opcode suffixes.
The basic opcode names for symbol expansion and zero extension in AT&T syntax are 'movs..." and 'movz...",
respectively, in Intel are 'movsx' and 'movzx' respectively. Two suffixes are attached to the basic name of the
opcode. For example, an AT&T statement that uses symbolic extensions to move from %al to %edx is
'movsbl %al, %edx’, which is bl from byte to long, bw from byte to word, and wl from word to long. The
correspondence between AT&T syntax and conversion instructions in Intel syntax is shown in Table 3-2.

Table 3-2 Correspondence between conversion command in AT&T syntax and Intel syntax

AT&T Intel Description

cbhtw cbw Extend the byte value in %al to %ax
cwil cwde Extend the %ax sign to %eax

cwtd cwd Extend the %ax sign to %dx:%ax
cltd cdq Extend the %eax sign to %edx:%eax

3.2.3.2 Instruction opcode prefix

The opcode prefix is used to modify subsequent opcodes. They are used to repeat string instructions, provide
area overrides, perform bus lock operations, or specify operands and address widths. Normally, the opcode prefix
can be used as an exclusive line of instructions without an operand and must be located directly before the
affected instruction, but it is best to place it on the same line as the instruction it modifies. For example, the string
scan command 'scas’ uses prefixes to perform repeated operations:

repne scas %es: (%edi), %al

Some operand prefixes are listed in Table 3-3.
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Table 3-3 Opcode prefix list

Opcode prefix Description

Section overrides the opcode prefix. Using the section:memory
cs, ds, ss, es, fs, gs . . . . .
operands by specifying memory prefixes automatically adds this prefix.

Operand/address width prefix. These two prefixes will change the
datal6, addr16 32-hit operand/address to a 16-bit operand/address. However, please
note that as does not support 16-bit addressing.

Bus latching prefix. Used to disable interrupts during instruction

lock
execution (only valid for some instructions, see the 80X86 manual).
Coprocessor instruction prefix. Wait for the coprocessor to complete
wait the execution of the current instruction. This prefix is not needed for

the 80386/80387 combination.

The prefix of the string instruction causes the string instruction to
rep, repe, repne . ) )
repeat the specified number of times in %ecx.

3.2.3.3 Memory reference

Indirect memory reference form of Intel syntax: section:[base + index*scale + disp]

Corresponds to the following AT&T syntax: section:disp(base, index, scale)

Base and index are optional 32-bit base registers and index registers, and disp is an optional offset value. Scale is
a scale factor and its range is 1, 2, 4 and 8. Scale is multiplied by index to calculate operand address. If no scale is
specified, the scale defaults to 1. Section specifies an optional segment register for the memory operand and
overrides the current default segment register used by the operand. Note that if the specified section overwrite
register is the same as the default operation section register, as does not output the same section prefix for the
assembled instructions. The following are examples of memory references in several AT&T and Intel syntax
forms:

movl var, %eax # Put the contents at memory address var in the register %eax.
movl %cs:var, %eax # Put the contents at var in the code segment into %eax

movb $0x0a, %es: (%ebx) # Save byte value 0x0a to offset specified by %ebx in es segment
movl $var, %eax # Put the address of var in %eax.

movl array (%esi), %eax # Put contents at address determined by arrayt%esi into %eax.
movl (%ebx, %esi, 4), %eax # Put contents at address determined by %ebxt+%esi*4 in %eax.
movl array (%ebx, %esi, 4), %eax # Put contents at address of array + %ebx+%esi*4 into %eax.
movl —4 (%ebp), %eax # Put contents at %ebp —4 in %eax, using the default segment %ss
movl foo(, %eax, 4), %eax # Put contents at footeax*4 intp %eax, using default seg %ds

3.2.3.4 Jump instruction

Jump instructions are used to move the execution point to another location in the program and continue
execution. The destination of these jumps is usually represented by a label. When generating the object code file,
the assembler will determine the address of all tagged instructions and encode the address of the jumped
instruction into the jump instruction. Jump instructions can be divided into unconditional jumps and conditional
jumps. The conditional jump instruction will depend on the state of a related flag in the flag register when the
instruction is executed to determine whether to jump, and the unconditional jump does not depend on these flags.
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JMP is an unconditional jump instruction and can be divided into two types: direct jump and indirect jump,
whereas conditional jump instructions only have the form of a direct jump. For a direct jump instruction, the
address of the jumped target instruction is directly encoded into the jump instruction as part of the jump
instruction; for an indirect jump instruction, the jump destination is taken from a register or a Memory locations.
The direct jump statement is written to give the label at the jump target; the indirect jump statement is written
using a star character ** as the prefix character of the operation indicator, and the operation indicator uses the
same syntax as the movl instruction. . The following are some examples of direct and indirect jumps.

jmp NewLoc # Jump directly. Unconditionally jump to label NewLoc to continue execution.
jmp *%eax # Indirect jump. The value of register %eax is the jump destination.
jmp * (%eax) # Indirect jump. Read the jump destination from the address indicated by %eax.

Similarly, indirect call operands that are independent of the instruction counter PC must also have a ™' as the
prefix character. If the ™' character is not used, the as assembler will select the jump label associated with the
instruction count PC. Also, any other instruction that has a memory operand must use an opcode suffix ('b', ‘'w', or
'l to indicate the size of the operand (byte, word, or long).

3.2.4 Sections and Relocation

Sections (also called segments ) are used to represent an address range, and the operating system will treat
and process the data information in that address range in the same way. For example, there may be a "read only"
area, and we can only read data from this area and cannot write it. The concept of a zone is mainly used to indicate
different information areas in a target file (or executable program) generated by a compiler, such as a text area or a
data area in a target file. To properly understand and compile an assembly language program, we need to
understand the format of the output object file produced by as. A detailed description of the a.out format object
file format used by the Linux 0.12 kernel is given later in this chapter. Here, a brief introduction to the basic
concepts of the zone is provided to understand the basic structure of the object file produced by the assembler.

The linker Id will combine the contents of the input object file according to a certain rule to generate an
executable program. When the as assembler outputs a target file, the code in the target file is set by default to start
at address 0. After that, Id will allocate different final address locations for each part of the different target files
during the linking process. Ld moves the block of bytes in the program to the address where the program was run.
These blocks are moved as fixed units. Their length and byte order will not be changed. Such a fixed unit is called
a zone (or segment, part). The operation of allocating the address of the runtime for a zone is referred to as a
relocation operation, which includes adjusting the addresses recorded in the target file so that they correspond to
the appropriate runtime address.

The as-assembler creates and outputs an object file with at least 3 fields, which are called the text, data, and
bss areas. Each district may be empty. If you do not use the assembler command to place the output in the ".text' or
".data’ zone, these zones will still exist but the content is empty. In a target file, its text area starts at address 0,
followed by the data area, followed by the bss area.

When a section is relocated, in order for the linker Id to know what data will change and how to modify the
data, the assembler will also write the required relocation information to the target file. In order to perform a
relocation operation, Id must know each time an address in the target file is involved:

Where did the reference to an address in the target file come from?

B What is the length of the quoted byte?

B Which section is referenced by this address? What is the value of (address)-(start address of section)?
B |[s the reference to the address related to the program counter PC (Program-Counter)?
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In fact, all the addresses used by as can be expressed as: (section) + (offset in the section). In addition, most
of the expressions evaluated by as have such zone-related characteristics. In the following description, we use the
notation "{secname N}" to indicate the offset N in the secname of the zone.

In addition to the text, data, and bss areas, we also need to understand the absolute address area (absolute
area). When the linker combines the various object files, the address in the absolute area will always be the same.
For example, Id will "relocate™ the address {absolute 0} to address 0 at runtime. Although the linker will never
arrange the data areas in the two target files as overlapping addresses after linking, the absolute area in the target
file must overlap and be overwritten.

There is also an Undefined section. It is not possible to determine at assembly that any address in the area is
set to {undefined U}, where U will be filled in later. Because the value is always defined, the only way to present
an undefined address involves only undefined symbols. A reference to a common block is such a symbol: Its value
is unknown at assembly time, so it is in the undefined area.

Similarly, the section name is also used to describe the group of sections in the linked program. The linker Id
will put the text section in all object files of the program at the adjacent address. The text area of the program that
we are accustomed to refer to actually refers to the entire address area formed by the combination of the text
sections of all of its object files. The same is true for the understanding of the data and bss sections in the
program.
3.2.4.1 Linker involved sections

The linker Id only involves the following 4 types of sections:

B Text section, data section -- These two areas are used to save programs. As and Id treat them
independently and equally. The description of the text section is also suitable for the data section.
However, when the program is running, the usual text section will not change. The text section is
usually shared by the process and contains the instruction code and constants. The contents of the data
section usually change when the program is running. For example, C variables are usually stored in the
data section.

B Dpss section -- This area contains 0 bytes when the program starts running. This area is used to store
uninitialized variables or as a common variable storage space. Although the length information of the
bss section of each target file of the program is very important, since the area stores zero-value bytes,
there is no need to save the bss section in the target file. The purpose of setting the bss area is to
explicitly exclude zero-value bytes from the target file.

B Absolute section -- The address 0 of this area is always "relocated” to the address 0 of the runtime. Use
this section if you do not want Id to change the address you are referencing when relocating. From this
point of view, we can refer to absolute addresses as “non-relocatable™: they do not change during
relocation operations.

B undefined section -- A reference to an object that is not in each of the previously mentioned sections
belongs to this section.

An example of 3 idealized relocatable sections is shown in Figure 3-2. This example uses the traditional

section names: ".text' and '.data’. The horizontal axis indicates the memory address. The specific operation of the Id
linker will be described in detail later in this section.
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Figure 3-2 Example of linking two object files to generate a linked program

3.2.4.2 Subsection

The byte data that is assembled is usually located in the text or data section. Sometimes there may be some
non-adjacent data groups in an area of an assembler source program, but you may want them to be stored together
after assembly. The as assembler allows you to use subsections for this purpose. In each section, there may be a
sub-area numbered 0--8192. Objects that are programmed in the same subsection are put together in the target file
with other objects in that subsection. For example, the compiler may want to store constants in the text area, but
do not want these constants to be scattered throughout the program being assembled. In this case, the compiler can
use the ".text 0' subsection before each code area that is output, and use the ".text 1' subsection before each set of
constants.

Using subsections is optional. If you do not use subsections, all objects are placed in subsection O.
Sub-sections appear in the destination file in the order of their numbers, but the destination file does not contain
any information that represents sub-sections. The Id and other programs that process the target file do not see the
traces of the subsections; they only see the text section consisting of all the text subsections; the data section
consisting of all the data subsections. In order to specify which subsection area the subsequent statement is
assembled into, you can use numeric parameters in ".text expression' or '.data expression’. The result of the
expression should be an absolute value. If only ".text' is specified then ".text 0 is used by default. Similarly, ".data’
indicates that '.data 0" is used.

Each section has a Location Counter that counts each byte that is assembled into the section. Because the
subsections are only set up for ease of use by the assembler, there is no subsection counter. Although there is no
direct way to manipulate a position counter, the assembly command ".align' can change its value, and any label
definition will take the current value of the position counter. The location counter of the zone that is executing
statement assembly processing is called the current activity counter.
3.2.4.3 bss section

The bss section is used to store local public variables. You can allocate space in the bss section, but you can't
put data in it before the program runs. Because when the program starts executing, all bytes in the bss section will
be cleared. The ".Icomm' assembly command is used to define a symbol in the bss section; .comm’ can be used to
declare a public symbol in the bss section.

3.2.5 symbol

In the process of program compilation and linking, Symbol is an important concept. Programmers use
symbols to name objects, linkers use symbols for link operations, and debuggers use symbols for debugging.
Label is a symbol followed by a colon. At this point the symbol represents the current value of the active
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position counter and can, for example, be used as the operand of the instruction. We can use the equal sign '=' to
assign an arbitrary value to a symbol.

The symbol name starts with one of the letters or "._' characters. Local symbols are used to help compilers
and programmers use names temporarily. A total of 10 local symbol names (‘'0"...'9") are available for reuse in a
program. To define a local symbol, simply write a label of the form 'N:' (where N represents any number). If you
refer to the previously defined symbol, you need to write 'Nb'; if you want to refer to the next defined local label,
you need to write 'Nf'. Where 'b' means backwards and 'f* means forwards. There are no restrictions on the use of
local labels, but at any time we can only refer to the furthest 10 local labels forward/backward.
3.2.5.1 Special point symbol

The special symbol "." indicates as the current address of the assembly. So the expression 'mylab: .long ." will
define mylab to contain its own address value. Assigning a value to "." is the same as the assembly command ".org'".
So the expression ".=.+4" is exactly the same as ".space 4.
3.2.5.2 Symbol attributes

In addition to the names, each symbol has the "value" and "type" attributes. Depending on the format of the
output, symbols can also have auxiliary attributes. If a symbol is used without definition, as will assume all its
attributes are 0. This indicates that the symbol is an externally defined symbol.

The value of the symbol is usually 32 bits. For a symbol that marks a position in the text, data, bss, or
absolute area, the value is the address value from the beginning of the area to the label. For the text, data, and bss
areas, the value of a symbol will usually change during the linking process due to the change of the base address
of the area, and the value of the symbol in the absolute area will not change. This is why they are called absolute
symbols.

Id deals with the value of undefined symbols. If the value of the undefined symbol is 0, it means that the
symbol is not defined in the assembler source program; Id will try to determine its value from other linked files. A
symbol is generated when the program uses a symbol but does not define the symbol. If the value of an undefined
symbol is not 0, then the symbol value represents the public memory space length that is required by the .comm
public declaration. The symbol points to the first address of this memory space.

The type attribute of the symbol contains relocation information for the linker and the debugger, a flag
indicating that the symbol is external, and some other optional information. For object files in a.out format, the
symbol's type attribute is stored in an 8-bit field (n_type bytes). See the description of the include/a.out.h file for
its meaning.

3.2.6 as assembler directives

Assembler directives are persudo instructions that indicate the way an assembler operates. Assembler
directives are used to require the assembler to allocate space for variables, determine the program start address,
specify the current assembly sections, modify the position counter value, and so on. All assembler directives begin
with a ', the rest are characters, and the case is irrelevant. However, lowercase characters are generally used.
Below we give a description of some common assembler instructions.
3.2.6.1 .align abs-exprl, abs-expr2, abs-expr3

.align is a storage-align assembler directive that sets (increments) the position counter value to the next
specified memory boundary in the current subsection. The first absolute value expression abs-exprl (absolute
expression) specifies the required boundary alignment value. For an 80X86 system that uses a.out format object
files, the value of this expression is the number of zero-valued bits on the rightmost binary value of the position
counter after it has been incremented, that is, a power of two. For example, ".align 3' means to increase the
position counter value to a multiple of 8. If the position counter value itself is a multiple of 8, then there is no need
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to change it. But for 80X86 systems that use the ELF format, the expression value is directly the number of bytes
required for it. For example, ".align 8' is to increase the position counter value to a multiple of 8.

The second expression gives the byte value to use for alignment and padding. This expression and its
preceding comma can be omitted. If omitted, the padding byte value is 0. The third optional expression, abs-expr3,
is used to indicate the maximum number of bytes allowed for padding to be skipped by an alignment operation. If
the number of bytes skipped by the alignment operation is greater than this maximum value, the alignment
operation is canceled. If you want to omit the second parameter, you can use two commas between the first and
third parameters.
3.2.6.2 .ascii "string"...

Allocate space for the string from the current location of the location counter and store the string. Multiple
strings can be written separately using commas. For example, ".ascii "Hellow world!", "My assembler™. The
assembler instruction will have as assemble these strings at consecutive address locations, with no 0 (NULL)
bytes added after each string.
3.2.6.3 .asciz "string"...

This assembler directive is just like ".ascii’, but each string is followed by a zero value byte. The "z" in ".asciz'
stands for "zero".
3.2.6.4 .byte expressions

This directive expects zero or more expressions, separated by commas. Each expression is combined into the
next byte.
3.2.6.5 .comm symbol, length

Declare a named public area in the bss section. During the Id link, a common symbol in one object file is
merged with the common symbol with the same name in other object files. If Id does not find a symbol definition
but only one or more common symbols, then Id will allocate uninitialized memory of length length bytes. Length
must be an absolute value expression. If Id finds multiple common symbols with the same length but different
names, Id allocates the space with the largest length.
3.2.6.6 .data subsection

This assembler directive tells as to assemble the following statements into the data subsection numbered
subsection. If you omit the number, the number 0 is used by default. The number must be an absolute value
expression.
3.2.6.7 .desc symbol, abs-expr

This directive sets the descriptor of the symbol to the low 16 bits of an absolute expression. It is only for
a.out or b.out object format. See the description of the include/a.out.h file.
3.2.6.8 /fill repeat, size, value

This assembler directive will generate a repeat (repeat) of N bytes in size. The size value can be 0 or some
value, but if size is greater than 8, it is limited to 8. The conetnts of each repeat bytes is taken from an 8-byte
number. The highest order 4 bytes are zero, and the lowest 4 bytes are numeric values. The three parameter values
are absolute values, size and value are optional. If the second comma and value are omitted, value defaults to 0; if
the latter two parameters are omitted, size defaults to 1.
3.2.6.9 .global symbol (.globl symbol)

This assembler instruction will cause the linker Id to see the symbol. If symbol is defined in our object file,
its value will be used by other object files in the link process. If the symbol is not defined in the object file, its
attributes will be obtained from the symbol of the same name in other object files in the linking process. This is
done by setting the external bit N_EXT in the symbol symbol type field. See the description in the include/a.out.h
file.
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3.2.6.10 .int expressions

The assembler directive sets 0 or more integer values in a certain area (80386 system is 4 bytes, same
as .long). The value of each comma-separated expression is the value of the runtime. For example, .int 1234,
567,0x89AB.
3.2.6.11 .Icomm symbol, length

The local common area specified for the symbol reserves space of length bytes. The value of the area and
symbol that is located is the value of the new local common block. The allocated address is in the bss section, so
these byte values are cleared at runtime. Since the symbol symbol is not declared global, the linker Id is invisible.
3.2.6.12 .long expressions

Its meaning is the same as .int.
3.2.6.13 .octa bignums

This assembly dircetive specifies zero or more comma-separated 16-byte large numbers
(.byte, .word, .long, .quad, .octa correspond to 1, 2, 4, 8 and 16 bytes, respectively).
3.2.6.14 .org new_lc, fill

This assembler directive sets the current section's location counter to the value new_Ic. New_Ic is an absolute
value (expression), or an expression that has the same section as a subsection, ie it cannot use .org to span sections.
If the section of new_lIc is not correct, then .org will not work. Please note that the position counter is
section-based, ie each section is used as a starting point for counting.

When the position counter value increases, the skipped bytes will be filled with the value fill. This value
must be absolute. If you omit commas and fill, fill defaults to 0.
3.2.6.15 .quad bignums

This assembler directive specifies zero or more comma separated 8-byte large-number bignums. If the large
number does not fit into 8 bytes, then take the lower 8 bytes.
3.2.6.16 .short expressions (same as .word expressions)

This assembler directive specifies zero or more comma separated 2-byte numbers in a section. For each
expression, a 16-bit value is generated at runtime.
3.2.6.17 .space size, fill

The assembler directive generates size bytes, each of which is filled with fill. This parameter is an absolute
value. If commas and fill are omitted, the default value of fill is 0.
3.2.6.18 .string "string"

Define one or more comma-separated strings. Escape characters can be used in strings. Each string is
automatically appended with a null-terminated character. For example, .string "\n\nStarting", "other strings".
3.2.6.19  .text subsection

The notification as compiles the following statements into a subsection numbered subsection. If the number
subsection is omitted, the default number value 0 is used.
3.2.6.20 .word expressions

For 32-bit machines, this assembly instruction has the same meaning as .short.

3.2.7 Writing 16-bit code

Although GNU as is usually used to write pure 32-bit 80X86 code, it also has limited support for writing
code that runs in real mode or 16-bit protected mode after 1995. In order for as compile to generate 16-bit code, it
is necessary to add the assembly instruction ".codel6' before the instruction statement that is running in 16-bit
mode, and use the assembly instruction '.code32' to switch the as-assembler back to 32-bit code assembly mode.
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as does not distinguish between 16-bit and 32-bit assembler statements. Each instruction in 16-bit and 32-bit
mode functions exactly the same way regardless of the mode. As always generates 32-bit instruction code for
assembly statements regardless of whether the instruction will run in 16-bit or 32-bit mode. If the assembly
instruction '.codel6' is used to put as in 16-bit mode, then as will automatically add a necessary operand-width
prefix to all instructions and let the instruction run in 16-bit mode. Note that since as adds extra address and
operand-width prefixes for all instructions, the resulting code length and performance of the assembly will be
affected.

as assembler did not support 16-bit code when developing the Linux kernel 0.12 in 1991, the as86 assembler
described earlier was used when writing and assembling the boot startup code and initializing assembler in the
0.12 kernel real mode.

3.2.8 as assembler command line options

-a Turn on program listings.

-f Fast operation, skip whitespace and comment preprocessing.
—o objfile Name the object-file output from as obijfile

-R Fold the data section into the text section.

-W Suppress warning messages.

3.3 Clanguage program

GNU gcc has made some extensions to the C language described in ISO standard C89, some of which have
been included in the 1ISO C99 standard. This section gives a description of some of the gcc extensions that are
often used in the kernel. A brief explanation of the extended statement encountered will also be given at any time
in the following section of program comments.

3.3.1 C program compiling and linking

The use of the gcc assembler to compile C programs usually goes through four stages of processing: the
preprocessing stage, the compilation stage, the assembly stage, and the linking stage, as shown in Figure 3-3.

Source files |Ppreprocess| Pure C

.c |:> |:> . C d@% Assembly programs
Executable Llnker Obij. files m
=@ =)<
Libraries

Figure 3-3 CC program compilation process

In the pre-processing stage, gcc passes the C program to the C preprocessor CPP, replaces the indicators and
macros in the C language program, and outputs the plain C language code; at the compile stage, gcc compiles the
C language program to generate the corresponding Machine-related assembly language code; Assembler stage,
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assembler will convert the assembly code into machine instructions, and output in a specific binary format and
save it in the target file; Finally, the GNU Id linker links the program'’s related target file combination Together, the
program's executable image file is generated. The command line format for calling gcc is similar to the format for
compiling assembly language:

gce [ options ] [ —o outfile ] infile ..

Where infile is the input C language file; outfile is the compiled output file. For a compilation process, it is not
necessary to execute all four stages. Using the command line option can cause the gcc compilation process to stop
executing after a certain processing stage. For example, using the '-S' option allows gcc to stop after outputting the
assembly language program for the C program; using the '-c' option allows gcc to only generate the target file
without performing link processing, as shown below.

gcc —o hello hello.c // Compile the hello.c to generate the execution file hello.
gcec =S —o hello.s hello.c // Compile hello.c to generate corresponding assembly hello. s
gce —¢ —o hello.o hello.c // Compile hello.c to generate target file hello.o without linking.

When compiling a large program such as the Linux kernel containing many source program files, the make
tool is usually used to automatically manage the entire program's compilation process. See the description below.

3.3.2 Inline assembly language

This section describes inline assembly statements that are exposed in the kernel C language program. Since
we usually use inline assembly code rarely used in the preparation of C programs, it is necessary here to explain
the basic format and usage. In an assembler instruction using asm, you can specify the operands of the instruction
using C expressions. This means we need not guess which registers or memory locations will contain the data you
want to use, and we must specify an assembler instruction template, as it appears in the machine description, and
specify an operand constraint string for each operand.The basic format of an inline assembly statement with input
and output parameters is as following:

asm( “Assembly language statement”
: Output register operands
: Input register operands
: Registers of clobbered or modified) ;

With the exception of the first line, lines with a colon after them can be omitted if they are not used. Among
them, "asm" is an inline assembly statement keyword; "assembly statement” is where you write assembly
instructions; "output register" indicates which registers are used to store output data after this embedded assembly
is executed. Here, these registers correspond to a C expression value or a memory address, respectively; "input
register” indicates the input value that should be stored in some of the registers specified here when the assembly
code is started. They also correspond to a C variable, or constant value respectively. "Clobbered or Modified
registers” means that you have changed the values in the registers listed there, and the gcc compiler can no longer
rely on the values it originally loaded on these registers. Gcce needs to reload these registers if necessary. Therefore
we need to list those register names that are not listed in the output/input registers section, but that are explicitly
used or implicitly used in assembly statements.

For example, here is a fictitious ‘combine’ instruction:
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asm( “combine %1, %0” : “=r” (result) : “r” (length)):

Here length is the C expression for the input operand while result is that of the output operand. Each has “r” as its
operand constraint, saying that a dynamically allocated general register is required. The ‘= in ‘=r’ indicates that
the operand is an output; all output operands’ constraints must use ‘=". The constraints use the same language used
in the machine description as described in the gcc manual (section Operand Constraints in Chapter 16 Machine
Descriptions).

As shown in the above example, each operand is described by an operand-constraint string followed by the C
expression in parentheses. A colon separates the assembler template from the first output operand and another
separates the last output operand from the first input, if any. Commas separate the operands within each group.
The total number of operands is limited to ten or to the maximum number of operands in any instruction pattern in
the machine description, whichever is greater. If there are no output operands but there are input operands, you
must place two consecutive colons surrounding the place where the output operands.

Below we use a more detailed example to illustrate the use of inline assembly statements. Here is a block of
code starting at line 22 in the kernel/traps.c file. In order to see more clearly, we have rearranged and numbered
this code.

01 ttdefine get seg byte(seg, addr) \

02 ({\

03 register char _ res; \ // A register variable _res is defined.

04  asm_ ("push %%fs; \ // First save original value of fs (seg selector).
05 mov %%ax, %%fs; \ // Then use seg to set fs.

06 movb %%fs:%2, %%al; \ // Take 1 byte of seg:addr into the al register.
07 pop %%fs” \ // Restore the original contents of fs register.
08 7=a” (__res) \ // Output register lists and constraints.

09 2707 (seg),’m” (x(addr))); \ // Input register lists and constraints.

10 res;})

This 10 lines of code defines an inline assembly language macro function. The most convenient way to use
assembler statements is to place them in a macro. A compound statement enclosed in parentheses (a statement in
curly braces): "({})" can be used as an expression, where the variable __res (line 10) on the last line is the output
value of the expression, see The next section explains.

Because macro statements need to be defined on one line, these statements are concatenated using a
backslash '\' here. This macro definition will be substituted into the program where the macro name is referenced.
The first line defines the name of the macro, which is the macro function name get_seg_byte(seg,addr). Line 3
defines a register variable __res. This variable will be saved in a register for quick access and operation. If you
want to specify a register (such as eax), then we can write this sentence as "register char __res asm ("ax");", where
"asm" can also be written as "__asm__". The "_asm__" on line 4 indicates the beginning of the embedded
assembly statement. The 4 statements from line 4 to line 7 are AT&T format assembler statements. In addition, in
order to have a percent sign "%" in front of the register name in an assembly language program generated by gcc,
two percent sign "%%'" must be written before embedding the assembly statement register name.

The eighth line is the output register. The meaning of this sentence is to place the value of the register
represented by eax in the __res variable after the end of this code run, as the output value of this function, "a" in
"=a" Called load code, "="indicates that this is an output register and the value in it will be replaced by the output
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value. Load code is a shorthand letter code for CPU registers, memory addresses, and some numeric values. Table
3-4 shows some of the register loading code and its specific meaning that we often use. Line 9 indicates that seg is
placed in the eax register when this code starts to run, and "0" means that the same register as the one above is
output. (*(addr)) represents a memory offset address value. In order to use this address value in the above
assembler statement, the embedded assembler program specifies that the output and input registers are numbered
sequentially, starting from the left and right top to bottom of the output register sequence starting with "%0",
respectively, denoted as % 0, %1, ...%9. Therefore, the output register number is %0 (here only one output
register), the first part of the input register (0" (seg)) has the number %1, and the latter part has the number %2.
The %2 above line 6 above represents (*(addr)) this memory offset.

Table 3-4 Common register load code description

Code | Description Code | Description

. Use register eax o Use memory address, any memory operand is
allowed.

b Use register ebx 0 Use memory address, and can add offset value

c Use register ecx | Use constants 0-31

d Use register edx J Use constants 0-63

S Use register esi K Use constants 0-255

D Use register edi L Use constants 0-65535

Use dynamically allocated byte addressable
q . . M Use constants 0-3
registers (eax. ebx. ecx ok edx)

r Use any dynamically allocated register N Use 1 byte constant (0-255)

Any general register, memory or immediate
g integer operand is allowed (0] Use constants 0-31

(eax. ebx. ecx. edx or memory variable)

Output operands. The output value will replace the

A Combine eax with edx (64-bit) = )
previous value
Indicates that the operand is readable and & Early-clobber operands. Indicates that the content
+
writable will be modified before the operands are used

Now let's examine the function of code on lines 4-7. The first sentence puts the contents of the fs segment
register on the stack; the second sentence assigns the segment value in eax to the fs segment register; the third
sentence puts the byte specified by fs:(*(addr)) into the al register. . When the assembly statement is executed, the
value of the output register eax will be put into __res as the return value of the macro function (block structure
expression). It's simple, isn't it?

From the above analysis, we know that seg in the macro name represents a specified memory segment value,
and addr represents a memory offset address amount. Until now, we should be very clear about the function of this
program! The function of this macro function is to fetch one byte from the memory address of the specified
segment and offset value. Then look at the next example.

01 asm(“cld\n\t”

Q ”rep\n\t”
@ //Stolf/
04 : /* No output register */
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05 : 7¢”(count-1), “a” (fill value), ”“D”(dest)
06 : "%ecx”, "%edi”) :

The 1-3 lines are the usual assembler statements to clear the direction bit and repeatedly store the value. The
characters "\n\t" in the first two lines are used to neatly set the gcc preprocessor output program list. The meaning
of the characters is the same as in the C language. That is, the operation mode of gcc is to generate the assembler
corresponding to the C program, and then call the assembler to compile it to generate the target code. If you want
to look at the assembler corresponding to C when you write the program and debug the program, you need to get
the pre The output of the assembler program that processes the program (this is commonly used when writing and
debugging efficient code). In order to preprocess the assembler output in a neat format, you can use the two "\n\t"
format symbols.

Line 4 shows that the inline assembler does not use the output register. The meaning of line 5 is: Load the
count-1 value into the ecx register (the loading code is "'c"), fill_value is loaded into eax, and dest is placed into
edi. Why do we have to make the gcc compiler to load such register values without letting us do it ourselves?
Because gcc can perform some optimization work while it is registering. For example, the fill_value value may
already be in eax. If it is in a loop statement, gcc may keep eax in the entire loop operation, so you can use a movl
statement in each loop.

The last line is to tell gcc that the values in these registers have changed. After gcc knows what you are doing
with these registers, it can help with gcc's optimization. The following example does not allow you to specify
which variable to use which register, but let gcc choose it for you.

01 asm("leal (%1, %1, 4), %0”
02 . //:r// (y)

03 L0 ()

The instruction "leal” is used to calculate the effective address, but it is used here for some simple
calculations. The first assembler statement “leal (r1, r2, 4), r3" indicates rl+r2*4 => r3. This example can multiply
x by 5 very quickly. Among them, "%0" and "%1" refer to the register that gcc automatically allocates. Here "%1"
represents the register into which the input value x is to be placed, and "%0" represents the output value register.
Be sure to add the equal sign before outputting the register code. If the code of the input register is O or is empty,
then the same register as the corresponding output is used. So, if gcc specifies r as eax, then the meaning of the
above assembly statement is:

”

"leal (eax,eax,4), eax

Note that when executing the code, if you do not want the assembly statement to be modified by GCC
optimization, you need to add the keyword volatile after the asm symbol, as shown below. The difference between
these two declarations lies in the aspect of program compatibility. It is recommended to use the latter way of
declaration.

asm volatile (...... )
Or a more detailed explanation is:
asm___ volatile  (...... )

The keyword volatile can also be placed before the function name to decorate the function to inform the gcc
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compiler that the function will not return. This will allow gcc to produce better code. In addition, for functions
that do not return, this keyword can also be used to prevent gcc from generating false warning messages. For
example, the following statement in mm/memory.c shows that the functions do_exit() and oom() no longer return
to the caller code:

31 volatile void do exit(long code);

32

33 static inline volatile void oom(void)
34

35 printk ("out of memory\n\r”);
36 do exit (SIGSEGV) ;

37 }

Here is a longer example. If you can read it, it means that inline assembly code is basically OK for you. This
code is taken from the include/string.h file and is an implementation of the string comparison function for
strncmp(). Similarly, the "\n\t" in each of these lines is set for the gcc preprocessor output list to look good.

//// Stringl is compared with string2 in the first count characters

// Paras: cs — Stringsl,ct - String2, count — The number of characters to compare

// %0 - eax(__res) return,%l — edi(cs) Stringl ptr, %2 — esi(ct)String2 ptr, %3 — ecx(count).

// Return: If stringl > string2, ret 1; stringl == string2, ret 0; stringl<string2, then ret -I.
extern inline int strncmp(const char * cs, const char * ct, int count)

{

register int _ res ; // __res is a register variable

~asm_ ("cld\n” // Clear direction.
“1:\tdecl %3\n\t” // count——o,
”is 2f\n\t” // If count<0, go forward to label 2.
”lodsb\n\t” // Take string 2 character ds:[esi]=>al, and esi++
”scasb\n\t” // Compare char in al and in stringl es:[edi] and edi++.
”jne 3f\n\t” // If they are not equal, go forward to label 3
“testb %%al, %%al\n\t” // Is this character a NULL character?
”jne 1b\n” // No, go backward to label 1 and continue comparing.
”2:\txorl %%eax, %%eax\n\t” // If it is a NULL char, eax is cleared (return value).
”3imp 4f\n” // Go forward to label 4 and end
73:\tmovl $1,%%eax\n\t” // eax is set to 1.
731 4f\n\t” // If the string2 chars <stringl chars, return 1 and end
“negl %%eax\n” // Otherwise eax = —eax returns a negative value, ends
o
=" (_res):"D” (cs),”S” (ct),”c” (count):”si”, "di”, "ex”)

return  res; // Return the comparison result

}

3.3.3 Combination statements in parentheses

The braces pair "{...}" is used to combine variable declarations and statements into a compound statement
(combination statement) or a statement block so that these statements are semantically equivalent to a single
statement. There is no need to use a semicolon after the closing brace of a compound statement. Combination
statements in parentheses, ie statements of the form "({...})", can be used as an expression in GNU C. This allows
loops, switch statements, and local variables to be used in expressions, so this form of statement is often called a
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statement expression. The statement expression has the following example form:

({ int vy = foo(); int z;
if (y >0 z=y;
else z = —y;
3+z; 1)

The last statement in a compound statement must be an expression followed by a semicolon. The value of this
expression ("3 + z") is used as the value enclosed by the entire parenthesis. If the last statement is not an
expression, the entire statement expression has a void type and therefore has no value. In addition, any local
variables declared by statements in such an expression will expire after the entire block statement ends. This
sample statement can be used like the following form of assignment statement:

res = x + ({Omit...}) + b;

Of course, people usually don't write statements like the above, which are usually used to define macros. For
example, the macro definition for reading CMOS clock information in the kernel source code init/main.c program:

69 #tdefine CMOS READ (addr) ({ \

70 outb p (0x80|addr, 0x70) ; \ // First, output the addr to the I/0 port 0x70
71 inb p(0x71); \ // Then read the value from port 0x71 as the return value
72 1)

Look again at the macro definition of the read 1/0 port in the include/asm/io.h header file, where the value of
the last variable _v is the return value of inb().

05 #tdefine inb(port) ({ \

06 unsigned char v; \

07 asm  volatile (“inb %%dx, %%al”:”=a” ( v):”d” (port)); \
08 v; \

09 1)

——

3.3.4 Register variables

Another extension of GNU to the C language allows us to put some variable values into the CPU registers,
the so-called register variables. In this way, the CPU does not need to spend a long time to access the memory for
value. There are two types of register variables: global register variables and local register variables. Global
register variables hold registers dedicated to several global variables throughout the program's operation. In
contrast, local register variables do not retain the specified registers, and special registers are used only as input or
output operands in the inline asm assembly statement. The gcc compiler's data flow analysis capability is
inherently capable of determining when a specified register has a value in use and when it can dispatch other
fields. When the gcc data flow analysis function is considered to be stored when a local register variable value is
useless, it may be deleted, and references to local register variables may also be deleted, moved, or simplified.
Therefore, if you do not want gcc to make these optimization changes, it is best to add volatile keywords in the
asm statement.

If you want to write the output of the assembler instruction directly to the specified register in an inline
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assembler statement, it is convenient to use local register variables at this time. Since the Linux kernel usually
only uses local register variables, we will only discuss the use of local register variables here. In GNU C programs
we can define a local register variable in a function like this:

register int res asm ("ax”);

Here ax is the register that the variable res wants to use. Defining such a register variable does not
specifically reserve this register for no other purpose. During program compilation, when the gcc data flow
control determines that the value of a variable is no longer in use, the register may be dispatched for other
purposes, and references to it may be deleted, moved, or simplified. In addition, gcc does not guarantee that the
compiled code will keep the variable in the specified register. Therefore, it is better not to refer to this register
explicitly in the portion of the instruction that is embedded in the assembly and it is assumed that the register must
refer to this variable value. However, using this variable as an operand to asm ensures that the specified register is
used as the operand.

3.3.5 Inline function

In a program, by declaring a function as an inline function, you can have gcc integrate the code of the
function into the code that calls the function. This processing can remove the overhead of the entry/exit time when
the function call is invoked, thus definitely speeding up execution. Therefore, the main purpose of declaring a
function as an inline function is to be able to execute the function body as quickly as possible. In addition, if there
is a constant value in an inline function, gcc may use it to perform some simplification during compilation, so not
all inline function code will be embedded. The inline function method has no obvious effect on the length of the
program code. Programs compiled using inline functions may generate longer or shorter target code, depending on
the circumstances.

The operation of embedding an inline function in the caller's code is an optimization operation, so code
embedding processing is performed only when an optimized compilation is performed. If the optimization option
"-O" is not used during compilation, the code of the inline function is not actually embedded in the caller's code,
but is only handled as an ordinary function call. The way to declare a function as an inline function is to use the
keyword "inline" in the function declaration, such as the following function in the kernel file fs/inode.c:

01 inline int inc(int *a)
02 {

03 (*a) ++:

04 }

The use of some of the statements in a function may prevent the replacement of an inline function from
working properly, or may not be suitable for replacement operations. For example, variable parameters, memory
allocation functions malloca(), variable-length data type variables, non-local goto statements, and recursive
functions are used. Compiler can use the option -Winline to make gcc give warning information for functions
marked as inline but cannot be replaced, and why they cannot be replaced.

When using both the inline keyword and the static keyword in a function definition, ie the definition of an
inline function in the file fs/inode.c below, then all calls to the inline function are replaced if they are replaced. In
the caller code, and the program does not refer to the address of the inline function, the assembly code of the
inline function itself will not be referenced. In this case, unless we use the option -fkeep-inline-functions during
compilation, gcc will no longer generate actual assembly code for the inline function itself. For some reason, some
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calls to inline functions cannot be integrated into functions. In particular, the calling statement before the
definition of the inline function is not replaced by the integration and cannot be a function defined by recursion. If
there is a call that cannot be replaced by an integration, the inline function is compiled into assembly code as
usual. Of course, if the program has a statement that references the address of an inline function, the inline
function is also compiled into assembly code as usual. Because references to inline function addresses cannot be
replaced.

20 static inline void wait on_ inode(struct m_inode * inode)

21 {

22 cli(Q;

23 while (inode—>i lock)

24 sleep on(&inode—>i wait);
25 sti();

26 }

Please note that inline function functions have been included in 1SO standard C99, but the inline functions
defined by this standard are quite different from those defined by gcc. The semantic definition of the inline
function of the ISO standard C99 is equivalent to the definition of the combination keyword inline and static,
which means “eliminating” the keyword static. If you need to use the C99 standard semantics in your program,
you need to use the compile option -std=gnu99. However, in order to be compatible, it is still best to use inline
and static combinations in this case. After that gcc will eventually use the definition of C99 by default. If you want
to still use the semantics defined here, you need to use the option -std=gnu89 to specify.

If the definition of an inline function does not use the keyword static, then gcc will assume that there is also a
call to this function in other program files. Because a global symbol can only be defined once, the function can no
longer be defined in other source files. Therefore, calls to inline functions cannot be replaced by integration here.
Therefore, a non-static inline function is always compiled with its own assembly code. In this regard, the 1SO
standard C99 definition of an inline function that does not use the static keyword is equivalent to using the static
keyword definition here.

If both inline and extern keywords are specified when defining a function, the function definition is only used
for inline integration, and the function's own assembly code is not generated separately in any case, even if the
function is explicitly referenced. The address will not be generated either. Such an address becomes an external
reference, just as if you just declared a function without defining a function.

The combination of inline and extern is almost identical to a macro definition. Using this combination
method is to put a function definition with a combination keyword in the .h header file, and put another definition
of the same function without a keyword in a library file. The definition in the header file at this time causes most
of the calls to the function to be embedded by substitution. If there is a call to the function that has not been
replaced, then a copy of the program file or library is used (referenced). The file include/string.h, lib/strings.c in
the Linux 0.1x kernel source code is an example of this use. For example, the following function is defined in
string.h:

// Copy the string (src) to another string (dest) until it encounters a NULL character.
// Paras: dest — dest string ptr, src — source string ptr. %0 — esi(src), %l — edi(dest)
27 extern inline char * strcpy(char * dest, const char *src)

28 {
29 asm_ (“cld\n” // Clear direction
30 “1:\tlodsh\n\t” // Load DS: [esi] 1 byte => al and update esi.
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31 “stosh|n\t” // Store byte al=>ES:[edi] and update edi.
32 “testh %%al, %%al\n\t” // Just stored byte al is 0?

33 “ine 1b” // If not, go back to label 1 or end.

34 757 (sre), D7 (dest) : “si” “di”. “ax”)

35 return dest; // Returns the destination string pointer.
36 }

In the kernel library directory, the lib/strings.c file defines the keywords inline and extern as empty, as shown
below. Therefore, in fact, the kernel library contains a copy of all such functions in the string.h file, which in turn
redefines these functions once and "eliminates" the effect of the two keywords.

11 #define extern // Defined as empty.
12 #define inline // Defined as empty.
13 #tdefine _ LIBRARY

=

#tinclude <string. h>

—
(@2}

The above-defined strcpy() function in the library function now becomes the following:

27 char * strcpy(char * dest, const char *src) // Removed keywords inline and extern.
28 |

29 asm_ (“cldn” // Clear direction.

30 “1:\tlodshb\n\t” // Load DS: [esi] 1 byte => al and update esi.
31 “stosh|n|t” // Store byte al=>ES:[edi] and update edi.

32 “testh %%al, %%al\n\t” // Just stored byte al is 0?

33 “ine 1b” // If not, go back to label 1 or end.

34 11787 (sre), D7 (dest): 7si” 7di”, “ax”);

35 return dest; // Returns the destination string pointer.

36 }

3.4 Interworking between C and Assembly language

In order to improve the efficiency of code execution, some parts of the kernel source code directly use the
assembly language. This will involve the invocation problem between two language programs. This section first
describes the invocation mechanism of C language functions, and then uses an example to illustrate the calling
method between the two functions.

3.4.1 C function call mechanism

After the Linux kernel program boot/head.s performs basic initialization operations, it will jump to execute
the init/main.c program. So how does the head.s program transfer its execution control to the init/main.c program?
That is how the assembler calls to execute C language programs? Here we first describe the C function call
mechanism, control transfer mode, and then explain the head.s program jumps to the C program.

Function call operations include bidirectional data transfer and execution control transfer from one piece of
code to another. Data passing is done through function parameters and return values. In addition, we also need to
allocate storage space for the function's local variables when entering the function, and reclaim this space when
exiting the function. The Intel 80x86 CPU provides simple instructions for control transfer, while the transfer of
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data and the allocation and recovery of local variable storage space are achieved through stack operations.
3.4.1.1 Stack frame structure and control transfer method

Most program implementations use the stack to support function call operations. The stack is used to transfer
function parameters, store return information, temporarily save the original values of the registers for recovery
and to store local data. The portion of the stack used by a single function call operation is called the stack frame
structure. Its general structure is shown in Figure 3-4. Both ends of the stack frame structure are specified by two
pointers. The register ebp is usually used as a frame pointer, and esp is used as a stack pointer. During the
execution of the function, the stack pointer esp moves with the data being pushed onto the stack. Therefore, most
data accesses in the function are based on the frame pointer ebp.

N
|
! > Previous frame
|
g J
g <
[
[}
s
" ebpt(1+n)4 Param n
3
3 > Calller’ s frame
2 &=
= ebpt12 Param 2
ebpt8 Param 1
ebpt4 Return address
Frame pointer ebp —0 —— Saved ebp oj
ebp=4 |Saved registers,
local iables,
aoncda tevn?r vaalueess Current stack frame
v (Callee’ s frame)
Param area when
calling other
Stack pointer esp — 3 function ) Stack top

Figure 3-4 Frame structure in the stack

For the case where function A calls function B, the parameters passed to B are contained in A's stack frame.
When A calls B, the return address of Function A (the address of the instruction that continues execution after the
call is returned) is pushed onto the stack. This position on the stack also explicitly indicates the end of the A stack
frame. The stack frame of B starts from the subsequent stack section, where the frame pointer (ebp) is stored. It is
then used to store any saved register values and temporary values of the function.

The B function also uses the stack to hold local variable values that cannot be placed in registers. For
example, because the normal CPU has a limited number of registers and cannot store all the local data of the
function, or some local variables are arrays or structures, they must be accessed using an array or a structure
reference. There is also the C language address operator ‘&' is applied to a local variable, we need to generate an
address for the variable, which allocates a space for the address pointer of the variable. Finally, the B function will
use the stack to save the parameters that call any other function.
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The stack is expanded toward the low (small) address, while the esp points to the element at the top of the
current stack. By using the push and pop instructions we can push data onto the stack or pop it off the stack. For
storage space that does not specify initial data, we can do this by decrementing the stack pointer by an appropriate
value. Similarly, we can reclaim the allocated space on the stack by increasing the stack pointer value.

The instructions CALL and RET are used to handle function invocation and return operations. The effect of
the instruction CALL is to push the return address onto the stack and jump to the beginning of the called function.
The return address is the address of an instruction immediately following the instruction CALL in the program. So
when the called function returns, it will continue from that position. The return instruction RET is used to pop up
the address at the top of the stack and jump to that address. Before using this instruction, the contents of the stack
should be processed correctly so that the current stack pointer is the same as the one returned by the previous
CALL instruction. In addition, if the return value is an integer or a pointer, the register eax will be used by default
to pass the return value.

Although only one function is executed at a time, we still need to make sure that when a function (caller)
calls another function (the callee), the callee will not modify or overwrite the register contents that the caller will
use in the future. Therefore, the Intel CPU adopts the uniform usage of registers that all functions must comply
with. This convention indicates that the contents of registers eax, edx, and ecx must be held by the caller
themselves. When function B is called by A, function B can use them arbitrarily without saving the contents of
these registers without destroying any data needed by function A. In addition, the contents of registers ebx, esi,
and edi must be protected by callee B. When the callee needs to use any of these registers, it must first save its
contents on the stack and restore the contents of these registers on exit. Because caller A (or some higher-level
function) is not responsible for saving these register contents, it may need to use the original value in future
operations. There are also registers ebp and esp that must follow the second convention usage.
3.4.1.2 Function call example

As an example, let's observe the processing of the function call in the following C program exch.c. The
program exchanges the values in the two variables and returns their difference.

1 void swap(int * a, int *b)

2 {

3 int c;

4 ¢ = *a; *a = *b; *b = ¢c;
5}
6
7
8
9

int main()
{
int a, b;
10 a=16; b = 32;
11 swap (&a, &b);
12 return (a — b);

13}

The function swap() is used to exchange the values of two variables. The main program in the C program, main(),
is also a function (described below). It returns the swapped result after calling swap(). The stack frame structure of
these two functions is shown in Figure 35. As you can see, the function swap() gets its parameters from the caller's
(main()) stack frame. The position information in the figure is relative to the frame pointer in the register ebp. The
number to the left of the stack frame indicates the address offset value relative to the frame pointer. In debuggers
such as gdb, these values are represented in 2's complement. For example, '-4' is represented as 'OxFFFFFFFC',
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and '-12' is represented as 'OXFFFFFFF4'.

The stack frame structure of the caller main() includes the storage space for the local variables a and b, which
are located at -4 and -8 offsets with respect to the frame pointer. Since we need to generate addresses for these two
local variables, they must be stored on the stack and not simply stored in registers.

ebp

esp

Before call swap()

— 0 Saved ebp
-4
-8
-12 &b
—> 16 &a

4 Saved ebp
a
Stack of
main () <
+12 &b
+8 &a
g +4 |Return address
Frame pointer ebp —» S d eb
aved €op 9 Stack of swap()
Stack pointer esp —» —4 @

After enter swap()

Figure 3-5 Stack frame structure when calling function main and swap

Use the command "gcc -Wall -S -oexch.s exch.c” to generate the assembler exch.s code for this C language
program, as shown below (remove several lines of directives that are not relevant to the discussion).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27

. text
_swap:

_main:

pushl %ebp

movl
subl
movl
movl
movl
movl
movl
movl
movl
movl
mov]
mov]

%esp, %ebp

$4, %esp

8 (%ebp) , %eax
(%eax) , %ecx
%ecx, —4 (%ebp)
8 (%ebp) , %eax
12 (%ebp) , %edx
(%edx) , %ecx
%ecx, (%eax)
12 (%ebp) , %eax
-4 (%ebp) , %ecx
%ecx, (%eax)

leave

ret

pushl %ebp

mov1
subl
mov1
mov1
leal

%esp, %ebp

$8, %esp
$16, —4 (%ebp)
$32, =8 (%ebp)
-8 (%ebp) , %beax

pushl %eax

leal

-4 (%ebp) , %eax

pushl %eax

# Save original ebp, set current function s frame pointer.

# Allocates space within the stack for the local variable c.
# Get 1st argument, which is a pointer to an integer value
# Store value pointed by the pointer into variable c.

=

Take 1st parameter again, and then take 2nd parameter.

Put the content of the 2nd parameter into the place
pointed by the 1lst parameter.

Take the second parameter again, then place the content
of variable ¢ at the position pointed by this pointer

H H H =

# Restore the original ebp and esp.

# Save original ebp, set current function’ s frame pointer.

=

Allocates space in stack for local variables a and b.
Assign initial values to variables (a=16, b=32)

=

# To call the swap(), push the address of variable b onto
stack. That is, push the second parameter first.
Then push address of variable a as the first parameter.

H =
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28 call _swap # Call the function swap().

29 mov]l —4 (%ebp), %eax # Take the value of a — b

30 subl -8 (%ebp), %eax

31 leave # Restore the original ebp and esp.
32 ret

These two functions can be divided into three parts independently: "set" to initialize the stack frame structure;
"body" to perform the actual calculation of the function; "end" to restore the stack state and return from the
function. For the swap() function, the setting part code is 3--5 lines. The first two lines are used to set the caller's
frame pointer and set the function's stack frame pointer. Line 5 allocates space for the local variable ¢ by moving
the stack pointer esp down by 4 bytes. Line 6-15 is the main part of the swap function. Lines 6 - 8 are used to
retrieve the caller's first parameter, &a, and use this parameter as an address to fetch the contents of the memory
into the ecx register and save it to the space allocated for the local variable (-4 (%ebp)) . Lines 9-12 are used to
fetch the second parameter, &b, and take the parameter value as the address and take its contents to the address
specified by the first parameter. Lines 13-15 store the value stored in the temporary local variable ¢ at the address
specified by the second parameter. The last 16-17 lines are the end of the function. The leave instruction is used to
process the contents of the stack in preparation for return. Its role is equivalent to the following two instructions:

movl %ebp, %esp # Restores original esp (to beginning of stack frame)
popl %ebp # Restores original ebp (usually the caller’s frame ptr).

This two lines of code restore the original values of the registers esp and ebp when entering the swap() function
and executes the return instruction ret.

Lines 19-21 are the set part of the main() function. After saving and resetting the frame pointer, main()
allocates space for the local variables a and b on the stack. Lines 22-23 assign values to these two local variables.
You can see from lines 24-28 how main() calls the swap() function. The first step is to use the leal instruction
(fetching an effective address) to get the addresses of the variables b and a and push them onto the stack, and then
call the swap() function. The order in which the variable addresses are pushed onto the stack is exactly the
opposite of the order of the parameters declared by the function. That is, the last parameter of the function is
pushed onto the stack first, and the first parameter of the function is pushed onto the stack before the call to the
function instruction call. Lines 29--30 subtract the two already exchanged numbers and place them in the eax
register as the return value.

From the above analysis we can see that when C calls a function, it temporarily stores the value of the
transferred function parameter on the stack. That is, C language is a value-based language. There is no direct
method to modify the caller variable in the called function. value. Therefore, in order to achieve the purpose of
modification, you need to pass a pointer to the variable (ie, the address of the variable) to the function.
3.4.1.3 Main() is also a function

The above assembler code is compiled using gcc 1.40. It can be seen that there are a few lines of extra code.
It can be seen that the gcc compiler at that time could not produce the most efficient code. This is one of the
reasons why some key code needs to be compiled directly in assembly language. In addition, the main program of
the C program mentioned above is also a function. This is because it will be called as a function of the crt0.s
assembler program when the link is compiled. crt0.s is a stub program. The name “crt" is an abbreviation for "C
run-time". The program'’s target file will be linked at the beginning of each user's execution program, mainly used
to set some initialization global variables. The crt0.s assembler program in Linux 0.12 is shown below. The global
variable _environ is created and initialized for use by other modules in the program.
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1 . text

2 .globl environ # Declare the global variable environ. (correspond to

3 # the environ variable in C program)

4  entry: # Code entry label.

5 movl 8(%esp), %eax # Get environment variable pointer envp, save in _environ
6 movl %eax, _environ # envp is set by execve() when executable file is loaded.
7 call main # Call main program. Its return status is in eax register.
8 pushl %eax # Push return value as an argument to exit() and call it
9 1: call exit

10 jmp 1b # Control should not arrive here

11 .data

12 environ: # Define variable environ and assign it a long word space
13 .long 0

When gcc is used to compile and link the executable file, gcc will automatically link the code of crt0.s as the
first module in the executable program. Use the show details option '-v' at compile time to clearly see the linking
process:

[/usr/root]# gcc —v —o exch exch.s

gce version 1. 40

/usr/local/lib/gcc—as —o exch.o exch.s

/usr/local/lib/gcc—1d —o exch /usr/local/lib/crt0.o exch.o /usr/local/lib/gnulib -lc
/usr/local/lib/gnulib

[/usr/root]#

So in the normal compilation process we don't need to specify the stub module crt0.0, but if we want to use
the 1d(gld) to generate the executable exch from the exch.o module manually from the assembly program given
above, then we need to The crt0.0 module is specified on the command line, and the link order should be "crt0.0,
all program modules, library files."”

In order to use ELF format object files and create a shared library module file, the current gcc compiler (2.x)
has extended this crt0 into several modules: crtl.0, crti.o, crtbegin.o, crrtend.o, and Crtn.o. The link order of these
modules is “crtl.o, crti.o, crtbegin.o (crtbeginS.o), all program modules, crrtend.o (crtendS.o), crtn.o, library
module files". The gcc configuration file specfile specifies this link order. Where ctrl.o, crti.o, and crtn.o are
provided by the C library, which is the C program's "boot" module; crtbegin.o and crentend.o are the C++
language startup modules provided by the compiler gcc; and crtl.o It is similar to the effect of crt0.0, and is
mainly used to do some initialization work before calling main(). The global symbol _start is defined in this
module.

crtbegin.o and crentend.o are mainly used in C++ languages to implement global constructors and destructor
functions in the .ctors and .dtors sections. The roles of crtbeginS.o and crrtendS.o are similar to those of the first
two, but they are used to create shared modules. crti.o is used to execute the initialization function init() in the .init
section. The .init section contains the initialization code for the process, ie when the program starts executing, the
system executes the code in .init before calling main(). Crtn.o is used to execute the process in the .fini area to
terminate the processing function fini(), that is, when the program exits normally (main() returns), the system will
arrange to execute the code in .fini.
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In the kernel, lines 136--140 in the boot/head.s program are used to make preparations for jumping to the
main() function in init/main.c. The instruction on line 139 pushes the return address on the stack, while line 140
presses the address of the main() function code. When head.s finally executes the ret instruction on line 218, the
address of main() is popped up, and control is transferred to the init/main.c program.

3.4.2 Call C function in assembler code

The method of calling a C language function from an assembly code is actually given above. In the above
assembler code for the C language example, we can see how the assembler statement calls the swap() function.
Now we make a summary of the calling method.

When calling a C function in assembly code, you first need to push the function parameters into the stack in
reverse order. That is, the last (rightmost) parameter of the function is pushed on the stack first, and the leftmost
first parameter is pushed before the last instruction is called. See Figure 3-6. Then execute the CALL instruction
to execute the called function. After the calling function returns, the program needs to clear the function
parameters that were previously pushed onto the stack.

Top part of the caller’s stack

func (pl, p2, p3)

& =

pl
EIP 4—4 After the CALL instruction

Figure 3-6 The parameters pushed into the stack when the function is called

When the CALL instruction is executed, the CPU pushes the address of the next instruction of the CALL
instruction onto the stack (see EIP in the figure). If the call also involves code privilege level changes, the CPU
will also perform a stack switch and push the current stack pointer, segment descriptor, and call parameters into
the new stack. Since the Linux kernel uses only interrupt gates and trapdoors to handle privilege level changes
during the call, and does not use the CALL instruction to handle privilege level changes, the use of the CALL
instruction at the time of privilege level change is not described here. .

Calling C functions in assembly is relatively “free.” As long as it is in the proper place in the stack, it can be
used as a parameter for C functions. Here is still taking the function call with 3 parameters in Figure 3-6 as an
example. If we do not call it directly by pushing the argument with func(), the func() function will still store the
EIP position. The rest of the stack is used as its own parameter. If we explicitly press the first and second
parameters for func() call, then the third parameter p3 of the func() function will directly use the contents of the
stack before p2. There are several places in this Linux 0.1x kernel code. For example, the copy_process() function
(line 68 in kernel/fork.c) is called on line 231 in the kernel/sys call.s assembly program. Although only five
parameters are pushed onto the stack in the assembly function _sys fork, copy_process() has a total of up to 17
parameters, as shown below:

// kernel/sys call.s partial program: _sys fork
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226 push %gs

227 pushl %esi

228 pushl %edi

229 pushl %ebp

230 pushl %eax

231 call copy process # Call the C function copy process() (kernel/fork.c, 68)
232 addl $20, %esp # Discard all the pushed content here

233 1: ret

// kernel/fork.c partial program.
68 int copy process(int nr, long ebp, long edi, long esi, long gs, long none,

69 long ebx, long ecx, long edx, long orig eax,
70 long fs, long es, long ds,
71 long eip, long cs, long eflags, long esp, long ss)

We know that the later the parameter is pushed onto the stack, the closer it is to the left of the C function
parameter. Therefore, the five register values that were actually pushed before the copy_process() was called are
the five leftmost parameters of the copy_process() function. In order, they correspond to the values of the eax(nr),
ebp, edi, esi, and register gs that are stacked. The rest of the following parameters actually correspond directly to
what is already on the stack. These contents are the values of various registers that are gradually added to the stack
when the system call interrupt processing process is started until the system call process is called.

The parameter none is the return address of the next instruction when _sys fork is called from the address
jump table on line 99 of the sys_call.s program. The address jump table sys _call_table[] is defined in line 93 of
the header file include/linux/sys.h. The following parameters are the registers ebx, ecx, edx, the original eax, and
the segment registers fs, es, and ds that were pushed onto the stack at lines 85-91 just after entering system_call.
The last five parameters are the CPU execution interrupt instruction push return address eip and cs, flag register
eflags, user stack address esp and ss. Because the system call involves a change in program privilege level, the
CPU pushes the flag register value and the user stack address onto the stack. After calling C function
copy_process() returns, _sys_fork discards only 5 parameters pressed by itself, and the rest of the stack is also
saved. Other functions that use the above usage include do_signal() in kernel/signal.c, do_execve() in fs/exec.c,
etc. Please analyze it yourself.

In addition, we say that the assembly calls the C function is relatively free because we can use the JMP
instruction to achieve the same purpose of calling the function without the CALL instruction. The method is to put
the address of the instruction to be executed next into the stack manually after the parameter is pushed into the
stack, and then directly use the JMP instruction to jump to the start address of the called function to execute the
function. Afterwards, when the execution of the function is completed, the RET instruction will be executed to
pop up the address of the next instruction we push manually into the stack, as the address returned by the function.
There are also many ways to call this function in the Linux kernel, such as the case where the 62nd line of the
kernel/asm.s program calls the do_int3() function in traps.c.

3.4.3 Call assembly function in C program

Calling an assembly function from a C program is the same as calling an C function in an assembler, but it is
not often used in Linux kernel programs. The focus of the calling method is still on the determination of the
location of function parameters in the stack. Of course, if the calling assembly language program is relatively
short, it can be directly implemented in the C program using the inline assembly statement described above.
Below we use an example to illustrate how to program this kind of program. The assembler calle.s containing two
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functions is shown below.

/%
This assembly language program uses the system call sys write() to implement the display
function int mywrite(int fd, char * buf, int count).
The function int myadd(int a, int b, int * res) is used to perform the atb = res operation.
If the function returns 0, it means overflow.
Note: If you compile under the current Linux system (such as RedHat 9), remove the

underscore ~ ’ before the function name. */
SYSWRITE = 4 # Sys write() system call number.
.globl mywrite, myadd
. text
_mywrite:

pushl  %ebp
mov1 %esp, %ebp
pushl  %ebx

mov 1 8 (%ebp), %ebx # Take the first argument of the caller: file descriptor fd.
mov 1 12 (%ebp), %ecx # The second parameter: buffer pointer

mov 1 16 (%ebp), %edx # The third parameter: display character number

mov 1 $SYSWRITE, %eax # Put system call number 4 in %eax

int $0x80 # Execute the system call.

popl %ebx
mov 1 %ebp, %esp
popl %ebp

ret
_myadd:

pushl  %ebp

mov 1 %esp, %ebp

mov 1 8 (%ebp), %eax # Get the first parameter a

mov1 12 (%ebp), %edx # Get the second parameter b

xorl %ecx, %ecx # If %ecx is 0, the calculation overflows

addl %eax, %edx # Perform additions

jo 1f # Jump if it overflows.

mov 1 16 (%ebp), %eax # Take the third parameter pointer

mov 1 %edx, (%eax) # Put the result in the position of the pointer

incl %ecx # No overflow occurred, so set no overflow return value
1: mov1 %ecx, %eax # %ecax is the function return value.

mov] %ebp, %esp

popl %ebp
ret

The first function mywrite() in the assembly file uses the system interrupt 0x80 to call the system call
sys_write(int fd, char *buf, int count) to display the information on the screen. The corresponding system call
function number is 4 (see include/unistd.h). The three parameters are the file descriptor, the display buffer pointer,
and the number of display characters. Before executing int 0x80, the caller function number (4) needs to be placed
in the register %eax, and the registers %ebx, %ecx, and %edx should be stored as fd, buf, and count, respectively,
according to the calling rules. The function argument mywrite() uses exactly the same number of parameters and
uses as sys_write().

The second function myadd(int a, int b, int *res) performs an addition operation. The parameter res is the
result of the operation. The function return value is used to determine if an overflow has occurred. If the return
value is 0, the calculation has overflowed and the result is not available. Otherwise the result of the calculation
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will be returned to the caller via the parameter res.
Note that if you compile callee.s under the current Linux system (eg RedHat 9), remove the underscore *_'
before the function name. The C program caller.c that calls these two functions is shown below.

/%
Call assembly function mywrite (fd, buf, count) to display information;
Call myadd (a, b, result) to perform addition. If myadd() returns 0, it indicates
overflow. First, the start calculation information is displayed, and then the operation
result is displayed

*/
01 int main()
02 {
03 char buf[1024];
04 int a, b, res;
05 char * mystr = “Calculating...\n”;
06 char * emsg = “Error in adding\n”;
07
08 a=>5; b=10;
09 mywrite (1, mystr, strlen(mystr)):
10 if (myadd(a, b, &res)) {
11 sprintf (buf, ”“The result is %d\n”, res);
12 mywrite (1, buf, strlen(buf)):
13 }oelse {
14 mywrite (1, emsg, strlen(emsg));
15 }
16 return 0;
17 }

The program first uses the assembly function mywrite() to display the information "Calculating..." on the screen,
and then calls the addition calculation function myadd() to operate on the two numbers a and b, and on the third
parameter res Returns the result of the calculation. Finally, use the mywrite() function to display the formatted
result information string on the screen. If the function myadd() returns 0O, it means that the overflow function has
overflowed and the result of the calculation is invalid. The compilation and running results of these two files are
shown below:

[/usr/root]# as —o callee.o callee.s
[/usr/root]# gcc —o caller caller.c callee.o
[/usr/root]# . /caller

Calculating. ..

The result is 15

[/usr/root]#

3.5 Linux0.12 Object file format

To generate the kernel code, Linux 0.12 uses two compilers. The first is the assembler as86 and the
corresponding linker (or linker) 1d86. They are used exclusively for compiling and linking the 16-bit kernel boot
sector program bootsect.s and the setup program setup.s running in real-address mode. The second is the GNU
assembler as(gas) and the C compiler gcc and the corresponding linker gld. The compiler is used to generate the
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corresponding binary code and data object file for the source program file. The linker is used to combine all
related object files to form a target file that can be loaded by the kernel, ie, an executable file.

This section begins with a brief description of the compiler-generated object file structure, and then describes
how the linker combines the object file modules that need to be linked together to generate a binary executable
image file or a large module file. Finally, it explains the generation principle and process of the Linux 0.12 kernel
binary code file Image. This gives information on the a.out object file format supported by the Linux 0.12 kernel.
As86 and 1d86 generate the MINIX-specific object file format, which we will present in the chapter on kernel
creation tools that deal with this format. Because the MINIX object file structure is similar to the a.out object file
format, it will not be described here. The basic working principle of the object file and linker program can be
found in the book “Linkers & Loaders” by John R. Levine.

For convenience of description, the object file generated by the compiler is called an object module file
(abbreviated as a module file), and the executable object file generated by the link program is called an executable
file. And all of them are collectively referred to as object files.

3.5.1 Object file format

In the Linux 0.12 system, the UNIX module's traditional a.out format is used by both the GNU gcc or gas
compiler output object module file and the linker generated executable file. This is an object file format called
Assembly & Linker Editor Output. For a system with a memory paging mechanism, this is a simple and effective
object file format. The a.out format file consists of a file header and subsequent code sections (also called text
sections), initialized data sections (also called data sections), relocation information section, symbol tables and
symbol names String composition, as shown in Figure 3-7. The code section and the data section are usually also
referred to as a text segment (code segment) and a data segment, respectively.

a.out header

Text section

Data section

Text relocation

Data relocation

Symbol Table

String Table

Figure 3-7 a.out format object file

The basic definitions and uses of the 7 sections of the a.out format are:

B Exec header. Execute file header section. This section contains some parameters (exec structure), which is
the overall structure information about the target file. For example, the length of the code and data area, the
length of the uninitialized data area, the corresponding source file name, and the target file creation time. The
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kernel uses these parameters to load execution files into memory and execute them, and the linker (Id) uses
these parameters to combine some of the module files into an executable file. This is the only necessary part
of the target document.

Text segment. The binary instruction code and data information generated by the compiler or assembler
contains the instruction code and related data that are loaded into memory when the program is executed.
Can be loaded as read-only.

Data segment. Binary instruction code and data information generated by a compiler or assembler. This
section contains data that has already been initialized and is always loaded into readable and writable
memory.

Text relocations. This section contains record data for use by the linker. Used to locate a pointer or address in
a code segment when combining object module files. When the linker needs to change the address of the
target code, it needs to be corrected and maintained.

Data relocations. Similar to the role of the code relocation section, but used for relocation of pointers in the
data segment.

Symbol table. This section also contains record data for use by the linker. These record data hold the global
symbols defined in the module file and the symbols that need to be input from other module files, or the
symbols defined by the linker, used to cross named variables and functions (symbols) between module files.
References.

String table. This section contains the string corresponding to the symbol name. Used to debug program
debugging target code, regardless of the linking process. This information can include source code and line
numbers, local symbols, and data structure description information.

For a given target file, not all of the above information is necessarily included. Since the Linux 0.12 system

uses the memory management function of the Intel CPU, it allocates a separate 64MB address space (logical
address space) for each execution program. In this case, because the linker has processed the execution file to start
from a fixed address, the relocation information is no longer needed in the relevant executable file. Below we

explain some of the important areas or parts.

3.5.1.1 Executive header
In the header portion of the target file, there is a 32-byte exec data structure, commonly referred to as a file
header structure or an execution header structure. Its definition is as follows. For more information about the a.out

structure, see the introduction after the include/a.out.h file.

struct exec {

unsigned long a magic; /* Use macros N MAGIC, etc for access */

unsigned a_text; /* length of text, in bytes %/

unsigned a_data; /* length of data, in bytes %/

unsigned a_bss; /* length of uninitialized data area for file, in bytes */
unsigned a_syms; /* length of symbol table data in file, in bytes %/
unsigned a_entry; /* start address */

unsigned a_trsize; /* length of relocation info for text, in bytes */
unsigned a_drsize; /* length of relocation info for data, in bytes */

According to the value of the magic number field of the header structure in the a.out file, we can divide the
a.out file into several types. The Linux 0.12 system uses two types: The module object file uses the OMAGIC
(Old Magic) type of a.out format, which indicates that the file is an object file or an impure executable file. The
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magic number is 0x107 (octal 0407). The executable file uses the ZMAGIC a.out format, which indicates that the
file is an executable file for demand-driven (demang-paging, ie, load on demand) loading. The magic number is
0x10b (octal 0413). The main difference between these two formats is the way they allocate storage to each part.
Although the total length of the structure is only 32 bytes, for a ZMAGIC type executable file, the beginning
portion of the file requires a space of 1024 bytes for the head structure. Except 32 bytes occupied by the header
structure, the rest is 0. The text segment and data segment of the program are only placed after 1024 bytes. For an
OGMIC type .0 module file, the 32-byte header structure at the beginning of the file is followed by the code area
and the data area.

The a_text and a_data fields in the execution header structure indicate the byte lengths of the read-only code
segment and the read-write data segment, respectively. The a_bss field indicates the length of the uninitialized
data area (bss section) following the data segment when the kernel loads the target file. Since Linux automatically
zeros memory when allocating memory, the bss section does not need to be included in a module file or an
executable file. In order to visually represent that the target file logically has a bss segment, a dashed box will be
used in the later illustration to represent the bss segment in the target file.

The a_entry field specifies the address at which the program code begins execution, while the a_syms,
a_trsize, and a_drsize fields describe the size of the relocation information for the symbol table, code, and data
segments after the data segment, respectively. Symbol tables and relocation information are not required for
executable files, so unless the linker includes symbol information for debugging purposes, the fields in the
execution file are usually zero.
3.5.1.2 Relocation information section

The Linux 0.12 system's module files and executable files are all object files in the a.out format, but only the
compiler-generated module files contain relocation information for linking programs. The relocation information
of the code segment and the data segment is composed of relocation records (items). The length of each record is
8 bytes. Its structure is as follows.

struct relocation_info
{
/% Address (within segment) to be relocated. */
int r address;
/* The meaning of r symbolnum depends on r extern. */
unsigned int r symbolnum:24;
/* Nonzero means value is a pc-relative offset
and it should be relocated for changes in its own address
as well as for changes in the symbol or section specified. */
unsigned int r pcrel:1;
/% Length (as exponent of 2) of the field to be relocated
Thus, a value of 2 indicates 1<<2 bytes. 3*/
unsigned int r length:2;
/* 1 => relocate with value of symbol.
r symbolnum is the index of the symbol
in file’ s the symbol table
0 => relocate with the address of a segment
R _symbolnum is N _TEXT, N DATA, N BSS or N ABS
(the N_EXT bit may be set also, but signifies nothing). */
unsigned int r extern:1;
/% Four bits that aren’ t used, but when writing an object file
it is desirable to clear them. */
unsigned int r pad:4;
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There are two functions for relocating items. One is that when the code segment is relocated to a different
base address, the relocation item is used to indicate where it needs to be modified. Second, when there is a
reference to an undefined symbol in the module file, the linker can use the corresponding relocation item to
correct the value of the symbol when the undefined symbol is finally defined. It can be seen from the structure of
the above relocation record items that each record item contains an address in the code section (code segment) and
data section (data segment) of the module file that needs to be relocated at a length of 4 bytes and specifies how to
weigh Positioning operation information. The address field r_address refers to the offset value of the relocatable
item from the beginning of the code segment or data segment. The 2-bit length field r_length indicates the length
of the relocated entry, and 0 to 3 indicates that the width of the relocated entry is 1 byte, 2 bytes, 4 bytes, or 8
bytes, respectively. The flag r_pcrel indicates that the relocated item is a "PC related" item, ie it is used as a
relative address in the instruction. The external flag r_extern controls the meaning of r_symbolnum and indicates
whether the relocation entry refers to a segment or a symbol. If the flag value is 0, the relocation entry is a normal
relocation entry, and the r_symbolnum field specifies in which segment the positioning is addressed. If the flag is
1, then the relocation entry is a reference to an external symbol. In this case, r_symbolnum specifies a symbol in
the symbol table in the target file and needs to be relocated using the value of the symbol.
3.5.1.3 Symbol Table and String Section

The last part of the target file is the symbol table and the related string table. The structure of the symbol
table entry is as follows.

struct nlist {

union {

char *n_name; // String pointer

struct nlist *n_next; // Or a pointer to another symbolic item structure

long n_strx; // Or the byte offset value of the symbol name in the table
} n_un;
unsigned char n_type; // This byte is divided into 3 fields. see a.out.h file.
char n other; // Usually not used.
short n_desc; //
unsigned long n_value; // Symbol’ s value

Since the GNU gcc compiler allows arbitrary-length identifiers, the identifier strings are located in a string
table after the symbol table. Each symbol table entry has a length of 12 bytes, where the first field gives the
symbol name string (null-terminated) offset from the string table. The type field n_type indicates the type of
symbol. The last bit of this field is used to indicate if the symbol is external (global). If this bit is 1, then the
symbol is a global symbol. The linker does not need local symbol information, but it can be used by the debugger.
The remaining bits of the n_type field are used to indicate the symbol type. The a.out.h header file defines these
types of value constant symbols. The main types of symbols include:

W text, data, or bbs indicates the symbols defined in this module file. The value of the symbol at this time

is the relocatable address of the symbol in the module.

B abs indicates that the symbol is an absolute (fixed) non-relocatable symbol. The value of the symbol is

the fixed value.

B undef indicates that it is an undefined symbol in this module file. The value of the symbol at this time is

usually 0.
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However, as a special case, the compiler can use an undefined symbol to ask the linker to reserve a memory
space for the specified symbolic name. If an undefined external (global) symbol has a non-zero value, then for the
linker the value is the size of the memory that the program wishes to specify for symbolic addressing. During the
linking operation, if the symbol is really not defined, then the linker creates a memory space for the symbol name
in the bss section. The size of the space is the largest value of the symbol in all linked modules. This is the
so-called Common block definition in the bss section. It is mainly used to support uninitialized external (global)
data. For example, an uninitialized array defined in the program. If the symbol has already been defined in any
module, the linker will use this definition and ignore the value.

3.5.2 Target file format in Linux 0.12

In the Linux 0.12 system, we can use the objdump command to view the specific values of the file header
structure in the module file or executable file. For example, the following lists the specific values of the headers in
the hello.o object file and its executable file.

[/usr/root]# gcc —c —o hello.o hello.c

[/usr/root]# gcc —o hello hello.o

[/usr/root]#

[/usr/root]# hexdump —x hello.o

0000000 0107 0000 0028 0000 0000 0000 0000 0000
0000010 0024 0000 0000 0000 0010 0000 0000 0000
0000020 6548 6c6e 2c6T 7720 7261 646¢ 0a21 0000
0000030 8955 68eb 0000 0000 e3e8 ffff 31ff ebc0
0000040 0003 0000 c3c9 0000 0019 0000 0002 0d00
0000050 0014 0000 0004 0400 0004 0000 0004 0000
0000060 0000 0000 0012 0000 0005 0000 0010 0000
0000070 0018 0000 0001 0000 0000 0000 0020 0000
0000080 6367 563 6163 706d 6c69 6465 002e 6dbf
0000090 6961 006e 705f 6972 746e 0066

000009c¢

[/usr/root]# objdump —h hello. o

hello. o:

magic: 0x107 (407)machine type: 0 flags: 0x0 text 0x28 data 0x0 bss 0x0
nsyms 3 entry 0x0 trsize 0x10 drsize 0x0

[/usr/root]#

[/usr/root]# hexdump —x hello | more

0000000 010b 0000 3000 0000 1000 0000 0000 0000
0000010 069¢ 0000 0000 0000 0000 0000 0000 0000
0000020 0000 0000 0000 0000 0000 0000 0000 0000
*

0000400 448b 0824 00a3 0030 €800 00la 0000 006a
0000410 dbe8 000d eb00 00f9 6548 6¢c6e 2¢c6T 7720
0000420 7261 646¢ 0a2l 0000 8955 68eb 0018 0000
—More—q

[/usr/root]#

[/usr/root]# objdump —h hello

hello:

magic: 0x10b (413)machine type: 0 flags: 0x0 text 0x3000 data 0x1000 bss 0x0
nsyms 141 entry 0x0 trsize 0x0 drsize 0x0
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[/usr/root]#

It can be seen that the magic number of the hello.o module file is 0407 (OMAGIC), and the code segment
immediately follows the header structure. In addition to the header structure, a code segment of 0x28 bytes in
length and a symbol table with 3 symbol items and code segment relocation information of 0x10 bytes in length
are included. The rest of the segments are 0 in length. The magic number of the corresponding execution file hello
is 0413 (ZMAGIC), and the code segment is stored from the file offset position 1024 bytes. The lengths of the
code and data segments are 0x3000 and 0x1000 bytes, respectively, with a symbol table containing 141 items. We
can use the command strip to delete the symbol table information in the execution file. For example, below we
delete the symbol information in the hello execution file. It can be seen that the length of the symbol table of the
hello execution file becomes 0, and the length of the hello file is also reduced from the original 20591 bytes to
17412 bytes.

[/usr/root]# 11 hello

“TWX——X——X 1 root 4096 20591 Nov 14 18:30 hello
[/usr/root]# objdump —-h hello
hello:

magic: 0x10b (413)machine type: Oflags: OxOtext 0x3000 data 0x1000 bss 0x0
nsyms 141 entry 0x0 trsize 0x0 drsize 0x0

[/usr/root]# strip hello
[/usr/root]# 11 hello

-rwx——x——x 1 root 4096 17412 Nov 14 18:33 hello
[/usr/root]# objdump —h hello
hello:

magic: 0x10b (413)machine type: Oflags: OxOtext 0x3000 data 0x1000 bss 0x0
nsyms 0 entry 0x0 trsize 0x0 drsize 0x0
[/usr/root]#

Figure 3-8 shows the correspondence between the areas of the a.out executable file in the process logical
address space on the disk. The logical space size of a process in a Linux 0.12 system is 64 MB. For the ZMAGIC
a.out executable file, its code area is an integer multiple of the memory page size. Since the Linux 0.12 kernel
uses the Demand-paging technique, which means that a page of code is actually loaded into a physical memory
page, it is only set for the fs/execve() function of the load operation. The paging mechanism of page directory
entries and page table entries, so demand page technology can speed up the loading process.
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Figure 3-8 a.out execution file maps to process logical address space

In the figure, bss is the uninitialized data area of the process and is used to store static uninitialized data. The
first page of bss memory will be set to all Os at the beginning of program execution. The heap in the figure is a
heap space area, which is used to allocate the memory space dynamically requested by the process during
execution.

3.5.3 Linker output

The linker processes one or more input object files and related library function objects, and ultimately
generates a corresponding binary execution file or a large module file composed of all modules. In this process,
the link program's primary task is to perform storage space allocation operations for the execution file (or output
module file). Once the storage location is determined, the linking program can continue to perform
symbol-bonding operations and code revision operations. Because most of the symbols defined in the module file
are related to the storage location in the file, there is no way to resolve the symbol before the corresponding
position of the symbol is determined.

Each module file includes several types of segments. The second task of the linker is to join together the
segments of the same type in all modules and form a single segment for the specified segment type in the output
file. For example, the linker needs to merge the code segments from all the input module files into a single
segment and place it in the output executable file.

For a.out format module files, since the segment types are known in advance, the linker can easily store and
allocate a.out format module files. For example, for the case of having two input module files and the need to
connect a library function module, its storage allocation is shown in Figure 3-9. Each module file has a code
section, a data section, and a bss section. There may also be some common blocks that appear to be external
(global) symbols. The linker collects the size of each of the module files, including code segments, data segments,
and bss segments in any library function module. After all the modules have been read in and processed, any
unresolved external symbols with a non-zero value will be treated as common blocks and their allocations will be
stored at the end of the bss section.
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Figure 3-9 Object files link operation

The linker can then assign addresses to all segments. For the ZMAGIC type a.out format used in the Linux
0.12 system, the code segment in the output file is set to start at fixed address 0. The data segment starts from the
next page boundary after the code segment. The bss section immediately follows the data segment. Within each
segment, the linker stores the same type of segments in the input module file and aligns them by word.

When Linux 0.12 kernel loads an executable file, it will first determine whether the file is a suitable
executable file based on the information in the file header structure, that is, if the magic number type is ZMAGIC,
then the system is at the top of the user mode stack. The program sets the environmental parameters and parameter
information blocks entered on the command line and builds a task data structure for it. Then use the stack return
technique to execute the program after setting some related register values. The code and data in the execution
program image file will be dynamically loaded into memory using Load on Demand when actually executed or
used.

For the Linux 0.12 kernel compilation process, it is done using the make command to command the compiler
and linker operations based on the kernel configuration file Makefile. In the build process, make also uses the
build.c program in the kernel source code in the tools/ directory to compile and build a temporary tool program
build that is used to combine all modules. Since the kernel is loaded into memory by the boot-up program using
the ROM BIOS interrupt call, the execution header structure in the compiled kernel modules needs to be removed.
The main function of the utility program build is to remove the execution header structures in the bootsect, setup,
and system files, and then combine them sequentially to produce a kernel image file named Image.

3.5.4 Linker Predefined Variables

During linking, the linker Id and 1d86 use variables to record the logical address of each segment in the
execution program. Therefore, in the program, you can access the external variables to obtain the position of the
program's middle segment. The linker's predefined external variables are usually at least etext, _etext, edata,
_edata, end, and _end.
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The addresses of the variable names _etext and etext are the first address after the program text segment ends;
the addresses of _edata and edata are the first address after the initial data area; the addresses of _end and end are
after the uninitialized data area (bss) The first address location. Names prefixed with the underscore '_' are
equivalent to the underlined counterparts. The only difference between them is that the symbols etext, edata, and
end are not defined in the ANSI, POSIX, and other standards.

When the program just begins to execute, its brk location is in the same position as _end. But system calls
sys_brk(), memory allocation functions malloc(), and standard input/output operations will change this position.
Therefore, the current brk position of the program needs to be obtained using sbrk(). Note that these variable
names must be treated as addresses. Therefore, when accessing them, you need to use the address prefix ‘&', such
as &end. E.g:

extern int etext;
int et;

(int *) et = & etext; // et contains the address after the end of text segment

The following program predef. c can be used to display the addresses of these variables. It

can be seen that the address value is the same for the band and the underscore ’ ’ symbol.

/%
Print the symbols predefined by linker
*/
extern int end, etext, edata;
extern int _etext, _edata, _end;
int main()
{
printf ("&etext=%p, &edata=%p, &end=%p\n”
&etext, &edata, &end);
printf ("& etext=%p, & edata=%p, & end=%p\n”
& etext, & edata, & end);
return 0;

Running this program on a Linux 0.1X system gives the following results. Please note that these addresses
are logical addresses in the program's address space, which is the address from when the execution program was
loaded into the memory location.

[/usr/root]# gcc —o predef predef.c
[/usr/root]# . /predef

&etext=4000, &edata=44c0, &end=48d8
& etext=4000, & edata=44c0, & end=48d8
[/usr/root]#

If you run this program on a modern Linux system (such as RedHat 9 or later), the following results can be
obtained. We know that the program code in the Linux system is how stored from its logical address 0x08048000,
S0 we can see that the program's code segment length is Ox41b bytes.
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[root@linux]# . /predef

&etext=0x804841b, &edata=0x80495a8, &end=0x80495ac
& etext=0x804841b, & edata=0x80495a8, & end=0x80495ac
[root@linux]#

When the Linux 0.1x kernel initializes the block device cache (fs/buffer.c), it uses the variable name _end to
obtain the location of the kernel image file Image in memory at the end of the file, and from this position, the high
speed is set. Buffer.

3,55 System.map file

When running the GNU linker gld(ld), if the '-M" option is used, or the nm command is used, the link map
information is printed on the standard output device (usually the screen). The target program memory address map
information generated by the linker. It lists the location information of the program segment loaded into memory.
Specifically, there is the following information:

B Locations of object files and symbol information mapped in memory;

®m  How public symbols are placed:;

m  All file members included in the link and their referenced symbols.

Usually we will redirect the link image information sent to the standard output device to a file (eg
System.map). When compiling the kernel, the System.map file generated by the linux/Makefile file is used to
store kernel symbol table information. The symbol table is a list of all kernel symbols and their corresponding
addresses. Of course, it also includes address information of symbols such as _etext, edata, and _end described
above. With each kernel compilation, a new corresponding System.map file is generated. When an error occurs in
the kernel, the variable name corresponding to an address value can be found by parsing the symbol table in the
System.map file, or vice versa.

By using the System.map symbol table file, we can get more easily identified information when a kernel or
related program fails. Examples of symbol tables are as follows:

c03441a0 B dmi_broken

c03441a4 B is_sony vaio_ laptop
c03441c0 b dmi_ident

c0344200 b pci_bios present
c0344204 b pirqg_table

Each line describes a symbol, the first column indicates the symbol value (address), the second column is the
symbol type, indicates which section of the target file the symbol is located in or its attributes, and the third
column is the corresponding symbol name.

The symbol type indicators in the second column usually have the types shown in Table 3-5, and there are
some related to the target file format adopted. If the symbol type is a lowercase character, the symbol is local; if it
is an uppercase character, the symbol is global (external). See the definition of the nlist{} structure n_type field in
the file include/a.out.h (lines 110-185).

Table 3-5 The symbol type in the target file symbol list file

Symbol
type

Name Description
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A Absolute The value of the symbol is an absolute value and will not be changed during further
linking.

B BSS The symbols are in the uninitialized data section, ie in the BSS section.
The symbol is public. Public symbols are uninitialized data. When linking, multiple

C Common public symbols may have the same name. If the symbol is defined elsewhere, the
public symbol is treated as an undefined reference.

D Data The symbol is in the initialized data section.
The symbol is in the initialized data section of the small object. The format of some

G Global object files allows more efficient access to small data objects such as a global
integer variable.

| Inderect A symbol is an indirect reference to another symbol.

N Debugging The symbol is a debugging symbol.

R Read only The symbol is in a read-only data section.

S Small symbol in a small object's uninitialized data section.

T Text Symbols in code sections.

U Undefined The symbol is external and its value is 0 (undefined).

) Stabs The symbol is a stab symbol in the a.out object file and is used to save debugging
information.

? Unknwon The type of symbol is unknown or related to a specific file format.

It can be seen that the variable named dmi_broken is located at kernel address 0xc03441a0.
System. map is where the software that uses it (such as the kernel logging daemon klogd) can
find it. When the system is started, klogd will search System. map in three places if the location

of System.map is not given as klogd in the form of a parameter. as followed:

/boot/System. map
/System. map
/usr/src/linux/System. map

Although the kernel itself does not actually use System.map, other programs, such as klogd, Isof, ps, and
other software like dosemu, require a correct System.map file. Using this file, these programs can find the
corresponding kernel variable name based on the known memory address to facilitate debugging of the kernel.

3.6 Make Command and Makefile

As you can see from the examples given above, when creating an executable file that is generated by one or a
few source programs, you only need to type a few simple lines of commands. But for a large program such as a
kernel that consists of hundreds or even thousands of source files, compiling all code files by manually typing
lines of commands is extremely complicated. The make command is the best tool designed to automatically
handle this type of situation. Its main purpose is to be able to automatically determine which files need to be
recompiled in a large project containing many source files and issue these files with a recompilation command.
Let's take the compiling C program as an example to illustrate how to use Make briefly, but you can apply it to
any programming language that can be compiled using shell commands. For detailed usage of make, please refer
to "GNU make manual”.

In order to use the make tool, we need to write a text file named Makefile (or makefile) for make execution.
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The Makefile mainly contains some execution rules and commands required to tell make the relationships among
files and what compile and link operations are required for the source files involved to generate the corresponding
target files.

When "make" recompiles the source files, each modified source file is recompiled. If the header file has
changed, each source file containing the header file will be recompiled. Each compilation generates an object file
that corresponds to the source file. Finally, if all source files have been recompiled, all object files, whether newly
created or saved from a previous compilation, will be linked together to produce a new executable.

3.6.1 Contents of the Makefile

A Makefile can include five elements: explicit rules, implicit rules, variable definitions, directives, and

comments.

B Explicit rules are used to specify when and how to recompile one or more files called rule’s targets. The
rules explicitly list the other files on the target that depend on the prerequisites (or dependencies), as
well as the commands for creating or updating targets.

B Implicit rules are based on the name of the target and the object to determine when and how to
recompile one or more files called targets of the rule. This rule describes how the target depends on a
file that is similar to the target name and will be given to create or update such a target file.

B Variable definitions define a text string for a variable on one line. This variable can be replaced in
subsequent statements. For example, the variables object in the example below defines a list of all .0
files.

B Adirective is a command of make that indicates the specific operation that it performs when it reads a
Makefile. These operations can include reading another makefile; determining whether to use or ignore
a portion of the makefile and defining a variable from a string containing multiple lines.

B Comments are the parts of the text in the Makefile that begin with the '# character. If we really need to
use the '#' character, we need to escape it by adding a backslash character ("\#) before the character.
Comments can appear anywhere in the Makefile. In addition, a command line script in the Makefile that
begins with the TAB is passed to the shell in its entirety, and the shell determines whether it is a
command or just a comment.

Once we have written an appropriate Makefile, we can simply type "make" each time we modify the source
code to perform all necessary program updates. make determines which files need to be updated (recompiled)
based on the contents of the Makefile and the last updated time of the file. For each file that needs to be updated,
make executes the relevant commands recorded in the Makefile.

3.6.2 Rules in the Makefile File

A simple Makefile contains some of the following rules. These rules are mainly used to describe the
dependencies between operating objects (source files and object files).

target ...: prerequisites ...
command

Among them, the target object usually refers to the name of a file generated by the program, for example, it
can be an executable file or an object file that ends with ".0". The target can also be the name of the activity to be
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taken, for example "clean".

The prerequisite is a series of files or other targets necessary to create a target. The target usually depends on
multiple such necessary or target files.

The command (command) refers to the operations performed by make, which are usually shell commands
that generate the target. When the last modification time of one or more files in the prerequisite condition is newer
than that of the target file, the command of the rule will be executed. In addition, there can be multiple commands
in one rule, each command occupies a single line in the rule. Please note that we need to type a tab character
(press Tab) before writing each command!

Typically, the command exists in a rule with prerequisites and is used to create a target file when any of the
prerequisites change. However, the rules do not necessarily have preconditions. For example, a rule containing a
delete command related to the target "clean™ does not contain prerequisites.

A rule explains how and when to remake certain files, which are the targets of some specific rules. make will
execute the command based on the prerequisites to create or update the target. A rule can also explain how and
when to perform an operation.

In addition to the rules, a Makefile can also contain other text. However, for a simple Makefile it is usually
sufficient to include only a few rules. Some rules may be more complex than the ones given earlier, but they are
basically similar.

3.6.3 A Simple Makefile

Below we discuss a simple Makefile that describes how to compile and link a text editor program consisting
of eight C source files and three header files.

When make recompiles C files based on the contents of the Makefile, only the modified C files are
recompiled. Of course, if a .h header file is modified, then in order to ensure that the program is compiled
correctly, every C code file that contains the header file is recompiled. Each compilation operation produces a
target file that corresponds to the source program. The net result is that if any of the modified source code files are
compiled, then all .0 object files that are generated (including those that were just compiled and unmodified
before the source code is compiled) need to be linked together to generate a new one. Executable editor program.

The contents of the Makefile example file describe how an executable named edit depends on 8 object files,
and how the 8 object files depend on 8 C source files and 3 header files. In this example, all C files contain the
"defs.h header file, but only those C files that define the edit command contain "command.h” and only the
underlying C file that changes the edit buffer contains "buffer.h” "head File.

edit : main.o kbd.o command.o display.o insert.o search.o files.o utils.o
cc —o edit main.o kbd.o command.o display.o insert.o search.o files.o utils.o

main. o : main.c defs.h
cc —c main.c

kbd. o : kbd.c defs.h command. h
cc —¢ kbd.c

command. o : command. ¢ defs.h command. h
cc —c¢ command. ¢

display.o : display.c defs.h buffer.h
cc —¢ display. c

insert.o : insert.c defs.h buffer.h
cc —c insert.c

search. o : search.c defs.h buffer.h
cc —c search.c
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files.o : files.c defs.h buffer.h command. h
cc —¢ files.c
utils.o : utils.c defs.h
cc —¢ utils.c
clean :
rm edit main. o kbd. o command.o display.o insert.o search.o files.o utils.o

To use the Makefile to create the "edit" executable file, simply type “make” on the command line.

To use the Makefile to remove the compiled executable file and all object files from the current directory, just
type “make clean”.

In the Makefile, the target of the rule includes the execution file "edit" and the .0 object file "main.o",
"kbd.o", and the like. Prerequisite (or dependent) files are source files such as "main.c" and "defs.h". In fact, we
can see that each ".0" file is both a rule goal and a necessary prerequisite file for another rule. The commands
include "cc -c main.c" and "cc -c kbd.c".

When the target is a file, then any dependent files in its prerequisites need to be recompiled or linked when
they are modified. Of course, the file in the precondition that is itself an object should be updated first. In this
example, "edit" depends on eight .0 target files; and the .o target file "main.o" depends on the source file "main.c"
and the header file "defs.h".

On the next line of the rule's target and prerequisites in the Makefile is the shell command. These shell
commands indicate how to use the files in the prerequisite to update or generate the target object file. Note that we
need to type a tab before each command line to distinguish the command line and other lines in the Makefile.
What make does is execute the commands in the rule when the target needs to be updated.

The target "clean" is not a file, but just the name of an operation (activity). Because we generally do not
require that this action be performed in its rules, "clean" is not a prerequisite for any other rule. The result is that
make does not enforce this rule unless it is explicitly stated. Note that this rule (target) is not only a prerequisite
for any other rule, it does not contain nor does it require any prerequisites. So the sole purpose of this rule is to
execute the specified command. For such a rule, its target does not refer to or depend on any other file, but only
indicates a specific operation. This target is called a phony target.

3.6.4 How make handles Makefile

By default, make will start from the first target in the Makefile (hot including targets starting with '."). This
first goal is called the default goal of the Makefile. The ultimate goal is to make an effort to try to update the
target.

In the above example, the default end goal is to update or create the execution program "edit", so we put the
corresponding rules at the top of the Makefile. When we type the command make on the command line, make will
read the Makefile and start processing the first rule. In the example, the first rule is to re-link to generate "edit",
but before make can completely process this rule, it must first process the rules of the file that "edit" depends on.
In the example, you need to first create or update those .0 object files. Each .o file will be processed according to
its own rules, that is, by compiling the respective source files to generate the respective .0 object files. If any
source or header file that is a target prerequisite is newer than the .o object files or the .0 object files do not exist,
recompilation is required to update or create the corresponding .o object file. .

Some of the other rules in the Makefile will also be processed if their goals (files) appear in the prerequisites
of the final target. If the final goal (or any goal) does not depend on some other rule, make will not process these
rules unless we actively request make to handle it. For example, when running make, we can give the target name
of a specific rule in the Makefile on the command line to perform the specified update operation, such as using the
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command “make clean”.

Before recompiling a .0 object, make first considers updating its prerequisites, source files, and header files.
However, the Makefile does not specify any operation for the source and header files, ie, the source and header
files are not the target of any rules, so make will not perform any processing on these source files.

After recompiling the desired .0 object file, make decides whether to perform a relink to generate an updated
edit program “edit". This will only be done if "edit" does not exist or if any .o target file is newer than "edit". If
an .o object file has just been recompiled, it will be newer than "edit" and make will be relinked to generate a new
"edit".

Therefore, if we modify the file “insert.c” and run make, make compiles the source file to update the
corresponding “insert.0™ and then links “edit". If we modify the header file "command.h™ and run make, make will
recompile the target files "kbd.o", "command.o™ and "files.0” and then link to generate a new executable file
"edit".

In general, make will use the contents of the Makefile to determine which .o object files need to be updated,
and then determine which of the target files do need to be updated. If the .0 object file is newer than all of its
related files, the .0 object is already up-to-date and no further updates are required. Of course, all necessary targets
in the input condition (prerequisite) as the first final target are updated beforehand.

3.6.5 Variables in the Makefile

In the above example, we need to list all .o target files twice in the "edit" rule (see below):

edit : main.o kbd.o command. o display.o insert.o search.o files.o utils.o
cc -0 edit main.o kbd.o command.o display.o insert.o search.o files.o utils.o

This duplicate information is easy to make mistakes. If we add a new .o object file to the program, it is
possible to add the .0 object file name to a list but forget to add it in another place. By using a variable, we are
likely to reduce the risk of this error, and also make the Makefile look more concise. Using variables allows us to
define a text string once, which can then be replaced in several places.

For Makefiles, the typical practice is to define a variable named objects or OBJECTS to represent a list of
all .o object files. We usually use the following line in the Makefile to define a variable objects:

objects = main. o kbd. o command. o display.o insert.o search.o files.o utils.o

After that, in every place where you need to list the .0 object files, you can replace the value of the variable by
writing "$(objects)".

3.6.6 Let make automatically deduce commands

We do not need to give the relevant commands in the rules in order to compile each C source program.
Because make itself can judge it: it has an implied rule, which uses the 'cc -¢' command according to the naming
of the target file, and updates the corresponding .o file according to the corresponding .c file. For example, it
compiles 'main.c’ to 'main.o’ using the command 'cc -¢c main.c -0 main.o'. Therefore we can omit the commands in
the .0 object file rules.

When a .c file is used automatically in this way;, it is automatically added to the prerequisites (dependencies).
So we can omit the ".c' file in the rule preconditions --- Suppose we also omit the command. The following is a
complete Makefile example that includes these two changes and uses variables:
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objects = main. o kbd. o command. o display.o insert.o search.o files.o utils.o

edit : $(objects)

cc —o edit $(objects)
main.o : defs.h
kbd.o : defs.h command. h
command. o : defs.h command. h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h
search. o : defs.h buffer.h
files.o : defs.h buffer.h command.h
utils.o : defs.h

clean :
-rm edit $(objects)

This is how we actually write the Makefile file. Because implied rules are so convenient, it is important. We
will often see using them.

3.6.7 Implicit rules in automatic variables

If one of the prerequisites (dependent objects) is searched for by searching the directory and is found in
another directory, the command of the rule will be executed as scheduled. Therefore, we must carefully set the
command so that the command can find the necessary prerequisites in this directory. This can be done by using
automatic variables. Automatic variables that are implicit rules are variables that can be automatically replaced on
the command line depending on the situation. The value of the automatic variable is set before the regular
command is executed. For example, the value of the automatic variable '$"' represents all the prerequisites for the
rule, including the name of the directory they are in; the value of '$<' represents the first prerequisite in the rule;
'$@' represents the target object ( for other automatic variables, see the make manual ). Sometimes, when we don't
want to specify a header file on the command line, we can include these header files in the prerequisites. At this
point, the automatic variable '$<'is the first prerequisite.

foo.o0 : foo.c defs.h hack.h
cc —¢ $(CFLAGS) $< —o $@

The '$<" will be automatically replaced with foo.c and $@ will be replaced with foo.o.

In order for make to use idioms to update a target, we can eliminate the need for commands. Write a rule
without a command or do not write a rule. At this point, make will determine which implicit rule to use based on
the type of source file (file suffix).

In addition, there is an implicit rule called a suffix rule. It is an old-fashioned way of defining implicit rules
for make (now that this rule is no longer used, instead using more general and clearer pattern matching rules).
Since this rule is used in the Makefile of the Linux 0.1x kernel, here's a brief explanation. The following example
is an application of a double suffix rule. Dual suffix rules are defined with a pair of suffixes: source suffix and
target suffix. The corresponding implicit prerequisite is obtained by replacing the target suffix with the source
suffix in the file name. Therefore, the following '$<' value at this time is the "*.c' file name. The meaning of the
positive make rule is to compile the *.c' program into the "*.s' code.
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$(CC) $(CFLAGS) \
-nostdinc —Iinclude -S —o $*.s $<

Usually the command belongs to a rule with preconditions (dependency objects) and is used to generate a
target file when any of the prerequisites change. However, the rules that specify commands for goals do not
necessarily have prerequisites. For example, rules related to the target ‘clean’ with a delete command do not
require a prerequisite. At this point, a rule explains how and when to re-create certain files, which are the targets
of specific rules. Make executes commands based on prerequisites to create or update targets. A rule can also
explain how and when to perform an operation.

Makefiles can also contain text other than rules, but simple Makefiles need only contain the appropriate rules.
The rules may seem much more complex than the template shown above, but they are basically consistent.

The Makefile file can also contain some referenced dependencies between the files. These dependencies are
used by make to determine if a target needs to be rebuilt. For example, when a header file is changed, make
recompiles all **.c' files associated with the header file with these dependencies. For an example of a dependency,
refer to the Makefile in the kernel source code.

3.7 Summary

In this chapter, several executable assembly language programs are used as description objects, and the basic
language and usage of as86 and GNU as assembly language are described in detail. At the same time, the C
language extensions used by the Linux kernel are described in detail. For learning the operating system, the object
file structure supported by system has a very important role, so this chapter describes the a.out object file format
used in Linux 0.12 in detail.

In the next chapter, we will detail the operating principle of the Intel 80X86 processor running in protected
mode. Given an example of a protection mode multitasking program, reading this example will give us a basic
understanding of how the operating system initially "rotates" and lays a solid foundation for continuing to read the
full Linux 0.12 kernel source code.
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4 80X86 Protection Mode and Its Programming

The Linux operating system introduced in this book is based on a PC system consisting of an Intel 80X86
processor and related peripheral hardware.The best reference for 80X86 CPU system programming is of course
the three-volume "IA-32 Intel Architecture Software Developer's Manual” released by Intel Corporation,
especially the third volume: "System Programming Guide". It is an essential reference for understanding the
operating principle of the 80X86 CPU or system programming. These information can be downloaded for free
from the Intel Corporation website. This chapter mainly describes the architecture of the 80X86 CPU and some
basic knowledge of programming in protected mode, laying a solid foundation for preparing to read the source
code of Linux kernel based on 80X86 CPU. Mainly include: 1. 80X86 CPU basic knowledge; 2. Protected mode
memory management; 3. Various CPU protection methods; 4. Interrupt and exception handling; 5. Task
management; 6. Initialization of protection mode programming; 7. A simple multitasking Kernel example.

A simple multitasking kernel program described in the last section of this chapter is a simplified example
based on the Linux 0.12 kernel. This example is used to demonstrate the implementation of memory segmentation
management and task management. It does not include paging mechanism content. However, if you thoroughly
understand the operating mechanism of this example, you should not encounter any major problems when you
read the Linux kernel source code later. If the reader is already familiar with this part of the content, you can
directly read a runnable kernel sample program given at the end of this chapter. Of course, readers can refer back
to this chapter at any time when reading kernel source code.

4.1 80X86 System Registers and System Instructions

To assist the processor in performing initialization and control system operations, the 80X86 provides a flag
register, EFLAGS, and several system registers. In addition to some common status flags, EFLAGS also contains
several system flags. These system flags are used to control task switching, interrupt handling, instruction tracking,
and access permissions. System registers are used for memory management and control processor operations.
They contain the base address of the system table for segmentation and paging processing, and the bit flags that
control processor operations.

4.1.1 Flag Registers

The system flags and IOPL fields in the flag register EFLAGS are used to control I/O access, maskable
hardware interrupts, debugging, task switching, and virtual-8086 modes, as shown in Figure 4-1. Normally only
operating system code is allowed to modify these flags. The other flags in EFLAGS are some common flags
(carry CF, parity PF, auxiliary carry AF, zero flag ZF, negative SF, direction DF, overflow OF). Here we describe
only the system flags in the team EFLAGS.
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Figure 4-1 System Flags in EFLAGS

Bit 8 is the Trap Flag. When this bit is set, step-by-step execution can be started for the debug operation;
single-step execution is prohibited when reset. In the single-step execution mode, the processor
generates a debug exception after each instruction is executed, so that we can observe the state of the
execute program after executing each instruction. If the program uses the POPF, POPFD, or IRET
instructions to set the TF flag, the processor generates a debug exception after the subsequent
instruction.

Bits 13-12 are the 1/O Privilege Level field. This field indicates the 1/O privilege level IOPL of the
currently running program or task. The CPL currently running a program or task must be less than or
equal to this IOPL to access the 1/0 address space. Only when the CPL is at privilege level 0 can the
program use the POPF or IRET instructions to modify this field. IOPL is also one of the mechanisms
that control the modification of the IF logo.

Bit 14 is a nested task flag. It controls the chain relationship between the interrupted task and the called
task. The processor sets this flag on calls to a task initiated with a CALL instruction, an interrupt, or an
exception. When returning from a task by using the IRET instruction, the processor checks and modifies
this NT flag. This flag can also be modified using the POPF/POPFD instructions, but changing the state
of this flag in the application can generate unexpected exceptions.

Bit 16 is the Resume Flag. This flag controls the processor's response to breakpoint instructions. When
set, this flag temporarily disables the debug exception generated by the breakpoint instruction; when the
flag is reset, the breakpoint instruction will generate an exception. The main function of the RF flag is to
allow re-execution of an instruction after debugging an exception. Before the debug software uses the
IRETD instruction to return to the interrupted program, the RF flag in the EFLAGS content on the stack
needs to be set to prevent the instruction breakpoint from causing another exception. The processor
automatically clears the flag after the instruction returns, again allowing instruction breakpoint
exceptions.

Bit 17 is the Virtual-8086 Mode flag. When this flag is set, the virtual-8086 mode is turned on; when the
flag is reset, it returns to the protected mode.

4.1.2 Memory Management Registers

The processor provides four memory management registers (GDTR, LDTR, IDTR, and TR) that specify the

95



4.1 80X86 System Registers and System Instructions

base address of the system table used for memory segment management, as shown in Figure 4-2. The processor
provides specific instructions for loading and saving these registers. For the role of the system table, see the
detailed description in the next section, "Protection Mode Memory Management.”

47 16 15 0
GDTR 32-bit Linear Base Address 16-bit Table Limit
IDTR 32-bit Linear Base Address 16-bit Table Limit

System Segment

Registers Segment Descriptor Registers (Automatically Loaded)

15 0 Attributs
TR Seg. Selector 32-bit Linear Base Address Seg. Limit
LDTR Seg. Selector 32-bit Linear Base Address Seg. Limit

Figure 4-2 Memory management registers

GDTR, LDTR, IDTR, and TR are segment base registers that contain important information tables for the
segmentation mechanism. GDTR, IDTR, and LDTR are used to address the segment where the descriptor table is
stored. TR is used to address a special task state segment TSS (Task State Segment). The TSS segment contains
important information about the currently executing task. Now we explain them in detail.

1. Global Descriptor Table Register (GDTR)

The GDTR register holds the 32-bit linear base address and the 16-bit limit value of the global descriptor
table GDT. The base address specifies the address of byte 0 in the GDT table in the linear address space, and the
table length indicates the byte length value of the GDT table. The instructions LGDT and SGDT are used to load
and set the contents of the GDTR register, respectively. After the machine has just powered up or the processor is
reset, the base address is set to 0 by default and the length value is set to OxFFFF. The GDTR must be loaded with
a new value during the initialization of the protection mode.

2. Interrupt Descriptor Table Register (IDTR)

Similar to GDTR, the IDTR register is used to store the 32-bit linear base address and 16-bit table length
values of the interrupt descriptor table IDT. The instructions LIDT and SIDT are used to load and set the contents
of the IDTR register, respectively. After the machine has just powered up or the processor is reset, the base
address is set to 0 by default and the length value is set to OXFFFF.

3. Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, 32-bit linear base address, 16-bit segment limit, and
descriptor attribute values of the local descriptor table LDT. The instructions LLDT and SLDT are used to load
and store the segment selector part of the LDTR register, respectively. The segment containing the LDT table must
have a segment descriptor entry in the GDT table. When using the LLDT instruction to load selectors containing
LDT segments into the LDTR, the segment base address, segment length, and descriptor attributes of the LDT
segment descriptor are automatically loaded into the LDTR. When task switching occurs, the processor
automatically loads the segment selector and segment descriptor of the new task LDT into the LDTR. After the
machine powers up or the processor resets, the segment selector and base address are set to 0 by default, and the
segment length is set to OXFFFF.

4. Task Register (TR)
The TR register holds the 16-bit segment selector, 32-bit base address, 16-bit segment length, and descriptor
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attribute values of the current task TSS segment. It references a TSS type descriptor in the GDT table. The LTR
and STR instructions are used to load and save the segment selector portion of the TR register, respectively. When
using the LTR instruction to load the selector into the task register, the segment base address, segment length, and
descriptor attributes in the TSS descriptor are automatically loaded into the task register. When task switching is
performed, the processor automatically loads the segment selector and segment descriptor of the TSS of the new
task into the task register TR.

4.1.3 Control Registers

The control registers (CRO, CR1, CR2, and CR3) are used to control and determine the operating mode of the
processor and the characteristics of the currently executing task, as shown in Figure 4-3. CRO contains system
control flags that control the operating mode and state of the processor; CR1 is reserved for use; CR2 contains a
linear address that causes a page fault. CR3 contains the physical memory base address of the page directory table,
so this register is also called the Page-Directory Base Address Register (PDBR).

31 12 11 0
Page-Directory Base Reserved CR3

31 0
Page-Fault Linear Address CR2

31 0
Reserved CR1

3130 1918171615 6 543210
p Reserved A W Reserved NIE|T|E|M|[P]| cRo

G M P E|T|S[M|P[E

Figure 4-3 Control registers CR0--CR3

1. Coprocessor control bits in CRO

Four bits of CRO: Extended Type Bit (ET), Task Switching Bit (TS), Emulation Bit (EM), and Math Presence
Bit (MP) are used to control the operation of the 80X86 floating point (math) coprocessor. For details on
coprocessors, see Chapter 11. The ET bit (flag) of CRO is used to select the protocol used to communicate with the
coprocessor, ie to indicate whether the system is using the 80387 or 80287 coprocessor. The TS, MP, and EM bits
are used to determine if a float instruction or WAIT instruction should generate a Device Not Available exception.
This exception can be used to save and restore floating-point registers only for tasks that use floating-point
operations. For tasks that do not use floating-point arithmetic, doing so can speed up the switching between them.

ET Bit 4 of CRO is an Extension Type flag. When the flag is 1, it indicates that the system has a 80387
coprocessor and uses a 32-bit coprocessor protocol. ET=0 indicates use of the 80287 coprocessor. If
simulation bit EM=1, this bit will be ignored. During a processor reset operation, the ET bit is initialized
to indicate the type of coprocessor used in the system. If there is 80387 in the system, then ET is setto 1,
otherwise if there is a 80287 or no coprocessor, ET is set to 0.

TS Bit 3 of CRO is the Task Switched flag. This flag is used to postpone saving the coprocessor content of
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EM

MP

2.
PE

PG

WP

the task switch until the new task begins to actually execute the coprocessor instruction. The flag is set
by the processor each time the task is switched and tested when the coprocessor instruction is executed.

If the TS flag is set and the EM flag of CRO is 0, a Device Not Available (DNA) exception is
generated before any coprocessor instructions are executed. If the TS flag is set, but the MPO and EM
flags of CRO are not set, no device exception will not occur until the coprocessor instruction
WAIT/FWAIT is executed. If the EM flag is set, the TS flag has no effect on the execution of
coprocessor instructions. See Table 4-1.

When the task is switched, the processor does not automatically save the context of the coprocessor
but sets the TS flag. This flag causes the processor to generate a device-existent exception when it
encounters a coprocessor instruction at any time while executing a stream of new tasks. A
device-existent handler can use the CLTS instruction to clear the TS flag and save the coprocessor's
context. If the task has never used a coprocessor, the corresponding coprocessor context does not need
to be saved.

Bit 2 of CRO is an EMulation flag. When this bit is set, it means that the processor has no internal or
external coprocessor. When the coprocessor instruction is executed, it will generates a
device-not-available exception. When cleared, it means that the system has a coprocessor. Setting this
flag forces all floating-point instructions to be simulated using software.

Bit 1 of CRO is the Monitor Coprocessor or Math Present flag. Used to control the interaction between
the WAIT/FWAIT instruction and the TS flag. If MP=1 and TS=1, then executing the WAIT instruction
will generate a device-not-available exception; if MP=0, the TS flag will not affect the execution of the
WAIT.

Table 4-1 Influence of EM, MP and TS Combinations in CRO on Coprocessor Actions

CRO Flags Instruction Type
EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute
0 0 1 DNA Exception Execute
0 1 0 Execute Execute
0 1 1 DNA Exception DNA Exception
1 0 0 DNA Exception Execute
1 0 1 DNA Exception Execute
1 1 0 DNA Exception Execute
1 1 1 DNA Exception DNA Exception

Protection and Control bits in CRO

Bit 0 of CRO is the Protection Enable flag. When this bit is set, the protection mode is enabled; when
reset, real address mode is entered. This flag only enables segment-level protection and does not enable
paging. To enable the paging mechanism, both the PE and PG flags are set.

Bit 31 of CRO is a paging signature. When this bit is set, the paging mechanism is enabled; when reset,
the paging mechanism is disabled. At this time, all linear addresses are equivalent to physical addresses.
The PE flag must be turned on before turning this flag on. That is, to enable the paging mechanism, both
the PE and PG flags are set.

For Intel 80486 or higher CPUs, bit 16 of CRO is the Write Proctect flag. When this flag is set, the
processor prohibits the superuser program (eg, a privilege level 0 program) from performing a write
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operation to the user-level read-only page; when this bit is reset, it is the reverse. This flag is beneficial
for UNIX-type operating systems to implement the Copy on Write technique when creating processes.

NE For Intel 80486 or higher CPUs, bit 5 of CRO is the Numeric Error flag. When this flag is set, the
internal reporting mechanism of the X87 coprocessor error is enabled; if the flag is reset, the X87
coprocessor error reporting mechanism in the form of a PC is used. When NE is in the reset state and
there is a signal on the CPU's IGNNE input pin, the math coprocessor X87 error will be ignored. When
NE is in the reset state and there is no signal on the CPU's IGNNE input pin, an unmasked math
coprocessor X87 error will cause the processor to generate an interrupt externally through the FERR pin
and perform the next wait form floating-point instruction Stop instruction execution immediately before
or WAIT/FWAIT instruction. The FERR pin of the CPU is used to emulate the ERROR pin of the
external coprocessor 80387, so it is usually connected to the interrupt controller input request pin. The
NE flag, the IGNNE pin, and the FERR pin are used to implement an external error reporting
mechanism in the form of a PC using external logic.

The Enable Protected (PE) bit (Bit 0) and the Paging bit (Bit 31) are used to control the segmentation and
paging mechanisms, respectively. PE is used to control the segmentation mechanism. If PE=1, the processor
operates in the context of the open segmentation mechanism, ie, operates in protected mode. If PE = 0, the
processor turns off the segmentation mechanism and operates in the real address mode as in 8086. The PG is used
to control the paging mechanism. If PG=1, the paging mechanism is turned on. If PG=-0, the paging mechanism is
disabled and the linear address is used directly as the physical address.

If PE=0, PG=0, the processor operates in real-address mode; if PG=0, PE=1, the processor operates in
protection mode without paging mechanism; if PG=1, PE=0, this Since the paging mechanism cannot be enabled
because it is not in protected mode, the processor generates a general protection exception. This flag combination
is invalid; if PG=1, PE=1, the processor works under the protection mode with the paging mechanism enabled. .

We must be careful when changing the PE and PG bits. We can only change the setting of the PG bit when
the execution program has at least some of the code and data in the linear address space and the physical address
space with the same address. At this point, this part of the code with the same address acts as a bridge between
paged and non-paged worlds. Regardless of whether the paging mechanism is turned on, this part of the code has
the same address. In addition, the page cache TLB must be refreshed before paging is enabled (PG=1).

After the PE bit is modified, the program must immediately use a jump instruction to flush any instructions
in the processor's execution pipeline that have acquired different modes. Before setting the PE bit, the program
must initialize several system segments and control registers. On power up, the processor is reset to PE=0 and
PG=0 (real mode state) to allow the boot code to initialize these registers and data structures before enabling the
segmentation and paging mechanism.

3. CR2and CR3

CR2 and CR3 are used for paging mechanism. CR3 contains the physical address of the page directory table
page, so CR3 is also called PDBR. Because the page directory table page is page-aligned, only the upper 20 bits
of this register are valid. The lower 12 bits are reserved for use by more advanced processors, so the lower 12 bits
must be set to 0 when loading a new value into CR3.

CR2 is used to report error messages when a page exception occurs. When the report page is abnormal, the
processor stores the linear address that caused the exception in CR2. Therefore, the page exception handler in the
operating system can determine which page in the linear address space caused an exception by checking the
contents of CR2.
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The use of the MOV instruction to load CR3 has the side effect of invalidating the page cache. In order to
reduce the number of bus cycles required for address translation, the most recently accessed page directory and
page table are stored in the page cache of the processor, which is referred to as the Translation Lookaside Buffer
(TLB). The page table entry is read from memory using an extra bus cycle only if the TLB does not contain the
required page table entry.

Even if the PG bit in CRO is in the reset state (PG = 0), we can load CR3 first to allow the paging mechanism
to be initialized. When switching tasks, the contents of CR3 will also change. However, if the CR3 value of the
new task is the same as that of the original task, the processor does not need to refresh the page cache. This allows
tasks that share page tables to execute faster.

4.1.4 System Instructions

System instructions are used to handle system-level functions. Examples include loading system registers,
managing interrupts, and so on. Most system instructions can only be executed by operating system software at
privilege level 0. The remaining instructions can be executed at any privilege level so applications can use it.
Table 4-2 lists some of the system instructions we will use. It also indicates whether they are protected.

Table 4-2 List of commonly used system instructions

Instruction Description Protected? Description
] Load LDT segment selectors and segment descriptors from
LLDT Load LDT Register Yes . .
memory into the LDTR register.
) Save the LDT segment selector in LDTR to internal memory or
SLDT Store LDT Regiter No .
general-purpose registers.
) Load the base address and length of the GDT table from
LGDT Load GDT Register Yes .
memory into GDTR.
] Save the base address and length of the IDT table in GDTR to
SGDT Store GDT Register No
memory.
. Load TSS segment selectors (and segment descriptors) into the
LTR Load Task Register Yes )
task register.
. Save the current task TSS segment selector in TR to the memory
STR Store Task Register No )
or general register.
. The base address and length of the IDT table are loaded from
LIDT Load IDT Register Yes )
memory into the IDTR.
. Store the base address and length of the IDT table in IDTR in
SIDT Store IDT Register No
memory.
MOV CRn Move Control Registers Yes Load and save control registers CR0, CR1, CR2, or CR3.
. Load the machine status word (corresponds to CRO bit 15--0).
LMSW Load Machine State Word | Yes o o S
This instruction is for compatibility with the 80286 processor.
. Save the machine status word. This instruction is for
SMSW Store Machine State Word | No . .
compatibility with the 80286 processor.
Clears the task switched flag TS in CRO. There are no
CLTS Clear TS flag Yes ) ) .
exceptions for handling devices (coprocessors).
LSL Load Segment Limit No Load Segment Limit
HLT Halt Processor Yes Stop the processor execution.
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4.2 Protect Mode Memory Management

The following is a brief introduction to the definition of memory addressing, the use of segmentation and
paging mechanism for the principle of the transformation between logical addresses, linear addresses and physical
addresses, and the protection mechanism between tasks and privilege levels. Subsequent subsections elaborate on
the working principles of each part.

4.2.1 Memory Addressing

Memory refers to an array of ordered bytes, each byte having a uniqgue memory address. Memory addressing
refers to locating the address of a specified data object stored in memory. Here, a data object is a numeric value or
a string of a specified data type stored in memory. 80X86 supports multiple data types: 1-byte, 2-byte (1 word) or
4-byte (double-word or long-word) unsigned integer or signed integer, and multi-byte character strings . Usually
the positioning or addressing of a certain bit in a byte can be addressed on a byte basis, so the addressing of the
smallest data type is the positioning of 1-byte data (numeric values or characters). Normally, the memory address
is addressed from 0. For the 80X86 CPU, the address bus width is 32 bits, so there are a total of 2*32 different
physical addresses. That is, the memory physical address space has 4G, a total of 4G bytes of physical memory
can be addressed. For multi-byte data types (such as 2-byte integer data types), these bytes are stored in memory.
The 80X86 first stores the low-value byte and then stores the high-value byte at the address. Therefore, the 80X86
CPU is a small-endum processor.

For the 80X86 CPU, one instruction consists mainly of the opcode and the operand. The operand can be
located in a register or in memory. To locate an operand in memory, memory addressing is required. The 80X86
has many instruction operands that involve memory addressing, and there are many different addressing schemes
to choose from depending on the type of data being addressed. For memory addressing, the 80X86 uses an
addressing technique called Segment. Addressing a data object in memory requires the use of a segment's start
address (that is, segment address) and an intra-segment offset address. The segment address part is specified using
a 16-bit segment selector, of which 14 bits can select 2714 powers, ie 16384 segments. The intra-segment offset
address portion is specified using a 32-bit value, so the intra-segment address can be 0 to 4G. That is, the
maximum length of a segment can reach 4G. A 48-bit address or long pointer consisting of a 16-bit segment
selector and a 32-bit offset in the segment thus forms a logical address (virtual address). It uniquely determines the
segment address and segment offset address of a data object. An address specified by only a 32-bit offset address
or pointer is based on the object address of the current segment. The segmentation mechanism also allows typing
of segments so that the operations that may be performed on a particular type of segment can be restricted.

The 80X86 provides six segment registers for storing segment selectors: CS, DS, ES, SS, FS, and GS. Where
CS is always used to address the code segment, and the stack segment specifically uses the SS segment register.
The segment addressed by CS at any given moment is called the current code segment. At this time, the EIP
register contains the offset address within the segment within the current code segment to be executed. Therefore,
the address of the instruction to be executed can be expressed as CS:[EIP]. The inter-segment control branch
instructions, which will be described later, can be used to assign new values to CS and EIP so that the execution
position can be changed to other code segments, thus achieving control transfer of the program in different
segments.

The segment addressed by the segment register SS is called the current stack segment. The top of the stack is
specified by the contents of the ESP register. So the address at the top of the stack is SS:[ESP]. The other 4
segment registers are general segment registers. When the instruction does not specify a segment of the data to be
operated, DS will be the default data segment register.
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In order to specify the intra-segment offset address of a memory operand, the 80X86 instruction specifies
many ways to calculate the offset, which is called instruction addressing. The instruction's offset consists of three
parts: the base address register, the index register, and an offset constant. which is:

Offset address = base address + (index x scale factor) + offset

4.2.2 Address Translation

Any complete memory management system contains two key parts: protection and address translation.
Providing protection prevents one task from accessing another task or operating system's memory area. Address
translation allows the operating system to have flexibility in allocating memory to tasks, and because we can make
certain physical addresses unmapped by any logical address, memory protection is also provided during address
translation.

As mentioned above, the physical memory in the computer is a linear array of bytes, each byte has a unique
physical address; the address in the program is a logical address composed of a segment selector and an offset
within the segment. This kind of logical address cannot be directly used to access physical memory, but it needs to
be transformed or mapped to a physical memory address using an address translation mechanism. The memory
management mechanism is used to translate this logical address into a physical memory address.

In order to reduce the information needed to determine the address translation, the translation or mapping
usually uses memory blocks as the operating unit. Segmentation mechanism and paging mechanism are two
widely used address translation techniques. They differ in how logical addresses are organized into mapped
memory blocks, how the translation information is specified, and how programmers operate. Fragmentation and
paging operations use tables that reside in memory to specify their respective translation information. These tables
can only be accessed by the operating system to prevent unauthorized modifications by the application.

The 80X86 uses segmentation and paging in the translation from logical addresses to physical addresses, as
shown in Figure 4-4. The first stage uses a segmentation mechanism to translate the logical address into an
address in the processor linear address space. The second stage uses a paging mechanism to translate linear
addresses into physical addresses. In the address translation process, the first-stage segmentation mechanism is
always used, and the second-stage paging mechanism is optional. If no paging mechanism is enabled, the linear
address space generated by the segmentation mechanism is directly mapped to the processor's physical address
space. The physical address space is defined as the address range that the processor can generate on its address
bus.

Logical Address
\,

Seg. aging
el Pl e e I
~ ) \___“f___J \___\ﬁ___J
Virual or Logical Linear Physical
Address Address Address

Figure 4-4 Logical address to physical address translation

1. Segmentation mechanism
Segmentation provides a mechanism to isolate individual code, data, and stack areas so that multiple
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programs (or tasks) can run on the same processor without interfering with each other. The paging mechanism
provides an implementation mechanism for traditional demand pages and virtual memory systems. The virtual
memory system is used to realize that the program code is mapped to physical memory as required. The paging
mechanism can of course also be used to provide isolation between multiple tasks.

As shown in Figure 4-5, segmentation provides a mechanism for dividing the processor addressable linear
address space into smaller, protected address space regions called segments. Segments can be used to hold
program code, data, and stacks, or to hold system data structures (such as TSS or LDT). If there are multiple
programs or tasks running in the processor, each program can allocate its own set of segments. At this point the
processor can enforce the boundaries between these segments and ensure that a program does not interfere with
the execution of the program by accessing segments of another program. Segmentation also allows classification
of segments. In this way, operations on specific types of segments can be limited.

All used segments in a system are contained in the processor's linear address space. In order to locate a byte
in a specified segment, the program must provide a logical address. The logical address includes a segment
selector and an offset. The segment selector is the unique identifier of a segment. In addition, the segment selector
provides the offset of a data structure (called segment descriptor) in the segment descriptor table (eg, the global
descriptor table GDT). Each segment has a segment descriptor. The segment descriptor specifies the size of the
segment, the access rights and the privilege level of the segment, the segment type, and the position of the first
byte of the segment in the linear address space (referred to as the segment's base address). The offset of the logical
address is added to the base address of the segment to locate a byte in the segment. Therefore, the base address
plus the offset form the address in the processor's linear address space.

The linear address space has the same structure as the physical address space. Compared to two-dimensional
logical address space, both are one-dimensional address spaces. The virtual address (logical address) space can
contain up to 16K segments, and each segment can be up to 4GB, resulting in a virtual address space capacity of
64TB (2746). Both the linear and physical address spaces are 4GB (2°32). In fact, if the paging mechanism is
disabled, the linear address space is the physical address space.
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Global address space, 8192 segments, 4G each.

Local address space, 8192 segments, 4G each
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2. Paging mechanism

Because the multi-tasking system usually defines a linear address space much larger than the physical
memory it contains, it needs to use some kind of "virtualized" linear address space approach, that is, the use of
virtual storage technology. Virtual storage is a memory management technology that allows programmers to create
the illusion that the memory space is much larger than the actual physical memory capacity of the computer. With
this illusion, we can program large programs at will without considering how much physical memory actually

exists.

The paging mechanism supports virtual storage technology. In an environment using virtual storage, a
large-capacity linear address space needs to be simulated using a small amount of physical memory (RAM or
ROM) and some external storage space (such as a large-capacity hard disk). When paging is used, each segment is
divided into pages (usually 4 KB in size per page) and the pages are stored in physical memory or on hard disk.

Figure 4-5 Logical, Linear, and Physical Addresses
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The operating system pays attention to these pages by maintaining a page directory and some page tables. When a
program (or task) tries to access an address location in a linear address space, the processor uses the page
directory and page table to convert the linear address to a physical address, and then performs the required
operation at that memory location (reading Or write).

If the currently visited page is not in physical memory, the processor interrupts the execution of the program
(by generating a page fault exception). The operating system can then read the page from the hard disk into
physical memory and continue to execute the program that was just interrupted. When the operating system
strictly implements the paging mechanism, the exchange of pages between the physical memory and the hard disk
is transparent to the correctly executed program.

The 80X86 paging mechanism is best suited to support virtual storage technology. The paging mechanism
uses fixed-size memory blocks, while segment management uses variable-sized blocks to manage memory. The
use of fixed-size blocks for paging is more suitable for managing physical memory, whether in physical memory
or on hard disks. On the other hand, the segmentation mechanism uses variable-sized blocks that are more suitable
for processing logical partitions of complex systems. You can define memory cells that fit into the logical block
size without being constrained by fixed-size pages. Each segment can be treated as a unit, simplifying the
protection and sharing of segments.

Segmentation and paging are two different address translation mechanisms, all of which provide independent
processing stages for the entire address translation operation. Although both mechanisms use a conversion table
stored in memory, the table structure used is different. In fact, the segment table is stored in the linear address
space, and the page table is stored in the physical address space. Therefore, the segment conversion table can be
relocated by the paging mechanism without the information or cooperation of the segment mechanism. The
segment conversion mechanism transforms virtual addresses (logical addresses) into linear addresses and accesses
its own table in a linear address space, but it is not aware of the process of the paging mechanism converting these
linear addresses to physical addresses. Similarly, the paging mechanism does not know the virtual address space
where the program generates addresses. The paging mechanism simply translates linear addresses into physical
addresses and accesses their own translation tables in physical memory.

4.2.3 Protection

The 80X86 supports two types of protection. One is to completely isolate each task by giving each task a
different virtual address (logical address) space. The implementation principle is to provide each task with
different logical address to physical address mapping. Another protection mechanism operates on tasks to protect
the operating system memory segments and processor special system registers from being accessed by
applications.

1.  Protection between tasks

One important aspect of protection is to provide protection between applications' tasks. The method used by
the 80X86 is to place each task in a different virtual address space and give each task a different mapping of
logical addresses to physical addresses. The address translation function in each task is defined as the logical
address in one task is mapped to a part of physical memory, and the logical address in another task is mapped to a
different area in physical memory. In this way, all tasks are isolated because one task cannot generate parts of the
physical memory that can be mapped to the corresponding logical addresses of other tasks. Just give each task a
separate mapping table, and each task will have a different address translation function. In 80X86, each task has
its own segment table and page table. When the processor switches to perform a new task, the key part of task
switching is to switch to the new task's conversion table.

By arranging the same virtual-to-physical address mapping portion in all tasks and storing the operating
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system in this common virtual address space portion, the operating system can be shared by all tasks. The same
portion of the virtual address space that all this task has is called the Global address space. This is exactly how
modern Linux operating systems use virtual address spaces.

The part of the virtual address space that is unique to each task is called the Local address space. The local
address space contains private code and data that need to be distinguished from other tasks in the system. Because
there is a different local address space in each task, references to the same virtual address in two different tasks
will be converted to different physical addresses. This allows the operating system to give the same virtual address
to each task's memory, but still isolate each task. On the other hand, all tasks' references to the same virtual
address in the global address space will be translated to the same physical address. This provides support for the
sharing of common code and data (such as operating systems).

2. Privilege level protection

In a task, four Privilege Levels are defined for restricting access to segments in a task based on the sensitivity
of the data contained in the segment and the degree of trust of different portions of the program in the task. The
most sensitive data is given the highest privilege level and they can only be accessed by the most trusted part of
the task. Less sensitive data is given lower privilege levels and they can be accessed by less privileged code in the
task.

The privilege level is represented by the numbers 0 to 3, with 0 having the highest privilege level and 3 being
the lowest privilege level. Each memory segment is associated with a privilege level. This privilege level restricts
programs with sufficient privilege level to access a segment. We know that the processor fetches and executes the
instruction from the segment specified by the CS register, the current privilege level, that is, the CPL is the
privilege level of the currently active code segment, and it defines the privilege level of the currently executing
program. The CPL determines which segments can be accessed by the program.

Each time a program attempts to access a segment, the current privilege level is compared to the segment's
privilege level to determine if there is an access permission. Programs executed at a given CPL level allow access
to data segments of the same or lower level. Any references to high-level segments are illegal and raise an
exception to notify the operating system.

Each privilege level has its own program stack to avoid the protection issues associated with using the shared
stack. When the program is switched from one privilege level to another, the stack segment is also changed to the
new level stack.

4.3 Segmentation Mechanism

The segmentation mechanism can be used to implement a variety of system designs. These designs range
from flat models that only use minimum functionality of segmentations to protect programs to multi-segmented
models that use segmentation to create a robust operating environment that can reliably run multiple programs (or
tasks).

The simplest memory model for a system is the basic flat model, in which the operating system and programs
have access to a continuous, unsegment address space. For the most part, this basic flat model hides the
architecture's segmentation mechanism from system designers and application programmers. To implement a
basic flat memory model, you must create at least two segment descriptors, one for the reference code segment
and one for the reference data segment. However, both segments are mapped to the entire linear address space:
that is, two segment descriptors have the same segment limit of 0 and 4 GB for the same base address value.

The multi-segment model can use the segmentation mechanism to provide full protection of
hardware-enhanced code, data structures, programs, and tasks. In general, each program (or task) uses its own
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segment descriptor table and its own segment. For programs, segments can be completely private or shared
between programs. Access to all segments and each running program execution environment on the system is
controlled by hardware.

Access checks can be used not only to protect references to addresses outside the boundaries of the segment,
but also to prevent execution of impermissible actions in certain segments. For example, because the code
segment is designed to be a read-only segment, you can use hardware to prevent writes to the code segment. The
access rights information in the segment can also be used to set the protection ring or level. Protection levels can
be used to protect operating system programs from unauthorized access by applications.

4.3.1 Segment definition

As mentioned in the overview of the previous section, the 80X86 provides 4GB of physical address space in
protected mode. This is the address space that the processor can address on its address bus. This address space is
flat and the address range is from 0 to OXFFFFFFFF. This physical address space can be mapped to read and write
memory, read-only memory, and memory-mapped 1/0O. The segmentation mechanism is to organize the virtual
memory in the virtual address space into some variable-length memory block units called segments. The virtual
address (logical address) in the 80X86 virtual address space consists of a segment portion and an offset portion.
Segments are the basis for virtual address-to-linear address translation mechanisms. Each segment is defined by
three parameters:

1. Base address specifies the starting address of the segment in the linear address space. The base address is

a linear address and corresponds to offset 0 in the segment.

2. The segment limit is the maximum available offset within the segment in the virtual address space. It

defines the length of the segment.

3. Attributes, specify the characteristics of the segment. For example, whether the segment is readable,

writable, or executable as a program; the privilege level of a segment, and so on.

Segment length defines the size of the segment in the virtual address space. The segment base address and
the segment limit length define the linear address range or region to which the segment is mapped. The address
range from 0O to limit in the segment corresponds to the range base in the linear address to base + limit. A virtual
address with an offset greater than the segment limit is meaningless and can cause an exception if used. In
addition, exceptions can also result if you access a segment without permission from the segment attribute. For
example, if you try to write a read-only segment, 80X86 will generate an exception. In addition, the range of
multiple segments mapped into the linear address can partially overlap or cover, or even completely overlap, as
shown in Figure 4-6. In the Linux 0.1x system introduced in this book, the length of the segment of a task's code
segment and data segment is the same, and is mapped to the same area where the linear addresses are identical and
overlap.
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Figure 4-6 Segments in virtual map to linear address space

The base address,the limit length, and the protection attribute of a segment are stored in a structure item
called a Segment Descriptor. This segment descriptor is used during the translation mapping from logical address
to linear address. Segment descriptors are stored in the Descriptor table. The segment descriptor table is a simple
array containing segment descriptor items. The segment selector described earlier is used to specify the
corresponding segment by specifying the position of a segment descriptor in the table.

Even with the minimum functionality of the segment, each byte in the processor's address space can be
accessed using the logical address. The logical address consists of a 16-bit segment selector and a 32-bit offset, as
shown in Figure 4-7. The segment selector specifies the segment where the byte is located, and the offset specifies
the position of the byte in the segment relative to the segment base address. The processor will convert each
logical address to a linear address. A linear address is a 32-bit address in the processor's linear address space.
Similar to the physical address space, the linear address space is also a flat 4GB address space with addresses
ranging from 0 to OXFFFFFFFF. The linear address space contains all the system-defined segments and system
tables.

To convert the logical address into a linear address, the processor performs the following operations:

1. Use the offset value (segment index) in the segment selector to locate the corresponding segment
descriptor in the GDT or LDT table. (This step is only needed if a new segment selector is loaded into a
segment register.)

2. Examines the segment descriptor to check the access rights and range of the segment to insure that the
segment is accessible and that the offset is within the limits of the segment.

3. 3. Add the segment base address obtained in the segment descriptor to the offset and finally form a linear
address.
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Figure 4-7 Logical address to linear address translation

If paging is not enabled, the processor directly maps the linear address to the physical address (ie, the linear
address is sent to the processor's address bus). If the linear address space is paged, then a second level address

translation will be used to translate the linear address into a physical address. The page conversion will be
explained later.

4.3.2 Segment Descriptor Tables

The segment descriptor table is an array of segment descriptors, as shown in Figure 4-8. The descriptor table
is variable in length and can contain up to 8192 8-byte descriptors. There are two descriptor tables: a global
descriptor table (GDT) and a local descriptor table (LDT).
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Figure 4-8 Global and Locat Descriptor Tables

Each system must have one GDT that can be used for all programs and tasks in the system. Optionally, one
or more LDTs may be defined. For example, an LDT can be defined for each individual task that is running, or
some or all tasks can share the same LDT.

The GDT itself is not a segment; instead, it is a data structure in the linear address space. The basic linear
address and limit of the GDT must be loaded into the GDTR register. The base address of the GDT should be
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aligned on an eight-byte boundary to produce the best processor performance. The GDT limit is expressed in bytes.
As with segmentation, limit values are added to the base address to get the address of the last valid byte. A limit of
0 results in only one valid byte. Because the segment descriptor is always 8 bytes long, the GDT limit should
always be less than an integer multiple of 8 (ie, 8N-1).

The LDT table is stored in the LDT type of system segment. At this point the GDT must contain the LDT
segment descriptor. If the system supports multiple LDTs, then each LDT must have a segment descriptor and
segment selector in the GDT. An LDT segment descriptor can be stored anywhere in the GDT table.

Accessing LDT requires its segment selector. In order to reduce the number of address conversions when
accessing the LDT, the LDT's segment selector, base address, segment length, and access rights need to be stored
in the LDTR register.

When the GDTR register is stored (using the SGDT instruction), a 48-bit "pseudo-descriptor” is stored in
memory. In order to avoid alignment check errors in user mode (privilege level 3), dummy descriptors should be
stored at an odd word address (ie, address MOD 4 = 2). This will cause the processor to store an aligned word first,
followed by an aligned doubleword (at the 4-byte alignment). User-mode programs usually do not save dummy
descriptors, but you can use this alignment to avoid the possibility of an alignment check error. The same
alignment is also used when using the SIDT instruction to save the IDTR register contents. However, when saving
LDTR or task registers (using SLTR or STR instructions, respectively), dummy descriptors should be stored at
double-word aligned addresses (ie, address MOD 4 = 0).

Descriptor tables are stored in special data structures maintained by the operating system and referenced by
the processor's memory management hardware. These special structures should be stored in a protected memory
area that is only accessible by the operating system software to prevent the application from modifying the
address translation information in it. The virtual (logical) address space is divided into two halves of equal size.
Half is mapped to a linear address by the GDT and the other half is mapped by the LDT. The entire virtual address
space contains 214 segments: half of the space (that is, 213 segments) is a global virtual address space mapped
by GDT, and the other half is a local virtual address space mapped by LDT. By specifying a descriptor table (GDT
or LDT) and description symbols in the table, we can locate a descriptor.

When a task switch occurs, the LDT will be replaced with a new task LDT, but the GDT will not change.
Therefore, half of the virtual address space mapped by the GDT is common to all the tasks in the system, but the
other half of the LDT mapping is changed when the task is switched. The segments shared by all tasks in the
system are mapped by the GDT. Such segments typically include a section containing the operating system and
each task's own special section containing LDTs. The LDT segment can be thought of as data belonging to the
operating system.

The LDT contains descriptors for segments that are dedicated to a single task. Several tasks can share a
common LDT. In this case, all these tasks can use the same set of segments because they have the same LDT, and
all tasks share one GDT. Both tasks can also share a segment descriptor in their respective LDTs so that sharing a
segment without having to put its descriptor in the GDT is shared for all tasks. In this case, the shared segment
must be handled exclusively by the operating system because it has two descriptors in two different LDTs and
must be updated together.

Figure 4-9 shows how the segments in a task can be separated between GDT and LDT. There are six
segments in the figure for the two applications (A and B) and the operating system. Each application in the system
corresponds to a task, and each task has its own LDT. Application A runs in Task A and has LDTa to map
segments Codea and Dataa. Similarly, application B runs in task B and uses LDTg to map the Codeg and Datag
segments. The two segments containing the operating system kernel, Codeos and Dataos, are mapped using the
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GDT so that they can be shared by both tasks. Two LDT segments: LDTa and LDTB are also mapped using GDT.
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Figure 4-9 The segment types used by tasks

When task A is running, accessible segments include the Codea and Dataa segments of the LDTa map, plus
the Codeos and Dataos segments of the GDT mapped operating system. When task B is running, the accessible
segments include the LDTg mapped Codeg and Datag segments plus the GDT mapped segments.

This example demonstrates how virtual address space can be organized to isolate each task by having each
task use a different LDT. When task A is running, the segment of task B is not part of the virtual address space, so
task A cannot access task B's memory. Similarly, when task B is running, the segment of task A cannot be
addressed. This method of isolating each application task using LDT is one of the key protection needs.

4.3.3 Segment Selectors

The segment selector is a 16-bit identifier for the segment, as shown in Figure 4-10. The segment selector
does not point directly at the segment, but instead points to the segment descriptor that defines the segment in the
segment descriptor table. The segment selector consists of 3 fields and the contents are as follows:

B Requested Privilege Level (RPL);

B Table Index (TD);

B Index.

15 3210
Tndex |TI| RPL |

Figure 4-10 Segment selector structure

The request privilege level RPL provides segment protection information, which will be described later in
detail. The table index Tl is used to indicate the segment descriptor table GDT or LDT containing the specified
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segment descriptor. TI=0 indicates that the descriptor is in the GDT; TI=1 indicates that the descriptor is in the
LDT. The index field gives the index number of the descriptor in the GDT or LDT table. It can be seen that the
selector specifies a segment by locating a descriptor in the segment table, and the descriptor contains all the
information for accessing a segment, such as the base address of the segment, segment length, and segment
attributes.

For example, the selector (0x08) in Figure 4-11(a) specifies a segment 1 with RPL=0 in the GDT. The index
field value is 1, the TI bit is 0, and the GDT table is specified. The selector (0x10) in Figure 4-11(b) specifies the
segment 2 with RPL=0 in the GDT. The index field value is 2, the TI bit is 0, and the GDT table is specified. The
selector (0xO0f) in Figure 4-11(c) specifies segment 1 with LPL=3 in the LDT. Its index field value is 1, the TI bit
is 1, and the LDT table is specified. The selector (0x17) in Figure 4-11(d) specifies segment 2 with LPL=3 in the
LDT. The index field value is 2, the TI bit is 1, and the LDT table is specified. In fact, the first four selectors in
Figure 4-11: (a), (b), (c), and (d) are the kernel code snippets, kernel data snippets, task code snippets, and tasks of
the Linux 0.1x kernel, respectively. The data segment selector. The selector (Oxffff) in Figure 4-11(e) specifies
segment 8191 with RPL=3 in the LDT table. Its index field value is 001111111111111 (that is, 8191), the TI bit is
equal to 1, and the LDT table is specified.

Index TI RPL Index TI RPL Index TI RPL

| 0000000000001 |o| 00|

| 0000000000010 |0| oo|

| 0000000000001 |1| 11 |

(a) Selector 0x0008

Index TI RPL

(b) Selector 0x0010

Index TI RPL

(c) Selector 0x000f

Index TI RPL

| 0000000000010 |1| 11 |

| IEESEEEEEEEET! |1| 11|

| 0000000000010 |0| 00|

(d) Selector 0x0017

(e) Selector Oxffff

(f) Selector 0x0000

Figure 4-11 Segment selector examples

In addition, the processor does not use the first item in the GDT table. The selector to the GDT entry (that is,
the index whose index value is 0 and the TI flag is 0) is used as an "null selector”, as shown in Figure 4-11(f).
When an empty selector is loaded into a segment register (other than CS and SS), the processor does not generate
an exception. However, an exception occurs when using a segment register containing an empty selector to access
memory. An exception will be caused when an empty selector is loaded into the CS or SS segment register.

The segment selector is visible to the application as part of the pointer variable, but the value of the selector
is usually set or modified by the link editor or link loader, not the application. To reduce address translation time
and programming complexity, the processor provides registers that hold up to six segment selectors (see Figure
4-12), that is, segment registers. Each segment register supports a specific type of memory reference (code, data,
or stack). In principle, each program must at least load valid segment selectors into the code segment (CS), data
segment (DS), and stack segment (SS) registers. The processor additionally provides three auxiliary data segment
registers (ES, FS, and GS) that can be used to allow the currently executing program (or task) to access several
other data segments.
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Visible Part Hidden Part

Seg Selector Base Address, Limit, Access Info CS
S
DS
B35S
FS
GS

Figure 4-12 Segment register structure

For programs that access a segment, the segment selector must have been loaded into a segment register.
Therefore, although a system can define many segments, only 6 segments are available for immediate access at
the same time. To access other segments you need to load selectors for these segments.

In addition, to avoid reading the descriptor table every time you access the memory, to read and decode a
segment descriptor, each segment register has a "visible" part and a "hidden™ part (the hidden part is also called *
Descriptor Buffer" or "Shadow Register™). When a segment selector is loaded into the visible portion of a segment
register, the processor also loads the segment address, segment length, and access control information in the
segment descriptor pointed to by the segment selector to the hidden portion of the segment register. The
information buffered in the segment registers (visible and hidden portions) allows the processor to no longer
spend time reading the base address and limit value from the segment descriptor when performing address
translation.

Since the shadow register contains a copy of the descriptor information, the operating system must ensure
that changes to the descriptor table should be reflected in the shadow register. Otherwise, the base address or limit
of a segment in the descriptor table is modified, but the changes are not reflected in the shadow register. The
simplest way to deal with this kind of problem is to reload 6 segment registers immediately after making any
changes to the descriptors in the descriptor table. This will reload the corresponding segment information in the
descriptor table into the shadow register.

There are two types of load instructions for loading segment registers:

1. Like MOV, POP, LDS, LES, LSS, LGS and LFS instructions. These instructions explicitly reference the

segment register directly;

2. Implicitly loaded instructions such as CALL, JMP, and RET instructions using long pointers, IRET,
INTn, INTO, and INT3 instructions. These instructions are accompanied by changes to the contents of
the CS register (and some other segment registers) during operation.

The MOV instruction can of course also be used to store the contents of the visible part of the segment

register in a general-purpose register.

4.3.4 Segment Descriptor

Earlier we explained that using a segment selector to locate a descriptor in the descriptor table. The segment
descriptor is a data structure item in the GDT and LDT tables used to provide the processor with information
about the position and size of a segment and the status of access control. Each segment descriptor is 8 bytes in
length and contains three main fields: segment base address, segment length, and segment attributes. Segment
descriptors are usually created by the compiler, linker, loader, or operating system, but are by no means
applications. Figure 4-13 shows the general format of all types of segment descriptors.
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31 242322212019 1615141312 11 8 7 0
D A ..
Base 31..24 ol/lolv Seg Limit plorLls TYPE Base 23..16
19.. 16 4
B L
31 16 15 0
Base Address 15..0 Segment Limit 15..0
0
AVL — Avilabe for system software LIMIT —— Segment limit
BASE —— Segment base address P —— Segment Present
B/D — Default size(0-16-bit;1-32-bit) S —— Desc Type (0-system;l-code or data)
DPL — Descriptor privilege level TYPE —— Segment Type
G —— Granularity

Figure 4-13 General format of segment descriptor

The meaning of fields and flags in a segment descriptor is as follows:
@ Segment limit field (LIMIT)

The segment limit field is used to specify the size of the segment. The processor will combine the two
segment limit fields in the segment descriptor into a 20-bit value, and specify the actual meaning of the
segment limit length Limit value according to the granularity flag G. If G=0, the segment length Limit
range can be from 1 byte to 1 MB byte in units of bytes. If G=1, the segment length Limit ranges from
4KB to 4GB and the unit is 4KB.

Depending on the segment extension direction flag E in the segment type, the processor uses the
segment limit Length in two different ways. For an upward-extending segment (abbreviated as an
upper-extending segment), the offset value in the logical address can range from 0 to the segment-limit
value Limit. An offset greater than the limit length limit will produce a general protective exception. For
the segment that is extended downward (abbreviated as the lower segment), the meaning of the segment
limit Limit is reversed. Depending on the setting of the default stack pointer size flag B, the offset value
can range from the segment limit length to OXFFFFFFFF or OXFFFF. An offset value less than the limit
length Limit will produce a general protective exception. For the next expanded segment, reducing the
value in the segment limit field allocates new memory at the bottom of the segment address space
instead of at the top. The 80X86's stack is always scaled down, so this implementation is well suited to
extending the stack.

@ Base address field (BASE)

This field defines the location of a segment of byte 0 in the 4GB linear address space. The processor
will combine 3 separate base address fields to form a 32-bit value. The segment base address should be
aligned to a 16-byte boundary. Although this is not required, the best performance of the program can be
achieved by aligning the code and data segments of the program on a 16-byte boundary.

@ Type field (TYPE)

The type field specifies the type of the segment or gate, the type of access to describe the segment, and
the extension direction of the segment. The interpretation of this field depends on the descriptor type
flag S, indicating whether it is an application (code or data) descriptor or a system descriptor. The
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encoding of the TYPE field is different for code, data, or system descriptors, as shown in Figure 4-14.

@ Descriptor type flag (S)
The descriptor type flag S indicates whether a segment descriptor is a system segment descriptor (when
S=0) or a code or data segment descriptor (when S=1).

@ Descriptor privilege level (DPL)
The DPL field indicates the privilege level of the descriptor. The privilege level ranges from 0 to 3. The
0 privilege level is the highest and the 3 level is the lowest. DPL is used to control access to segments.

@ Segment present (P)

The segment presence flag P indicates whether a segment is in memory (P=1) or not in memory (P=0).

When the P flag of a segment descriptor is 0, then loading the selector pointing to this segment

descriptor into the segment register will result in the generation of a segment without an exception.

Memory management software can use this flag to control the actual need to load that segment into

memory at a given time. This feature provides virtual storage with control beyond the paging

mechanism. Figure 4-15 shows the segment descriptor format when P=0. When the P flag is 0, the
operating system is free to save its own data using fields that are marked as Available in the format, such
as information about where the segment actually does not exist.

@ Default operation size/default stack pointer size and/or upper bound (D/B)

According to the segment descriptor describes an executable code segment, spread data segment or a

stack segment, this mark has a different function. (For 32-bit code and data segments, this flag should

always be set to 1; for 16-bit code and data segments, this flag is set to 0.)

B Executable code segment. This flag is called the D flag at this time and is used to indicate that the
instruction in this segment refers to a valid address and the default length of the operand. If the flag
is set, the default value is a 32-bit address and a 32-bit or 8-bit operand,; if the flag is 0, the default
value is a 16-bit address and a 16-bit or 8-bit operand. The instruction prefix 0x66 can be used to
select a non-default operand size; the prefix 0x67 can be used to select an address size other than
the default.

B Stack segment (data segment pointed to by the SS register). At this point, this flag is called the B
(Big) flag and indicates the size of the stack pointer when an implicit stack operation (such as
PUSH, POP, or CALL) occurs. If this flag is set, the 32-bit stack pointer is used and stored in the
ESP register; if the flag is 0, the 16-bit stack pointer is used and stored in the SP register. If the
stack segment is set to a lower extended data segment, this B flag also specifies the upper bound of
the stack segment.

B Expand the data segment. At this point the flag is called the B flag and is used to indicate the upper
limit of the segment. If this flag is set, the upper bound of the stack segment is OXFFFFFFFF
(4GB); if this flag is not set, the upper bound of the stack segment is OXFFFF (64KB).

@ Granularity (G)

This field is used to determine the unit of the segment-limited field value. If the granularity flag is 0, the

unit of the segment limit value is bytes; if the granularity flag is set, the segment limit value uses 4 KB

units. (This flag does not affect the granularity of the segment's base address. The base address's
granularity is always in bytes.). If the G flag is set, the 12-bit least significant bit of the offset value is
not checked when the segment length is used to check the offset value. For example, when G=1, the

segment limit length of O indicates that the effective offset value is 0 to 4095.

@ Available and reserved bits
Bit 20 of the second double word of the segment descriptor is available for use by system software; Bit

115



4.3 Segmentation Mechanism

21 is a reserved bit and should always be set to 0.

Data—-Segment Descriptor

31 242322212019 16151413 12 11 8 7 0
A . TYPE
Base 31..24 olelolv Seg Limit plore |4 Base 23..16
L 19..16 0|E'W|A
31 16 15 0
Base Address 15..0 Segment Limit 15..0

Code—Segment Descriptor

31 242322212019 1615141312 11 8 7 0
A . TYPE
Base 31..24 clololv Seg Limit plore |4 Base 23..16
L 19..16 1|C|R|A
31 16 15 0
Base Address 15..0 Segment Limit 15..0

System—Segment Descriptor

31 24 23 22 21 20 19 1615141312 11 8 7 0

Base 31..24 G 0 Seg Limit plore lo TYPE Base 23..16
19..16
31 16 15 0
Base Address 15..0 Segment Limit 15..0

A —— Accessed D — Default R —— Readable

AVL — Available for soft. DPL —— Desc Privilege Level LIMIT — Segment limit

B -— Big E — Expansion Direction W — Writable

© —— Conforming G —— Granularity P —— Present

Figure 4-14 Code, data, and system segment descriptors formats
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31 24 2322212019 1615141312 11 8 7 0
Available oloeL l's TYPE Available \
31 16 15 0
Available
0

Figure 4-15 Segment Descriptor When bit P=0

4.3.5 Code and Data Segment Descriptor Types

When the S (descriptor type) flag is set in a segment descriptor, the descriptor is used for the code or data
segment. At this point, the most significant bit in the type field (bit 11 of the second double word) is used to
determine whether it is a data segment descriptor (reset) or a code segment descriptor (set).

For data segments, the lower 3 bits (bits 8, 9, 10) of the type field are used to indicate Accessed, Write-enable,
and Expansion-direction, respectively. See Table 4-3 for descriptions of bit fields in the code and data segment
type fields. According to the writable bit W setting, a data segment can be read-only or readable and writable.

Table 4-3 Code and Data Segment Descriptor Types

TYPE Field Descriptor o
Decimal 11 10 9 8 Type Description
E W A
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Expand-down, Read-Only.
5 0 1 0 1 Data Expand-down, Read-Only, accessed
6 0 1 1 0 Data Expand-down, Read/Write
7 0 1 1 1 Data Expand-down, Read/Write, accessed
C R A
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Conforming, Execute-Only
13 1 1 0 1 Code Conforming, Execute-Only, accessed
14 1 1 1 0 Code Conforming, Execute/Read-Only
15 1 1 1 1 Code Conforming, Execute/Read-Only, accessed

Stack segment must be a read/write data segment. If a non-writable data segment selector is loaded into the
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SS register, a general protection exception will result. If the length of the stack segment needs to change
dynamically, the stack segment can be a data segment that is extended downwards (the expansion direction flag is
set). Here, dynamically changing the segment limit will cause the stack space to be added to the bottom of the
stack.

The accessed bit indicates whether a segment has been accessed since the last time the operating system
resets the bit. Each time the processor loads a segment selector into the segment register, it sets this bit. This bit
needs to be explicitly cleared, otherwise it remains set. This bit can be used for virtual memory management and
debugging.

For code segments, the lower 3 bits of the type field are interpreted as Accessed, Read-enable, and
Conforming. Depending on the setting of the readable R flag, the code segment can be execute-only or
execute/read. An executable/readable code segment can be used when constants or other static data and instruction
code are placed in a ROM. Here, we can read the data in the code segment by using an instruction with a CS
override prefix or by loading the code segment selector for the code segment into a data segment register (DS, ES,
FS, or GS). In protected mode, the code segments are not writable.

Code segments can be conforming or non-conforming. A transfer of execution control to higher privilege
level conforming segment allows the program to continue execution at the current privilege level. A transfer to a
non-conforming segment with a different privilege level will result in a general protection exception, unless a call
gate or task gate is used- (for more information on consistent and non-conforming code segments, see "Directly
Invoking or Jumping to Code segment™). System tools that do not access the protection facility and some
exception types (such as errors, overflows) can be stored in the conforming segments. Tools that need to prevent
access by low-privilege programs or procedures should be stored in non-conforming segments. Note that
execution cannot be transferred by a call or a jump to a less-privileged (numerically higher privilege level) code
segment, regardless of whether the target segment is a conforming or nonconforming code segment.

All data segments are non-conforming, meaning that they cannot be accessed by less privileged programs or
procedures. However, unlike code segments, data segments can be accessed by higher privileged programs or
procedures without the use of special access gates.

If a segment descriptor in the GDT or LDT is stored in the ROM, the processor will enter an infinite loop if
the software or processor attempts to update (write) the segment descriptor in ROM. In order to prevent this
problem, the accessed bit of all descriptors that need to be stored in the ROM should be set to the pre-set state. At
the same time, delete any code in the operating system that attempts to modify the ROM segment descriptor.

4.3.6 System Descriptor Types

When the S flag (descriptor type) in a segment descriptor is in a reset state (0), the descriptor type is a system
descriptor. The processor can recognize the following types of system descriptors:

B Local Descriptor Table (LDT) segment descriptor;

Task-state segment (TSS) descriptor;
Call-gate descriptor;

Interrupt-gate descriptor;

Trap-gate descriptor;

Task-gate descriptor.

These descriptor types can be divided into two major categories: system segment descriptors and gate
descriptors. The system segment descriptor points to the system segment (such as LDT and TSS segment). The
gate descriptor is a "gate". For the call, interrupt or trap gate, it contains the selector of the code segment and the
pointer of the program entry point in the segment; for the task gate, it contains the TSS segment selector. Table 4-4
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shows the encoding of the system segment descriptor and gate descriptor type fields.

Table 4-4 System-Segment and Gate-Descriptor Types

TYPE Field
Description

Decimal 11 10 9 8
0 0 0 0 0 Reserved
1 0 0 0 1 16-Bit TSS (Available)
2 0 0 1 0 LDT
3 0 0 1 1 16-Bit TSS (Busy)
4 0 1 0 0 16-Bit Call Gate
5 0 1 0 1 Task Gate
6 0 1 1 0 16-Bit Interrupt Gate
7 0 1 1 1 16-Bit Trap Gate
8 1 0 0 0 Reserved
9 1 0 0 1 32-Bit TSS (Available)
10 1 0 1 0 Reserved
1 1 0 1 1 32-Bit TSS (Busy)
12 1 1 0 0 32-Bit Call gate
13 1 1 0 1 Reserved
14 1 1 1 0 32-Bit Interrupt Gate
15 1 1 1 1 32-Bit Trap Gate

The use of TSS status segments and task gates will be explained in the task management section. The use of
call gates will be described in the section on protection. The use of interrupts and trap gates will be used in
interrupt and exception handling. Instructions are given in the section.

4.4 Paging

The paging mechanism is the second part of the 80X86 memory management mechanism. It completes the
process of virtual (logical) address to physical address translation based on the segmentation mechanism. The
segmentation mechanism translates logical addresses into linear addresses, while paging converts linear addresses
into Physical addresses. Pagination can be used for any kind of segmented model. The processor paging
mechanism divides the linear address space into which segments have been mapped, and these linear address
space pages are then mapped to pages in the physical address space. Several page-level protection measures of the
paging mechanism can be used in conjunction with the segment protection mechanism or replace the protection
measures of the segmentation mechanism. For example, read/write protection can be enhanced on a page-based
basis. In addition, on the page unit, the paging mechanism also provides user-superuser two-level protection.

The paging mechanism can be enabled by setting the PG bit in control register CRO. If PG=1, paging is
enabled and the processor will use the mechanism described in this section to translate the linear address into a
physical address. If PG=0, the paging mechanism is disabled, and the linear address generated by the
segmentation mechanism is directly used as a physical address.

The previously described segmentation mechanism operates on various variable size memory regions. Unlike
fragmentation, paging mechanisms operate on fixed-size blocks of memory (called pages). The paging mechanism
divides the linear and physical address spaces into pages. Any page in the linear address space can be mapped to
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any page in the physical address space. Figure 4-16 shows how the paging mechanism divides the linear and
physical address spaces into pages and provides an arbitrary mapping between these two spaces. The arrows in the
figure correspond the pages in the linear address space to the pages in the physical address space.

<

Linear address space Physical address space

Figure 4-16 lllustration of correspondence between linear and physical address space pages

The 80X86 uses 4K (2712) bytes of fixed-size pages and is aligned at the 4K address boundary. This means
that the paging mechanism divides 2732 bytes (4GB) of linear address space into 2°20 (1M = 1048576) pages.
The paging mechanism operates by relocating pages in a linear address space into physical address space. Since a
4K page is mapped as a unit and aligned to a 4K boundary, the lower 12 bits of the linear address can be used as
the in-page offset directly as the lower 12 bits of the physical address. The relocation function performed by the
paging mechanism can be seen as converting the upper 20 bits of the linear address to the upper 20 bits of the
corresponding physical address.

When paging is used, the processor divides the linear address space into fixed-size pages (length 4KB) that
can be mapped into physical memory and/or disk storage. When a program (or task) references a logical address
in memory, the processor translates the logical address into a linear address and then uses a paging mechanism to
translate the linear address into a corresponding physical address. If a page containing a linear address is not
currently in physical memory, the processor generates a page fault exception. A page fault exception handler
usually causes the operating system to load the corresponding page into physical memory from disk (it may also
write different pages in physical memory to disk during operation). After the page is loaded into physical memory,
the return from the exception handler causes the instruction that caused the exception to be re-executed. The
information used by the processor to translate linear addresses into physical addresses and to generate page fault
exceptions (if necessary) is contained in page directories and page tables stored in memory.

The biggest difference between paging and segmentation is that paging uses fixed-length pages. If you only
use segmented address translation, a data structure stored in physical memory will contain all of its parts.
However, if pagination is used, one data structure can be stored in physical memory in part and another part in
disk.

In order to reduce the number of bus cycles required for address translation, the most recently accessed page
directory and page table are stored in a processor buffer, known as the Translation Lookaside Buffer (TLB). The
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TLB can satisfy most read page directories and page table requests without using bus cycles. Only when the TLB
does not contain the required page table entries will an extra bus cycle be used to read the page table entries from
memory. This usually occurs when a page table entry has not been accessed for a long time.

4.4.1 Page Table Structure

The paging translation is described by a table that resides in memory. This table is called a page table and is
stored in a physical address space. The page table can be seen as a simple array with 2720 items. The linear to
physical address mapping function can simply be seen as an array search. The upper 20 bits of the linear address
form the index of this array and is used to select the physical (base) address of the corresponding page. The lower
12 bits of the linear address give the offset in the page, plus the base address of the page eventually forms the
corresponding physical address. Since the page base address is aligned on the 4K boundary, the bottom 12 bits of
the page base address must be 0. This means that the 20-bit page base address and the 12-bit offset connection are
combined to get the corresponding physical address.

Each page table entry in the page table has a size of 32 bits. Since only 20 bits are needed to store the
physical base address of the page, the remaining 12 bits can be used to store attribute information such as whether
the page exists or not. If the linear address index page table entry is marked as existing, then the item is valid, we
can get the physical address of the page. If the item indicates that it does not exist, an exception will be generated
when accessing the corresponding physical page.
4.4.1.1 Two-Level Page Table Structure

A page table contains 220 (1M) entries, each occupying 4 bytes (32 bits). If they are only stored as one table,
they will occupy up to 4MB of memory. Therefore, in order to reduce the memory footprint, the 80X86 uses two
levels of tables. Thus, the conversion of a high 20-bit linear address to a physical address is also performed in two
steps, using 10 bits per step.

The first level table is called a page directory. Occupies one page with 2210 (1K) entries of 4 bytes in length.
These entries point to the corresponding secondary table. The top 10 bits (bits 31 - 22) of the linear address are
used as index values in the primary table (page directory) to select one of the 2*10 secondary tables.

The second level table is called a page table. Its length is also a page, and it contains at most 1K 4-byte
entries. Each 4-byte table entry contains the 20-bit physical base address of the associated page. The secondary
page table uses the middle 10 bits of the linear address (bits 21--12) as the index of the entry to obtain the entry
containing the 20-bit physical base address of the page. The 20-bit page physical base address and the lower 12
bits (in-page offset) in the linear address are combined to obtain the output value of the page conversion process,
ie, the corresponding final physical address.

Figure 4-17 shows the two-level table lookup process. The CR3 register specifies the base address of the
page directory table. The upper 10 bits of the linear address are used to index this page directory table to obtain a
pointer to the associated second-level page table. The central 10 bits of the linear address are used to index the
secondary page table to obtain the upper 20 bits of the physical address. The lower 12 bits of the linear address are
directly used as the physical address low 12 bits to form a complete 32-bit physical address.
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Figure 4-17 Linear Address Translation

4.4.1.2 Nonexistent Page Tables

By using the two-level table structure, page tables are allowed to be spread across the pages of memory
without being stored in consecutive 4MB memory blocks. In addition, there is no need to allocate secondary page
tables for portions that are not present or unused in the linear address space. Although directory pages must
always exist in physical memory, secondary page tables can be redistributed as needed. This makes the size of the
page table structure correspond to the actual use of the linear address space size.

Each table entry in the page directory table also has a present attribute, similar to the table entry in the page
table. The presence attribute in the page directory entry indicates whether the corresponding secondary page table
exists. If the directory entry indicates that the corresponding secondary page table exists, then by accessing the
secondary table, the second step of the table lookup process will continue as described above. If there is a bit
indicating that the corresponding secondary table does not exist, the processor will generate an exception to notify
the operating system. The presence attribute in the page directory entries allows the operating system to allocate
secondary page table pages based on the actual linear address range used.

The presence bits in the page directory entries can also be used to store secondary page tables in virtual
memory. This means that only part of the secondary page table needs to be stored in physical memory at any time,
while the rest can be stored on disk. The page directory entries corresponding to the page tables in physical
memory will be marked as present to indicate that they can be paged. The page directory entry for the page table
on disk will be marked as not present. An exception caused by the absence of a secondary page table informs the
operating system to load the missing page table from disk into physical memory. Storing page tables in virtual
memory reduces the amount of physical memory needed to save the paging translation tables.

4.4.2 Page-Directory and Page-Table Entries

The format of the page directory entry and page table entry is shown in Figure 4-18. The bits 31--12 contain
the upper 20 bits of the physical address and are used to locate the physical base address of a page (also called a
page frame) in the physical address space. The lower 12 bits of the table entry contain page attribute information.
We have already discussed the existence attributes. Here we briefly describe the functions and uses of the
remaining attributes.
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Figure 4-18 Page directory and page table entry format

P — Bit 0 is Present flag. It indicates whether the page or page table pointed to by the table entry is currently
loaded into physical memory. After the flag is set, it indicates that the page is in physical memory and
performs address translation. When the flag is cleared, it means that the page is not in memory. If the
processor tries to access the page, a page fault exception will be generated. At this point the operating system
can use the rest of the entry to store information such as the location of the page in the disk system.

R/W -- Bit 1 is the Read/Write flag. If set to 1, it means the page can be read, written or executed. If 0, the
page is read-only or executable. The R/W bit has no effect when the processor is running at the superuser
privilege level (level 0, 1 or 2), refer to the U/S flag below. The R/W bit in the page directory entry acts on all
pages it maps to.

U/S -- Bit 2 is the User/Supervisor flag. If set to 1, then the program running on any privilege level can
access the page. If 0, the page can only be accessed by programs running on the superuser privilege level (0,
1, or 2). The U/S bit in the page directory entry acts on all pages it maps to.

A -- Bit 5 is the Accessed flag. This flag of the page table entry is set to 1 when the processor accesses the
page mapped by the page table entry. This flag of the page directory entry is set to 1 when the processor
accesses any page mapped by the page directory entry. The processor is only responsible for setting this flag,
and the operating system can count the usage of the page by periodically resetting the flag.

D -- Bit 6 is the page modified (Dirty) flag. When the processor performs a write operation on a page, the D
flag corresponding to the page table entry is set. The processor does not modify the D flag in the page
directory entry.

AVL — Available field. This field is reserved for program use. The processor will not modify these bits, and
the future upgrade processor will not.

4.4.3 Virtual Memory

The presence flag P in the page directory and page table entries provides the necessary support for virtual

storage using paging technology. If the page in the linear address space exists in the physical memory, the flag
P=1 in the corresponding entry and the corresponding physical address is included in the entry. A table whose
page is not in physical memory has its flag P = 0. If the program accesses a page that does not exist in physical
memory, the processor generates a page fault exception. At this point, the operating system can use this exception
handling process to transfer the missing pages from the disk to the physical memory, and store the corresponding
physical address in the table entry. Finally, the flag P=1 is set before the return program re-executes the instruction
that caused the exception.
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The accessed flag A and the modified flag D can be used to effectively implement virtual memory technology.
By periodically checking and resetting all A flags, the operating system can determine which pages have not been
accessed recently. These pages can be candidates for removal to disk. Suppose that when a page is read into
memory from disk, its dirty flag D=0, then when the page is moved out to disk again, if the D flag is still 0, the
page does not need to be written to disk. If D=1 at this time, the page content has been modified, so the page must
be written to disk.

45 Protection

In protected mode, the 80X86 provides segment and page level protection. This protection mechanism
provides access restrictions on certain segments and pages based on privilege levels (4 levels of protection and
level 2 page protection). For example, operating system code and data are stored in segments that have a higher
privilege level than normal applications. The processor's protection mechanism will then limit the application's
access to the operating system's code and data in a controlled and regulated manner.

Protection mechanisms are required for a reliable multitasking environment. It can be used to protect
individual tasks from mutual interference. Segment and page level protection can be used at any stage of software
development to assist in finding and detecting design issues and errors. When the program performs an undesired
reference to the error memory space, the protection mechanism can block such operations and report such events.

Protection mechanisms can be used for segmentation and paging mechanisms. The 2 bits of the processor
register define the privilege level of the currently executing program, called the Current Privilege Level (CPL).
During segmentation and paging address translation, the processor will verify the CPL.

By setting the PE flag (bit 0) of the control register CRO, the processor can be operated in protected mode,
thus turning on the segmentation protection mechanism. Once in protected mode, there is no clear control flag in
the processor to stop or enable the protection mechanism. However, the privilege-level protection mechanism part
can be implicitly turned off by setting the privilege level of all segment selectors and segment descriptors to level
0. This approach can prohibit privilege-level protection barriers between segments, but other segment length and
segment type checks and other protection mechanisms still work.

Setting the PG flag (bit 31) of the control register CRO enables the paging mechanism and also enables the
paging protection. Similarly, there are no associated flags in the processor to disable or enable the page level
protection mechanism in the paging open condition. But by setting the read/write (R/W) flag and the
user/superuser (U/S) flag for each page directory entry and page table entry, we can disable page-level protection.
Setting these two flags allows each page to be arbitrarily read/write, so page-level protection is actually disabled.

For the segment level protection, the processor performs protection verification using the selectors (RPL and
CPL) in the segment register and the fields in the segment descriptor. For the paging mechanism, the R/W and U/S
flags in the page directory and page table entries are mainly used to implement the protection operation.

45.1 Segment Protection

When the protection mechanism is used, each memory reference is checked to verify that the memory
reference meets various protection requirements. Because the check operation is concurrent with the address
translation, processor performance is not affected. The protection checks performed can be divided into the
following categories:

Segment limit checks;
B Segment type checks;
W Privilege level checks;
B Restriction of addressable domain;
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B Restriction of procedure entry-points;

B Restriction of instruction set.

All violations of protection will result in an exception. The following sections describe the protection
mechanisms in protected mode.
4.5.1.1 Segment Length Limit Check

The segment limit length field of the segment descriptor is used to prevent program or process addressing to
the location outside the segment. The effective value of the segment length depends on the setting state of the
granularity G flag. For data segments, the segment length is also related to the flag E (extended direction) and the
flag B (default stack pointer size and/or upper bound). The E flag is a bit of the type field in the segment
descriptor of the data segment type.

When the G flag is cleared (byte granularity), the effective segment length is the value of the segment
descriptor length field Limit of the 20-bit segment descriptor. In this case, Limit ranges from 0 to OXFFFFF (1MB).
When the G flag is set (4KB page granularity), the processor multiplies the value of the Limit field by a factor of
4K. In this case, the valid Limit range is from OxFFF to OXFFFFFFFF (4GB). Note that when the G flag is set, the
lower 12 bits of the segment offset (address) are not checked against Limit. For example, when the segment length
Limit is equal to O, the offset values 0 to OXFFF are still valid.

Except for the expand-down data segment, the value of the valid Limit for all other segment types is the last
address allowed to be accessed in the segment, which is one byte smaller than the segment length. Any valid
address range specified beyond the segment length field will result in a general protection exception.

For the expand-down data segment, the segment length has the same function, but its meaning is different.
Here, the segment length specifies the last address in the segment that is not allowed to access, so in the case
where the B flag is set, the effective offset range is from (valid segment offset +1) to OXFFFF FFFF; when B is
cleared The valid offset value range is from (valid segment offset +1) to OXFFFF. When the segment length of the
next expansion segment is 0, the segment will have the maximum length.

In addition to checking the segment length, the processor also checks the length of the descriptor table. The
GDTR, IDTR, and LDTR registers contain a 16-bit limit value that the processor uses to prevent the program
from selecting descriptors outside of the descriptor table. The limit length value of the descriptor table indicates
the last valid byte in the table. Since each descriptor is 8 bytes long, the table containing N descriptor entries
should have a limit value of 8N-1.

The selector can have a value of zero. Such a selector points to the first unused descriptor item in the GDT
table. Although this null selector can be loaded into a segment register, any attempt to reference memory using
this descriptor will result in a general protection exception.
4.5.1.2 Segment Type Checking

The segment descriptor contains type information in two places, namely the S flag in the descriptor and the
type field TYPE. The processor uses this information to detect programming errors caused by illegal use of
segments or gates.

The S flag is used to indicate whether a descriptor is of a system type or a code or data type. The TYPE field
additionally provides 4 bits for defining various types of code, data, and system descriptors. The table in the
previous section gives the encoding of the code and data descriptor TYPE fields; the other table gives the
encoding of the system descriptor TYPE field.

When the segment selector and descriptor are manipulated, the processor will check the type information at
any time. The type information is checked mainly in the following two cases:

1. When a segment selector is loaded into a segment register. Certain segment registers can contain only

certain descriptor types, for example:
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B The CS register can only be loaded with a selector for a executable code segment;
B The selector of the unreadable executable segment cannot be loaded into the data segment register;
B Only selectors of writable data segments can be loaded into the SS register.
2. When instructions access segments whose descriptors are already loaded into segment registers. Certain
segments can be used by instructions only in certain predefined ways, for example:
B No instruction can write an executable segment;
B No instruction can write into a data segment where the writable bit is not set;
B No instruction can read an executable segment unless the executable the readable flag is set.
4.5.1.3 Privilege Levels
The segment protection mechanism of the processor can identify 4 privilege levels (or privilege layers), 0 to
3 levels. The greater numbers mean lesser privileges. Figure 4-19 shows how these privilege levels can be
interpreted as protection ring forms. The center (retained for the most advanced code, data, and stack) is used for
segments that contain the most important software, usually for the core part of the operating system. The middle
two rings are used for more important software. Systems using only 2 privilege levels should use privilege levels
0 and 3.

Protection Righs

Operating System Kernel

Operating System Services

OJL\?»—AO"

Applications

Figure 4-19 Protection Level Rings

The processor utilizes a privilege levels to prevent a program or task running at a lower privilege level from
accessing a segment with a higher privilege level, except under controlled conditions. When the processor detects
an operation that violates a privilege level, it generates a general protection exception.

In order to perform privilege level checking between individual code segments and data segments, the
processor can recognize the following three types of privilege levels:

B Current Privilege Level (CPL). The CPL is the privilege level of the currently executing program or
task. It is stored in bits 0 and 1 of the CS and SS segment registers. Normally, the CPL is equal to the
privilege level of the code segment from which instructions are being fetched. The processor changes
the CPL when program control is transferred to a code segment with a different privilege level. The CPL
is treated slightly differently when accessing conforming code segments. Conforming code segments
can be accessed from any privilege level that is equal to or numerically greater (less privileged) than the
DPL of the conforming code segment. Also, the CPL is not changed when the processor accesses a
conforming code segment that has a different privilege level than the CPL.

B Descriptor Privilege Level (DPL). The DPL is the privilege level of a segment or gate. It is stored in
the DPL field of the segment or gate descriptor for the segment or gate. When the currently executing
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code segment attempts to access a segment or gate, the DPL of the segment or gate is compared to the

CPL and RPL of the segment or gate selector (as described later in this section). The DPL is interpreted

differently, depending on the type of segment or gate being accessed:

€ Data Segment. Its DPL indicates the numerically highest privilege level that a program or task can
have to be allowed to access the segment. For example, if the DPL of a data segment is 1, only
programs running at a CPL of 0 or 1 can access the segment.

€ Nonconforming code segment (without using a call gate). The DPL indicates the privilege level
that a program or task must have to access the segment. For example, if the DPL of a
nonconforming code segment is 0, then only programs running at CPL 0 can access this segment.

€ Call Gate. Its DPL indicates the numerically highest privilege level at which the current executing
program or task accessing the call gate can be. (This is the same as the access rule for the data
segment.)

€ Conforming code segment and nonconforming code segment accessed through a call gate. The
DPL indicates the numerically lowest privilege level that a program or task can have to be allowed
to access the segment. For example, if the DPL of a conforming code segment is 2, programs
running at a CPL of 0 or 1 cannot access the segment.

€ Task status segment TSS. Its DPL indicates the numberically highest privilege level at which the
current executing program or task accessing the TSS can be. (This is the same as the access rule for
the data segment.)

B Request privilege level RPL. The RPL is an override privilege level assigned to a segment selector,
which is stored in bits 0 and 1 of the selector. The processor checks both the RPL and the CPL to
determine if access to a segment is allowed. Even if a program or task has sufficient privilege level
(CPL) to access a segment, access will be denied if the provided RPL privilege level is insufficient. That
is, if the RPL of the segment selector has a value greater than the CPL, the RPL will overwrite the CPL
(and use the RPL as the privilege level for checking comparisons), and vice versa. That is, the privilege
level with the largest value in the RPL and CPL is always taken as the comparison object when
accessing the segment. Therefore, RPL can be used to ensure that high privileged code does not access a
segment on behalf of the application unless the application itself has access to the segment.

The privilege level check operation is performed when the segment selector of the segment descriptor is

loaded into a segment register, but the check method for data access is different from the one for checking the
program control transfer between code segments. Therefore, the following two access situations are considered.

4.5.2 Privilege Level Check When Accessing Data Segments

To access operands in a data segment, the segment selector for the data segment must be loaded into the
data-segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS).(Segment registers can be
loaded with the MOV, POP, LDS, LES, LFS, LGS, and LSS instructions.) Before the processor loads a segment
selector into a segment register, it performs a privilege check (refer to Figure 4-20) by comparing the privilege
levels of the currently running program or task (the CPL), the RPL of the segment selector, and the DPL of the
segment’s segment descriptor. The processor loads the segment selector into the segment register if the DPL is
numerically greater than or equal to both the CPL and the RPL. Otherwise, a generalprotection fault is generated
and the segment register is not loaded.
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Figure 4-20 Privilege level check when accessing data segments

It can be seen that a program or task addressable area changes as its CPL changes. When the CPL is 0, the
data segments at all privilege levels can be accessed at this time; when the CPL is 1, only the data segments at the
privilege levels 1 to 3 can be accessed; when the CPL is 3, only the privileged level The data segment of 3 can be
accessed.

In addition, it may desirable to access data structures that are contained in a code segment, for example,
when the code and data are in ROM. So sometimes we will need access to the data in the code segment. At this
point you can use the following methods to access the data in the code segment:

1. Load the selector of a nonconforming, readable, code segment into a data segment register.

2. Load the selector of a conforming, readable, code segment into a data segment register.

3. Use the code segment override prefix (CS) to read a readable code segment whose selector is already in

the CS register.

The same rules for accessing data segments also apply to Method 1. Method 2 is always valid because the
privilege level of the consistent code segment is equivalent to the CPL, regardless of the DPL of the code segment.
Method 3 is also always valid because the DPL of the code segment selected by the CS register is the same as the
CPL.

A privilege level check is also performed when the SS segment register is loaded using the stack segment
selector. All privilege levels associated with the stack segment here must match the CPL. That is, the CPL, the
RPL of the stack segment selector, and the DPL of the stack segment descriptor must all be the same. If the RPL
or DPL is different from the CPL, the processor will generate a general protection exception.

45.3 Privilege Level Checking When Transferring Program Control

Between Code Segments

For transferring program control from one code segment to another, the segment selector for the target code
segment must be loaded into the code segment register (CS). As part of this loading process, the processor detects
the segment descriptor for the target code segment and performs various limit, type, and privilege level checks. If
these checks pass, the target code segment selector is loaded into the CS register, and control of the program is
transferred to the new code segment, and the program will begin execution at the instruction pointed to by the EIP
register.

The control transfer of the program is implemented using the instructions JMP, RET, INT, and IRET as well
as exception and interrupt mechanisms. Exceptions and interrupts are special implementations that will be
described later. This section discusses only the JMP, CALL, and RETS instructions. A JMP or CALL instruction
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can reference another code segment in one of four ways:
B The target operand contains the segment selector for the target code segment;
B The target operand points to a call gate descriptor, which contains the selector for the target code
segment;
B The target operand points to a TSS, which contains the selector for the target code segment;
B The target operand points to a task gate that points to a TSS, which contains the selector for the target
code segment;
The first two reference types are described below, the latter two of which are described in the section on task
management.
4.5.3.1 Direct Calls or Jumps to Code Segments
The near forms of the JMP, CALL, and RET instructions simply performs program control transfers in the
current code segment, so privilege level checks are not performed. The far forms of the JMP, CALL, or RET
instructions transfer control to another code segments, so the processor must perform privilege level checks.
When transfering program control to another code segment without going through a call gate, the processor
verifies four kinds of privilege level and type information as shown in Figure 4-21.
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| Privilege
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Destination Code Seg Descriptor
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Figure 4-21 Privilege check when calling or jumping directly to another code segment

B Current privilege level CPL. (Here, CPL is the privilege level of the code segment that executes the call,

that is, the code segment that executes the call or jump.)

B The descriptor privilege level DPL of the segment descriptor for the destination code segment that

contains the called procedure.

B Request privilege level RPL in the segment selector of the destination code segment.

B The conforming flag C in the destination code segment descriptor. It determines whether a code segment

is a non-conforming code segment or a consistent code segment.

The rules for the processor to check the CPL, RPL, and DPL depend on the setting state of the flag C. When
accessing a non-conforming code segment (C=0), the CPL of the caller (program) must be equal to the DPL of the
destination code segment, otherwise a general protection exception will be generated. The RPL of the segment
selector pointing to a non-conforming code segment has a limited effect on the check. The RPL must be
numerically less than or equal to the caller's CPL in order for the control transfer to complete successfully. When
the segment selector of a non-conforming code segment is loaded into the CS register, the privilege level field
does not change, ie it is still the caller's CPL. This is true even if the RPL of the segment selector is different from
the CPL.
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When accessing a conforming code segment (C = 1), the caller's CPL may be numerically greater than or
equal to the DPL of the destination code segment. The processor will only generate a general protection exception
when CPL < DPL. For access to conforming code segments, the processor ignores the check for RPL. For a
conforming code segment, DPL represents the numerically lowest privilege level at which the caller can make a
successful call to the code segment.

When program control is transferred to a conforming code segment, the CPL does not change, even if the
DPL of the destination code segment is numerically less than the CPL. This is the only case where the CPL may
not be the same as the current code segment DPL. Also, since the CPL has not changed, the stack will not switch.

Most code segments are non-conforming code segments. For these segments, control of the program can only
be transferred to code segments with the same privilege level, unless the transfer is through a call gate, as
explained below.
4.5.3.2 Gate Descriptors

To provide controlled access to code segments with different privilege levels, the processor provides a
special set of descriptors called gate descriptors. There are four kinds of gate descriptors:

B Call Gate (TYPE=12);

B Trap Gate (TYPE=15);

B Interrupt Gate (TYPE=14);

B Task Gate (TYPE=5).

The task gate is used for task switching and will be explained later in the Task Management section. Trap
gates and interrupt gates are special classes for calling gates that are used to call handlers for exceptions and
interrupts, as explained in the next section. This section only describes how to use the call gate.

Call gates are used to implement controlled program control transfers between different privilege levels.
They are usually only used in operating systems that use privilege-level protection mechanisms. Figure 4-22
shows the format of the call gate descriptor. The call gate descriptor can be stored in the GDT or LDT, but cannot
be placed in the interrupt descriptor table IDT. A call gate has the following main functions:

B Specifies the code segment to be accessed;

B Defines an entry point for a procedure (program) in a specified code segment;

B Specifies the privilege level that the caller of the access procedure needs to have;

B |f a stack switch occurs, it specifies the number of optional parameters that need to be copied between

the stacks;

B [Indicates whether the call gate descriptor is valid.
31 1615141312 11 8 76 5 4 0
. TYPE

Offset in Segment 31..16 ploer | o 00 0 Param Count
1 | 1 |o | 0 4

31 16 15 0

Segment Selector Offset in Segment 15..0

0

Figure 4-22 Call gate descriptor format
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The segment selector field in the call gate specifies the code segment to be accessed. The Offset Value field
specifies the entry point in the segment. This entry point is usually the first instruction in the specified process.
The DPL field specifies the privilege level of the call gate, thereby specifying the privilege level required to
access a particular procedure through the call gate. The flag P indicates whether the call gate descriptor is valid.
The Parameter Count field (Param Count) indicates the number of parameters copied from the caller stack to the
new stack when a stack switch occurs.

The call gate is not used in the Linux kernel. The description of the call gate is intended to prepare for the
processing of interrupts and exception gates in the next section.
4.5.3.3 Accessing a Code Segment Through a Call Gate

In order to access the call gate, we need to provide a far pointer for the operand of the CALL or JMP
instruction. The segment selector in this pointer is used to specify the call gate. The offset value of the pointer is
needed, but the processor does not use it. This offset value can be set to any value. See Figure 4-23.

When the processor accesses the call gate, it uses the segment selector in the call gate to locate the segment
descriptor for the destination code segment. The processor then combines the base address of the code segment
descriptor with the offset value in the call gate to form the linear address of the specified program entry point in
the code segment.

Not used
\
\
Instruction  CALL Offset |Se1ector
Destination Code Segment
3
:Select04 Attr| Offset
Gate Descriptor -7 , > Seg Limt
|
Procedure
Entry point
»| Base | Attr | Limit
Code Seg Descriptor”’
* > %

Figure 4-23 Call-gate operation process

When a program control transfer is made by a call gate, the CPU checks four different privilege levels to
determine the validity of the control transfer, as shown in Figure 4-24.

W The current privilege level CPL;

B The requestor’s privilege level RPL of the call gate’s selector;

B The descriptor privilege level DPL of the call gate descriptor;

B The DPL of the segment descriptor of the destination code segment.

In addition, the conforming flag C in the destination code segment descriptor will also be checked.
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Figure 4-24 Privilege level check for control transfer with call-gate

The privilege level checking rule is different for controlling transfer using CALL instruction or JMP
instruction, as shown in Table 4-5. The DPL field of the call gate descriptor indicates the numerically maximum
privilege level (least privilege level) at which the caller can access the call gate. That is, in order to access the call
gate, the privilege level CPL of the caller program must be less than or equal to the DPL of the call gate. The RPL
of the segment selector of the call gate also needs to follow the same rules as the CPL that invokes this, ie the RPL
must also be less than or equal to the DPL of the calling gate.

Table 4-5 Privilege level check rules for CALL and JMP instructions

Instruction Privilege Check Rules (numerically)
CALL CPL<= Call gate DPL; RPL<= Call gate DPL
Destination conforming & nonconforming code segments DPL<= CPL
CPL<= Call gate DPL; RPL<= Call gate DPL
JMP Destination conforming code segment DPL<= CPL;

Destination nonconforming code segment DPL=CPL

If the privilege level check between the caller and the call gate succeeds, the CPU will then compare the
caller's CPL with the DPL of the code segment descriptor. In this regard, the CALL instruction and the JMP
instruction check rules are different. Only the CALL instruction can use call gate to transfer program control to
the more privileged (numerically lower privilege level) non-conforming code segment, that is, it can be
transferred to the non-conforming code segment with a DPL less than the CPL. A JMP instruction can use a call
gate only to transfer program control to a nonconforming code segment with a DPL equal to the CPL. However,
both the CALL instruction and the JMP instruction can transfer control to a conforming code segment of a higher
privilege level, that is, to a conforming code segment where the DPL is numerically less than or equal to the CPL.

If a call transfers control to a non-conforming code segment of a higher privilege level, the CPL is set to the
DPL value of the destination code segment and causes a stack switch. But if a call or jump transfers control to a
higher privileged level conforming code segment, the CPL does not change and does not cause a stack switch.

Call gate allows a procedure in a code segment to be accessed by a program of a different privilege level. For
example, operating system code located in a code segment may contain code that the operating system itself and
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application software allow to access (such as code that handles character 1/0). So you can set up a call gate for all
of these procedures that all privilege level code can access. In addition, some higher privilege level call gates can
be set specifically for code that is only used by the operating system.

4.5.3.4 Stack Switching

Whenever the call gate is used to transfer program control to a more privileged non-conforming code
segment, the CPU automatically switches to the stack of the privilege level of the destination code segment. The
purpose of the stack switch operation is to prevent more privileged programs from crashing due to insufficient
stack space, and also to prevent low privilege level programs from intentionally or unintentionally interfering with
high privilege level programs through the shared stack.

Each task must define up to 4 stacks. One is for application code running at privilege level 3, and the other is
used for privilege levels 2, 1, and 0, respectively. If only two privilege levels of 3 and 0 are used in a system, then
only two stacks need to be set for each task. Each stack is in a different segment and is specified using the
segment selector and the offset value in the segment.

When the privilege level 3 program is executing, the segment selector and stack pointer of the privilege level
3 stack are stored in the SS and ESP, respectively, and are saved on the stack of the called procedure when a stack
switch occurs.

The initial pointer values for the stacks of privilege levels 0, 1, and 2 are stored in the TSS segment of the
currently running task. These pointers in the TSS segment are read-only values. The CPU does not modify them
while the task is running. When a higher privilege level program is called, the CPU uses them to build a new stack.
When returning from the calling procedure, the corresponding stack does not exist. The next time the procedure is
called, a new stack is created again using the initial pointer values in the TSS.

The operating system is responsible for establishing stack and stack segment descriptors for all used privilege
levels and setting the initial pointer value in the task's TSS. Each stack must be readable and writable and have
enough space to hold some of the following information:

B The contents of the SS, ESP, CS, and EIP registers for the calling process;

B The parameters of the called procedure and the space required for the temporary variables;

B The EFLAGS register and error code, when implicit calls are made to an exception or interrupt handler.

Since one procedure can call other procedures and the operating system can support nesting of multiple
interrupts, each stack must have enough space to accommodate multiple frames of the above information.

When a privilege level change is made by a call to a gate, the CPU performs the following steps to switch the
stack and begin executing the called procedure on the new privilege level (see Figure 4-25):

1. Select the pointer to the new stack from the TSS using the DPL of the destination code segment (ie the
new CPL). The segment selector and stack pointer of the new stack are read from the current TSS. Any
error that violates the segment boundary will result in an invalid TSS exception during the process of
reading the stack segment selector, stack pointer, or stack segment descriptor;

2. Check if the stack segment descriptor privilege level and type are valid. If invalid, an invalid TSS
exception is also generated.

3. Temporarily save the current values of the SS and ESP registers, and load the segment selector and stack
pointer of the new stack into the SS and ESP. Then push the temporarily saved SS and ESP content onto
the new stack.

4. Copy the specified number of parameters in the call gate descriptor from the calling procedure stack to
the new stack. The value of the parameter in the call gate is up to 31. If the number is 0, it means no
parameter and no copy is needed.

5. Push the return instruction pointer (ie the current CS and EIP content) onto the new stack. The new
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(destination) code segment selector is loaded into the CS, and the offset value (new instruction pointer)
in the call gate is loaded into the EIP. Finally, the execution of the called process begins.

Called Procedure’s Stack

01d SS Calling Procedure’ s Stack
01dESP
Param 1 |™
Param 2 | —z T -
Param 3 % Param 1
Calling CS| .. . Param 2
ESP —» [ Calling EIP Param 3 <—01d ESP

S —» <— 01d SS

Figure 4-25 Stack switch when calling between different privilege levels

4.5.3.5 Returning from a Called Procedure

The instruction RET is used to perform near return, far return with privilege level, and far return with
different privilege levels. This instruction is used to return from the procedure called with the CALL instruction.
Near return only transfers program control in the current code segment, so the CPU only performs boundary
checking. For far return of the same privilege level, the CPU simultaneously pops the selector of the return code
segment and the return instruction pointer from the stack. Since these two pointers are normally pushed onto the
stack by CALL instructions, they are valid because of this. However, the CPU still performs a privilege level
check to cope with situations where the current process may modify the pointer value or if there is a problem with
the stack.

The far return that would result in a privilege level change is only allowed to return to the low privilege level
program, ie the code segment DPL returned is numerically greater than the CPL. The CPU uses the RPL field of
the selector in the CS register to determine if a low privilege level is required. If the value of the RPL is larger
than the CPL, a return operation between privilege levels is performed. When the execution returns far to a calling
process, the CPU performs the following steps:

1. Check the RPL field value in the saved CS register to determine if the privilege level needs to be

changed on return.

2. Pop up and load the CS and EIP registers using the values on the called procedure stack. The privilege
level and type checking of the code segment descriptor and the code segment selector RPL are performed
during this process.

3. If the RET instruction contains a parameter count operand and the return operation changes the privilege
level, then the parameter count value is added to the ESP register after the CS and EIP values in the
pop-up stack to skip the caller stack’s parameter. At this point the ESP register points to the pointer SS
and ESP of the originally saved caller stack.

4. Load the saved SS and ESP values into the SS and ESP registers to switch back to the caller's stack. At
this time, the SS and ESP values of the caller stack are discarded.

5. If the RET instruction contains a parameter number operand, the parameter value is added to the ESP
register value to skip (discard) the parameters on the caller stack.
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6. Check the contents of the segment registers DS, ES, FS and GS. If there is a segment pointing to a DPL
that is smaller than the new CPL (except for the consistent code segment), then the CPU loads the
segment register with the NULL selector.

4.5.4 Page-Level Protection

The read/write flags R/W and the user/supervisor flag U/S in the page directory and page table entries
provide a subset of the segmentation mechanism protection attributes. The paging mechanism only recognizes two
levels of permissions. Privilege levels 0, 1, and 2 are classified as superuser level, while privilege level 3 is
classified as a normal user level. Normal user level pages can be marked as read only/executable or
readable/writable/executable. Superuser-level pages are always readable/writable/executable for superusers, but
are not accessible to ordinary users, as shown in Table 4-6.

For the segmentation mechanism, programs executed at the outermost user level can only access user-level
pages, but programs executed at any super user level (0, 1, 2) can not only access the user layer's page, but also
access the super. User layer page. Unlike the segmentation mechanism, programs executed at the inner superuser
level have readable/writable/executable permissions on any page, including those that are marked as
read-only/executable at the user level.

Table 4-6 Normal and super user access restrictions on the page

u/s R/W User Access Rights Supervisor Access Rights
0 0 None Read/Write/Execute
0 1 None Read/Write/Execute
1 0 Read/Execute Read/Write/Execute
1 1 Read/Write/Execute Read/Write/Execute

Just as the paging mechanism is implemented after the segmentation mechanism in the entire 80X86 address
translation mechanism, page-level protection also plays a role in the protection after the the segmentation
mechanism. First, all segment level protection is checked and tested. If you pass the check, the page level
protection check will be performed. For example, a byte in memory can be accessed by a program on level 3 only
when a byte is in a segment accessible by the program on level 3 and is marked as a user-level page. A write to a
page can only be performed when both segmentation and paging are allowed to be written. If a segment is a
read/write type segment, but the corresponding page corresponding to the address is marked as
read-only/executable, then the page cannot be written. If the type of the segment is read-only/executable, the page
always has no write permission regardless of the protection attribute given to the corresponding page. It can be
seen that the protection mechanism for segmentation and paging is like a serial line in an electronic circuit, in
which the switch does not open without a connection.

Similarly, the protection attribute of a page consists of the "serial" or "and operation” of the table entry and
the entries in the page table, as shown in Table 4-7. The U/S flag and the R/W flag in the page table entry are
applied to a single page of the entry mapping. The U/S and R/W flags in the page directory entry act on all pages
mapped to the directory entry. The combined protection attribute of the page directory and the page table is
composed of the AND operation of the two attributes, so the protection measures are very strict.

Table 4-7 Page directory and page table entries combined protection of the page
Combined U/S

Dir Entry U/S
0 0 0 0 0 0

Page Entry U/S Dir Entry R/IW Page Entry R/W | Combined R/W
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0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 1 1 1

4.5.4.1 Software issues for modifying page table entries

To avoid having to access the page table that resides in memory each time a memory reference is accessed,
the most recently used linear to physical address translation information is stored in the page conversion cache
within the processor. The processor first uses the information in the buffer cache before accessing the page table in
memory. The processor searches the page directory and page table in memory only when the necessary conversion
information is not in the cache. Another term for page conversion caching is called Translation Lookaside Buffer
(TLB).

The 80X86 processor does not maintain the dependency of the page conversion cache and the data in the
page table, but requires operating system software to ensure they are consistent. That is, the processor does not
know when the page table has been modified by the software. Therefore, the operating system must refresh the
cache after changing the page table to ensure that the two are consistent. By simply reloading register CR3, we
can complete the refresh operation on the cache.

There is a special case where modifying the page table entry does not require refreshing the page conversion
cache. That is, when the entry of the non-existing page is modified, even if the P flag is changed from 0 to 1 to
mark the entry to be effective for page conversion, there is no need to refresh the cache. Because invalid entries
are not stored in the cache, we don't need to refresh the page conversion cache when we call a page from disk into
memory to make the page exist.

45,5 Combining page and segment protection

When the paging is enabled, the CPU first performs segment-level protection before processing page-level
protection. If the CPU detects a protection violation error at any level, it will discard the memory access and
generate an exception. If it is an exception generated by the segment mechanism, then no more page exception
will be generated.

Page level protection cannot be used to replace or override segment level protection. For example, if a code
segment is set to be non-writable, then after the code segment is paged, the page will not be writable even if the
page's R/W flag is set to be readable and writable. At this point the segment protection check will block any
attempt to write to the page. Page level protection can be used to enhance segment level protection. For example,
if a readable and writable data segment is paged, the page level protection mechanism can be used to write protect
individual pages.

4.6 Interrupt and Exception Handling

Interrupts and Exceptions are events that occur somewhere in the system, processor, or current executor (or
task) that need to be processed by the processor. Often, such events can cause execution control to be forced from
the currently running program to a special software function or task called interrupt handler or exception handler.
The action taken by the processor in response to an interrupt or exception is called an interrupt/exception service
(processing).

Typically, an interrupt occurs at a random time in the execution of the program in response to a signal from
the hardware. The system hardware uses interrupts to handle external events, such as requiring service to external
devices. Of course, the software can also generate interrupts by executing the INT n instruction.

An exception occurs when the processor executes an instruction and an error condition is detected, such as an
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error condition divided by zero. The processor can detect various error conditions, including violations of
protection mechanisms, page faults, and internal machine errors.

For applications and operating systems, the 80X86 interrupt and exception handling mechanisms
transparently handle interrupts and exceptions that occur. When an interrupt is received or an exception is detected,
the processor automatically suspends the currently executing program or task and begins running the interrupt or
exception handler. When the handler completes, the processor resumes and continues executing the interrupted
program or task. The recovery process of the interrupted program does not lose the continuity of program
execution unless it is impossible to recover from the exception or the interrupt causes the current program to be
terminated. This section describes the processing mechanisms for processor interrupts and exceptions in protected
mode.

4.6.1 Sources of Interrupts

The processor receives interrupts from two places:

B External (hardware generated) interrupts;

B Software generated interrupts.

External interrupts are received by two pins (INTR and NMI) on the processor chip. When the pin INTR
receives an external interrupt signal, the processor reads the interrupt vector number provided by the external
interrupt controller (such as the 8259A) from the system bus. When the pin NMI receives a signal, it generates a
non-maskable interrupt. It uses a fixed interrupt vector number of 2. Any external interrupt received through the
INTR pin of the processor is referred to as a maskable hardware interrupt, including interrupt vector numbers 0
through 255. The IF flag in the flag register EFLAGS can be used to mask all of these hardware interrupts.

The INT n instruction can be used to generate an interrupt from software by providing the interrupt vector
number in the instruction operand. For example, the instruction INT 0x80 will execute the Linux system interrupt
call interrupt 0x80. Any of the vectors from 0 to 255 can be used as a parameter in this instruction. However, if a
processor predefined NMI vector is used, the processor's response to it will be different from the
normal-generated NMI interrupt. If the NMI vector number 2 is used for the INT instruction, the NMI interrupt
handler is called, but the processor's NMI processing hardware is not activated at this time.

Note that interrupts generated in software using the INT instruction cannot be masked by the IF flag in
EFLAGS register.

4.6.2 Sources of Exceptions

There are also two sources of exceptions received by the processor:

B Processor-detected program-error exceptions;

B Software-generated exceptions.

One or more exceptions are raised if the processor detects a program error during the execution of an
application or operating system. The 80X86 processor defines a vector for each exception it detects. Exceptions
can be further classified as faults, traps, and aborts, as explained later.

The INTO, INT 3, and BOUND instructions can be used to generate exceptions from software. These
instructions check for special exception conditions that are executed at specified points in the instruction stream.
For example, the INT 3 instruction will generate a breakpoint exception.

The INT n instruction can be used to simulate a specified exception in software, with one limitation. If the
operand n in the INT instruction is one of the 80X86 exception vector numbers, then the processor will generate
an interrupt for the vector that will execute the exception handler associated with the vector. But since this is
actually an interrupt, the processor does not push an error number onto the stack, even if the vector-related
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interrupt generated by the hardware usually produces an error code. For exceptions that generate an error code, the
exception handler will attempt to pop the error code from the stack while processing. Therefore, if an INT
instruction is used to emulate the generation of an exception, the handler will pop off and discard the EIP (just at
the missing error code location) onto the stack, causing a return position error.

4.6.3 Exception Classifications

Exceptions can be subdivided into Faults, Traps, and Aborts depending on how the exception is reported and

whether the instruction that caused the exception can be re-executed with no loss of program or task continuity.

B AFault is an exception that can usually be corrected and can continue to run once it has been corrected.
When a Fault occurs, the processor will restore the state of the machine to the state it was in prior to the
instruction that generated the Fault. At this point, the return address of the exception handler will point
to the instruction that generated the Fault, not the one that follows. Therefore, the instruction that
generated the fault after returning will be re-executed.

B Trap is an exception that causes a trap to be reported immediately after the execution of the trapping
instruction. Trap also enables programs or tasks to execute without loss of continuity. The return address
for the trap handler points to the next instruction, so the next instruction is executed after the return.

B Abort is an exception that does not always report the exact location of the instruction that caused the
exception, and does not allow the program that caused the exception to resume execution. Abort is used
to report serious errors such as hardware errors and inconsistencies or illegal values in the system tables.

4.6.4 Exception and Interrupt Vectors

To help handle exceptions and interrupts, each defined exception and interrupt condition that needs to be
specially processed by the processor is given an identification number called a vector. The processor uses the
vector as an index number in the Interrupt Descriptor Table (IDT) to locate an exception or interrupt handler entry
point location.

The allowed vector number ranges from 0 to 255. 0 to 31 are reserved for the exceptions and interrupts
defined by the 80X86 processor, but currently the vector numbers in this range are not defined for each function,
and the vector number of the undefined function will be reserved for future use.

Vector numbers ranging from 32 to 255 are used for user-defined interrupts. These interrupts are typically
used for external 1/0O devices so that they can send interrupts to the processor through an external hardware
interrupt mechanism.

The vectors assigned to the exceptions and NMI interrupts defined for 80X86 are given in Table 4-8. For
each exception, the table gives the exception type and whether an error code is generated and saved on the stack.
Each pre-defined exception and NMI interrupt source is also given.

Table 4-8 Exceptions and interruptions in protected mode

Vector . L Error
Mnemonic Description Type Source
No. Code
0 #DE Divide Error Fault No DIV and IDIV instructions.
Any code or data reference or the INT 1
1 #DB Debug Fault/Trap | No . )
instruction.
2 -- NMI Interrupt Interrupt No Nonmaskable external interrupt.
3 #BP Breakpoint Trap No INT 3 instruction.
4 #OF Overflow Trap No INTO instruction.
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5 #BR BOUND Range Exceeded Fault No BOUND instruction.
) ) UD?2 instruction or reserved (new for
6 #UD Invalid Opcode (Undefined) Fault No 6)
Device Not Available (No Math Floating-point or  WAIT/FWAIT
7 #NM Fault No . ]
Coprocessor) instruction.
Any instruction that can generate an
8 #DF Double Fault Abort Yes(Zero) .
exception, an NMI, or an INTR.
Coprocessor Segment Overrun Floating-point instruction (not for CPU
9 -- Fault No
(reserved) after 386)
10 #TS Invalid TSS Fault Yes Task switch or TSS access.
Loading segment registers or accessing
11 #NP Segment Not Present Fault Yes
system segments.
12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.
) Any memory reference and other
13 #GP General Protection Fault Yes )
protection checks.
14 #PF Page Fault Fault Yes Any memory reference.
15 -- (Intel reserved. Do not use.) No
. . Floating-point ~ or  WAIT/FWAIT
16 #MF Floating-Point Error (Math Fault) | Fault No . ]
instruction.
17 #AC Alignment Check Fault Yes(Zero) | Any data reference in memory.
) Error codes (if any) and source are
18 #MC Machine Check Abort No
model dependent.
) ) SSE and SSE2 floating-point
19 #XF Streaming SIMD Extensions Fault No . )
instructions. (for PI1I cpu)
20-31 | -- Intel reserved. Do not use.
User Defined (Nonreserved) ) ) .
32-255 | -- Interrupt External interrupt or INT n instruction.
Interrupts

4.6.5 Program or Task Restart

In order for a program or task to resume execution after an exception or interrupt has been processed, all
exceptions except Abort can report the exact instruction location, and all interrupt guarantees occur on the
instruction boundary.

For fault class exceptions, the return instruction pointer saved when the processor generates an exception
points to the faulting instruction. Therefore, when a program or task is restarted after the fault handler returns, the
original faulting instruction is re-executed. Re-execution of the instruction that caused the fault is usually used to
handle the case where the access instruction operand is blocked. The most common example of a Fault is a page
fault exception. This exception occurs when a program references an operand that is not on a page in memory.
When a page fault exception occurs, the exception handler can load the page into memory and resume program
execution by re-execution of the faulting instruction. To ensure that re-execution is transparent to the current
execution program, the processor saves the necessary register and stack pointer information so that it can return to
the state it was in prior to executing the faulting instruction.

For a Trap class exception, the return pointer saved when the processor generates an exception points to the
next instruction that caused the trap operation. If a Trap is detected during the execution of an instruction that
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performs a control transfer, the return instruction pointer reflects the transition of the control. For example, if a
Trap exception is detected while executing a JMP instruction, the return instruction pointer points to the target
location of the JMP instruction, not to the next instruction of the JMP instruction.

The abort class exceptions do not support reliable restarting of programs or tasks. A handler that aborts an
exception is typically used to collect diagnostic information about the state of the processor when the exception
occurred, and to close the program and system as appropriately as possible.

Interrupts strictly support restarting of interrupted programs without losing any continuity. The return
instruction pointer saved for an interrupt points to the next instruction boundary that will be executed when the
processor acquires the interrupt. If the instruction just executed has a repeat prefix, the interrupt will occur when
the current iteration ends and the register has been set for the next iteration.

4.6.6 Enabling and Disabling Interrupts

The Interrupt Enable Flag (IF) of the Flag Register EFLAGS can disable the servicing of maskable hardware
interrupts received on the INTR pin of the processor. When IF = 0, the processor disables the interrupt sent to the
INTR pin; when IF = 1, the interrupt signal sent to the INTR pin is processed by the processor.

The IF flag does not affect the non-masked interrupts sent to the NMI pin, nor does it affect the exception
generated by the processor. As with the other flags in EFLAGS, the processor clears the IF flag (IF=0) in response
to a hardware reset operation.

The IF flag can be set or cleared using the instructions STI and CLI. These two instructions can only be
executed when the program’'s CPL <= IOPL, otherwise a general protective exception will be raised. The IF flag is
also affected by the following operations:

B The PUSHF instruction can store the EFLAGS contents on the stack, where they can be examined and
modified. The POPF instruction can be used to put the contents of the modified flags back into the
EFLAGS register.

B The task switch, POPF, and IRET instructions load the EFLAGS register. Therefore, they can be used to
modify the setting of the IF flag.

B When an interrupt is processed through the interrupt gate, the IF flag is automatically cleared (reset),
which disables the maskable hardware interrupt. However, if an interrupt is handled through the trap
gate, the IF flag will not be reset.

4.6.7 Priority of exceptions and interrupts

If there are multiple exceptions or interrupt pending processing at the boundary of an instruction, the
processor processes them in the specified order. Table 4-9 shows the priority of the exception and interrupt source
classes. The processor first processes exceptions or interrupts in the highest priority class. Low priority exceptions
are discarded, while low priority interrupts are held waiting. When the interrupt handler returns to a program or
task that generated an exception and/or interrupt, the discarded exception will reoccur.

Table 4-9 Priority of exceptions and interrupts

Priority Description

1(Highest) | Hardware reset: RESET

2 Task switching trap: T flag is set in TSS

3 External hardware intervention

4 Previous instruction trap: breakpoint, debug trap exception

5 External interrupt: NMI interrupt, maskable hardware interrupt
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6 Code breakpoint error

7 Take an instruction error: violation of code segment limit, code page error

The next instruction decode error: instruction length >15 bytes, invalid opcode,
coprocessor does not exist

Execution instruction error: overflow, boundary check, invalid TSS, segment not
9(Lowest) | present, stack error, general protection, data page, alignment check, floating point

exception

4.6.8 Interrupt Descriptor Table (IDT)

The Interrupt Descriptor Table (IDT) associates each exception or interrupt vector with a gate descriptor of
their process or task, which is used to handle related exceptions and interrupts. Similar to the GDT and LDT tables,
IDT is also an array of 8-byte long descriptors. Unlike GDT, the first item in the table can contain descriptors. To
form an index into the IDT table, the processor puts the vector number of the exception or interrupt *8. Since
there are at most 256 interrupt or exception vectors, the IDT does not need to contain more than 256 descriptors.
IDTs can contain fewer than 256 descriptors because descriptors are only needed for exceptions or interruptions
that may occur. However, all empty descriptor entries in the IDT should have their presence bit (flag) set to zero.

The IDT table can reside anywhere in the linear address space, and the processor uses the IDTR register to
locate the location of the IDT table. This register contains the 32-bit base address of the IDT table and the 16-bit
length (length limit) value, as shown in Figure 4-26. The IDT table base address should be aligned on an 8-byte
boundary to improve processor access efficiency. The limit length value is the length of the IDT table in bytes.

IDTR Register

47 16 15 0
IDT Base Address | 07 Limit |
[ELj Interrupt Descriptor Table IDT
_I >
Gate for Int#N N % 8
/\/
/\/
Gate for Int#2 G
Gate for Int#l 3
Gate for Int#0 0

Figure 4-26 Interrupt Descriptor Table IDT and Register IDTR

The LIDT and SIDT instructions are used to load and store the contents of the IDTR register, respectively.
The LIDT instruction loads the limit and the base address operand in memory into the IDTR register. This
instruction can only be executed by code whose current privilege level CPL is 0, and is usually used in the
operating system initialization code when IDT is created. The SIDT instruction is used to copy the base address
and the limit content in the IDTR into the memory. This instruction can be executed at any privilege level. If the
descriptor referenced by the interrupt or exception vector exceeds the bounds of the IDT, the processor generates a
general protection exception.
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4.6.9 IDT Descriptors

Three kinds of gate descriptors can be stored in the IDT table:

B nterrupt gate descriptor;

B Trap gate descriptor;

B Task gate descriptor.

The format of these three gate descriptors is shown in Figure 4-27. The interrupt gate and trap gate contain a
long pointer (ie, segment selector and offset value) that the processor uses to transfer program execution rights to
exceptions or interrupts in the code segment. The main difference between the two segments is that the processor
operates on the IF flag of the EFLAGS register. The format of the task gate descriptor in the IDT is the same as
the format of the task gate in the GDT and LDT. The task gate descriptor contains a selector for the task TSS
segment that is used to handle exceptions and/or interrupts.

Interrupt Gate
31 1615141312 8§ 76 5 4 0
Entry Point Offset 31..16 P|DPLJO 1 1 1 0]0 0 O
31 16 15 0
Segment Selector Entry Point Offset 15..0
Trap Gate
31 16151413 12 8§ 7 6 5 4 0
Entry Point Offset 31..16 PI[DPL]O 1 1 1 1|0 0 O
31 16 15 0
Segment Selector Entry Point Offset 15..0
Task Gate
31 1615141312 8 7 0
P|DPL|O O 1 0 1
31 16 15 0
Segment Selector
P - Segment Present flag DPL - Descriptor Privilege Level

Figure 4-27 Interrupt gate, trap gate, and task gate descriptor format
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4.6.10 Exception and Interrupt Handling

The processor's method of invoking exceptions and interrupt handlers is similar to calling a procedure and
task using the CALL instruction. When responding to an exception or interrupt, processor uses the vector of the
exception or interrupt as an index in the IDT table. If the index value points to an interrupt gate or trap gate, the
processor invokes an exception or interrupt handler using a method similar to the CALL instruction operation call
gate. If the index value points to the task gate, the processor performs a task switch using a method similar to the
CALL instruction operation task gate, and performs an exception or interrupted processing task.

An exception or interrupt gate references an exception or interrupt handler that runs in the context of the
current task, as shown in Figure 4-28. The segment selector in the gate points to the executable code segment
descriptor in the GDT or the current LDT. The offset field in the gate descriptor points to the beginning of the
exception or interrupt handling process.

IDT Code Segment
3\
Int or Trap Gate
Interrupt :Select04 Attr |Offset -7 Interrupt
Vector
Procedure
I »
1] > Seg Limit
GDT or LDT
»Seg Basq Attr| Limit
Bk s -7
> J

Figure 4-28 Interrupt Procedure Call

When the processor executes an exception or interrupt handler call, the following actions are taken:
B [f the handler procedure will be executed at a high privilege level (such as level 0), then a stack switch
operation will occur. The stack switching process is as follows:

The processor gets the segment selector and stack pointer of the stack used by the interrupt or
exception handler from the TSS segment of the currently executing task (eg tss.ss0, tss.esp0). The
processor then pushes the stack selector and stack pointer of the interrupted program (or task) onto
the new stack, as shown in Figure 4-29. The processor then pushes the current values of the
EFLAGS, CS, and EIP registers onto the new stack. If the exception generates an error code, the
error code will also be pushed to the new stack.

m  [f the handler procedure will run on the same privilege level as the interrupted task, then:
The processor saves the current values of the EFLAGS, CS, and EIP registers on the current stack.
If the exception generates an error code, the error code will also be pushed to the new stack.
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Uses Stack of the Current when No Privilege Level Change

Interrupted Procedure’ s Stack
AV v

[4—— ESP, Before Transfer to Handler

EFLAGS
CS
EIP

Error Code |4 ESP, After Transfer to Handler
AV AV

Uses the New Stack when Privilege Level Change

Interrupted Procedure’ s Stack ,
Handler’ s Stack

N, AV
| ss
[ ——FESP, Before Transfer ESP
to Handler EFLAGS
| cs
EIP
After Transfer
to Handler, ESP — Livor Code
AV AV A, A,

Figure 4-29 Stack usage method when transferring to interrupt processing

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD)
instruction. The IRET instruction is similar to the RET instruction except that it restores the saved flags into the
EFLAGS register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed
only if the CPL <= IOPL. If a stack switch occurred when calling the handler procedure, the IRET instruction

switches back to the interrupted procedure’s stack on the return.

4.6.10.1 Protection of exceptions and interrupt handler procedures

The privilege level protection mechanism for exception and interrupt handler procedures is similar to calling
a normal procedure through a call gate. The processor does not allow control to be transferred to interrupt handler
procedure that is lower than the CPL privileged code segment, otherwise a general protection exception will be
generated. In addition, the protection mechanism for interrupts and exceptions is different from the general call
gate procedure in the following respects:

B Because the interrupt and exception vectors do not have an RPL, the RPL is not checked when the
exception and interrupt handler procedures are implicitly called.

B The processor checks the DPL in the interrupt or trap gate only when an exception or interrupt is
generated using the INT n, INT 3, or INTO instruction. At this time, the CPL must be less than or equal
to the DPL of the gate. This restriction prevents applications running at privilege level 3 from using
software interrupts to access important exception handling procedures, such as page fault handling,
assuming that these processes have been placed in a higher privilege level code segment. For
hardware-generated interrupts and processor-detected exceptions, the processor ignores the DPL in the
interrupt gate and trap gate.

Because exceptions and interrupts do not usually occur on a regular basis, these rules about privilege levels
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effectively enhance the privilege level limits that exceptions and interrupt handlers can run. We can use one of the
following techniques to avoid violating privilege level protection:

B Exception or interrupt handlers can be stored in a consistent code segment. This technique can be used

for handlers that only need to access data available on the stack (for example, divide error exceptions).
If the handler needs data in the data segment, then privilege level 3 must be able to access this data
segment. But there is no protection at all.

B The handler can be placed in a nonconforming code segment with privilege level 0. This handler can

always be performed regardless of the current privilege level CPL of the interrupted program or task.
4.6.10.2 Flag usage by Exception or Interrupt Handler Procedure

When an exception or interrupt handler is accessed through an interrupt gate or trap gate, the processor clears
the TF flag in EFLAGS after saving the contents of the EFLAGS register on the stack. Clearing the TF flag
prevents the instruction trace from affecting the interrupt response. The subsequent IRET instruction will restore
the original TF flag of EFLAGS with the contents of the stack.

The only difference between an interrupt gate and a trap gate is the way the processor operates the IF flag of
the EFLAGS register. When an exception or interrupt handler is accessed through the interrupt gate, the processor
resets the IF flag to prevent other interrupts from interfering with the current interrupt handler. Subsequent IRET
instructions will restore the IF flag of the EFLAGS register with the contents stored on the stack. Accessing the
handler procedure through the trap gate does not affect the IF flag.

4.6.11 Interrupt handler Tasks

Task switching occurs when an exception or interrupt handler is accessed through the task gate in the IDT.
Using separate tasks to handle exceptions or interruptions has the following benefits:

B The complete context of the interrupted program or task is automatically saved;

B A new TSS permits the handler to use a new privilege level 0 stack when handling the exception or
interrupt. If an exception or interrupt occurs when the current privilege level 0 stack is corrupted,
accessing the handler through a task gate can prevent a system crash by providing the handler with a
new privilege level O stack.

B The handler can be further isolated from other tasks by giving it a separate address space. This is done
by giving it a separate LDT.

The disadvantage of using a separate task to handle exceptions or interrupts is that the amount of machine
state must be saved during task switching, making it slower than using interrupt gates, resulting in increased
interrupt latency.

The task gate in the IDT will reference the TSS descriptor in the GDT, as shown in Figure 4-30. The process
of switching to a handler task is the same as the normal task switching process. The back link to the interrupted
task will be saved in the previous task link field of the handler task TSS. If an exception generates an error code,
the error code is copied to the new task stack.

When an exception or interrupt handler task is used in an operating system, there are actually two
mechanisms for dispatching tasks: operating system software scheduling and hardware scheduling of the
processor interrupt mechanism. The software scheduler needs to accommodate interrupt tasks that may be
dispatched when interrupts are enabled.
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Figure 4-30 Interrupt Task Switch

4.6.12 Error Code

When an exception condition is associated with a particular segment, the processor pushes an error code onto
the stack of exception handler. The format of the error code is shown in Figure 4-31. The error code is much like a
segment selector, but the lowest 3 bits are not Tl and RPL fields, but the following 3 flags:

B Bit 0 is the external event (EXT) flag. When set, indicates that an event external to the program caused
an exception, such as a hardware interrupt.

B Bit 1 is a descriptor location (IDT) flag. When this bit is set, the index portion indicating the error code
points to a gate descriptor in the IDT. When this bit is reset, it indicates that the index refers to a
descriptor in the GDT or LDT.

B Bit 2 is the GDT/LDT table select flag T1. Only useful when IDT (bit 1) is 0. When the TI=1, the index
portion indicating the error code points to a descriptor in the LDT. When TI=0, it indicates that the index
part in the error code points to a descriptor in the GDT table.

31 16 15 3210
T I|E

Reserved Segment Selector Index I D|X

TIT

Figure 4-31 Error Code format

The Segment Selector Index field provides the index into the IDT, GDT, or current LDT to the segment or
gate selector being referenced by the error code. In some cases the error code is null (ie, the lower 16 bits are all
clear). A null error code indicates that the error was not caused by referencing a particular segment, or that an null
segment descriptor was referenced in the operation.

The error code format of the Page-fault exception is different from the above, as shown in Figure 4-32. Only
the lowest 3 bits are useful, and their names are the same as the last three bits in the page table entry (U/S, WIR,
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P). The meanings and effects are:

B Bit 0 (P), the exception is caused by a page not being present or violating access privileges. P=0,
indicating that the page does not exist; P=1 means that the page-level protection authority is violated.

B Bit 1 (W/R), the exception is due to a memory read or write operation. W/R=0, indicating that it is
caused by a read operation; W/R=1, indicating that it is caused by a write operation.

B Bit 2 (U/S), the code level at which the CPU executes when an exception occurs. U/S=0, indicating that
the CPU is executing the super user code; U/S=1, indicating that the CPU is executing the general user
code.

In addition, the processor also stores the linear address used to cause the page fault exception to be stored in

CR2. The page fault exception handler can use this address to locate the relevant page directory and page table
entry.

31 3

Reserved

= >~ |~
=g

|72 Gl anl | \S)

Figure 4-32 Page fault error code format

Note that the error code is not automatically popped off the stack by the IRET instruction, so the interrupt
handler must clear the error code on the stack before returning. In addition, although some exceptions generated
by the processor will generate an error code and will be automatically saved to the stack of the handler procedure,
an external hardware interrupt or an exception generated by the program executing the INT n instruction will not
push the error code onto the stack.

4.7 Task Management

A task is a unit of work that a processor can allocate to schedule, execute, and suspend. It can be used to
execute programs, tasks or processes, operating system services, interrupt or exception handling procedures, and
kernel code. A task is a running program or a program waiting to be run.

The 80X86 provides multi-tasking hardware support for saving the status of tasks, dispatching tasks, and
switching from one task to another. When working in protected mode, all of the processor's operations are in the
task. Even a simple system must define at least one task. More complex systems can use the task management
capabilities of the processor to support multitasking applications.

We can perform a task by interrupt, exception, jump or call with a specified entry in a descriptor table. There
are two kinds of task-related descriptors in the descriptor table: task state segment descriptors and task gates.
When execution rights are passed to any of these kinds of descriptors, task switching occurs. Task switching is
much like a procedure call, but task switching saves more processor state information. Task switching will
completely transfer control to a new execution environment, the execution environment of the new task. This
transfer operation requires saving the current contents of almost all registers in the processor, including the flag
register EFLAGS and all segment registers. However, the task cannot be reentrant. Task switching does not push
any information onto the stack. The processor's state information is stored in a data structure called a task state
segment (TSS) in memory.
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4.7.1 Task Structure and State

A task consists of two parts: the task execution space and the task state segment (TSS). The task execution
space includes a code segment, a stack segment, and one or more data segments, as shown in Figure 4-33. If an
operating system uses the processor's privilege level protection mechanism, then the task execution space needs to
provide a separate stack space for each privilege level. The TSS specifies the segments that make up the task
execution space and provides storage for the task state information. In a multitasking environment, TSS also
provides a way to handle links between tasks.

Code Seg
Data Seg
> Stack Seg
Segment (Current

(TSS) Priv. Level)

L —>
1
| Stack Seg
> P. Level 0

Task State

A 4

Stack Seg

» P.Level 1
|| Stack Seg
CR3 P.Level 2

Figure 4-33 Structure of a Task

A task is specified using a segment selector that points to its TSS. When a task is loaded into the processor
for execution, then the segment selector, base address, segment length, and TSS segment descriptor attributes of
the task are loaded into the task register (TR). If the paging mechanism is used, the page directory base address
used by the task is loaded into control register CR3. The state of the currently executing task consists of the
following:

B The task’s current execution space, defined by the segment selectors in the segment registers (CS, DS,
SS, ES, FS, and GS);

The state of the general purpose registers;

The state of the EFLAGS, EIP, control register CR3, task register and LD TR register;
The 1/0 map base address and 1/0 map (contained in the TSS);

Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS);

Link to previously executed task (contained in the TSS).

Before distributing a task, all of these items are included in the task's TSS, except for the status of the task
registers. In addition, the complete contents of the LDTR register are not included in the TSS and only contain the
segment selector of the LDT.

4.7.2 Execution of Tasks

The software or processor can dispatch a task for execution in one of the following methods:
B Aexplicit call to a task with the CALL instruction;

B Aexplicit jump to a task with the JMP instruction (the way the Linux kernel uses);

®  Animplicit call (by the processor) to an interrupt-handler task;
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B Animplicit call to an exception-handler task;

B Areturn (initiated with an IRET instruction) when the NT flag in the EFLAGS register is set.

All of these methods of scheduling task execution use a selector that points to the task gate or task TSS
segment to determine a task. When dispatching a task using a CALL or JMP instruction, the selector in the
instruction may either directly select the task's TSS or the task gate that holds the selector for the TSS. When
dispatching a task to handle an interrupt or exception, then the interrupt or exception entry in the IDT must
contain a task gate that holds the selector for the TSS of the interrupt or exception handler task.

When a task is dispatched for execution, a task switching operation occurs automatically between the
currently running task and the scheduled task. During a task switch, the execution environment (called the state or
context of the task) that is currently running the task is saved to its TSS and the execution of the task is suspended.
The context of the newly scheduled task is then loaded into the processor and a new task is executed starting from
the instruction pointed to by the loaded EIP.

If the currently executing task (the caller) invokes the scheduled new task (the callee), then the caller's TSS
segment selector is stored in the callee TSS, providing a link back to the caller. For all 80X86 processors, tasks are
not recursively called, ie tasks cannot be called or jumped to themselves.

Interrupts or exceptions can be handled by switching to a handler task. In this case, the processor not only
can perform a task switch to handle interrupts or exception, but also automatically switch back to the interrupted
task when the interrupt or exception handler task returns. This mechanism can handle interrupts that occur during
interrupt tasks.

As part of the task switching operation, the processor also switches to another LDT, allowing each task to
have a different logical-to-physical address mapping for LDT-based segments. At the same time, the page
directory register CR3 is also reloaded at the time of switching, so each task can have its own set of page tables.
These protections can be used to isolate individual tasks and prevent them from interfering with each other.

It is optional to use the processor's task management capabilities to handle multitasking applications. We can
also use software to implement multitasking so that each software-defined task is executed in the context of a
single 80X86 architecture task.

4.7.3 Task Management Data Structures

The processor defines the following registers and data structures that support multitasking:
Task-state segment (TSS);

TSS descriptor;

Task registor (TR);

Task-gate descriptor;

NT flag in the EFLAGS register.

Using these data structures, the processor can switch from one task to another while preserving the context of
the original task to allow the task to re-execute. When operating in protected mode, a TSS and TSS descriptor
must be created for at least one task, and the segment selector for the TSS must be loaded into the task register
(using the LTR instruction).
4.7.3.1 Task-State Segment (TSS)

The processor state information for restoring a task execution is saved in a segment called a task state
segment TSS (Task state segment). Figure 4-34 shows the format of the TSS used by the 32-bit CPU. The fields in
the TSS segment can be divided into two broad categories: dynamic fields and static fields.
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31 16 15 0
1/0 Map Base Address 0x64
LDT Segment Selector 0x60
GS 0x5C
FS 0x58
DS 0x54
SS 0x50
CS 0x4C
ES 0x48
EDI 0x44
EST 0x40
EBP 0x3C
ESP 0x38
EBX 0x34
EDX 0x30
ECX 0x2C
EAX 0x28
EFLAGS 0x24
EIP 0x20
Page Directory Base Register (PDBR) CR3 0x1C
SS2 0x18
ESP2 0x14
SS1 0x10
ESP1 0x0C
SSO 0x08
ESPO 0x04
Privious Task Link (TSS Selector)| 0x00

- Reserved bits, 0Os

Figure 4-34 32-bit task status segment TSS format

Dynamic fields. When the task is switched and suspended, the processor updates the contents of the dynamic
field. These fields include:

B General purpose register field. Used to save the contents of the EAX, ECX, EDX, EBX, ESP, EBP, ESI,
and EDI registers.

Segment selector field. Used to save the contents of the ES, CS, SS, DS, FS, and GS segment registers.
Flag register EFLAGS field. Save EFLAGS before switching.

Instruction pointer EIP field. Save the contents of the EIP register before switching.

The previous task link field. Contains the previous task TSS segment selector (updated during a task
switch of a call, interrupt, or exception fire). This field (also commonly referred to as the Back link field)
allows the task to switch to the previous task using the IRET instruction.

Static fields. The processor reads the contents of static fields, but usually does not change them. These field
contents are set when the task is created. These fields are:

B LDT segment selector field. Containins the segment selector for the task's LDT.

B CR3 Control Register Field. Contains the physical base address of the page directory used by the task.
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The control register CR3 is also commonly referred to as a page directory base register (PDBR).

B Stack pointer field for privilege levels 0, 1, and 2. These stack pointers consist of stack segment
selectors (SSO, SS1, and SS2) and offset pointers in the stack (ESPO, ESP1, and ESP2). Note that the
values of these fields are constant for a given task. Therefore, if a stack switch occurs in a task, the
contents of the registers SS and ESP will change.

B Debug Trap T flag field. This field is located at byte 0x64 bit 0. When this bit is set, then a debug
exception will be generated when the processor switches to the task.

B |/O bitmap base address field. This field contains the 16-bit offset value from the beginning of the TSS
segment to the 1/0O permission bitmap. When present, these maps are stored at the higher address of the
TSS. The 1/O mapping base address points to the beginning of the I/O permission bitmap and the end of
the interrupt redirection bitmap.

If a paging mechanism is used, the memory page boundaries should be avoided in the TSS segment of the
processor operation (in the first 104 bytes) during task switching. If the TSS part contains a memory page
boundary, then the pages on both sides of the boundary must exist simultaneously and continuously in physical
memory. In addition, if the paging mechanism is used, the pages related to the original task TSS and the new task
TSS, and the corresponding descriptor table entries should be readable and writable.
4.7.3.2 TSS Descriptor

Like other segments, the task status segment TSS is also defined using a segment descriptor. Figure 4-35
shows the format of the TSS descriptor. TSS descriptors can only be stored in the GDT.

31 242322212019 1615141312 11 8 7 0
A .. TYPE
Base 31..24 clololy Seg Limit plor lo Base 23..16
| 16 1|0|B|1 4
31 16 15 0
Base Address 15..0 Segment Limit 15..0
0

Figure 4-35 TSS segment descriptor format

The busy flag (B) in the type field TYPE is used to indicate whether the task is busy. A busy task is a task
that is currently executing or a task that is waiting to be executed (suspended). A type field with a value of 0b1001
indicates that the task is inactive; a type field with a value of 0b1011 indicates that the task is busy. The processor
uses the busy flag to detect an attempt to call a task whose execution has been interrupted. To insure that there is
only one busy flag is associated with a task, each TSS should have only one TSS descriptor that points to it.

The base address, limit, the descriptor privilege level DPL, the granularity G, and the present flags have the
same functions as the corresponding fields in the data segment descriptor. When G=0, the limit field must have a
value equal to or greater than 103 (0x67), that is, the minimum length of the TSS segment must not be less than
104 bytes. If the TSS segment also contains an 1/O permission bitmap, the TSS segment length needs to be larger.
In addition, if the operating system still wants to store some other information in the TSS segment, the TSS
segment needs to be larger.

With a call or jump instruction, any program that can access the TSS descriptor can cause a task switch.
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Programs that can access the TSS descriptor must have a CPL that is numerically less than or equal to the DPL of
the TSS Descriptor. In most systems, the DPL field of the TSS descriptor should be set to less than 3. In this way,
only privileged software can perform task switching operations. However, in a multitasking application, the DPL
for some TSSs can be set to 3 so that task switching operations can also be performed at the user privilege level.

The ability to access a TSS segment descriptor does not give the program the ability to read and write the
descriptor. If you want to read or modify a TSS segment descriptor, you can use a data segment descriptor (ie, an
alias descriptor) that maps to the same location in memory. Loading the TSS descriptor into any segment register
will result in an exception. Attempting to access the TSS segment using the selector set by the TI flag (ie, the
selector in the current LDT) will also cause an exception.
4.7.3.3 Task Register

The task register TR (Task Register) stores a 16-bit segment selector and the entire descriptor (invisible
portion) of the current task TSS segment. This information is copied from the TSS descriptor of the current task in
the GDT. The processor uses the invisible portion of the task register TR to buffer the contents of the TSS segment
descriptor.

The instructions LTR and STR are used to load and save the visible portion of the task register, ie the selector
of the TSS segment, respectively. The LTR instruction can only be executed by a privileged level 0 program. The
LTR instruction is typically used to load the initial value of the TR register during system initialization (eg, the
TSS segment selector for task 0), and then during system operation, the contents of the TR are automatically
changed upon task switching.
4.7.3.4 Task-Gate Descriptor

The task gate descriptor provides an indirect, protected reference to a task, as shown in Figure 4-27. The task
gate descriptor can be stored in a GDT, LDT, or IDT table.

The TSS Segment Selector field in the Task Gate Descriptor points to a TSS Segment Descriptor in the GDT.
The RPL field in this TSS segment selector is not used. The DPL in the task gate descriptor is used to control
access to the TSS segment at the time of task switching. When a program makes a call or jump to a task through a
task gate, the CPL and the RPL field of the gate selector pointing to the task gate must be less than or equal to the
DPL of the task-gate descriptor. Note that when using the task gate, the DPL of the target TSS segment descriptor
is ignored.

The program can access a task through a task gate descriptor or a TSS segment descriptor. Figure 4-36 shows
how the task gates in the LDT, GDT, and IDT tables all point to the same task.
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Figure 4-36 Task gates that reference the same task

4.7.4 Task Switching

The processor transfers execution to another task in any of four cases:

1. The current program or task executes a JMP or CALL instruction to a TSS descriptor in the GDT.

2. The current program or task executes a JMP or CALL instruction to a task gate descriptor in the GDT or

the current LDT;

3. The interrupt or exception vector points to a task gate descriptor in the IDT table;

4. The current task executes an IRET instruction when the NT flag in the EFLAGS register is set.

The JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all generalized mechanisms
for redirecting a program. The referencing of a TSS descriptor or a task gate (when calling or jumping to a task) or
the state of the NT flag (when executing an IRET instruction) determines whether a task switch occurs.

For task switching, JMP or CALL instructions can transfer control to the TSS descriptor or task gate. Using
the same two methods will cause the processor to transfer control to the specified task, as shown in Figure 4-37.

When an interrupt or an exception vector index is a task gate in the IDT, an interrupt or exception will cause
a task switch. But if the vector index is an interrupt or trap gate in the IDT, it will not cause a task switch.

The interrupt service handler procedure always returns execution rights to the interrupted program or
procedure, and the interrupted program may be in another task. If the NT flag is in the reset state, a general return
operation is performed. If the NT flag is set, the return operation will result in a task switch. The new task to
switch to is specified by the TSS selector (previous task link field) in the interrupt service procedure TSS.
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Figure 4-37 Task switching operation diagram

When switching to a new task, the processor does the following:

1.

10.

11.

Obtain a TSS segment selector for a new task as the operand of the JMP or CALL instruction, or from
the task gate, or from the previous task link field of the current TSS (for task switching caused by IRET).
Check if the current task is allowed to switch to the new task. Apply data access privilege rules to JMP
and CALL instructions. The CPL of the current task, and the RPL of the new task segment selector must
be less than or equal to the DPL of the TSS descriptor or task gate being referenced. Regardless of the
DPL of the target task gate or TSS descriptor, exceptions, interrupts (except for interrupts generated
using the INT n instruction), and IRET instructions allow task switching. The interrupt generated by the
INT n instruction will check the DPL.

Check that the TSS descriptor for the new task is marked as present (P=1) and that the limit is valid
(greater than 0x67). Any changes to the state of the processor are resumed when attempting to execute an
instruction that will generate an error. This causes the return address of the exception handler to point to
the error instruction instead of the next instruction of the error instruction. Therefore the exception
handler procedure can handle the error condition and re-execute the task. The intervention of the
exception handler procedure is completely transparent to the application.

If the task switch is generated from a JMP or IRET instruction, the processor will reset the busy flag B in
the current task (old task) TSS descriptor; if the task switch is generated by a CALL instruction,
exception or interrupt, the busy flag B Will not be changed.

5. If the task switch is initiated with an IRET instruction, the processor resets the NT flag in a
temporarily saved EFLAGS image; if the task switch is initiated with a CALL, JMP instruction, or an
exception or interrupt, the NT flag is left unchanged in the saved EFLAGS image.

Save the state of the current (old) task to the TSS of the current task. The processor retrieves the base
address of the current task TSS from the task register and copies the states of the following registers into
the current TSS: all general purpose registers, the segment selector in the segment register, the flag
register EFLAGS, and the instruction pointer EIP.

If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the processor sets
the NT flag in the EFLAGS image stored in the new task’s TSS; if initiated with an IRET instruction, the
processor restores the NT flag from the EFLAGS image stored on the stack. If initiated with a JMP
instruction, the NT flag is left unchanged.

If the task switch was initiated by a CALL, JMP instruction, or exception or interrupt, the processor sets
the busy flag B in the new task TSS descriptor. If the task switch is generated by the IRET, the B flag is
not changed.

Load the task register TR (including the hidden portion) using the segment selector and descriptor of the
new task TSS. Set the TS flag in the control register CRO image stored in the new task's TSS.

10. Load the TSS status of the new task into the processor. This includes the LDTR register, the PDBR
(CR3) register, the EFLAGS register, the EIP register, and general purpose registers and segment
selectors. Any errors detected during this time will appear in the context of the new task.

Begins executing the new task. (To an exception handler, the first instruction of the new task appears not
to have been executed.)

When the task switching operation is successfully performed, the state of the currently executing task is
always saved. When the task resumes execution, the task will execute from the instruction pointed to by the saved
EIP, and all registers will be restored to the value when the task was suspended.
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When performing a task switch, the privilege level of the new task has nothing to do with the privilege level
of the original task. The new task starts running at the privilege level specified by the CPL field of the CS register,
which is loaded from the TSS. Because each task is isolated from each other by their independent address space
and TSS segments, and the privilege level rules already control access to the TSS, the software does not need to
perform privilege level checks at the time of task switching.

The task switching flag TS in the control register CRO is set each time the task is switched. This flag is very
useful for system software. The system software can use the TS flag to coordinate operations between the
processor and the floating point coprocessor. The TS flag indicates that the context in the coprocessor may be
different from that of the current task.

4.7.5 Task Linking

The TSS's previous task link field (Backlink) and the NT flag in EFLAGS are used to return execution to the
previous task. The NT flag indicates whether the currently executing task is nested within the execution of another
task, and the previous task link field of the current task holds the TSS selector for the higher level task in the
nesting hierarchy, if there is one (see figure 4-38).

S

Top Level Nested '," More Deeply  Current Executing\\
Task Task : Nested Task Task i

1

1SS 1SS | 1SS EFLAGS !
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Figure 4-38 Nested Tasks

When a CALL instruction, interrupt, or exception causes a task switch, the processor copies the selector of
the current TSS segment to the previous task link field of the new task TSS segment, and then sets the NT flag in
EFLAGS. The NT flag indicates that the saved TSS segment selector is stored in the previous task link field of the
TSS. If the software suspends a new task using the IRET instruction, the processor will return to the previous task
using the value in the previous task link field and the NT flag. That is, if the NT flag is set, the processor will
switch to the task specified in the previous task link field to execute.

Note that when the task switch is caused by a JMP instruction, the new task will not be nested. That is, the
NT flag will be set to 0 and the previous task link field will not be used. JMP instructions are used in task
switching where nesting is not desired.

Table 4-10 summarizes the usage of busy flag B (in the TSS segment descriptor), the NT flag, the previous
task link field, and the TS flag (in CRO) during task switching. Note that programs running at any privilege level
can modify the NT flag, so any program can set the NT flag and execute the IRET instruction. This approach will
cause the processor to perform the tasks specified in the previous task link field of the current task TSS. In order
to avoid successful execution of such forged task switching, the operating system should initialize this field of
each TSS to zero.
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Table 4-10 Effects of a task switch on Busy flag, NT flag, previous task link field, and TS flag

Flag or Field

Effect of IMP

Effect of CALL or Interrupt

Effect of IRET

Busy (B) flag of new
task.

Flag is set. Must have

been clear before.

Flag is set. Must have been
clear before.

No change. Must have been
set.

Busy flag of old task.

Flag is cleared.

No change. Flag is currently set.

Flag is cleared.

Restored to value from TSS of

NT flag of new task. No change. Flag is set.
new task.

NT flag of old task. No change. No change. Flag is cleared.
Previous task link Loaded with selector for old

) No change. No change.
field of new task. task’s TSS
Previous task link

) No change. No change. No change.
filed of old task.
TS flag in CRO Flag is set. Flag is set. Flag is set.

4.7.6 Task Address Space

The address space of a task consists of the segments that the task can access. These segments include the
code referenced in the TSS, the data, the stack and system segments, and any other segments accessed by the task
code. These segments are mapped to the processor's linear address space and then mapped to the processor's
physical address space (either directly or through paging).

The LDT field in the TSS can be used to give each task its own LDT. For a given task, by putting all the
segment descriptors associated with the task into the LDT, the task’s address space can be isolated from other
tasks. Of course, several tasks can also use the same LDT. This is a simple and effective way to allow certain tasks
to communicate or control each other without having to discard the entire system's protective barrier. Because all
tasks have access to the GDT, it is also possible to create shared segments that are accessed through this table.

If the paging mechanism is enabled, the CR3 register (PDBR) field in the TSS allows each task can also have
its own set of page table for mapping linear addresses to physical addresses. Or, several tasks can share the same
set of page tables.
4.7.6.1 Mapping Tasks to the Linear and Physical Address Spaces

There are two ways to map tasks to linear address spaces and physical address spaces:

B All tasks share a linear to physical address space mapping. This method can only be used when the
paging mechanism is not enabled. When paging is not turned on, all linear addresses are mapped to the
same physical address. When the paging mechanism is turned on, we can use this mapping from linear
to physical address space by having all pages use a single page directory. If the demand page virtual
storage technology is supported, the linear address space can exceed the size of the existing physical
address space.

B Each task has its own linear address space and is mapped to the physical address space. We can use this
mapping form by having each task use a different page directory. Because PDBR (Control Register CR3)
is loaded every time a task is switched, each task can have a different page directory.

Linear address spaces for different tasks can be mapped to completely different physical addresses. If the
entries (table entries) of different page directories point to different page tables, and the page tables also point to
different pages in the physical address, then each task will not share any physical address.

For both methods of mapping task linear address space, the TSSs for all tasks must be stored in the shared
physical address space area, and all tasks can access this area. In order for the processor to perform task switching

156



4.8 The Initialization of Protected Mode

and the TSS address mapping does not change when reading or updating the TSS, this mapping method is
required. The linear address space mapped by the GDT should also be mapped to the shared physical address
space. Otherwise, the role of the GDT is lost.

4.7.6.2 Task Logical Address Space

To share data between tasks, use one of the following methods to establish a shared logical-to-physical

address space mapping for the data segment:

B By using the segment descriptor in the GDT. All tasks must be able to access the segment descriptors in
the GDT. If some segment descriptors in the GDT point to segments in the linear address space and
these segments are mapped into the physical address space shared by all tasks, then all tasks can share
the code and data in those segments.

B Through a shared LDT. Two or more tasks can use the same LDT if their LDT fields in their TSSs point
to the same LDT. If some segment descriptors in a shared LDT point to segments mapped to a common
area of the physical address space, then all tasks sharing the LDT can share all of the code and data in
those segments. This kind of sharing is better than sharing through GDT, because doing so can limit
sharing to certain tasks. There are other tasks in the system that do not have access to these shared
segments.

B Segment descriptors in different LDTs mapped to the common address area in the linear address space.
If this common area in the linear address space maps each task to the same area of the physical address
space, then these segment descriptors allow tasks to share the segments. Such segment descriptors are
often referred to as alias segments. This sharing method is better than the one given above, because
other segment descriptors in the LDT can point to separate unshared linear address regions.

4.8 The Initialization of Protected Mode

When the machine is powered on or hardware reset, the processor operates in the 8086-compatible
real-address mode and executes the software initialization code starting at physical address OXFFFFFFFO (usually
in EPROM) . The software initialization code must first set the necessary data structure information for basic
system function operations, such as real-mode IDT tables (ie, interrupt vector tables) that handle interrupts and
exceptions. If the processor will still work in real mode, the software must load the operating system modules and
corresponding data to allow the application to run reliably in real mode. If the processor is going to work in
protected mode, then the operating system software must load the data structure information necessary to protect
the mode and then switch to protected mode.

4.8.1 First Instruction Executed

As described above, the first instruction acquired and executed after the hardware reset is located at the
physical address OxFFFFFFFO. This address is at the 16 bytes of the processor's highest physical address. This is
usually the address range in which the EPROM firmware containing the software initialization code is located.

In real address mode, the address OXFFFFFFFO is outside the processor's 1 MB addressable range. The
processor initializes to the starting address in the following manner. The CS register has two parts: the visible
segment selector portion and the hidden base portion. In real address mode, the base address is typically formed
by shifting the 16-bit segment selector value to the left by 4 bits to produce a 20-bit base address. However, during
hardware reset, the segment selector in the CS register is loaded as 0xF000 and the base address is loaded as
OxFFFF0000. Therefore, the start address is formed by adding the base address to the EIP register (ie,
OxFFFF0000 + OxFFFO = OXFFFFFFFO).

When the CS register first loads a new value after a hardware reset, the processor will follow the normal
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rules for address translation in real-address mode (ie, [CS base address = CS segment selector * 16]). To ensure
that the base address in the CS register remains unchanged until the EPROM-based software initialization code is
completed, the code must not contain a far-hop or remote call or allow an interrupt to occur (this will cause the CS
selector value to change).

4.8.2 Initialization operation when entering protection mode

The processor is in real address mode after a hardware reset. Some basic data structures and code modules
must be loaded into physical memory during initialization to support further initialization of the processor. Some
of the data structures required for protected mode are determined by the processor memory management function.
The processor supports a segmentation model that can be used from a single, unified address space flat model to a
highly structured multi-segment model with several protected address spaces per task. The paging mechanism can
be used to process large pieces of data structure information that is partially in memory and partially on disk. Both
forms of address translation require the operating system to set the required data structure for the memory
management hardware in memory. Therefore, before the processor can be switched to protected mode, the
operating system's loading and initialization software (bootsect.s, setup.s, and head.s) must first set the basics of
the data structure used in protected mode in memory. These data structures include the following:

B A protected-mode interrupt descriptor table IDT;

A global descriptor table GDT;

A task status segment TSS;

A local descriptor table LDT;

If paging is enabled, at least one page directory and one page table need to be set;

A code segment containing execution code for the processor to switch to protected mode;
Code modules that contain interrupts and exception handlers.

The software initialization code must also set the following system registers before being able to switch to
protected mode:

B Global descriptor table base address register GDTR;

B Interrupt descriptor table base address register IDTR;

B Control register CR1--CR3;

After initializing these data structures, code modules, and system registers, the processor can be switched to
protected mode by setting the protection mode flag PE (bit 0) of the CRO register.
4.8.2.1 Protection Mode System Structure Table

The protected mode system table set in memory during software initialization relies primarily on the type of
memory management that the operating system will support: flat, flat with paging, segmentation, or segmentation
with paging.

In order to implement a flat memory model without paging, the software initialization code must at least set
up a GDT table with one code segment and one data segment. Of course, the first item of the GDT table also
needs to place a null descriptor. The stack can be placed in normal readable and writable data segments, so no
special stack descriptors are needed. A flat memory model that supports the paging mechanism also requires a
page directory and at least one page table. Before the GDT table can be used, the base address and limit for the
GDT must be loaded into the GDTR register using the LGDT instruction.

Multi-segment models also require additional segments for the operating system, as well as segments and
LDT table segments for each application. The segment descriptors of the LDT table are required to be stored in
the GDT table. Some operating systems will allocate new segments and new LDT segments for the application.
This approach provides maximum flexibility for dynamic programming environments, such as the Linux
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operating system. An embedded system like a process controller can pre-allocate a fixed number of segments and
LDTs for a fixed number of applications, which is a simple and efficient way to implement the real-time system
software environment structure.

4.8.2.2 Exceptions and Interrupt Initialization in Protected Mode

The software initialization code must set a protection mode IDT, which at least needs to contain the gate
descriptor corresponding to each exception vector that the processor may generate. If an interrupt or trap gate is
used, the gate descriptor can all point to the same code segment containing the interrupt and exception handling. If
a task gate is used, each exception handling process that uses the task gate requires a TSS and associated code,
data, and stack segments. If the hardware is allowed to generate an interrupt, then the gate descriptor must be set
in the IDT for one or more interrupt handlers.

The IDT table base address and limit length must be loaded into the IDTR register using the LIDT instruction
before the IDT can be used.
4.8.2.3 Paging initialization

The paging mechanism is set by the PG flag in the control register CR0. When this flag is cleared to 0 (ie, the
state at the time of hardware reset), the paging mechanism is turned off; when the PG flag is set, the paging
mechanism is turned on. The following data structures and registers must be initialized before setting the PG flag:

B Software must create at least one page directory and one page table in physical memory. If the page
directory table contains a entry that points to itself, then you can eliminated the use of page table. At this
point, the page directory table and the page table are stored on the same page.

B Load the physical base address of the page directory table into the CR3 register (also known as the
PDBR register).

B The processor is in protected mode. If all other restrictions are met, the PG and PE flags can be set at the
same time.

To maintain compatibility, the following rules must be observed when setting the PG flag (and PE flag):

B [nstructions that set the PG flag should follow a JMP instruction immediately. The JMP instruction
following the MOV CRO instruction changes the execution stream, so it clears the instructions that
80X86 processor has taken or decoded. However, the Pentium and above processors use the Branch
Target Buffer (BTB) for branch code orientation, thus eliminating the need to refresh the queue for
branch instructions.

B The code that sets the PG flag to the jump instruction JMP must come from a page on the peer mapping
(that is, the linear address before the jump is the same as the physical address after the paging is turned
on).

4.8.2.4 Multitasking Initialization

If the multitasking mechanism is to be used and/or the privilege level is allowed to change, then the software
initialization code must have at least one TSS and the corresponding TSS segment descriptor (because the stack
segment pointers for privilege levels 0, 1, and 2 need to be taken from the TSS). Do not mark the TSS descriptor
as busy (do not set the busy flag), which is only set by the processor when performing task switching. Like the
LDT segment descriptor, the TSS descriptor is also stored in the GDT.

After the processor switches to protected mode, the selector of the TSS segment descriptor can be loaded into
the task register TR using the LTR instruction. This command marks the TSS as busy (B = 1), but does not
perform a task switch operation. The processor can then use this TSS to locate the stack of privilege levels 0, 1,
and 2. In protected mode, the selector of the TSS segment must be loaded first before the software performs the
first task switch, because the task switch will copy the current task state into the TSS.

Subsequent to the LTR instruction execution, subsequent operations on the task register are performed by
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task switching. Similar to other segments and LDTs, TSSs and TSS descriptors can be pre-allocated or allocated
when needed.

4.8.3 Mode Switching

In order for the processor to operate in protected mode, mode switching must be performed from real address
mode. Once in protected mode, the software usually no longer needs to go back to real address mode. In order to
be able to run programs programmed for real-address mode, it is usually more convenient to run in virtual-8086
mode than to switch back to real mode.
4.8.3.1 Switching to Protected Mode

Before switching to protected mode, you must first load some minimum system data structures and code
modules. Once these system tables are created, the software initialization code can be switched to protected mode.
By executing the MOV CRO instruction that sets the PE flag in the CRO register, we can enter the protection mode.
(In the same instruction, the PG flag of CRO can be used to enable the paging mechanism.) When running in
protected mode, the privilege level CPL is 0. In order to ensure the compatibility of the program, the switching
operation should be carried out as follows:

1. Disable interrupts. Maskable hardware interrupts can be disabled using the CLI instruction. The NMI is
disabled by hardware circuitry. At the same time, the software should ensure that no exceptions or
interruptions occur during mode switching operations.

2. Execute the LGDT instruction to load the base address of the GDT table into the GDTR register.

3. Execute the MOV CRO instruction that sets the PE flag (optional setting of the PG flag) in the control
register CRO.

4. Execute a far jump JMP or a far call CALL instruction immediately after the MOV CRO instruction. This
operation is usually a far jump to or far from the next instruction in the instruction stream.

5. If a local descriptor table is to be used, execute the LLDT instruction to load the LDT segment selector
into the LDTR register.

6. Execute the LTR instruction to load the task register TR with the segment selector of the initial protected
mode task or the segment descriptor of the writable memory area. This writable memory area is used to
store the TSS information of the task when the task is switched.

7. After entering protected mode, the segment register still contains the contents in real address mode. The
JMP or CALL instruction in step 4 resets the CS register. Do one of the following to update the contents
of the remaining segment registers: (1) Reload registers DS, SS, ES, FS, and GS. If the ES, FS, and/or
GS registers are not used, load them with a null selector. (2) Execute a JMP or CALL instruction on a
new task that automatically resets the value of the segment register and branches to the new code
segment.

8. Execute the LIDT instruction to load the base address and limit of the protected mode IDT table into the
IDTR register.

9. Execute the STI instruction to turn on the maskable hardware interrupt and perform the necessary
hardware operations to turn on the NMI interrupt.

In addition, the JMP or CALL instruction immediately following the MOV CRO instruction changes the
execution flow. If the paging mechanism is enabled, the code between the MOV CRO instruction and the JMP or
CALL instruction must come from a page on the peer mapping (ie, the linear address before the jump is the same
as the physical address after paging). The target instruction to which the JMP or CALL instruction jumps does not
need to be on the peer mapping page.
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4.8.3.2 Switch back to real address mode

If you want to switch back to real address mode, you can use the MOV CRO instruction to clear the PE flag

in control register CRO. The process of re-entering the real address mode should follow these steps:

1. Disable interrupts. Maskable hardware interrupts can be disabled using the CLI instruction. The NMI is
disabled by hardware circuitry. At the same time, the software should ensure that no exceptions or
interruptions occur during mode switching operations.

2. 2. Ifthe paging mechanism is enabled, you need to execute:

B Transfer the program control to linear address of the peer map (ie the linear address is equal to the
physical address).

B Make sure the GDT and IDT are on the peer mapped page.

B Clear the PG flag in CRO.

B Set to 0x00 in the CR3 register to refresh the TLB buffer.

3. Transfer the control of the program to a readable segment of length 64KB (OXFFFF). This step loads the
CS register using the segment limit required by the real mode.

4. Load the SS, DS, ES, FS, and GS segment registers with a selector that points to a descriptor with the
following set values.

B Limit = 64KBytes (OXFFFF).
B Byte granularity (G = 0).

B Expand up (E=0).

B Writable (W=1).

B Present (P=1).

5. Execute the LIDT instruction to point to the real address mode interrupt table in the 1MB real mode

address range.

Clear the PE flag in CRO to switch to real address mode.

Execute a far jump instruction to jump to a real mode program. This step refreshes the instruction queue
and loads the appropriate base address and access value for the CS register.

8. The SS, DS, ES, FS, and GS registers are loaded as needed for the real address mode code. If any of the
registers are not used in real address mode, write O to them.

9. Execute the STI instruction to turn on the maskable hardware interrupt and perform the necessary
hardware operations to turn on the NMI interrupt.

4.9 A Simple Multitask Kernel Example

As a summary of this chapter and the previous chapters, this section provides a complete description of the
design and implementation of a simple multitasking kernel. This kernel example contains two privilege level 3
user tasks and a privilege level 0 system call interrupt procedure. We first explain the basic structure of this simple
kernel and the basic principles of load operation, then we describe how it is loaded into the machine's RAM
memory and how the two tasks are switched. Finally, we give the source code to implement this simple kernel:
boot boot.s and protected mode multitasking kernel program head.s.

4.9.1 Multitasking program structure and working principle

The kernel example given in this section consists of two source files. One is the bootloader boot.s compiled
with the as86 language, which is used to load kernel code into the memory from the boot disk when the computer
system is powered up; the other is the kernel program head.s compiled with GNU as assembly language. It
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implements two tasks running on the privilege level 3 to switch between each other under the control of the clock
interrupt, and also implements a system call for displaying characters on the screen.

We refer to these two tasks as task A and task B (or task 0 and task 1). They call the system call to display the
characters 'A' and '‘B' on the screen, respectively, and switch to another task every 10 milliseconds. Task A
continuously calls the system call to display the character ‘A’ on the screen; task B always displays the character
'B'. To terminate this kernel instance program, you will need to restart the machine or shut down the running
simulated PC runtime environment software.

The boot. s program generates a total of 512 bytes of code that will be stored in the first
sector of the floppy image file, as shown in Figure 4-39. When the PC is powered on, the program
in the ROM BIOS will load the first sector on the boot disk to the beginning of the physical
memory 0x7c00 (31KB) position, and transfer the execution control to 0x7c00 to start running
the boot code

Boot Sector

e
L | (
1
boot code head code

Figure 4-39 Floppy disk image file

The main function of the boot program is to load the head kernel code in the floppy disk
or image file to a specified location in the memory. After setting the temporary GDT table and
other information, set the processor to run in protected mode. Then jump to the head code to
run the kernel code. In fact, the boot.s program will first use the ROM BIOS interrupt int 0x13
to read the head code in the floppy disk to the beginning of the memory location 0x10000 (64KB),
and then move the head code to the beginning of the memory location 0. Finally, the enable
protection operation mode flag in the control register CRO is set, and jumps to the memory location
0 to start executing the head code. A schematic diagram of the boot code moving the head code

in memory is shown in Figure 4-40
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Figure 4-40 The movement and distribution of kernel code in physical memory

The main reason for moving the head kernel code to the beginning of physical memory 0 is
that it is simpler to set up the GDT table, so it can also make the head.s program as short as
possible. But we can’ t let the boot program load the head code directly from the floppy or image
file into memory location 0. Because the interrupt vector table used by the BIOS is at the beginning
of memory 0, and the load operation requires the use of the interrupt process provided by the
ROM BIOS. So if you load the head code directly into memory 0, the BIOS interrupt vector table
will be destroyed.

Of course, we can also load the head code into the memory 0x10000 and then jump directly
to the location to run the head code. The source program using this method can be downloaded
from the oldlinux. org website, as explained below.

The head program runs in 32-bit protected mode, which mainly includes the code of the initial
setting, the process code of the clock interrupt int 0x08, the process code of the system call
interrupt int 0x80, and the code and data of task A and task B. The initial setting work mainly
includes: (1) resetting the GDT table; (2) setting the system timer chip; (3) resetting the IDT
table and setting the clock and system call interrupt gate; (4) moving to the task A for execution.

In the virtual address space, the kernel and task code allocation diagram for the head. s
program is shown in Figure 4-41. In fact, all the code and data segments in this kernel example
correspond to the same area of physical memory, that is, the area starting from physical memory
location 0.

The contents of the global code segment and the data segment descriptor in the GDT are set
to as following:

B The base address is 0x0000;

B The segment limit value is 0x07ff. Since the granularity is 1, the actual segment length

is 8MB.

The global display data segment is set as following:

B The base address is 0xb8000;

B The segment limit length is 0x0002, so the actual segment length is 8KB, corresponding

to the display memory area.
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Figure 4-41 Diagram of the allocation of kernel and tasks in the virtual address space

The contents of the code segment and data segment descriptors in the LDT for both tasks are
also set as follows:

B The base address is 0x0000;

B The segment length is 0x03ff and the actual segment length is 4MB.

Therefore, in the linear address space, the code and data segments of this “core” and the
code and data segments of the task start from linear address 0 and since they do not use the
paging mechanism, they all directly correspond to the beginning of physical address 0. In the
object file compiled by the head program and the resulting floppy image file, the organization
of the code and data is shown in Figure 4-42.

User_stkl <— Taskl’s User Stack
Taskl Code
Code of Task 0 & 1
Task0 Code
krn stkl <«— Taskl’s Kernel Stack
TSS1 Bt
LDT1 Bk
Similar to the task krn_stk0 <4— Task0 s Kernel Stack
structure data portion TSSO B
of the Linux kernel LDTO B
init stack <4— [nitial Stack,
Global and Interrupt GDT Also the User Stack of TaskO
Descriptor Table IDT
Initial
Setting Code
0x0000

Figure 4-42 Kernel image file and in-memory head code and data diagram

Code at privilege level 0 cannot be directly transferred to the code of privilege level 3,
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but control transfer can be achieved by using the interrupt return operation. So when the GDT,
IDT, and timing chips are initialized, we use the interrupt return instruction IRET to start
the first task.

The specific implementation method is to manually set a return environment in the initial
stack init_stack. That is, after loading the TSS segment selector of task 0 into the task register
LTR and loading the LDT segment selector into the LDTR, the user stack pointer of task 0 (0x17:
init stack), code pointer (0xOf: task0) ), and the flag register value is pushed onto the stack,
and then the interrupt return instruction IRET is executed

The IRET instruction pops the stack pointer on the stack as the task 0 user stack pointer,
restores the contents of the hypothetical task 0 flag register, and pops the code pointer in
the stack into the CS:EIP register, thus starting the execution of the task 0 code. This complete
the control transfer from privilege level 0 to privilege level 3 code

In order to switch the running task every 10 milliseconds, the channel 0 of the timer chip
8253 is set in the head. s program to send a clock interrupt request signal to the interrupt control
chip 8259A every 10 milliseconds. When PC is powered on, the ROM BIOS program has set the clock
interrupt request signal is set to the interrupt vector 8 in the 8259A, so we need to perform
the task switching operation in the interrupt 8 handler procedure. The task switching method
is implemented by looking at the current running task number in the current variable. If current
is currently 0, the TSS selector of task 1 is used as the operand to execute the far jump instruction,
thereby switching to task 1 for execution, otherwise vice versa.

Each task will first put the ASCII code of a character into the register AL, and then call
the system interrupt to call int 0x80. The system call processing process will call a simple
character write screen subroutine, display the characters in the register AL on the screen, and
record the next position of the screen displaying the characters as the screen position for
displaying the characters next time. After a character has been displayed, the task code is delayed
for a period of time using the loop statement, and then jumps to the beginning of the task code
to continue the loop until a timed interrupt occurs for 10 milliseconds. At this point the code
will switch to another task to run. For task A, the character A’ will always be stored in the
register AL, and the character 'B’ will always be stored in the AL during the task B runtime.
Therefore, when the program is running, we will see a series of characters A’ and a series of

characters B’ displayed continuously on the screen at intervals, as shown in Figure 4-43.
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] |

Figure 4-43 Simple kernel running screen display

| CTRL + Lbutton + Rbutton enables mouse [ Bl [nom [Cars [scrL

Figure 4-43 shows the screen display of this running kernel in Bochs. Careful readers will
find that a character 'C’ is displayed on the bottom line of the figure. This is because the
PC accidentally generates another interrupt that is not a clock interrupt or a system call
interrupt. Because we have installed a default interrupt handler for all other interrupts in
the program. When a different interrupt occurs, the system will run the default interrupt handler
with code to display character 'C’, so a character 'C will be displayed on the screen and the
interrupt will be exited

Detailed comments on the boot.s and head. s programs are given below. For the compilation
and operation of this simple kernel example, please refer to the section “Compiling and Running

a Simple Kernel Sample Program” in the last chapter of this book.

4.9.2 Boot Startup Program boot.s

In order to make the program as simple as possible, this bootloader can only load the head
code of no more than 16 sectors, and directly use the interrupt vector number set by the ROM
BIOS, that is, the interrupt number of the timer interrupt request number is still 8. This is
different from what is used in Linux systems. The Linux system resets the 8259A interrupt control
chip during kernel initialization and maps the clock interrupt request signhal to interrupt 0x20.

See the chapter “Kernel Boot Boot Program” for details

01 ! boot.s program
02 ! First use BIOS interrupt to load head code into memory 0x10000, and then move it to memory O.
03 ! Finally enter protected mode, jump to the beginning of head code at 0 to continue running
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04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55

BOOTSEG = 0x07c0 ! This program is loaded into memory at 0x7c00 by BIOS
SYSSEG = 0x1000 ! The head is first loaded to 0x10000 and moved to 0x0
SYSLEN = 17 ! Max num of disk sectors occupied by the kernel.
entry start
start:
Jjmpi go, #BOOTSEG ! Jump between segments to 0x7cO:go. All segment reg
go: mov ax, cs ! are 0 when runs. This jump ins load CS with 0x7c0
mov ds, ax ! Both DS and SS point to the 0x7c¢0 segment
mov Ss, ax
mov sp, #0x400 ! Set temp stack pointer. Its value needs to be larger
! than this program and has a certain space.
! Load the kernel code to the beginning of memory at address 0x10000.
load system:

mov dx, #0x0000 ! Use BIOS int 0x13 func2 to load head code from bootdisk
mov cx, #0x0002 ! DH-head no; DL-drive no; CH-10 bit track no low 8 bits
mov ax, #SYSSEG ! CL-Bits7,6 track num high 2 bits ,bit 5-0 start secter
!
I

mov es, ax ! ES:BX — Read in buffer location (0x1000:0x0000)

xor bx, bx ! AH-read sector func num; AL- num of sectors read (17)

mov ax, #0x200+SYSLEN

int 0x13

jnc ok load ! If no error occurs, then continues, otherwise dead.
die: Jjmp die

! Move kernel code to memory location 0. Total of 8KB bytes are moved (kernel code <8kb).
ok load:

cli ! Disable interrupts

mov ax, HSYSSEG ! Move from DS:ST(0x1000:0) to ES:DI(0:0).
mov ds, ax

xor ax, ax

mov es, ax

mov cx, #0x1000 ! Set the move 4K times, one word at a time
sub si, si

sub di, di

rep movw ! Execute the repeat move instruction.

! Load IDT and GDT base address registers IDTR and GDTR.
mov ax, #BOOTSEG

mov ds, ax ! Let DS point to 0x7c0O segment again.
lidt idt 48 ! Load IDTR. 2 byte table limit, 4 byte linear base addr.
lgdt gdt 48 ! Load GDTR. 2 byte table limit, 4 byte linear base addr.

I Set CRO to enter protection mode. The seg selector value 8 refers to 2nd descriptor in GDT.

mov ax, #0x0001 ! Set the protection mode flag PE (bit 0) in CRO
lmsw ax ! Jump to segment specified by the selector, offset 0
Jjmpi 0,8 ! Seg value is now a selector. The linear base addr is 0.

! The following is the content of GDT. It has 3 seg descriptors. The first one is not used,
! the other two are code and data segment descriptors
gdt: .word 0,0,0,0 ! First descriptor not used. Occupies 8 bytes

.word  OxO7FF
.word  0x0000
.word  0x9A00
.word  0x00CO

Descriptor 1. 8Mb — 1imit=2047 (2048%4096=8MB).
Segment base address = 0x00000

Code segment, readable/executable

Segment attribute granularity = 4KB, 80386.
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56

57 .word  0xO7FF ! Descriptor 1. 8Mb - 1imit=2047 (2048+4096=8MB)

58 .word  0x0000 ! Segment base address = 0x00000

59 .word  0x9200 ! Data segment, readable and writable

60 .word  0x00CO ! Segment attribute granularity = 4KB, 80386.

61 ! The following are the 6-byte operands of the LIDT and LGDT instructions, respectively.
62 idt 48: .word 0 ! The IDT table length is O.

63 .word 0,0 ! The linear base address of IDT table is also zero
64 gdt 48: .word Ox7ff ! GDT limit is 2048 bytes, can hold 256 descriptors
65 .word  0x7c00+gdt, 0 ! Linear base of GDT is at offset gdt of seg 0x7c0
66 .org 510

67 .word  OxAA55 ! Boot sector flag. Must be at last 2 bytes of boot sector.

4.9.3 Multitasking Kernel program head.s

After entering the protection mode, the main reason for the head. s program to re—establish
and set the IDT and GDT tables is to make the program clearer in structure, and to be consistent
with the setting of the two tables in the Linux 0. 12 kernel source code. . Of course, for this
program, we can directly use the IDT and GDT table locations set in boot.s, and fill in the

appropriate descriptor items.

01 # Head. s contains code for 32-bit protected mode init, clock & system call interrupts, and two
02 # tasks code. After initialization, the program moves to task 0 to start execution, and the
# switching operation between tasks 0 and 1 is performed under the clock interrupt.

03 LATCH = 11930 # Timer count, interrupt is sent every 10 ms.

04 SCRN_SEL = 0x18 # The segment selector for the screen display memory.
05 TSSO SEL = 0x20 # TSS segment selector for task 0.

06 LDTO SEL = 0x28 # LDT segment selector for task 0.

07 TSS1_SEL = 0X30 # TSS segment selector for task 1.

08 LDT1_SEL = 0x38 # LDT segment selector for task 1.

09 . text

10 startup 32:
11 # First load DS, SS, and ESP. The linear base address of all segments is O.

12 mov]l $0x10, %eax # 0x10 is the data segment selector in the GDT

13 mov %ax, %ds

14 Iss init_stack, %esp

15 # Re-set the IDT and GDT tables at new location.

16 call setup idt # Setup IDT.

17 call setup gdt # Setup GDT.

18 movl $0x10, %eax # Reload all segment registers after changing GDT

19 mov %ax, %ds

20 mov %ax, %es

21 mov %ax, %fs

22 mov %ax, %gs

23 Iss init_stack, %esp

24 # Set 8253 timing chip. Channel 0 is set to generate an interrupt request every 10 ms.

25 movb $0x36, %al # Control word: Channel 0 in mode 3, Count in binary.
26 movl $0x43, %edx # 0x43 is write port of control word register

27 outb %al, %dx

28 mov]l $LATCH, %eax # Init count set to LATCH (1193180/100), freq. 100HZ
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29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

mov]l $0x40, %edx # The port of channel 0.

outb %al, %dx # Write initial count value to channel 0 in two steps
movb %ah, %al

outb %al, %dx

# Set the timer interrupt gate descriptor at item 8 of the IDT table

movl $0x00080000, %eax # EAX high word set to kernel code seg selector 0x0008.
movw $timer interrupt, %ax # Set timer int gate descriptor. Get handler address.
movw $0x8E00, %dx # Interrupt gate type is 14, plevel is 0 or hardware used
movl $0x08, %ecx # Clock interrupt vector no. set by BIOS is 8

lea idt (, %ecx, 8), %esi # Put IDT Descriptor 0x08 address into ESI and set it

movl %eax, (%esi)
movl %edx, 4 (%esi)

# Set the system call trap gate descriptor at item 128 (0x80) of the IDT table.

movw $system interrupt, %ax # Set system call gate descriptor. Get handler address.

movw $0xef00, %dx # Trap gate type is 15, code of plevel 3 is executable
mov]l $0x80, %ecx # System call vector no. is 0x80.
lea idt(, %ecx, 8), %esi # Put IDT Descriptor 0x80 address into ESI and set it

movl %eax, (%esi)
movl %edx, 4 (%esi)

# Now, to use IRET to move to task 0 (A), we manually prepare to setup the stack contents
# See Figure4-29 for the stack contents we need to setup. Refer to include/asm/system. h.

pushfl # Reset NT flag in EFLAGS to disable task switch when
andl $Oxffffbfff, (%esp) # execute IRET instruction

popfl

movl $TSSO SEL, %eax # Load task0’ s TSS seg selector into task register TR
1tr %ax

movl $LDTO SEL, %eax # Load task0’ s LDT seg selector into LDTR

11dt %ax # TR and LDTR need only be manually loaded once

mov]l $0, current # Save current task num O into current variable

sti # Enable int, build a scene on stack for int returns
pushl $0x17 # Push task 0 data (stack) seg selector onto stack.
pushl $init stack # Push the stack pointer (same as push ESP)

pushfl # Push the EFLAGS

pushl $0x0f # Push current local space code seg selector.

pushl $taskO # Push task 0 code pointer onto stack.

iret # This causes execution moves to taskO in plevel 3

# The following are the subroutines for setting descriptor items in GDT and IDT.

setup gdt: # GDT table position & limit are set using
lgdt 1lgdt opcode # 6-byte operand lgdt opcode
ret

# The following code is used to temporarily set all 256 interrupt gate descriptors in the
# IDT table to the same default value. All use the default interrupt handler ignore int
# The specific method of setting is: first set the contents of 0-3 bytes and 4-7 bytes of
# the default interrupt gate descriptor into the eax and edx register pairs. Then, using
# this register pair, the interrupt descriptor is cyclically filled into the IDT table

68
69
70
71
72
73
74

setup idt: # Set all 256 int gate descriptors to use default handler.
lea ignore int, %edx # The same way as setting timer int gate descriptor
mov]l $0x00080000, %eax # The selector is 0x0008.
movw %dx, %ax
movw $0x8E00, %dx # Interrupt gate type is 14, plevel is 0
lea idt, %edi
mov $256, %ecx # Loop through all 256 gate descriptor entries
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75 rp_idt: movl %eax, (%edi)

76 mov] %edx, 4 (%edi)
77 addl $8, %edi

78 dec %ecx

79 jne rp_idt

80 lidt 1idt_opcode
81 ret

82

83 # Display characters subroutine. Get
# The entire screen can display 80 X
84 write char:

85 push %gs

86 pushl %ebx

87 mov $SCRN SEL, %ebx
88 mov %bx, %gs

89 movl scr loc, %bx
90 shl $1, %ebx

91 movb %al, %gs: (%ebx)
92 shr $1, %ebx

93 incl %ebx

94 cmpl $2000, %ebx

95 jb 1f

96 movl $0, %ebx

97 1: movl %ebx, scr_loc
98 popl %ebx

99 pop %gs

100 ret

101

# IDTR register is loaded with a 6-byte operand

current cursor position & display char in AL.
25 (2000) characters

# First save the register to be used, EAX is
saved by the caller.
# Then let GS point to display mem seg (0xb8000)

+H

Get current char display position from scr loc
Since each char has one attribute byte, so actual
display memory offset should multiplied by 2.
After putting char into display memory, divide the
position value by 2 plus 1 to get the next position.
If position is greater than 2000, it is reset to O.

H OH H H H W

H

Finally save this position value (scr_loc)
# and pop up the contents of saved register, return

102 # The following are 3 interrupt handlers: default, timer, and system call interrupt.
103 # Ignore int is default handler. If system generates other interrupts, it display char ’C’.

104 .align 2

105 ignore int:

106 push %ds

107 pushl %eax

108 mov]l $0x10, %eax
109 mov %ax, %ds

110 movl $67, %eax
111 call write char
112 popl %eax

113 pop %ds

114 iret

115

116 # This is the timer interrupt handler.
117 .align 2

118 timer_interrupt:

119 push %ds

120 pushl %eax

121 movl $0x10, %eax
122 mov %ax, %ds

123 movb $0x20, %al
124 outb %al, $0x20
125 movl $1, %eax
126 cmpl %eax, current

# Let DS point to the kernel data segment because
# the interrupt handler belongs to the kernel.

# Put 'C in AL, call write char to display on screen.

The main function is to perform task switching operations.

# First let DS point to the kernel data segment

# Then send EOI to 8259A to allow other interrupts.

# Then check current task to switch task O and 1.

170



4.9 A Simple Multitask Kernel Example

127 je 1f

128 mov]l %eax, current # If current task is 0, save 1 in current and jump to
129 1jmp $TSS1_SEL, $0 # task 1 to execute. The offset of jump is useless.
130 jmp 2f

131 1: movl $0, current # If current task is 1, save 0 in current and jump to
132 1jmp $TSSO SEL, $0 # task 0 to execute

133 2: popl %eax

134 pop %ds

135 iret

136

137 # The system call int 0x80 handler. This example has only one display char function.
138 .align 2

139 system interrupt:

140 push %ds

141 pushl %edx

142 pushl %ecx

143 pushl %ebx

144 pushl %eax

145 movl $0x10, %edx # First let DS point to the kernel data segment
146 mov %dx, %ds

147 call write char # Then call routine write char to display char in AL
148 popl %eax

149 popl %ebx

150 popl %ecx

151 popl %edx

152 pop %ds

153 iret

154

155 /sskskskskotskstoksksksokseokskotokstoksdoksoksokskotokaokdoksoksokskokosksok ok sk /

156 current:.long 0 # Store current task number (0 or 1).

157 scr_loc:.long 0 # Store screen current display position.

158

159 .align 2

160 1idt_opcode:

161 .word 256%8-1 # 6-byte operand for set IDTR : table size & base
162 .long idt

163 lgdt opcode:

164 .word (end gdt—gdt)-1 # 6-byte operand for set IDTR : table size & base.
165 . long gdt

166

167 .align 3

168 idt: .fill 256,8,0 # IDT. 256 gate descriptors, each 8 bytes, total 2KB.
169 # The following is GDT table contents (of descriptors)

170 gdt: .quad 0x0000000000000000 # [0] The first segment descriptor is not used

171 .quad 0x00c09a00000007ff # [1] Kernel code descriptor. Its selector is 0x08
172 .quad 0x00c09200000007ff # [2] Kernel data descriptor. Its selector is 0x10
173 .quad 0x00c0920b80000002 # [3] Display mem descriptor. Its selector is 0x18
174 .word 0x68, tss0, 0xe900, 0x0O # [4] TSSO descriptor. Its selector is 0x20.

175 .word 0x40, 1dt0, 0xe200, 0x0 # [5] LDTO descriptor. Its selector is 0x28

176 .word 0x68, tssl, 0xe900, 0x0 # [6] TSS1 descriptor. Its selector is 0x30

177 .word 0x40, 1dtl, 0xe200, 0x0 # [7] LDT1 descriptor. Its selector is 0x38

178 end gdt:

179 Cfill 128,4,0 # Initial kernel stack space
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180 init stack: # Stack pointer when first enter protected mode

181 .long init_stack # Stack segment offset position

182 .word 0x10 # Stack segment, same as kernel data seg (0x10)

183

184 # Below is the local segment descriptor in the LDT table segment of task 0

185 .align 3

186 1dt0: .quad 0x0000000000000000 # [0] The first descriptor is not used

187 .quad 0x00c0fa00000003ff # [1] The local code descriptor, its selector is 0xOf
188 .quad 0x00c0£200000003ff # [2] The local data descriptor, its selector is 0x17
189 # Content of TSS seg for task 0. Note fields such as labels do not change when task switches
190 tssO: .long O /* back link */

191 . long krn stk0, 0x10 /* esp0, ssO */

192 .long 0, 0, 0, 0, O /* espl, ssl, esp2, ss2, cr3 */

193 .long 0, 0, 0, 0, O /* eip, eflags, eax, ecx, edx */

194 .long 0, 0, 0, 0, O /* ebx esp, ebp, esi, edi */

195 .long 0, 0, 0, 0, 0, O /* es, cs, ss, ds, fs, gs */

196 . long LDTO SEL, 0x8000000 /* 1dt, trace bitmap */

197

198 Lfill 128,4,0 # This is the kernel stack space for task 0

199 krn stkO:

200

201 # Task 1 LDT table content and TSS segment content

202 .align 3

203 1dtl: .quad 0x0000000000000000 # [0] The first descriptor is not used

204 .quad 0x00c0fa00000003ff # [1] The selector is 0x0f, base = 0x00000,

205 .quad 0x00c0£200000003ff # [2] The selector is 0x17, base = 0x00000,

206

207 tssl: .long O /* back link */

208 .long krn_stkl, 0x10 /* esp0, ssO *x/

209 .long 0, 0, 0, 0, O /* espl, ssl, esp2, ss2, cr3d *x/

210 . long taskl, 0x200 /* eip, eflags */

211 .long 0, 0, 0, O /% eax, ecx, edx, ebx ¥/

212 .long usr_stkl, 0, 0, 0 /* esp, ebp, esi, edi */

213 . long 0x17, 0x0f, 0x17, 0x17, 0x17, 0x17 /* es, cs, ss, ds, fs, gs %/

214 . long LDT1 SEL, 0x8000000 /* 1dt, trace bitmap */

215

216 .fill 128,4,0 # This is the kernel stack space for task 1. Its user
217 krn stkl: # stack uses the initial kernel stack space directly.
218

219 # The programs of tasks 0 and 1, which cyclically display chars A’ and 'B’, respectively.
220 taskO:

221 movl $0x17, %eax # DS point to the local data segment of the task
222 movw %ax, %ds # No local data, these 2 instructions can be omitted
223 movl $65, %al # Put A’ into the AL register

224 int $0x80 # Execute system call to display it

225 movl $0xfff, %ecx # Execute a loop, act as a delay

226 1: loop 1b

227 jmp taskO # Jump to start of task 0 to continue displaying
228 taskl:

229 movl $66, %al # Put "B’ into the AL register.

230 int $0x80 # Execute system call to display it

231 mov]l $0xfff, %ecx # Execute a loop, act as a delay

232 1: loop 1b
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233 jmp taskl
234
235 .fill 128,4,0 # This is user stack space for task 1.

236 usr_stkl:

4.10 Summary

This chapter describes the protection mode memory management and programming principles of the Intel
80X86 CPU. It describes in detail the specific meanings of the global and local descriptor tables, segment
descriptors, and segment selectors. It also gives the transformation relationships between program logical address,
CPU linear address, and physical memory address. Finally, a simple kernel sample program is given and
introduced at the end of this chapter. Based on an understanding of the sample program, we can roughly explain
how well we master the protection mode programming.

Below we use a whole chapter to provide a comprehensive overview of the hardware settings, memory
allocation and usage of the Linux kernel and the function of the task data structure, and then classify all the source
code in the kernel source tree, let the reader first Have a general understanding of the entire kernel code file
structure. Then, in the following chapters, the source code files in the kernel are described and annotated in detail.
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5.1 Linux kernel mode

5 Linux kernel architecture

This chapter can be seen as a general overview of the kernel source code and can be used as a reference for
reading subsequent chapters. For content that is difficult to understand, you can skip it first. When you read the
related content in the following chapters, return to refer to this chapter. Please review or learn about how the
80X86 protected mode mode of operation works before reading this chapter.

This chapter begins with an overview of the Linux kernel's composition modes and architecture, and then
details the source file organization in the kernel source directory, as well as the main functions of the various
code files in the subdirectories and the hierarchical relationships of the basic calls. Then directly cut into the
topic, starting from the first file Makefile in the kernel source file Linux / directory to explain each line of code
in detail. We will briefly describe the basic architecture and main components based on Linux 0.12 kernel
source code. It also explains several important data structures that appear in the source code. Finally, the method
of building the Linux 0.12 kernel compilation experimental environment is described.

From a layered perspective, a complete operating system can be composed of four parts: hardware,
operating system kernel, operating system services, and user applications, as shown in Figure 5-1. User
applications are those word processors, Internet browser programs, or various applications compiled by users
themselves; Operating system services are those that provide services to users and are considered part of the
operating system. In the Linux operating system, these programs include X window system, shell command
interpretation system and system programs such as kernel programming interface; The operating system kernel
is the part of this book that is of interest. It is mainly used to abstract hardware resources and schedule
management of all system resources.

User Applications

Operating System Services

Operating System Kernel

Hardware

Figure 5-1 Operating system components

The main purpose of the Linux kernel is to interact with computer hardware, implement interface
operations and programmatic control of components, schedule access to hardware resources, and provide an
easy-to-use execution environment and a common hardware virtual interface for user programs on the
computer. .

5.1 Linux kernel mode

At present, the structural mode of the operating system kernel can be mainly divided into a monolithic
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single-core model and a hierarchical micro-kernel model, and a mixed mode of the two. The Linux 0.12 kernel
annotated in this book uses a single-core mode.

In a monolithic single-core system model, the service process provided by the operating system is: the
application program executes the system call instruction (int x80) with the specified parameters, so that the
CPU switches from the user mode to the core state (Kernel Model). ), then the operating system calls the
specific system call service procedure according to the specific parameters, and these service procedures call
some of the underlying support functions to complete the specific functions as needed. After completing the
services required by the application, the operating system switches the CPU back from the kernel mode to the
user mode, and returns to the application to continue executing the following instructions. So in summary, the
single-core mode kernel can also be roughly divided into three levels: the main program layer that calls the
service, the service layer that executes the system call, and the underlying functions that support the system call.
See Figure 5-2. The main advantage of the monolithic model is that the kernel code is compact and fast, and the
disadvantages are mainly that the hierarchy is not strong.

Main Programs

Figure 5-2 Simple structural of monolithic model

For the microkernel architecture model, its main features are function modularization and messaging
between service threads or processes. The system core provides a basic hardware abstraction management layer
and key system service functions. These key functions are main process/inter-thread communication services,
virtual memory management, and process scheduling. The rest of the operating system functions in user space
in a variety of modular forms. Therefore, the advantage of the microkernel structure is that the system service
coupling is low, which facilitates system improvement, expansion, and porting. The main disadvantage is that a
large amount of message passing and synchronization operations between system service modules are required
during the running, and these operations cause communication resource consumption and time delay. Typical
microkernel architecture systems are the MINIX operating system and the Mac OS system with the Mach
kernel.

5.2 Linux kernel system architecture

The Linux kernel consists of five modules: process scheduling module, memory management module, file
system module, interprocess communication module, and network interface module, as shown in Figure 5-3.
The process scheduling module is responsible for controlling the use of CPU resources by the process. The
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scheduling strategy adopted is that each process can access the CPU fairly and reasonably, while ensuring that
the kernel can perform hardware operations in a timely manner. The memory management module is used to
ensure that all processes can safely share the main memory area of the machine. At the same time, the memory
management module also supports the virtual memory management mode, so that the Linux support process
uses more memory capacity than the actual memory space. You can use the file system to swap unused memory
blocks to an external storage device and exchange them when needed. File system modules are used to support
the drive and storage of external devices. The Virtual File System module hides the different details of various
hardware devices by providing a common file interface to all external storage devices. This provides and
supports multiple file system formats that are compatible with other operating systems. The interprocess
communication module is used to support the exchange of information between multiple processes. Network
interface modules provide access to a variety of network communication standards and support many network
hardware.

The dependencies between these modules are shown in Figure 5-3. The connections represent the
dependencies between them, and the dashed and dashed boxes represent the unimplemented parts of Linux 0.12
(the virtual file system is gradually implemented from the Linux 0.95 version, while the network interface
support is only available in version 0.96 or later) .

[Memory Management

1
1
/
7

A S

Virtual FS

File System

Y

v
Process Scheduling 4—[
A

Interprocess ]

communication

...............

Figure 5-3 Linux kernel module structure and interdependence

As can be seen from the figure, all modules have dependencies on the process scheduling module. Because
they all rely on the process scheduler to suspend (pause) or re-run their processes. Typically, a module will be
suspended while waiting for hardware operations, and will continue to run until the operation is complete. For
example, when a process attempts to write a block of data to a floppy disk, the floppy disk driver may place the
process in a suspend wait state during the boot floppy disk rotation, and cause the process to continue after the
floppy disk enters the normal rpm. run. The other three modules are also dependent on the process scheduling
module for similar reasons.

The dependencies of several other modules are somewhat less obvious, but they are also important. The
process scheduling subsystem needs to use memory management to adjust the physical memory space used by a
particular process. The interprocess communication subsystem relies on a memory manager to support shared
memory communication mechanisms. This communication mechanism allows two processes to access the same
area of memory for the exchange of information between processes. The virtual file system also uses the
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network interface to support the Network File System (NFS), as well as the memory management subsystem to
provide memory ramdisk devices. The memory management subsystem also uses the file system to support the
swapping of memory blocks.

From the monolithic structure model, we can also draw the kernel main modules into the block diagram
structure shown in Figure 5-4 according to the structure of the Linux 0.12 kernel source code.

[ User Applications ]

A ¢

| Function Libraries | User Level

) )
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Figure 5-4 Kernel block diagram

In several boxes in the kernel level, the thick line boxes other than the hardware control block correspond
to the directory organization of the kernel source code. In addition to the dependencies already given in these
diagrams, all of these modules also rely on common resources in the kernel. These resources include memory
allocation and reclaim functions, print warning or error message functions, and some system debugging
functions.

5.3 Linux kernel memory management

This section first describes the relatively straightforward physical memory usage in Linux 0.12 systems.
Then combined with the application situation in the Linux 0.12 kernel, it outlines the segmentation and paging
management mechanism of the memory, as well as the CPU multitasking operation and protection mode.
Finally, we will comprehensively explain the correspondence between the kernel code and data in the Linux
0.12 system and the code and data of each task in the virtual, linear and physical address space.

The description in this section can be seen as a summary or review of memory management. See Chapter 4
for a detailed description of memory management in protection mode.
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5.3.1 Physical address

In the Linux 0.12 kernel, in order to effectively use the physical memory in the machine, the memory is
divided into several functional areas during the system initialization phase, as shown in Figure 5-5.
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Figure 5-5 Functional distribution of physical memory usage

Among them, the Linux kernel occupies the beginning of the physical memory, followed by the high-speed
buffer portion for the block device such as the hard disk or floppy disk (in which the memory address range of
the display card memory and the ROM BIOS is 640K--1MB). When a process or task needs to read data from a
block device, the system first reads the data into the cache. When there is data to be written to the block device,
the system first puts the data into the cache, and then the block device driver writes to the corresponding device.
The last part of the memory is the main memory area that all programs can request and use at any time. When
the kernel program uses the main memory area, it also needs to apply to the kernel memory management
module first, and can use the memory after the application is successful. For systems with RAM virtual disks,
the main memory area header is also partially removed for the virtual disk to store data.

Because the actual physical memory capacity contained in the computer system is limited, the CPU usually
provides a memory management mechanism to effectively manage the memory in the system. In the Intel 80386
and later CPUs, two memory management (address translation) systems are provided: the Memory
Segmentation and the Paging System. The paging management system is optional and is programmed by the
system programmer to determine whether to adopt. In order to use physical memory effectively, the Linux
system uses both memory segmentation and paging management mechanisms.

5.3.2 Memory Address Space Concept

In the Linux 0.12 kernel, when performing address mapping, we need to first distinguish between three
types of addresses and the concept of transformation between them: a). virtual and logical addresses of
programs (processes); b). linear addresses of CPUs; ¢). actual physics Memory address.

Virtual Address refers to the address generated by the program consisting of two parts: the segment
selector and the offset address within the segment. Because the two parts of the address are not directly used to
access the physical memory, but need to be processed or mapped by the segmentation address translation
mechanism to correspond to the physical memory address, such an address is called a virtual address. The
virtual address space consists of the global address space mapped by the GDT and the local address space
mapped by the LDT. The index portion of the selector is represented by 13 bits, plus one bit that distinguishes
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between GDT and LDT, so the Intel 80X86 CPU can index a total of 16384 selectors. If the length of each
segment takes a maximum of 4G, the maximum virtual address space is 16384 * 4G = 64T.

Logical Address is the portion of the offset address associated with the sections generated by the program.
In Intel protected mode, it refers to the offset address within the program execution code section limit length
(assuming the code section and data section are identical). Application programmers only need to deal with
logical addresses, and the segmentation and paging mechanism is completely transparent to him, only by system
programmers. However, some materials do not distinguish between the concept of logical addresses and virtual
addresses, but collectively refer to them as logical addresses.

The Linear Address is the middle layer between the virtual address and physical address translation and is
the address in the processor's addressable memory space (called the linear address space). The program code
will generate a logical address, or an offset address in the segment, plus a base address for the corresponding
segment to generate a linear address. If the paging mechanism is enabled, the linear address can be transformed
to produce a physical address. If the paging mechanism is not enabled, the linear address is directly the physical
address. The Intel 80386 has a linear address space of 4G.

The Physical Address is the address signal indicating the addressed physical memory on the CPU external
address bus, which is the final result address of the address translation. If the paging mechanism is enabled, the
linear address is transformed into a physical address using the items in the page directory and page table. If the
paging mechanism is not enabled, the linear address becomes the physical address directly.

Virtual storage (or virtual memory) is the amount of memory that a computer presents to be much larger
than the actual amount of memory it has. It therefore allows the programmer to program and run programs that
are much larger than the actual system has. This allows many large projects to be implemented on systems with
limited memory resources. A very appropriate analogy is that you don't need a long track to get a train from
Shanghai to Beijing. You only need a long enough rail (say 10 km) to complete this task. The method is to
immediately lay the rear rails in front of the train. As long as your operation is fast enough and can meet the
requirements, the train can run like a complete track. This is the task that virtual memory management needs to
accomplish. In the Linux 0.12 kernel, each program (process) is divided into a virtual memory space with a total
capacity of 64MB. Therefore, the program'’s logical address range is 0x0000000 to 0x4000000.

As mentioned above, sometimes we also refer to logical addresses as virtual addresses. Because the logical
address is similar to the concept of virtual memory space, and is also independent of the actual physical
memory capacity.

5.3.3 Memory Segmentation Mechanism

In a memory segmentation system, the logical address of a program is automatically mapped (transformed)
into the 4GB (2"32) linear address space of the middle layer by a segmentation mechanism. Each reference to
memory by the program is a reference to memory in the memory segment. When a program references a
memory address, a corresponding linear address is formed by adding the corresponding segment base address to
the logical address visible to the programmer. If the paging mechanism is not enabled at this time, the linear
address is sent to the CPU's external address bus for direct addressing of the corresponding physical memory.
See Figure 5-6.
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Figure 5-6 Logical address to physical address translation

The main purpose of the CPU to perform address translation (mapping) is to solve the mapping problem
from virtual memory space to physical memory space. The meaning of virtual memory space refers to a method
that uses secondary or external storage space to enable programs to use memory without being limited by the
actual amount of physical memory. Usually the virtual memory space is much larger than the actual physical
memory.

So how is virtual storage management implemented? The principle is similar to the analogy of the above
train operation. First, when a program needs to use a memory that does not exist (that is, the corresponding
memory page is not in memory in the memory page table entry), the CPU needs a way to know the situation.
This is achieved by the 80386 page fault exception interrupt. When a process references a memory address in a
non-existing page, it triggers the CPU to generate a page fault exception interrupt and places the linear address
that caused the interrupt into the CR2 control register. Therefore, the process of processing the interrupt can
know the exact address of the page exception, so that the page requested by the process can be loaded into the
physical memory from the secondary storage space (such as the hard disk). If the physical memory is already
occupied at this time, you can use a part of the secondary storage space as a swap buffer (Swapper) to swap the
temporarily unused pages in the secondary buffer, and then transfer the requested page to the memory. in. This
is the page fault loading mechanism of memory management. It is implemented in the program mm/memory.c
in the Linux 0.12 kernel.

The Intel CPU uses the concept of segment to address the program. Each segment defines information such
as an area in memory and the priority of access. Assuming that everyone knows the memory addressing
principle in real mode, we now use the comparison method to briefly explain the main features of memory
addressing under the 32-bit protected mode operating mechanism according to the different addressing modes
of the CPU in real mode and protected mode.

In real mode, addressing a memory address primarily uses segment and offset values, segment values are
stored in segment registers (such as DS), and the length of the segment is fixed at 64 KB. The intra-segment
offset address is stored in any register that can be used for addressing (eg, SI). Therefore, based on the values in
the segment register and the offset register, the actual pointed memory address can be calculated, as shown in
Figure 5-7 (a).

In the protected mode mode, the segment register is no longer the base address of the addressed segment,
but the index value of a descriptor entry in the segment descriptor table. The segment descriptor item specified
by the index value contains information such as the base address of the memory segment to be addressed, the
limit length of the segment, and the access privilege level of the segment. The addressed memory location is a
combination of the segment base address specified in the segment descriptor entry and an intra-segment offset.
The limit length of the segment is variable and is specified by the content in the descriptor. It can be seen that,
compared with the addressing in the real mode, the segment register value is replaced with the index value of
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the corresponding segment descriptor in the segment descriptor table, and the segment table selection bit and
the privilege level, which is called a Segment Selector, but The offset value still uses the concept in the original
mode. Thus, addressing a memory address in protected mode requires one more procedure than in real mode,
which requires the use of a segment descriptor table. This is because there is more information to access a
memory segment in protected mode, and a 16-bit segment register can't hold much of this content. The
schematic is shown in Figure 5-7 (b). Note that if you do not define a memory linear address space area in a
segment descriptor, the address area will not be addressed at all and the CPU will deny access to the address
area.

Registers T Registers T

Variable
641D esi

> } Desc Table
gdtr }—f >

(a) Addressing in Real Mode (b) Addressing under Protected Mode

Figure 5-7 Comparison of addressing in real mode and protected mode

Each descriptor occupies 8 bytes, containing the starting address (base address) of the described segment in
the linear address space, the limit length of the segment, the type of the segment (such as code segments and
data segments), the privilege level of the segment, and Some other information. The maximum length a segment
can define is 4GB.

There are three types of descriptor tables for saving descriptor items, each for a different purpose. The
Global Descriptor Table (GDT) is the main base descriptor table that can be used by all programs to reference a
memory segment. The Interrupt Descriptor Table (IDT) holds a segment descriptor that defines the interrupt or
exception handling process. The IDT table directly replaces the interrupt vector table in the 8086 system. In
order to operate normally in 80X86 protected mode, we must define a GDT table and an IDT table for the CPU.
The last type of table is the Local Descriptor Table (LDT). This table is used in multitasking systems, usually
using one LDT table per task. As an extension to the GDT table, each LDT table provides more available
descriptor entries for the corresponding task, thus providing a range of addressable memory spaces for each
task.

These tables can be saved anywhere in the linear address space. In order to allow the CPU to locate the
GDT table, the IDT table, and the current LDT table, three special registers of GDTR, IDTR, and LDTR need to
be set for the CPU. The 32-bit linear base address of the corresponding table and the limit-length byte value of
the table are stored in these registers. The table length value is the length value of the table -1.

When the CPU is to address a segment, the selector in the 16-bit segment register is used to locate a
segment descriptor. In an 80X86 CPU, the value in the segment register is shifted to the right by 3 bits, which is
the index value of a descriptor in the descriptor table. A 13-bit index value can locate up to 8192 (0--8191)
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descriptor entries. The selector bit 2 (TI) is used to specify which table to use. If the bit is O then the selector
specifies the descriptor in the GDT table, otherwise it is the descriptor in the LDT table.

Each program can consist of several memory segments. The logical address (or virtual address) of the
program is used to address the specific address locations in these segments. In Linux 0.12, the translation
process of program logical address to linear address uses the global segment descriptor table GDT and the local
segment descriptor table LDT. The address space mapped by the GDT is called the global address space, and the
address space mapped by the LDT is called the local address space, and the two constitute the space of the
virtual address. The specific usage is shown in Figure 5-8.
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Figure 5-8 Virtual address space allocation map in Linux

The figure shows the situation when there are two tasks. It can be seen that the local descriptor table LDT
of each task is also a memory segment defined by the descriptor in the GDT, in which the code segment and the
data segment descriptor of the corresponding task are stored, so the LDT segment is very short. The segment
length is usually as long as it is larger than 24 bytes. Similarly, the task status segment TSS for each task is also
a memory segment defined by the descriptors in the GDT, and the segment length limit is sufficient as long as it
satisfies the ability to store a TSS data structure.

X In the interrupt descriptor table IDT, it is stored in the kernel code segment. In the Linux 0.12 kernel,
since the code segment and data segment of the kernel and each task are respectively mapped to the same base
address in the linear address space, and the segment length is the same, the code segment and the data segment
of the kernel are overlapped. The code segment and data segment of each task are also overlapped respectively,
as shown in Figure 5-10 or Figure 5-11. The Task State Segment (TSS) is used to automatically save or restore
the current execution context (CPU current state) of the related task when the task is switched. For example, for
a task that is switched out, the CPU saves its register and other information in the TSS segment of the task, and
the CPU uses the information in the TSS segment newly switched into the task to set each register to restore the
execution environment of the new task.

In Linux 0.12, the TSS segment content of each task is saved in the task data structure of the task. In
addition, the fourth descriptor in the GDT table (the syscall descriptor entry in the figure) is not used in the
Linux 0.12 kernel. From the original English comment on line 201 in the include/linux/sched.h file shown
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below, it can be guessed that Linus had designed the kernel to place the code for the system call in this
specialized section when designing the kernel.

200 /

201 * Entry into gdt where to find first TSS. O-nul, 1-cs, 2-ds, 3-syscall
202 * 4-TSSO, 5-LDTO, 6-TSS1 etc ...

203 */

5.3.4 Memory paging management

If paging is used, then the linear address is only an intermediate result, and it needs to be transformed by
using the paging mechanism, and finally mapped to the actual physical memory address. Similar to the
segmentation, paging mechanism allows us to redirect (transform) each memory reference to accommodate our
particular requirements. The most common use of the paging is when the system memory is actually divided
into a lot of messy blocks, it can create a large and continuous memory space image, so that the program does
not have to worry about and manage these scattered memory blocks. The paging mechanism enhances the
performance of the segmentation mechanism. In addition, the page address transformation is based on the
segment transformation. The protection measures of any paging mechanism will not replace the protection
measures of the segment transformation but only carry out further checking operations.

The basic principle of the memory paging is to divide the entire linear memory area of the CPU into 4096
bytes of a page of memory pages. When the program requests to use memory, the system allocates it in units of
memory pages. The memory paging is implemented in a similar way to the segmentation mechanism, but not as
sophisticated as the segmentation. Because the paging is implemented on top of the segmentation, the result is
very flexible control over system memory, and the paging protection mechanism is added to the memory
protection of the segmentation mechanism. In order to use the paging in the 80X86 protected mode, the highest
bit (bit 31) of the control register CRO needs to be set.

When using this memory paging method, each executing process (task) can use a contiguous address space
that is much larger than the actual memory capacity. In order to map linear addresses to a relatively small
physical memory space using the paging, the 80386 uses page directory tables and page tables. Page directory
entries are basically the same format as page table entries, occupying 4 bytes, and each page directory table or
page table contains only 1024 page table entries. Therefore, a page directory table or a page table occupies a
total of 1 page of memory. The small difference between a page directory entry and a page table entry is that the
page table entry has a written bit D (Dirty), while the page directory entry does not.

The transfer process from linear address to physical address is shown in Figure 5-9. The control register
CR3 in the figure holds the base address of the current page directory table in physical memory (hence CR3 is
also referred to as the page directory base address register PDBR). The 32-bit linear address is divided into three
parts for locating the corresponding entries in the page directory table and the page table, and specifying the
offset position within the page in the corresponding physical memory page. Because a page table can have 1024
entries, a page table can map up to 1024 * 4KB = 4MB memory; and because a page directory table has up to
1024 entries, corresponding to 1024 secondary page tables, a page directory table can be up to Maps 1024 *
4MB = 4GB of memory. That is, a page directory table can map the entire linear address space range.

Since the kernel and all tasks in the Linux 0.1x system share the same page directory table, the mapping
function of the processor linear address space to the physical address space is the same at any time. Therefore,
in order for the kernel and all tasks to not overlap and interfere with each other, they must be mapped from the
virtual address space to different locations of the linear address space, that is, occupying different linear address
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space ranges.
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Figure 5-9 Diagram of linear address to physical address transformation

For Intel 80386 systems, the CPU can provide up to 4G of linear address space. The virtual address of a
task needs to be first transformed into the address in the entire linear address space of the CPU by its local
segment descriptor, and then mapped to the actual using the page directory table PDT (primary page table) and
page table PT (secondary page table). On the physical address page. To use actual physical memory, the linear
address of each process is dynamically mapped to different physical memory pages in the main memory area by
the secondary memory page table.

Since Linux 0.12 defines the maximum available virtual memory space per process as 64MB, the logical
address of each process can be converted to an address in linear space by adding (task number) *64MB.
However, in the code comments in this book, we sometimes simply refer to such addresses in a process as
logical addresses or linear addresses without confusing them.

For Linux 0.12 kernel, the maximum number of segment descriptor entries set in the GDT is 256. Two of
them are not used and two are system enrties, and each process or task uses two. Therefore, at this point the
system can accommodate up to (256-4)/2 = 126 tasks, and the virtual address range is ((256-4)/2)* 64MB is
approximately equal to 8G. However, the maximum number of tasks manually defined in the 0.12 kernel is
NR_TASKS = 64, the logical address range of each task is 64M, and the starting position of each task in the
linear address space is (task number) *64MB. So the linear address space used by all tasks is 64MB*64 = 4G, as
shown in Figure 5-10.

The figure shows the situation when the system has 4 tasks. The kernel code segment and data segment are
mapped to the beginning 16MB portion of the linear address space, and both the code and data segments are
mapped to the same region, completely overlapping each other. The first task (task 0) is started by the kernel
"manually”. The code and data are contained in the kernel code and data, so the linear address space used by
this task is quite special. The length of the code segment and the data segment of task 0 is a range of 640 KB
from the linear address 0, and the code and the data segment also completely overlap, and overlap with the
kernel code segment and the data segment. In fact, the instruction space | (Instruction) and the data space D
(Data) of all tasks in Linux 0.12 use one piece of memory. That is, all the code, data, and stack parts of a
process are in the same memory segment, which is a way of using 1&D without separation.

Task 1 has a linear address space starting at address 64MB and only 640KB in length. The detailed
correspondence between them will be described later. Task 2 and Task 3 are mapped to the linear addresses
128MB and 192MB, respectively, and their logical address ranges are 64MB. Since the 4G address space range
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is exactly the linear address space range of the 32-bit CPU, it is also the addressable maximum physical address
space range. Moreover, when the logical address range of task 0 and task 1 is regarded as 64 MB, the system
may have The logical address range of the task is also 4GB, so it is easier to confuse the three address concepts
in the 0.12 kernel.
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Figure 5-10 Diagram of the use of Linux 0.12 linear address space

If the tasks in the virtual space are also arranged according to the order of the tasks in the linear space, then
we can have the system shown in Figure 5-11 and have a schematic diagram of all tasks in the virtual address
space, and the virtual space range is also 4 GB. It does not consider the scope of kernel code and data in the
virtual space. In addition, in the figure, the positions of the code segments and data segments (including data
and stack contents) in the respective logical spaces are also given for task 2 and task 3.
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Figure 5-11 The spatial extent of tasks in virtual space in Linux 0.12

It should also be noted that the concept of Code Section and Data Section in the task logical address space
is not the same concept as the code segment and data segment in the CPU segmentation mechanism. In the
segmentation of the CPU, the concept of a segment determines the purpose of a segment in a linear address
space and the constraints and restrictions that are enforced or accessed. Each segment can be placed anywhere
in the 4GB linear address space, and they can be independent of each other. They can also overlap completely or
partially. The code section and data section of a task refer to the code area, initialization & uninitialization data
area, and stack area specified in the process logic space specified by the compiler when compiling the program
and when the operating system loads the program. The structure of the code segment and data segment in the
task logical address space is shown in Figure 5-12. The nr in the figure is the process or task number, and
start_code is the starting location of the process in the linear address space. All other variables contain values in
the process logic space.
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Figure 5-12 The distribution of task code and data in its logical address space

5.3.5 CPU multitasking and protection

The protection mechanism of the 80X86 CPU has four protection levels, with level 0 having the highest
priority and level 3 having the lowest priority. The Linux 0.12 operating system uses two protection levels of
CPU, 0 and 3. Each task has its own code and data area. These two areas are stored in the local address space,
so other tasks in the system are invisible (not accessible). The kernel code and data are shared by all tasks, so it
is stored in the global address space. A schematic of this structure is shown in Figure 5-13. The concentric
circles in the figure represent the protection level of the CPU (protection layer), and only the 0 and 3 levels of
the CPU are used here. Radial rays are used to distinguish between tasks in the system. Each radial ray indicates
the boundary of each task. Except for the global address area of each task virtual address space, the address in
task 1 is independent of the same address in task 2.

When a task (process) executes a system call and is executed in kernel code, we call the process in kernel
operation (or simply kernel mode). At this point the processor is executed in the highest privileged level (level
0). When the process is in kernel mode, the executed kernel code uses the kernel stack of the current process
and each process has its own kernel stack. When the process is executing the user's own code, it is said to be in
the user's running state (user mode). That is, the processor is now running in the lowest privileged level (level 3)
user code.

When the user program is being executed and suddenly interrupted to execute the interrupt handler
procedure, the user program can also be symbolically referred to as the kernel state of the process. Because the
interrupt handler will use the kernel stack of the current process. This is somewhat similar to the state of a
process in kernel mode. The kernel state and user mode of the process are described in more detail later in the
section on process running states.
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Figure 5-13 Multitasking protection system

5.3.6 Virtual Addresses, Linear Addresses, and Physical Addresses

Earlier we explained the CPU memory management method according to the memory segmentation and
paging mechanism. Now let's take the Linux 0.12 system as an example to explain the correspondence between
the kernel code and data and the code and data of each task in the virtual address space, linear address space and
physical address space. Since the generation or creation process of Task 0 and Task 1 is special, we will describe
them separately.

Kernel code and data address

For Linux 0.12, both the kernel code segment and the data segment have been set to a segment of length
16MB in the initialization operation of the head.s program. The range of the two segments overlaps in the linear
address space, starting from linear address O to address OXFFFFFF for a total of 16MB address range. This
range contains all the kernel code, kernel segment tables (GDT, IDT, TSS), page directory tables and secondary
page tables, kernel local data, and kernel temporary stack (which will be used as the user stack for task 0). Its
page directory table and secondary page table have been set to map the linear address space of 0--16MB to the
physical address one by one, occupying 4 directory entries, that is, 4 secondary page tables. So for kernel code
or data addresses, we can think of them directly as addresses in physical memory. At this time, the relationship
between the virtual address space, the linear address space, and the physical address space of the kernel can be
represented by figure 5-14.
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Figure 5-14 Kernel code and data segments in three address spaces

Therefore, by default, the Linux 0.12 kernel can manage up to 16MB of physical memory, with a total of
4096 physical pages (page frames), 4KB per page. Through the above analysis, it can be seen that:

2

*

The kernel code and the data segments region are the same in the linear and physical address
space. This setting can greatly simplify the initialization of the kernel.

GDT and IDT are in the kernel data segment, so their linear addresses are also equal to their
physical addresses. In the setup.s program initialization operation in real mode, we have set the
temporary GDT and IDT, which must be set before entering the protection mode. Since the two
tables were in physical memory at about 0x90200, the kernel system module was in the physical
memory 0 start position after entering protected mode, and the space at 0x90200 would be used
for other purposes (for caching). So after entering protected mode, we need to reset the two
tables in the first program head.s that are running. That is, setting GDTR and IDTR to point to
the new GDT and IDT, the descriptor also needs to be reloaded. However, since the position of
the two tables does not change when the paging mechanism is turned on, there is no need to
re-establish or move the table position.

Except for task 0, the physical memory pages used by all other tasks are at least partially
different from the pages in the linear address, so the kernel needs to dynamically map them in the
main memory area to dynamically create page directory entries and page table entries. . Although
the code and data of task 1 are also in the kernel, since it needs to be allocated separately to
obtain memory, it also needs its own mapping table entry.

Although Linux 0.12 can manage 16MB of physical memory by default, it is not necessary to have such
physical memory in the system. As long as there are 4MB (or even 2MB) of physical memory in the machine,
you can run Linux 0.12 system. If the machine has only 4MB of physical memory, then the kernel 4MB--16MB
address range will be mapped to the non-existing address. But this does not hinder the operation of the system.
Because the kernel memory manager knows the exact amount of physical memory in the machine at
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initialization time, it does not let the CPU paging mechanism map the linear address page to the 4MB--16MB
that does not exist. The default setting in the kernel is mainly to facilitate the expansion of the system's physical
memory, and actually does not use the physical memory area that does not exist. For the system has more than
16MB of physical memory, because the initialization of the init/main.c program limits the use of more than
16MB of memory, and here the kernel only maps the memory range of 0--16MB. Therefore, physical memory
above 16MB will not be used.

Of course, we can extend this limitation by adding some page tables to the kernel here and making minor
changes to the init/main.c program. For example, if there are 32MB of physical memory in the system, we need
to create 8 secondary page table entries for the kernel code and data segments to map the 32MB linear address
range to physical memory.

The address correspondence of task 0

Task 0 is the first task manually initiated in the system. Its code and data segment length are set to 640KB.
The code and data for this task are included directly in the kernel code and data, and are 640KB of content
starting from linear address 0. Therefore, it can directly use the page directory and page table that the kernel has
set to perform paging address translation. Similarly, its code and data segments overlap in the linear address
space. The corresponding task status segment TSSO is also manually pre-set and located in the task O data
structure information. See the data starting with line 156 in the include/linux/sched.h. The TSSO segment is
located in the code of the kernel sched.c file and has a length of 104 bytes. For details, see the "Task 0 Structure
Information™ item in Figure 5-24. The mapping correspondence in the three address spaces is shown in Figure
5-15.
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Figure 5-15 The relationship of task 0 in three address spaces

Since task 0 is directly included in the kernel code, there is no need to allocate additional memory pages
for it. The kernel-mode stack and user-mode stack space required for its operation are also in the kernel code
area, and since the kernel page initialization (head.s), the properties of these kernel pages in the page table entry
have been set to Ob111. That is, the corresponding page user can read and write and exist. Therefore, although
the user stack user_stack[] space is in kernel space, task 0 can still read and write to it.
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Task 1 address correspondence

Similar to task 0, task 1 is also a special task. Its code is also in the kernel code area. Different from task O,
in the linear address space, when the task (init process) is created using fork(), the system stores a page of
memory in the main memory area for storing the secondary page table of task 1. The page directory and the
secondary page table entry of the parent process (task 0) are copied. Therefore, task 1 has its own page directory
and page table entry, which maps the linear space range of task 1 from 64MB to 128MB (actually 64MB to
64MB + 640KB) to the physical address 0--640KB. At this time, the length of task 1 is also 640KB, and its code
segment and data segment overlap, occupying only one page directory entry and one secondary page table. In
addition, the system will also request a page of memory for task 1 to store its task data structure and kernel
stack space. The task data structure (also called process control block PCB) information includes the TSS
segment structure information of task 1. See Figure 5-16.
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Figure 5-16 Task 1 relationship in three address spaces

The user-mode stack space of task 1 will directly share the user-mode stack space user_stack[] of task 0 in
kernel code and data region (linear address 0--640KB) (see kernel/sched.c, lines 82--87) ). Therefore this stack
needs to be "clean” until Task 1 is actually used to ensure that the stack being copied for Task 1 does not contain
useless data. At the beginning of the creation of Task 1, the user-mode stack user_stack[] of Task 0 is shared
with Task 1, but when Task 1 starts running, the page table entry mapped to user_stack[] is set to read-only. This
causes Task 1 to cause a write page exception when performing a stack operation, so that the kernel allocates
the main memory area page as the user stack space.

Address correspondence of other tasks

For the other tasks that were created starting from Task 2, their final parent processes are all init (task 1)
processes. We already know that there are 64 processes in the Linux 0.12 system. Below we use task 2 as an
example to illustrate the use of address space by any other task.

Starting from task 2, if the task number is represented by nr, the starting position of task nr in the linear
address space will be set at nr*64MB. For example, the starting position of task 2 = nr * 64MB = 2 * 64MB =
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128MB. The maximum length of the task code segment and data segment is set to 64MB, so Task 2 occupies a
linear address space ranging from 128MB to 192MB, occupying a total of 64MB/4MB = 16 page directory
entries. The task code segments and data segments in the virtual space are mapped to the same range of linear
address spaces, so they also completely overlap. Figure 5-17 shows the correspondence between the code
segment of the task 2 and the data segment in the three address spaces.

After task 2 is created, the execve() function will be run in it to execute the shell program. When the kernel
just created task 2 through replication of task 1, in addition to occupying a linear address space range
(128MB--128MB+640KB), the relationship between the code and data of task 2 in the three address spaces is
similar to that of task 1. When the code of task 2 (init()) calls the execve() system call to start loading and
executing the shell program, the system call releases the page directory and page table entries and
corresponding memory pages copied from task 1. Then re-create the relevant page directory and page table
entries for the new executor shell. Figure 5-17 shows the situation when task 2 starts executing the shell
program, that is, the case where the code and data of task 2 were originally copied by the code segment and data
segment of the shell program. The figure shows a situation where one page of physical memory pages has been
mapped. Note here that when executing the execve() function, although the system allocates a 64MB space
range for Task 2 in the linear address space, the kernel does not immediately allocate and map physical memory
pages for it. The memory manager allocates and maps a page of physical memory into its linear address space in
the main memory area only when an exception occurs due to a lack page fault when task 2 begins execution.
This method of allocating and mapping physical memory pages is called load on demand. See the related
description in the Memory Management chapter.
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Figure 5-17 Correspondence in other task address spaces

Since the Linux kernel version 0.99, the use of memory space has changed. By using the page directory
table independently, each process can enjoy the entire 4G address space range. If we can understand the
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memory management concept described in this section, then the memory management principles used in the
Linux 2.x kernel that is currently used can be immediately understood. Due to space limitations, this will not be
explained here.

5.3.7 User application for memory dynamic allocation

When the user program uses the memory allocation function malloc() in the C library to apply for memory,
the memory capacity or size of these dynamic applications is managed by the high-level C library function
malloc(), and the kernel itself does not intervene. Because the kernel has allocated 64MB of space in the 4G
linear address space of the CPU for each process (except tasks 0 and 1, which are resident in memory with the
kernel code). Therefore, as long as the range of the task or process execution is within the 64MB range, the
kernel will also automatically allocate the physical memory page and map the operation for the corresponding
page through the memory page fault management mechanism.

But the kernel maintains a current position variable brk for the code and data space used by the process.
This variable value is stored in the data structure of each process. It indicates the end position of the process
code and data (including the dynamically allocated data space) in the process address space. When the malloc()
function allocates memory for the program, it notifies the kernel of the length of the space requested by the
program by the system call brk(). The kernel code can update the value of brk based on the information
provided by malloc().However, the physical memory page is not mapped for the newly requested space at this
time. Only when the program addresses an address that does not have a corresponding physical page, the kernel
performs mapping operations on the relevant physical memory page.

If the page where a certain data is addressed by the process code does not exist, and the location of the
page belongs to the process heap scope, that is, it does not belong to the memory range corresponding to the
executable file image file, the CPU generates a page fault exception. And allocate and map a page of physical
memory pages for the specified page in the exception handler. As for the memory size of the application and the
specific location in the corresponding physical page, the memory allocation function malloc() in the C library is
responsible for management. The kernel allocates and maps physical memory in units of pages. This function
specifically records how many bytes of memory is used by the user program. The remaining capacity will be
reserved for use when the program re-applies for memory.

When the user program uses the function free() to dynamically release the requested memory block, the
memory management function in the C library marks the released memory block as free, in case the program
requests the memory again. The physical page allocated by the kernel for this process will not be released
during this process. Only when the process ends up will the kernel fully reclaim all physical memory pages that
have been allocated and mapped to the process's address space.

The specific code implementation for the library functions malloc() and free() can be found in the
lib/malloc.c program in the kernel library.

5.4 Interrupt mechanism

This section describes the basic principles of the interrupt mechanism and related programmable controller
hardware logic, as well as methods for using interrupts in Linux systems. For the specific programming method
of the programmable controller, please refer to the description after the setup.s program in the next chapter.

5.4.1 Principle of Interrupt Operation

Microcomputer systems typically include input and output devices. One way the processor provides
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services to these devices is to use polling. In this method the processor sequentially queries each device in the
system and "queries” if they need service. The advantage of this method is that software programming is simple,
but the disadvantage is that it consumes processor resources and affects system performance.

Another way to provide services to a device is to make a request to the processor itself when the device
needs service. The processor also serves the device only when requested by the device. When the device makes
a service request to the processor, the processor will respond to the device's request as soon as the current
instruction is executed, and then execute the relevant service program of the device. When the service program
is executed, the processor will continue to do the program that was just interrupted. This type of processing is
called an interrupt method, and the service request that the device sends to the processor is called an IRQ -
Interrupt Request. The device-related program that the processor executes in response to the request is called an
interrupt service routine or an ISR.

The Programmable Interrupt Controller (PIC) is the administrator that manages device interrupt requests in
a microcomputer system. It accepts the Terminal Service Request signal from the device through an interrupt
request pin connected to the device. When the device activates its interrupt request IRQ signal, the PIC will
detect it immediately. In the case of receiving interrupt service requests from several devices at the same time,
the PIC will prioritize them and select the highest priority interrupt request for processing. If the processor is
currently executing an interrupt service routine for a device, the PIC also needs to compare the selected
interrupt request with the priority of the interrupt request being processed and determine whether to issue an
interrupt to the processor based on the comparison. When the PIC issues an interrupt to the processor's INT pin
(INTR pin in Figure 5-18), the processor immediately stops what was done at that time and asks the PIC which
interrupt service request to execute. The PIC informs the processor which interrupt service process to execute
by sending an interrupt number corresponding to the interrupt request to the data bus. The processor obtains the
interrupt vector of the relevant device (ie, the address of the interrupt service routine) by querying the interrupt
vector table (or the interrupt descriptor table IDT in the 32-bit protected mode) according to the read interrupt
number and starts executing the interrupt service routine. When the execution of the interrupt service routine
ends, the processor continues to execute the program interrupted by the interrupt signal.

What has been described above is the interrupt service processing of the input/output device. But the
interrupt method is not necessarily hardware-dependent, it can also be used in software. By using the INT
instruction and using its operand to indicate the interrupt number, the processor can be executed to perform the
corresponding interrupt processing. The PC/AT series of microcomputers provide support for 256 interrupts,
most of which are used for software interrupts or exceptions. The exceptions are interrupts generated by the
processor detecting errors during processing. Only some of the interrupts mentioned below are used on the
device.

5.4.2 Interrupt subsystem of 80X86 PC

The 8259A programmable interrupt controller chip is used in a microcomputer system composed of 80X86.
Each 8259A chip can manage eight interrupt sources. Through multi-chip cascading, the 8259A can form a
system that manages up to 64 interrupt vectors. In the PC/AT series compatible PC, two 8259A chips are used to
manage 15 levels of interrupt vectors. A schematic diagram of the cascade is shown in Figure 5-18. The INT pin
of the slave chip is connected to the IR2 pin of the master chip, that is, the interrupt signal sent by the 8259A
slave chip will be the IRQ2 input signal of the 8259A master chip. The port base address of the master 8259A
chip is 0x20, and the slave chip is OxAQ. The IRQ9 pin functions the same as the IRQ2 of the PC/XT. That is,
the PC/AT machine uses the hardware circuit to redirect the IRQ2 pin of the device using IRQ2 to the IRQ9 pin
of the PIC, and uses the software in the BIOS to interrupt the IRQ9. Int 71 redirects to IRQ2 interrupt int OX0A
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interrupt handler procedure. This allows any 8-bit card with PC/XT using IRQ2 to function properly under the
PC/AT machine. The backward compatibility of the PC series has been achieved.
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Figure 5-18 PC/AT microcomputer cascaded 8259 control system

Under the control of the bus controller, the 8259A chip can be in the programming state and operating state.
The programming state is the state in which the CPU initializes the 8259A chip using the IN or OUT instruction.
Once the initialization programming is completed, the chip enters the operating state. At this time, the chip can
respond to the interrupt request (IRQO — IRQ15) proposed by the external device at any time, and the system
can also modify the interrupt processing mode at any time by using the operation command word. Through the
interrupt arbitration selection mechanism, the chip will select the current highest priority interrupt request as the
interrupt service object, and notify the CPU of the interrupt request by the CPU pin INT. After the CPU
responds, the chip sends the programmed interrupt number of the current service object from the data bus
D7-D0, and the CPU acquires the corresponding interrupt vector value and executes the interrupt service
routine.

5.4.3 Interrupt Vector Table

The previous section has indicated that the CPU fetches the interrupt vector value based on the interrupt
number, which corresponds to the entry address value of the interrupt service routine. Therefore, in order for the
CPU to find the corresponding interrupt vector from the interrupt number, it is necessary to create a lookup
table in the memory, that is, the interrupt vector table (in the 32-bit protection mode, the table is called the
interrupt descriptor table IDT, see below).

The 80X86 microcomputer supports 256 interrupts, and an interrupt service routine is required for each
interrupt. In the 80X86 real mode mode, each interrupt vector consists of 4 bytes. These 4 bytes indicate the
segment value and the intra-segment offset value of an interrupt service routine. Therefore the length of the
entire vector table is 4 * 256 = 1024 bytes. When the 80X86 microcomputer starts up, the program in the ROM

195



5.4 Interrupt mechanism

BIOS initializes and sets the interrupt vector table at the physical memory start address 0x0000:0x0000, and the
default interrupt service routine for each interrupt is given in the BIOS. Since the vectors in the interrupt vector
table are arranged in the order of the interrupt numbers, given an interrupt number N, the position of the
corresponding interrupt vector in memory is 0x0000: N * 4, that is, the corresponding interrupt service program
entry address is stored in Physical memory 0x0000: N * 4 position.

When the BIOS performs the initialization operation, it sets the 16 hardware interrupt vectors supported by
the two 8259A chips and the interrupt calling function provided by the BIOS with the interrupt number
0x10-0x1F. For interrupts that are not actually used, the vector is filled with the address of the temporary
dummy interrupt service routine. Later, when the system boots the operating system, some interrupt vector
values will be modified according to actual needs. For example, for the DOS operating system, it will reset and
modify the interrupt vector value of interrupt 0x20-0x2F. For Linux systems, in addition to the display and disk
read interrupts provided by the BIOS when you first load the kernel, a new interrupt vector table is created. That
is, the 8259A chip is reinitialized in the setup.s program, and an interrupt vector table (interrupt descriptor table)
is re-established in the head.s program. Therefore, the Linux completely abandons the BIOS interrupt vector
table after the kernel is running normally.

When the Intel CPU is running in 32-bit protected mode, you need to use the Interrupt Descriptor Table
(IDT) to manage interrupts or exceptions. IDT is a direct replacement for the interrupt vector table used in the
Intel 8086 - 80186 CPU. Its role is similar to the interrupt vector table, except that each interrupt descriptor
entry contains information about the privilege level and descriptor class in addition to the address of the
interrupt service routine. The Linux operating system works in 80X86 protected mode, so it uses the interrupt
descriptor table to set and save the "vector" information for each interrupt.

5.4.4 Linux kernel interrupt handling

For the Linux kernel, interrupt signals are usually divided into two categories: hardware interrupts and
software interrupts (or exceptions). Each interrupt is identified by a number between 0-255, called the interrupt
number. For interrupts INTO--INT31 (0x00--0x1f), the function of each interrupt is fixed or reserved by Intel
Corporation, as shown in Table 5-1. As can be seen from the above section, the range of interrupt numbers set
by the BIOS conflicts with it.

Table 5-1 Exceptions and Interrupts reserved by Intel Co.

Vecter Error
Name Type Signal Source
No Code
0 Devide error Fault |No SIGFPE DIV and IDIV instructions
(Error)
1 Debug Fault/ [No SIGTRAP|Any code or data reference or the INT instruction.
Trap
2 nmi Interrupt No Non maskable external interrupt.
3 Breakpoint Trap No SIGTRAP INT 3 instruction
4 Overflow Trap No SIGSEGV INTO instruction
5 Bounds check Fault No  |SIGSEGV BOUND instruction
6 Invalid Opcode Fault No SIGILL UD2 instruction or reserved opcode.
7 Device not available Fault No SIGSEGV Floating—point or WAIT/FWAIT instruction
8 Double fault Abort Yes(0) |SIGSEGV| Any instruction that can generate an exception
NMI, or an INTR
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9 Coprocessor seg Abort No SIGFPE Floating—point instruction.
overrun
10 Invalid TSS Fault Yes |SIGSEGV Task switch or TSS access.
11 Segment not present Fault Yes SIGBUS | Loading segment registers or accessing system
segments.
12 Stack segment Fault Yes SIGBUS Stack operations and SS register loads.
13 General protection Fault Yes [SIGSEGV|Any memory reference and other protection checks.
14 Page fault Fault Yes [SIGSEGV Any memory reference.
15 Intel reserved No
16 Coprocessor error Fault No SIGFPE Floating—point or WAIT/FWAIT
17 Alignment check Fault Yes (0) Any data reference in memory.
20-31 Intel reserved.
32-255 |User Defined interrupts| Interrupt External interrupt or INT n instruction.

These interrupts are soft interrupts, but Intel calls them exceptions. Because these interrupts are caused by
an abnormal condition detected when the CPU executes the instruction. It can usually be divided into two
categories: faults and traps. The interrupt INT32--INT255 (0x20--0xff) can be set and defined by the user. The
classification of all interrupts and the way the CPU operates after execution are shown in Table 5-2.

Table 5-2 Interrupt classification and how the CPU handles it

Interrupt Name CPU Check Method

Processing Method

Maskable CPU pin INTR

Hardware

Nonmaskable ~ CPU pin NMI

Clear the IF maskable interrupt flag of EFLAGS.
Non-Maskable Interrupts.

Fault Detected before error occurred
Software Trap Detected after error occurred
Abort Detected after error occurred

CPU re-executes the instruction that caused the error.
CPU continues to execute the following instruction.

Programs that caused this error should be terminated.

In Linux systems, INT32--INT47 (0x20--Ox2f) corresponds to the hardware interrupt request signal
IRQO--IRQ15 issued by the 8259A interrupt control chip (see Table 5-3), and set the software interrupt issued
by the user program to INT128 (0x80), called the system call (System Call) interrupt. System call interrupt is
the only interface for user programs that use operating system resources.

Table 5-3 List of interrupt numbers for Linux system interrupt requests

Interrup Request No.

Interrupt No.

Purp

ose

IRQO
IRQ1
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6
IRQ7

0x20 (32)
0x21 (33)
0x22 (34)
0x23 (35)
0x24 (36)
0x25 (37)
0x26 (38)
0x27 (39)

100HZ clock interrupt signal from 8253 chip

Keyboard interrupt

Cascade to slave chip

Serial port 2

Serial port 1

Parallel port 2

Floppy disk drive

Parallel port 1

197




5.4 Interrupt mechanism

IRQ8 0x28 (40) Real clock

IRQ9 0x29 (41) Reserved

IRQ10 0x2a (42) Reserved

IRQ11 0x2b (43) Reserved (Network interface)
IRQ12 0x2c (44) PS/2 mouse

IRQ13 0x2d (45) Coprocessor

IRQ14 0x2e (46) Harddisk

IRQ15 0x2f (47) Reserved

At system initialization, the kernel first uses a dummy interrupt vector (interrupt descriptor) to default
settings for all 256 descriptors in the interrupt descriptor table (IDT). This dummy interrupt vector points to a
default "no interrupt” handler procedure. The message "Unknown interrupt” is displayed when an interrupt
occurs and the interrupt vector has not been reset. For some interrupts that need to be used in the system, the
kernel will re-edit the interrupt descriptor items of these interrupts during the process of continuing initialization,
so that they point to the corresponding actual hander procedure. Usually, the exception interrupt processing
(INTO -- INT 31) is reset in the initialization function of traps.c, and the system call interrupt int128 is reset in
the scheduler initialization function.

In addition, the Linux kernel uses both the interrupt gate and the trap gate descriptors when setting the
interrupt descriptor table IDT. The difference between them is the effect on the interrupt enable flag IF in the
flag register EFLAGS. The interrupt executed by the interrupt gate descriptor resets the IF flag, so other
interrupts can be prevented from interfering with the current interrupt processing. The subsequent interrupt end
instruction IRET will restore the original value of the IF flag from the stack. Interrupts that are executed through
the trap gate do not affect the IF flag.

5.4.5 Interrupt Flag of Flag Register

In order to avoid contention and disruption of the critical code area, the CLI and STI instructions are used
in many places in the Linux 0.12 kernel code. The CLI instruction is used to reset the interrupt flag IF in the
CPU flag register so that the system does not respond to external interrupts after executing the CLI instruction.
The STI instruction is used to set the interrupt flag in the flag register to allow the CPU to recognize and
respond to interrupts from external devices.

When entering a code area that may cause race conditions, the kernel will use the CLI instruction to turn
off the response to the external interrupt, and the kernel will execute the STI instruction to re-allow the CPU to
respond to the external interrupt when the content code area is executed. For example, when modifying the lock
flag of the file super block and the task entry/exit wait queue operation, it is necessary to first use the CLI
instruction to disable the CPU from responding to the external interrupt, and then use the STI instruction to
enable the response to the external interrupt after the operation is completed. If you do not use the CLI, STI
instruction pair, that is, when you need to modify a file super block without using the CLI to disable the
response to the external interrupt, then before the modification, it is judged that the super block lock flag is not
set and you want to set this flag. If the system clock interrupt occurs just at this time and switches to another
task to run, and it happens that other tasks also need to modify the super block, then this other task will first set
the lock flag of the super block and modify the super block. When the system switches back to the original task,
at this time, the task will not judge the lock flag and will continue to execute the lock flag of the set super block,
thereby causing two tasks to simultaneously perform multiple operations on the critical code area, causing the
super block data. Inconsistency can lead to kernel system crashes in severe cases.
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5.5 Linux system calls

5.5.1 System Call Interface

System calls (commonly referred to as syscalls) are the only interfaces that the Linux kernel can
communicate with upstream applications, as shown in Figure 5-4. From the description of the interrupt
mechanism, the user program can use kernel resources, including system hardware resources, by calling
interrupt int 0x80 directly or indirectly (through the library function) and specifying the system call function
number in the EAX register. However, usually the application uses the kernel's system calls indirectly using
functions in the C library with standard interface definitions, as shown in Figure 5-19.

Call printf() Application
Lib printf()
C Library
Lib write()
Sys—call write() Kernel

Figure 5-19 Relationship between user programs, library functions, and kernel system calls

Usually system calls are made using a functional form, so they can take one or more parameters. For the
result of the system call execution, it will be represented in the return value. Usually a negative value indicates
an error and a 0 indicates success. In the case of an error, the wrong type code is stored in the global variable
errno. By calling the library function perror(), we can print out the error string information corresponding to the
error code.

In the Linux kernel, each system call has a unique system call function number. Kernel 0.12 has a total of
87 system call functions (0-86). These feature numbers are defined at the beginning of line 62 in the file
include/unistd.h. For example, the write system call has a function number of 4, defined as the symbol
__NR_write. These system call function numbers actually correspond to the index of the items in the system
call handler pointer array table sys_call_table[] defined in include/linux/sys.h. So the handler pointer for the
write() system call is at item 4 of the array.

When we want to use these system call symbols directly in our own program, we need to define the symbol
" LIBRARY__ " before including the file "<unistd.h>" as shown below.

fidefine  LIBRARY
#include <unistd. h>

In addition, we can see from sys_call _table[] that the names of all system call handlers in the kernel
basically start with the symbol 'sys_". For example, the implementation function of the system call read() in the
kernel source code is sys_read().
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5.5.2 System Call Processing

When the application issues an interrupt INT 0x80 to the kernel via a library function, a system call is
initiated. The system call number is stored in the register EAX, and the carried parameters can be stored in the
registers EBX, ECX and EDX in turn. Therefore, the user program in the Linux 0.12 kernel can pass up to three
parameters directly to the kernel. Of course, you can also take no parameters. The process of handling the
system call interrupt INT 0x80 is the system_call in the program kernel/system_call.s.

In order to facilitate the execution of system calls, the kernel source code defines the macro function
_syscalln() in the include/unistd.h file (150-200 lines), where n represents the number of parameters carried,
which can be 0 to 3 respectively. Therefore, up to 3 parameters can be passed directly. If you need to pass large
chunks of data to the kernel, you can pass the pointer of the chunk data. For example, for the read() system call,
its definition is:

int read(int fd, char *buf, int n);

If we execute the corresponding system call directly in the user program, the macro of the system call is:

#define  LIBRARY
#include <unistd. h>

_syscall3(int, read, int, fd, char *, buf, int, n)

So we can use the above _syscall3() directly in the user program to execute a system call read() instead of
mediating through the C library. In fact, the form of the function call in the C function library is the same as that
given here.

For each system call macro given in include/unistd.h, there are 2+2*n parameters. The first parameter
corresponds to the type of the system call return value; the second parameter is the name of the system call;
followed by the type and name of the parameter carried by the system call. This macro will be extended to a C
function that contains inline assembly statements, as shown below.

int read(int fd, char *buf, int n)
{
long  res;
__asm__ volatile (
”int $0x80”
: "=a” (__res)
: 70”7 (_NR read), "b” ((long) (fd)), “c” ((long) (buf)), ”“d” ((long) (n))):
if (_res>=0)
return int _ res;
errno=—_ res;
return —1;

It can be seen that this macro is expanded to be a concrete implementation of a read system call. It uses the
embedded assembly statement to execute the Linux system interrupt call 0x80 with the function number
__NR_read(3). This interrupt call returns the actual number of bytes read in the EAX (__res) register. If the
returned value is less than 0, it means that the read operation error occurs, so the error number is inverted and
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stored in the global variable errno, and the value of -1 is returned to the calling program.

If a system call requires more than 3 parameters, the kernel usually uses the parameter as a parameter
buffer block and passes the pointer of the buffer block as a parameter to the kernel. So for system calls with
more than 3 parameters, we only need to use the macro _syscall1() with one argument to pass the pointer of the
first argument to the kernel. For example, the select() function system call has 5 arguments, but we only need to
pass a pointer to its first argument, see the description of the fs/select.c program.

When entering the kernel call handler kernel/sys_call.s in the kernel, the system_call code will first check
if the system call function number in EAX is within the valid system call number range. Then execute the
corresponding system call handler according to the sys_call_table[] function pointer table call.

call _sys_call_table(,%eax, 4) I kernel/sys_call.s # 99 17

The meaning of this assembly statement operand is: indirectly call the function at _sys_call_table + %eax * 4.
Since the sys_call_table[] pointer is 4 bytes each, it is necessary to multiply the system call function number by
4. Then use the resulting value to get the address of the called handler from the table.

5.5.3 Parameter Passing Method of Linux System Call

Regarding Linux user processes passing parameters to the system interrupt call procedure, Linux systems
use general-purpose register transfer methods such as registers EBX, ECX, and EDX. A significant advantage of
this method of using register-passing parameters is that when the system interrupt service routine is entered and
the register values are saved, the registers that pass the parameters are also automatically placed on the
kernel-state stack. Therefore, there is no need to specialize the special processing of the registers that pass the
parameters. This is the simplest and fastest method of parameter transfer that Mr. Linus knew at the time. There
is also a parameter transfer method using the system call gate provided by the Intel CPU, which automatically
copies the passed parameters in the process user state stack and the kernel state stack. But the method used in
this method is more complicated.

In addition, the parameters passed should be verified in each system call handler to ensure that all
parameters are legal and valid. In particular, user-supplied pointers should be rigorously reviewed to ensure that
the range of memory regions pointed to by the pointer is valid and has appropriate read and write permissions.

5.6 System time and timing

5.6.1 System time

In order to allow the operating system to automatically and accurately provide current time and date
information, battery-powered real-time RT (Real Time) circuit support is provided in the PC/AT microcomputer
system. Usually, this part of the circuit is integrated on a single chip with a small amount of CMOS RAM that
holds system information, so this part of the circuit is called an RT/CMOS RAM circuit. Motorola's MC146818
chip is used in the PC/AT microcomputer or its compatible machine.

At initialization, the Linux 0.12 kernel reads the current time and date information stored in the chip and
converts it to the current time in seconds from 0:00 on January 1, 1970. We call this the UNIX calendar time.
This time determines the calendar time at which the system starts running and is saved in the global variable
startup_time for all kernel code to use. The user program can use the system call time() to read the value of
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startup_time, while the superuser can modify the system time value by calling stime().

In addition, the program can uniquely determine the current running time by the following system tick
value jiffies counted from the system start. Each tick is generated by a timer as described below.Since each tick
timing value is 10 milliseconds, a macro is defined in the kernel code to facilitate access to the code at the
current time. This macro is defined on line 192 of the include/linux/sched.h file and has the following form:

#tdefine CURRENT TIME (startup time + jiffies/HZ)

Among them, HZ = 100, is the core system clock frequency. The current time macro CURRENT_TIME is
defined as the system boot time startup_time plus the time jiffies/100 of the system running after booting. This
macro is used when modifying the time when a file is accessed or when its i-node is modified.

5.6.2 System Timing

The basic timing beat of the system is generated by the timing chip. During the initialization of the Linux
0.12 kernel, the counter channel 0 of the PC's programmable timing chip Intel 8253 (8254) is set to operate in
mode 3, and the initial count value LATCH is set to emit a square wave rising edge at output OUT every 10
milliseconds. Since the clock input frequency of the 8254 chip is 1.193180 MHz, the initial count value
LATCH=1193180/100 is approximately 11931. Since the OUT pin is connected to level 0 of the programmable
interrupt control chip, the system issues a clock interrupt request (IRQO) every 10 milliseconds. This time beat
is the pulse of the operating system, we call it a system tick or a system clock cycle. Therefore, every a tick time
elapses, the system will call the clock interrupt handler (timer_interrupt).

The clock interrupt handler timer_interrupt is mainly used to accumulate the number of clock ticks that
have passed since the system was started by the jiffies variable. The jiffies value is incremented by one each
time a clock interrupt occurs. Then call the C language function do_timer() for further processing. The
parameter CPL with the call is obtained from the segment selector of the interrupted program (the CS segment
register value stored in the stack) to obtain the current code privilege level CPL.

The do_timer() function accumulates the current process runtime based on the privilege level. If CPL=0, it
means that the process is interrupted when it runs in kernel mode, so the kernel will increase the kernel state
running time stime of the process by one, otherwise it will increase the running value of the process user state
by one. If the floppy disk program floppy.c adds a timer during the operation, the timer list is processed. If a
timer expires (equal to O after decrement), the handler of the timer is called. Then the current process running
time is processed, and the current process running time slice is decremented by one. A time slice is the CPU
time that a process can continue to run before being switched out. The unit is the number of ticks defined above.

If the process time slice value is decremented and is still greater than 0O, it means that its time slice has not
been used up, so it exits do_timer() and continues to run the current process. If the process time slice has been
decremented to O at this time, it means that the process has used up the time slice of the CPU, and the program
will determine the further processing method according to the level of the interrupted program. If the
interrupted current process is working in user mode (privilege level is greater than 0), then do_timer() will call
the scheduler schedule() to switch to another process to run. If the interrupted current process is working in
kernel mode, that is, it is interrupted while running in the kernel program, do_timer() will exit immediately.
Therefore, this way of processing determines that the Linux system process will not be switched by the
scheduler when running in kernel mode. That is, the process is nonpreemptive when running in a kernel mode
program.

Note that the above timer code is dedicated to floppy motor turn-on and turn-off timing operations. This
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kind of timer is similar to the dynamic timer in modern Linux systems and is only used by the kernel. Such
timers can be dynamically created when needed and dynamically revoked when the timing expires. In the Linux
0.12 kernel, there are up to 64 timers at the same time. The processing code for the timer is in the sched.c
program 283--368 lines.

5.7 Linux Process Control

A program is an executable file, and a process is an instance of a program that is executing. With
time-sharing technology, multiple processes can be run simultaneously on the Linux operating system. The
basic principle of time-sharing technology is to divide the running time of the CPU into time slices of a
specified length, so that each process runs in one time slice. When the time slice of the process runs out, the
system uses the scheduler to switch to another process to run. So in fact, for a machine with a single CPU, only
one process can be run at a time. But since each process runs a short time slice (for example, 15 system tick =
150 milliseconds), it appears as if all processes are running at the same time.

For the Linux 0.12 kernel, the system can have up to 64 processes at the same time. Except for the first
process which created "manually”, the rest are new processes created by existing processes using the system call
fork. The created process is called the child process, and the creator is called the parent process.

The kernel program uses the process ID (process ID, pid) to identify each process. A process consists of
executable instruction code, data, and a stack sections. The code and data parts in the process correspond to the
code segments and data sections in one execution file respectively. Each process can only execute its own code
and access its own data and stack area. Communication between processes needs to be done through system
calls. For systems with only one CPU, only one process can be running at a time. The kernel schedules each
process to run in a time-sharing manner through the scheduler.

We already know that a process in a Linux system can be executed in kernel mode or user mode, and each
uses its own separate kernel state stack and user state stack. The user stack is used by the process to temporarily
save the parameters of the calling function, local variables, etc. in the user state; the kernel stack contains the
information when the kernel program executes the function call.

Also in the Linux kernel, processes are often referred to as tasks, and programs running in user space are
called processes. This book will mix these two terms while trying to follow this default rule.

5.7.1 Task Data Structure

The kernel program manages the process through the process table, and each process occupies one item in
the process table. In a Linux system, a process table entry is a task_struct task structure pointer. Some books
refer to it as process control block (PCB) or process descriptor (PD). It holds all the information used to control
and manage the process. It mainly includes the status information of the current running of the process, the
signal, the process number, the parent process number, the running time accumulated value, the file being used,
the local descriptor of the task, and the task status segment information. The task data structure is defined in the
header file include/linux/sched.h. The specific meaning of each field of the structure is as follows.

struct task struct {

long state; // =1 unrunnable, 0 runnable (ready), > 0 stopped.

long counter; // Task run time tick (decrement), run time slice

long priority; // Priority. When task starts running, counter=priority
long signal; // Signal bitmap, each bit is a signal( = bit offset + 1).
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struct sigaction sigactionl[32]; // Signal attribute struct. Signal operation and flags

long

blocked;

int exit_code;

unsigned long start code;

unsigned long end code;

unsigned long end data;

unsigned long brk;
unsigned long start stack;

long
long
long
long

pid;
pgrp;
session;
leader;

int groups[NGROUPS] :

task
task
task
task

struct *p pptr;
struct *p cptr;
struct *p ysptr;
struct *p osptr;

unsigned short uid;
unsigned short euid;
unsigned short suid;
unsigned short gid;
unsigned short egid;
unsigned short sgid;

long
long
long
long
long
long
long

timeout;
alarm;
utime;
stime;
cutime;
cstime;
start _time;

// Process signal mask (Bitmap of masked signal).

// Exit code after task stops, its parent will get it
// Code start location in linear address space

// Code length or size (bytes).

// Code size + data siez (bytes).

// Total size (number of bytes).

// Stack bottom location.

// Process identifier.

// Process group number.

// Process session number.

// Leader session number.

// Group numbers. A process can belong to more groups.
// Pointer to parent process

// Pointer to youngest child process.

// Pointer to younger sibling process created afterwards.
// Pointer to older sibling process created earlier.
// User id.

// Effective user id

// Saved user id

// Group id.

// Effective group id

// Saved group id.

// Kernel timing timeout value

// Alarm timing value (ticks)

// User state running time (ticks).

// System state runtime (ticks).

// Child process user state runtime

// Child process system state runtime.

// Time the process started running

struct rlimit r1im[RLIM NLIMITS]; // Resource usage statistics array
unsigned int flags;

unsigned short used math;
int tty;

unsigned short umask;

struct m inode * pwd;

struct m_inode * root;
struct m_inode * executable;
struct m_inode * library;
unsigned long close on exec;
struct file * filp[NR OPEN];

struct desc struct 1dt[3];
struct tss struct tss;

// per process flags

// Flag: Whether a coprocessor is used.

// The tty subdevice number used. -1 means no use

// The mask bit of the file creation attribute

// Current working directory i node structure pointer

// Root i-node structure pointer.

// The pointer to i-node structure of the executable file
// The loaded library i-node structure pointer.

// A bitmap flags that close file handles on execution.
// File structure pointer table, up to 32 items.

// The index is the value of file descriptor.

// LDT. O-empty, l-code seg cs, 2-data & stack seg ds & ss
// The task status segment structure TSS of the process.

@ long state -- The state field contains current state of the process. At some point, a Linux process can be
in one of five states and can transition between these states under the operation of the kernel scheduler. The five
interruptible sleep state (TASK _INTERRUPTIBLE),
uninterruptible sleep state (TASK_UNINTERRUPTBLE), zombie state (TASK_ZOMBIE), and stopped state

states are:

running state (TASK_RUNNING),

(TASK_STOPPED). The way the kernel changes the state of the process is described in the next section.

@ long counter -- The counter field holds the number of time ticks that the process can execute before it is
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temporarily stopped. That is, it usually takes several system clock cycles to switch to another process. The
scheduler uses the counter value of the process to select the next process to execute, so the counter can be
thought of as a dynamic feature of a process. The initial value of the counter is equal to the priority when a
process has just been created.

@ long priority -- Priority is used to assign the initial value to the counter. In Linux 0.12 this initial value is
15 system clock cycle times (15 ticks). When needed, the scheduler will use the value of priority to assign an
initial value to the counter, see the sched.c and the fork.c programs. Of course, the unit of priority is also the
number of time ticks.

# long signal -- The signal field is a bitmap of the signal currently received by the process. The bitmap has
32 bits, each bit represents a signal, and the signal value = bit offset value +1. So the Linux kernel has up to 32
signals. At the end of each system call process, the signal is preprocessed using the signal bitmap.

@ struct sigaction sigaction[32] -- The sigaction structure array is used to store the operations and attributes
used to process each signal. Each item of the array corresponds to one signal.

@ long blocked -- The blocked field is a blocking bitmap of the signal that the process does not currently
want to process. Similar to the signal field, each bit represents a blocked signal.

@int exit -- The exit field is used to save the exit code when the program terminates. After the child
process ends, the parent process can query its exit code.

@ unsigned long start_code -- The start_code field is the starting address of the process code in the CPU
linear address space. In the Linux 0.1x kernel, its value is an integer multiple of 64MB.

@ unsigned long end_code -- The end_code field holds the byte length value of the process code.

@ unsigned long end_data -- The end_data field holds the code length of the process + the total byte length
value of the data length.

@ unsigned long brk -- The brk field is also the total byte length value (pointer value) of the process code
and data, but also includes the uninitialized data area bss, as shown in Figure 5-12. This is the initial value of
brk when a process starts executing. By modifying this pointer, the kernel can add and release dynamically
allocated memory for the process. This is usually done by the kernel by calling the malloc() function and by
calling the brk system call.

@ unsigned long start_stack -- The start_stack field value points to the beginning of the stack in the
process's logical address space. See also the stack pointer location in Figure 5-12.

@ long pid -- Pid is the process identification number. It is used to uniquely identify the process.

@ long pgrp -- Pgrp refers to the process group number to which the process belongs.

@ long session -- Session is the session number of the process, which is the process ID of the session.

@ long leader -- The leader is the first process number of the session. For the concept of process groups
and sessions, see the instructions following Chapter 7, Program Listing.

@ int groups[NGROUPS] -- Groups is an array of group numbers for each group to which the process
belongs. A process can belong to more than one group.

@ task_struct *p_pptr -- p_pptr is a pointer to the parent process's task structure.

@ task_struct *p_cptr -- p_cptr is a pointer to the most recent subprocess's task structure. That is the
youngest child's task structure. Refer to figure 5-20.

@ task_struct *p_ysptr -- p_ysptr is a pointer to an adjacent process created later than itself. That is pointer
to the younger sibling process.

@ task_struct *p_osptr -- *p_osptr is a pointer to an adjacent process created earlier than itself. That is
point to the older sibling process. See Figure 5-20 for the relationship between the above four pointers. In the
task data structure of the Linux 0.11 kernel, there is a parent process number field father, but it is not used in the
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0.12 kernel. At this point we can use the process's pptr->pid to get the process number of the parent process.

i pptr — Parent

1 cptr — Child
————— 1 osptr— 01d sibling

<----- Eysptr* young sibling i

Newest Oldest

Figure 5-20 Relationship between process pointers

@ unsigned short uid -- Uid is the user identification number (user id) that owns the process.

@ unsigned short euid -- Euid is the effective user identification number that indicates the permissions to
access the file.

@ unsigned short suid -- Suid is the saved user identification number. When the set-user-ID flag of the
execution file is set, the suid of the execution file is saved in the suid. Otherwise suid is equal to the euid of the
process.

@ unsigned short gid -- Gid is the group identification number (group id) to which the user belongs. It
identifies the user group that owns the process.

@ unsigned short egid -- Egid is an effective group identification number that indicates the permissions of
the group of users to access the file.

@ unsigned short sgid -- Sgid is the saved user group identification number. When the set-group-ID flag of
the execution file is set, the gid of the execution file is stored in the sgid. Otherwise sgid is equal to the process's
egid. For a description of these user id and group id, see the overview of the sys.c program in Chapter 5.

@ long timeout -- Kernel timing timeout value.

#long alarm -- Alarm is the alarm timing value (number of ticks) for the process. If the process sets the
field value using the system call alarm(), then when the system time ticking value exceeds the alarm field value,
the kernel sends a SIGALRM signal to the process. By default this signal will terminate the execution of the
program. Of course, we can also use the signal capture function (signal () or sigaction ()) to capture the signal
for the specified operation. The function alarm() starts at line 370 of kernel/sched.c. The kernel converts the
function value of the function in seconds into a tick value, which is stored in the field after the current time tick
value of the system.

@ long utime -- Utime is the cumulative time (ticks) that the process runs in user state.

@ long stime -- Stime is the cumulative time (ticks) that the process runs in the system state.

@ long cutime -- Cutime is the cumulative time (ticks) that child processes runs in user state.

@ long cstime -- Cstime is the cumulative time (ticks) that child processes runs in system state.

@ long start_time -- Start_time is the time when the process is generated and starts running.
@®struct rlimit r1im[RLIM NLIMITS] —— The resource usage statistics array for the process.
®unsigned int flags — Its the flag for each process, and 0.12 kernel is not yet in use.

@ unsigned short used_math -- It is a flag indicating whether the process uses a coprocessor.
@int tty -- It is the subdevice number of the process using the tty terminal. -1 means no use.
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@ unsigned short umask -- It is the 16-bit attribute mask word used by the process to create a new file
(each bit represents a file), that is, the access attribute set by the new file. If a bit of the mask word is set, it
means that the corresponding attribute is disabled (masked). This attribute mask word is used with the attribute
value given when the file was created (mode &~umask) as the actual access attribute of the newly created file.
See the include/fcntl.h and include/sys/state.h files for the specific meaning of the masked word and file
attributes.

@ struct m_inode * pwd -- Pwd is a pointer to the i-node structure of the current working directory of the
process. Each process has a current working directory that resolves relative path names and can be changed
using the system call chdir.

@ struct m_inode * root -- Root is the process's own root i-node structure. Each process can have its own
specified root directory for parsing absolute path names. Only the superuser can modify this root directory by
calling chroot.

@ struct m_inode * executable -- Executable is the pointer to the i-node structure in memory for the
execution file of the process. The system can use this field to determine if there is another process running the
same executable file in the system. If so, then the in-memory i-node reference count value of
executable->i_count will be greater than 1. When the process is created, the field is given the same value as the
same field of the parent process, which means that the same program is being run with the parent process. When
the kind of exec() function is called to execute a specified new executable file, the field value is replaced with
the memory i-node pointer of the new program executed by the exec() function. When the process calls the exit()
function and performs exit processing, the reference count of the memory i node pointed to by this field is
decremented by 1, and the field will be blanked. The main role of this field is reflected in the share_page()
function of the memory.c program. This function code can determine whether there are multiple copies of the
currently running program in the system (at least 2) according to the reference count of the node pointed to by
the execution of the process. If so, try a page sharing operation between them.

At system initialization, the execution of all tasks created by the system is 0 before the first call to execute
the execve() function. These tasks include Task 0, Task 1, and all tasks created directly by Task 1 that have not
yet executed execve().That is, the executable field of all tasks directly included in the kernel code are O.
Because the code for task O is included in the kernel code, it is not loaded by the system from the file system.
Therefore, the executable code has a fixed value of 0 in the kernel code. In addition, when creating a new
process, fork() will copy the task data structure of the parent process, so task 1's executable is also 0. But after
runing execve(), the executable is given a pointer to the memory i-node of the file being executed. After that,
this value of all tasks will not be 0.

@ unsigned m_inode * library -- Library is the i-node structure pointer of the library file that is loaded
when the program is executed.

@ unsigned long close_on_exec -- It is a file descriptor (file handle) bitmap flag for a process. Each bit
represents one file descriptor that is used to determine the file descriptor that needs to be closed when the
system call execve() is called (see include/fcntl.h). When a program creates a child process using the fork(), it
usually calls the execve() function in the child process to load another new program. At this point the child
process will be completely replaced by the new program and the new program will start executing in the child
process. If the corresponding bit of a file descriptor in close_on_exec is set, then the file descriptor
corresponding to the open file will be closed when the child process executes the execve().That is, the file
descriptor is closed in the new program, otherwise the file descriptor will always be open.

@ struct file * filp[NR_OPEN] -- It is a table of file structure pointers for all open files used by the process,
up to a maximum of 32 entries. The value of the file descriptor is the index value in the structure table. Each of
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these is used for file descriptors to locate file pointers and access files.

@ struct desc_struct 1dt[3] -- It is the process local descriptor table structure LDT. It defines the code
segment and data segment of the task in the virtual address space. Where array item 0O is a null item, item 1 is a
code segment descriptor, and item 2 is a data segment (including data and stack) descriptor.

@ struct tss_struct tss -- It is the task state segment TSS information structure of the process. The tss_struct
structure holds all register values of the current processor when the task is switched out from execution. When
the task is re-executed, the CPU uses these values to restore to the state when the task was switched out and
starts execution.

When a process is executing, the values in all registers of the CPU, the state of the process, and the
contents of the stack are called the context of the process. When the kernel needs to switch to another process, it
needs to save all the state of the current process, that is, save the context of the current process, so that when the
process is executed again, it can be restored to the state before the switch. In Linux, the current process context
is stored in the task's task data structure. When an interrupt occurs, the kernel executes the interrupt service
routine in the kernel state in the context of the interrupted process. At the same time, all the resources that need
to be used are retained, so that the execution of the interrupted process can be resumed when the interrupt
service ends.

5.7.2 Process Running States

A process can be in a different set of states during its lifetime, called the process state, as shown in Figure
5-21. Each circle in the figure with a different number represents a different state. As mentioned earlier, the
process state is saved in the state field of the process task structure.

If a process is waiting for using CPU or is running, it is said to be in a ready or running state. At this point,
the process state field value is TASK_RUNNING. If a process is asleep while waiting for system resources or
event to occur, it is said to be in an interruptible sleep state, or an uninterruptible sleep state. At this time, the
state field of the process may be TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE, respectively. If a
process has been terminated, but it has not completely released the kernel resources, it is said to be in a dead
state. At this point, the state field value of the process is TASK_ZOMBIE. If a process is temporarily stopped, it
is said to be in a suspended state. At this point, the state field value of the process is TASK_STOPPED.
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Figure 5-21 Process status and conversion relationship

The constant symbol names used for the five states of the Linux process are shown below. They are
defined in line 46-50 in the file include/linux/sched.h.

// This defines the state of a process
46 #define TASK RUNNING 0 // is running or ready to run
47 #define TASK INTERRUPTIBLE 1 // is in an interruptible wait state.
48 #tdefine TASK UNINTERRUPTIBLE 2 // uninterruptible wait state for wait I/0 operation.
49 #define TASK ZOMBIE 3 // is in a zombie state and has been terminated.
50 #define TASK STOPPED 4

// The process has stopped.

@ Running status (0, TASK_RUNNING)
When a process is being executed by the CPU, or is ready to be executed by the scheduler at any time, the
process is said to be running state. If the process is not executed by the CPU at this time, it is said to be in
the ready-to-run state, as shown in Figure 5-21. In the figure, the middle three circles from top to bottom
contains the same value 0, which means that they are all ready or running states. Processes can run in
kernel mode or in user mode. When a process is running in kernel code, we call it kernel running state, or
simply kernel mode; when a process is executing its own code, we call it user running state (user mode).
When system resources are available, the process wakes up and enters the ready-to-run state, which is
called the ready state. These states (the middle column in the figure) represent the same method in the
kernel and are said to be in the TASK_RUNNING state. When a new process has just been created, it is in
this state (the bottom 0).

@ Interruptible sleep state (1, TASK_INTERRUPTIBLE)
When a process is in an interruptible wait (sleep) state, the system does not schedule the process to execute.
When the system generates an interrupt or releases the resource that the process is waiting for, or the
process receives a signal, it can wake up the process to change to the ready state (that is, the running state).

@ Uninterruptible sleep state (2, TASK_UNINTERRUPTIBLE)
This state is similar to the interruptible sleep state except that it is not woken up by the receipt of a signal.
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However, a process in this state can only be converted to a runnable ready state when it is explicitly awake
using the wake_up() function. This state is typically used when a process needs to wait undisturbed or
when a waiting event occurs quickly.

@ Zombie state (3, TASK_ZOMBIE)
When a process has stopped running, but its parent has not called wait() to ask for its status, the process is
said to be in a dead state. In order for the parent process to get the information that it stopped running, the
task data structure information of the child process needs to be retained. Once the parent process calls wait()
to get the information of the child process, the task data structure of the process in that state is released.

@ Stop status (4, TASK_STOPPED)
When the process receives the signal SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU, it will enter the stop
state. The SIGCONT signal can be sent to the process to transition to a runnable state. Any signal received
by the process during debugging will enter this state. In Linux 0.12, the conversion processing for this state
has not been implemented. Processes in this state will be processed as process termination.

When a process runs out of time, the system uses the scheduler to force a switch to another process to
execute. In addition, if the process needs to wait for a certain resource of the system when it executes in kernel
mode, the process will call sleep_on() or interruptible_sleep_on() to voluntarily give up the usage rights of the
CPU, and let the scheduler execute other processes. The process goes to sleep (TASK_UNINTERRUPTIBLE or
TASK_INTERRUPTIBLE).

The